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Abstract. Heavy-tailed continuous shrinkage priors, such as the horseshoe prior,
are widely used for sparse estimation problems. However, there is limited work
extending these priors to explicitly incorporate multivariate shrinkage for regres-
sors with grouping structures. Of particular interest in this article, is regression
coefficient estimation where pockets of high collinearity in the regressor space are
contained within known regressor groupings. To assuage variance inflation due
to multicollinearity we propose the group inverse-gamma gamma (GIGG) prior,
a heavy-tailed prior that can trade-off between local and group shrinkage in a
data adaptive fashion. A special case of the GIGG prior is the group horseshoe
prior, whose shrinkage profile is dependent within-group such that the regression
coefficients marginally have exact horseshoe regularization. We establish posterior
consistency and posterior concentration results for regression coefficients in linear
models and mean parameters in sparse normal means models. The full conditional
distributions corresponding to GIGG regression can be derived in closed form,
leading to straightforward posterior computation. We show that GIGG regression
results in low mean-squared error across a wide range of correlation structures
and within-group signal densities via simulation. We apply GIGG regression to
data from the National Health and Nutrition Examination Survey for associating
environmental exposures with liver functionality.
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2 Group Inverse-Gamma Gamma Shrinkage

1 Introduction
Regression with grouped regressors is a common problem in many biomedical appli-
cations. Some examples include metabolomics data, where metabolites are grouped
by subpathway membership, neuroimaging data, where adjacent voxels are spatially
grouped, and environmental contaminants data, where exposures are grouped by chem-
ical structure, toxicological profile, and pharmacokinetics (see Figure 1). In such cases,
leveraging relevant grouping information to construct grouped multivariate shrinkage
profiles may help achieve additional variance reduction beyond comparable methods
that ignore the grouping structure. The methodological focus of this article will be on
grouped multivariate regularization in a continuous shrinkage prior framework.

Ever since the publication of the horseshoe prior (Carvalho et al., 2009, 2010), there
has been an explosion of continuous shrinkage priors designed for sparse estimation prob-
lems, notably normal-gamma shrinkage (Brown and Griffin, 2010), generalized double

Figure 1: Pairwise Spearman correlation plot between metals, phthalates, organochlorine
pesticides, polybrominated diphenyl ethers, and polycyclic aromatic hydrocarbons from
the 2003-2004 National Health and Nutrition Examination Survey (n = 990).
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Pareto shrinkage (Armagan et al., 2013a), Dirichlet–Laplace shrinkage (Bhattacharya
et al., 2015), horseshoe+ shrinkage (Bhadra et al., 2017), and normal beta prime (NBP)
shrinkage (Bai and Ghosh, 2019; Cadonna et al., 2020), among others. These priors have
become increasingly popular for sparse regression problems because of their good theo-
retical and empirical properties, in addition to their scale mixture representation, which
facilitates straightforward and efficient posterior simulation algorithms. The general
recipe for constructing a continuous shrinkage prior with good estimation and predic-
tion properties is substantial mass at the origin, to sufficiently shrink null coefficients
towards zero, and regularly-varying tails, to avoid overregularizing non-null coefficients
(Bhadra et al., 2016). Surveying the continuous shrinkage prior literature on regression
with known grouping structure, there are many papers which discuss Bayesian group
lasso and its applications (Kyung et al., 2010; Li et al., 2015; Xu and Ghosh, 2015;
Hefley et al., 2017; Kang et al., 2019) and several papers which propose extensions to
Bayesian sparse group lasso (Xu and Ghosh, 2015), Bayesian group bridge regulariza-
tion (Mallick and Yi, 2017), and the Normal Exponential Gamma prior with grouping
structure (Rockova and Lesaffre, 2014). Xu et al. (2016) introduced the, so called, group
horseshoe prior with an emphasis on prediction in Bayesian generalized additive mod-
els. However, the group horseshoe prior does not reduce to the horseshoe prior for a
group of size one, meaning that the group horseshoe prior, as proposed by Xu et al.
(2016), is not a direct generalization of the horseshoe prior. Wei et al. (2020) developed
a multivariate Dirichlet-Laplace prior for use in Bayesian additive models with first
order interactions. Intuitively, the multivariate Dirichlet-Laplace prior can be thought
of as treating the corresponding basis expansion for each regressor as a group. Lastly,
although not specifically framed as a grouped multivariate shrinkage prior, Som et al.
(2015) proposed a block hyper-g shrinkage prior where the blocks are defined by areas
of high collinearity in the regressor space, as in our data example.

Bayesian group lasso-style shrinkage is not generally preferred as a default method
for estimation problems, as the Laplacian prior has neither an infinite spike at zero nor
regularly-varying tails (Polson and Scott, 2011; Castillo et al., 2015; Bhadra et al., 2016).
The multivariate Dirichlet-Laplace prior and the block hyper-g prior, are group/block
sparse priors and, therefore, are not designed for problems that require shrinkage at both
a group-level and an individual-level. The group horseshoe prior of Xu et al. (2016) has
the desired origin and tail behavior marginally, however no hyperparameter in the prior
controls how dependent the shrinkage is within a group. Thus, this prior implicitly as-
sumes that the degree of dependence induced by grouped multivariate shrinkage only
depends on group size. This assumption is inadequate when we a priori believe that,
irrespective of group size, some groups have more heterogeneous effect sizes than others.
Moreover, this assumption does not avail the opportunity to learn how dependent the
shrinkage should be in a data adaptive manner, which is an intrinsic feature in some
application areas. For example, in modeling multiple pollutants, this is a relevant con-
sideration as some exposure classes have more homogeneous toxicological profiles than
others (Ferguson et al., 2014).

To address these limitations, we propose the group inverse-gamma gamma (GIGG)
prior, which extends the horseshoe and normal beta prime (NBP) priors to incorporate
grouping structures. The GIGG prior introduces a group level shrinkage parameter, in
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addition to the usual global and local shrinkage parameters, such that the induced prior
on the product of the group and local shrinkage parameters yields the desired marginal
shrinkage profile. This allows the user to control the trade-off between group-level and
individual-level shrinkage, leading to relatively low estimation error irrespective of the
signal density and the degree of multicollinearity within each group. Additionally, the
GIGG prior is constructed such that all parameters have closed-form full conditional dis-
tributions, implying that techniques to scale horseshoe regression to large sample sizes
and high-dimensional regressor spaces are also applicable to GIGG regression (Bhat-
tacharya et al., 2016; Terenin et al., 2019; Johndrow et al., 2020). Theoretically, we
establish posterior consistency and posterior concentration results for regression coef-
ficients with grouping structure in linear regression models and mean parameters with
grouping structure in sparse normal means models with respect to several GIGG hy-
perparameters and correlation structures. To our knowledge, we are the first to apply
existing theoretical frameworks for posterior consistency in the sparse linear regression
model (Armagan et al., 2013b) and posterior concentration in the sparse normal means
model (Datta and Ghosh, 2013) to a non-exchangeable prior, which will be useful for
future evaluations of other non-exchangeable priors.

The structure of the paper is as follows. We start with an intuitive explanation of
the GIGG prior in Section 2, succeeded by some theoretical results in Section 3. After
the methodological and theoretical discussion, we outline computational details, includ-
ing hyperparameter estimation via marginal maximum likelihood estimation (MMLE)
(Section 4). In Section 5, we conduct a simulation study to empirically verify that the
intuition and theory developed in Sections 2 and 3 hold for linear regression models
with group-correlated regressors. We then apply GIGG regression to data from the
2003-2004 National Health and Nutrition Examination Survey (NHANES) to identify
toxicants and metals associated with a biomarker of liver function (Section 6) and con-
clude with a discussion (Section 7).

2 Methods
Throughout the article, N(μ, Σ) denotes a multivariate normal distribution with mean
parameter μ and variance-covariance matrix Σ, G(a, b) denotes a gamma distribution
with shape parameter a and rate parameter b, and IG(a, b) denotes an inverse-gamma
distribution with shape parameter a and scale parameter b. Additionally, we will use
π(·) as general notation for a prior probability measure and π(· | y) as general notation
for a posterior probability measure.

2.1 Group Inverse-Gamma Gamma (GIGG) Prior
Consider a Bayesian sparse linear regression model

[y|α, β, σ2] ∼ N

(
Cα +

G∑
g=1

Xgβg, σ2In

)

π(α) ∝ 1, [β | σ2] ∼ π(β | σ2), π(σ2) ∝ σ−2,

(2.1)
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where g = 1, . . . , G indexes the groups, y is an n × 1 vector of centered continuous
responses, C is a matrix of adjustment covariates, Xg is an n×pg matrix of standardized
regressors in the g-th group, βg = (βg1, . . . , βgpg )� is a pg × 1 vector of regression
coefficients corresponding to the g-th group, β = (β�

1 , . . . , β�
G)� is a p × 1 vector of

regression coefficients to employ shrinkage on, and In is an n × n identity matrix. We
assume the model is sparse in the sense that many of the entries in β are zero. The
group inverse-gamma gamma (GIGG) prior is defined as

[βgj |τ2, γ2
g , λ2

gj ] ∼ N(0, τ2γ2
gλ2

gj)

[γ2
g |ag] ∼ G(ag, 1), [λ2

gj |bg] ∼ IG(bg, 1), [τ2, σ2] ∼ π(τ2, σ2),

where j = 1, . . . , pg indexes the regressors within the g-th group. In this paper, we
will assign τ | σ ∼ C+(0, σ) and π(σ2) ∝ σ−2, where C+(0, σ) is a half-Cauchy
distribution (Polson and Scott, 2011). Alternatively, we may also express the prior
on β as a vector, [β|τ2, Γ, Λ] ∼ N(0, τ2ΓΛ), where Λ = diag(λ2

11, . . . , λ2
GpG

) and
Γ = diag(γ2

1 , . . . , γ2
1 , γ2

2 , . . . , γ2
2 , . . . , γ2

G, . . . , γ2
G) such that γ2

g is repeated pg times along
the diagonal of Γ. In the GIGG prior specification, the priors on the group shrinkage
parameter, γ2

g , and local shrinkage parameter, λ2
gj , are selected such that the induced

prior on the product is a beta prime prior, γ2
gλ2

gj ∼ β′(ag, bg) (see Boss et al. (2023) for
distributional definitions). Since the group shrinkage parameter is shared by all pg ob-
servations in the g-th group, assigning a beta prime prior on the product ensures normal
beta prime shrinkage marginally while the shrinkage is dependent within-group. One
point that deserves further clarification is the assignment of the gamma and inverse-
gamma priors to the group and local shrinkage parameters, respectively, when either
configuration would yield a beta prime prior in the product. The rationale behind this
choice is that the inverse-gamma prior is heavier-tailed than the gamma prior, thereby
preventing overregularization of large, non-null coefficients due to being grouped with
null coefficients.

Setting ag = bg = 1/2 for all g yields a special case of the GIGG prior which we will
call the group horseshoe prior

[βgj |τ2, γ2
g , λ2

gj ] ∼ N(0, τ2γ2
gλ2

gj)

γ2
g ∼ G(1/2, 1), λ2

gj ∼ IG(1/2, 1), [τ2, σ2] ∼ π(τ2, σ2).

For a group horseshoe prior with a group of size one, the group shrinkage parameter
becomes a local shrinkage parameter. That is, for a group g′ of size one,

[βg′1|τ2, γ2
g′ , λ2

g′1] ∼ N(0, τ2γ2
g′λ2

g′1)

γ2
g′ ∼ G(1/2, 1), λ2

g′1 ∼ IG(1/2, 1), [τ2, σ2] ∼ π(τ2, σ2)

can be re-indexed as

[βg′1|τ2, γ2
g′1, λ2

g′1] ∼ N(0, τ2γ2
g′1λ2

g′1)

γ2
g′1 ∼ G(1/2, 1), λ2

g′1 ∼ IG(1/2, 1), [τ2, σ2] ∼ π(τ2, σ2),
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which is equivalent to the horseshoe prior

[βg′1|τ2, η2
g′1] ∼ N(0, τ2η2

g′1), ηg′1 ∼ C+(0, 1), [τ2, σ2] ∼ π(τ2, σ2).

It is important to note that this is different from the group horseshoe prior specifica-
tion described in Xu et al. (2016). The prior in Xu et al. (2016) assigns independent
β′(1/2, 1/2) priors on both the group and local shrinkage parameters, meaning that the
implied prior on the product of the group and local shrinkage parameters is the product
of two independent β′(1/2, 1/2) random variables. In our construction, the product of
the group and local shrinkage parameters is itself β′(1/2, 1/2). Consequently, our group
horseshoe prior specification has horseshoe regularization marginally, while the group
horseshoe prior in Xu et al. (2016) does not. To more clearly distinguish between the
two group horseshoe priors, we will refer to the prior in Xu et al. (2016) as the group
horseshoe+ prior and the GIGG prior with ag = bg = 1/2 as the group horseshoe prior
for the remainder of the paper.

2.2 Marginal Prior Properties

When discussing a proposed shrinkage prior on β, there are two key features of the
marginal prior that need to be investigated. The first is the behavior in a tight neigh-
borhood around zero and the second is the rate at which the prior decays in the extremes.
For τ2 = 1 fixed, Bai and Ghosh (2019) showed that the marginal prior π(βgj | τ2, ag, bg)
has a pole at 0 if and only if 0 < ag ≤ 1/2, with the pole at zero becoming stronger
the closer ag is to zero. Therefore, one should select ag ∈ (0, 1/2] for sparse estimation
problems to sufficiently shrink null coefficients towards zero. To clarify the tail behavior
we need to introduce the notion of a regularly varying function (Bingham et al., 1989):
A positive, measurable function f is said to be regularly varying at ∞ with index ω ∈ R

if limx→∞ f(tx)/f(x) = tω, for all t > 0.

Theorem 2.1. Let B(ag, bg) denote the beta function evaluated at ag and bg and Γ(bg +
1/2) denote the gamma function evaluated at bg + 1/2. The tails of the marginal prior
probability density function of βgj decay at the following rate,

lim
βgj→∞

π(βgj | τ2, ag, bg)
r(βgj , τ2, ag, bg) = 1,

r(βgj , τ2, ag, bg) = (2τ2)bg Γ(bg + 1/2)√
πB(ag, bg)

|βgj |−(1+2bg)
(

β2
gj/τ2

1 + β2
gj/τ2

)ag

.

Consequently, the index of regular variation is ω = −1 − 2bg.

Proof. See the Supplementary Material (Boss et al., 2023).

The concept of regular variation has been extensively discussed in the context of
Bayesian robustness and noninformative inference (Dawid, 1973; O’Hagan, 1979; An-
drade and O’Hagan, 2006), with the latter being recently elaborated on in the context
of global-local shrinkage priors (Bhadra et al., 2016). When the index ω < 0, regular
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variation essentially states that the tail of the function decays at a polynomial rate
and is therefore considered heavy-tailed. Some examples of priors with regularly vary-
ing tails include the student’s t prior and the horseshoe prior. Conversely, commonly
used priors such as the normal prior and the Laplace prior do not have regularly-varying
tails. As a consequence of having exponentially decaying tails, Bayesian linear regression
with independent normal priors and Bayesian lasso are prone to overregularizing large
signals and are not flexible enough to facilitate conflict resolution between discordant
likelihood and prior information (Andrade and O’Hagan, 2006; Polson and Scott, 2011).
Theorem 2.1 shows that for any pair of hyperparameters ag and bg, the marginal GIGG
prior has regularly varying tails and, furthermore, that bg controls the rate at which the
tails decay.

2.3 Connection to Bayesian LASSO
As pointed out by a reviewer, an interesting connection between the GIGG prior and
Bayesian LASSO-type priors can be seen from integrating out the group shrinkage
parameter

π
(
βg | τ2, λ2

g, ag

)
=

∫ ∞

0
π

(
βg | τ2, γ2

g , λ2
g

)
π(γ2

g | ag)dγ2
g

= 2
Γ(ag)(2π)pg/2|τ2Λg|1/2

(√
1

2τ2 βgΛ−1
g βg

)ag−pg/2

Kag−pg/2

(√
2
τ2 βgΛ−1

g βg

)
,

where Λg = diag(λ2
g) = diag(λ2

g1, . . . , λ2
gpg

) and Kζ(·) denotes the modified Bessel
function of the second kind with parameter ζ. If ag = 1, then we see that [βg | τ2, λ2

g] ∼
ML(0, τ2Λg), has a multivariate-Laplace prior with location parameter 0 and scale
parameter τ2Λg. Recall that for the multivariate Laplace distribution, a diagonal scale
does not correspond to independence. Therefore, when ag = 1, we can interpret the
GIGG prior as a mixture of multivariate-Laplace priors with the mixing distribution
equal to independent inverse-gamma distributions for each λ2

gj . Moreover, mixing over
the local shrinkage parameters implies that the GIGG prior with ag = 1 is a heavy-
tailed version of the multivariate-Laplace prior. To connect this result with Bayesian
LASSO, we use identity 10.2.17 in Abramowitz and Stegun (1964) and conclude that if
ag = 1 and pg = 1, then

π(βg1 | τ2, λ2
g1) = 1√

2τ2λ2
g1

exp
(

−
√

2
τ2λ2

g1
|βg1|

)
, βg1 ∈ (−∞, ∞).

That is, for a group of size one with ag = 1, the GIGG prior can be interpreted as a
mixture of Laplace priors, explicitly connecting the GIGG prior with Bayesian LASSO.

2.4 Sparse Normal Means
To further elucidate the shrinkage profile of the GIGG prior, we will focus on a special
case of the sparse linear regression model called the sparse normal means model (X =
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In and C empty). In the global-local shrinkage prior literature, it is conventional to
work with the sparse normal means problem for analytical tractability, even when the
ultimate goal is regression (Rockova and Lesaffre, 2014; Bhattacharya et al., 2015), as
the posterior mean has a convenient representation, E[βgj | ygj , τ2, σ2] = (1 − E[κgj |
ygj , τ2, σ2])ygj . Here, κgj = σ2/(σ2 + τ2γ2

gλ2
gj) is called a shrinkage factor, because it

quantifies how much the posterior mean is shrunk relative to the maximum likelihood
estimator ygj . Calculating the joint prior distribution for the shrinkage factors in the
g-th group, κg = (κg1, . . . , κgpg )�, we have

π
(
κg | τ2, σ2, ag, bg

)
=

Γ(ag + pgbg)
Γ(ag)

(
Γ(bg)

)pg

(
τ2

σ2

)pgbg
(

1+ τ2

σ2

pg∑
j=1

κgj

1 − κgj

)−(ag+pgbg)( pg∏
j=1

κ
bg−1
gj (1−κgj)−(bg+1)

)
,

where 0 < κgj < 1 for all 1 ≤ j ≤ pg. Evaluating the prior distribution of κg, we see that
the joint density multiplicatively factorizes into “dependent” and “independent” parts
where the degree of dependence is governed by the

∑pg

j=1 κgj/(1−κgj) term. That is, as
ag + pgbg goes to zero, the regularization is highly individualistic, whereas if ag + pgbg

moves away from zero, then the shrinkage becomes more dependent within the g-th
group.

Although the dependence between the shrinkage factors in the g-th group is con-
trolled by ag + pgbg, we can use the marginal prior properties to better understand the
primary roles of ag and bg. From Section 2.2, we know that ag ∈ (0, 1/2] should be used
for sparse estimation problems, because the pole at the origin of the marginal prior on
βgj only arises if ag ∈ (0, 1/2]. Since ag is heavily restricted in the range of values it can
take for sparse estimation problems, then ag +pgbg is primarily determined by the choice
of bg. Even setting the restriction on ag for sparse estimation problems aside, if we inter-
pret ag +pgbg as a weighted sum of hyperparameters, bg is given more weight than ag for
groups larger than size one, with the weights becoming increasingly disproportionate as
group size increases. Therefore, upon simultaneous inspection of the joint prior on the
shrinkage factors and the marginal prior properties for the prior on βgj , bg offers more
control over the dependence of the multivariate shrinkage and ag offers more control
over the strength of the approximate thresholding effect near zero, although these roles
are not mutually exclusive. To illustrate this point, Figure 2 visualizes the marginal
posterior mean of βg1 for a group of size two as a function of ag, bg, yg1, and yg2. When
ag and bg are close to zero then the thresholding effect on the marginal posterior mean
of βg1 hardly depends on the value of yg2, indicating highly individualistic shrinkage.
This corroborates our intuition from looking at the joint posterior distribution of the
shrinkage weights within the same group. The second major observation is that as bg

moves away from zero, the marginal posterior mean of βg1 becomes increasingly more
dependent on the value of yg2. In particular, if we look at the case when ag = 0.05 and
bg = 2, we see that when yg2 = 0 the thresholding effect on βg1 is much stronger when
compared to yg2 = 10. The last major observation is that as ag moves towards zero,
the thresholding effect becomes stronger, which coincides with a stronger pole at zero
in the marginal prior on βg1.
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Figure 2: Marginal posterior mean of βg1 for a group with two observations as ag, bg,
yg1, and yg2 vary. Here, τ2 = 0.2 and σ2 = 1 are fixed.

3 Theoretical Properties
In this section, we first prove posterior consistency (Section 3.1) and we then consider
posterior concentration properties of GIGG shrinkage across a range of different settings
(Section 3.2).

3.1 Posterior Consistency

Let Xn = [X1, . . . , XGn ] and Hn = {a, b} denote the collection of hyperparameters
where a = {a1, . . . , aGn} and b = {b1, . . . , bGn}. Here, the subscript n in Gn refers
to the fact that the number of groups in the regressor space is growing as a function
of the sample size. Furthermore, let An = {(g, j) : β0

gj 	= 0} denote the true active
set with cardinality |An|. Then, Theorem 3.1 states that the posterior distribution of
βn under the GIGG prior is consistent a posteriori for the true β0

n. Similarly, we add
a subscript n to β0

n and βn to indicate that the total number of regressors, pn, is
growing as function of sample size. In the theoretical analysis of our method, letting
the number of regressors grow as a function of sample size allows us to consider cases
where the number of variables included in the model grows with increasing sample size,
in addition to cases where the number of variables does not change as a function of
sample size (Ghosal, 1999; Armagan et al., 2013b).
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Theorem 3.1. Suppose that pn = o(n), Ln = sup(g,j) |β0
gj | < ∞, where β0

gj in-
dicates the true j-th regression coefficient in the g-th group, 0 < limn→∞ inf Hn ≤
limn→∞ sup Hn < ∞, and |An| = o(n/ log(n)). Further, suppose that the smallest
and largest singular values of Xn, denoted by θn,min(Xn) and θn,max(Xn), satisfy
0 < lim infn→∞ θn,min(Xn)/

√
n ≤ lim supn→∞ θn,max(Xn)/

√
n < ∞. Then for any

ε > 0,
πn(βn : ‖βn − β0

n‖2 < ε | yn, Hn, τ2
n, σ2) → 1

almost surely as n → ∞ provided that τ2
n = C/(pnnρ log(n)) for some ρ, C ∈ (0, ∞).

Proof. See the Supplementary Material (Boss et al., 2023).

Of note, the only restriction placed on the values of the hyperparameters in Theo-
rem 3.1 is that they do not converge to the boundary of the hyperparameter space as
n → ∞.

Remark 3.1. Theorem 3.1 is a generalization of Theorem 5 in Armagan et al. (2013b)
which proved posterior consistency for the NBP prior when bg ∈ (1, ∞). Restricting
bg ∈ (1, ∞) was done to utilize an argument which required the existence of the sec-
ond moment of βgj, but does not cover special cases of particular interest such as the
horseshoe prior. Therefore, our result extends the existing posterior consistency result
from Armagan et al. (2013b) to a more general collection of hyperparameter values with
potential grouping structure.

Remark 3.2. Although Song and Liang (2017) provide an existing theoretical frame-
work for posterior consistency in high-dimensional linear regression when log(pn) =
o(n), this result cannot be directly applied because the GIGG prior is non-exchangeable.

3.2 Concentration Properties of Shrinkage Parameters

In this subsection, we consider posterior concentration properties corresponding to
GIGG shrinkage in different settings, which describe the behavior of the posterior dis-
tribution for fixed n. These concentration properties are important to show for new
group global-local shrinkage priors, as Datta and Ghosh (2013) showed that such con-
centration properties were important for the horseshoe prior. We will consider results
for general low-dimensional linear regression models when possible, however, for certain
componentwise results, we need to focus on the sparse normal means setting. Separate
subsection headers are available to distinguish between the results for linear regression
models and the results that are only applicable to sparse normal means models.

Linear Regression

First, we partially extend the posterior concentration theoretical framework for the
sparse normal means model to a low-dimensional linear regression (p < n) model with
general correlation structure. Going forward, we will drop the subscript n from the
notation introduced in the statement of Theorem 3.1 to clarify that the subsequent
theoretical results hold for fixed p.
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Theorem 3.2. Fix ε ∈ (0, 1), p, and n, such that p < n. Further, suppose that the small-
est and largest singular values of X�X, denoted by θmin(X�X) and θmax(X�X),
satisfy 0 < θmin(X�X) ≤ θmax(X�X) < ∞. The full conditional posterior mean
corresponding to the GIGG prior is,

E[β | y, σ2, τ2, Γ, Λ] =
(

Ip+(X�X)−1 σ2

τ2 (ΓΛ)−1
)−1

β̂
OLS

, β̂
OLS

= (X�X)−1X�y.

Then the inequality,
∥∥∥β̂

OLS − E[β | y, σ2, τ2, Γ, Λ]
∥∥∥

2
≥

(
1

1 + θmax(X�X)σ−2τ2 max(g,j) γ2
gλ2

gj

)∥∥∥β̂
OLS

∥∥∥
2
,

holds and we have the following results:

a)

π

(
1

1 + θmax(X�X)σ−2τ2 max(g,j) γ2
gλ2

gj

≥ ε

∣∣∣∣ y, H, τ2, σ2
)

→ 1 as τ2 → 0.

b)

π

(∥∥∥β̂
OLS − E[β | y, τ2, Γ, Λ, σ2]

∥∥∥
2

≥ ε
∥∥∥β̂

OLS
∥∥∥

2

∣∣∣∣ y, H, τ2, σ2
)

→ 1 as τ2 → 0.

Proof. See the Supplementary Material (Boss et al., 2023).

Theorem 3.2 states that, irrespective of the correlation structure, τ2 → 0 sufficiently
shrinks the posterior mean towards zero. The argument used in the proof of Theorem 3.2
can be applied to a litany of other continuous shrinkage priors for which existing poste-
rior concentration results are limited to the sparse normal means model. To supplement
these results, we consider the case where we have block diagonal correlation structure,
with the blocks defined by the groups, as in Figure 1.

Corollary 3.1. Suppose that the regressors in X satisfy X�
g Xg′ = 0 for all g 	= g′,

where 0 denotes a pg × pg′ matrix of zeros. If τ2, σ2, and ag ∈ (0, 1) are fixed, then
there exists a constant

εg(τ2, σ2) = σ2

σ2 + θmax(X�
g Xg)τ2

,

such that for all δ ∈ (0, εg(τ2, σ2))

π

(∥∥∥β̂
OLS

g − E[βg | y, τ2, γ2
g , λ2

g1, . . . , λ2
gpg

, σ2]
∥∥∥

2
≥ δ

∥∥∥β̂
OLS

g

∥∥∥
2

∣∣∣∣ y, ag, bg, τ2, σ2
)

→ 1

as bg → ∞.
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Proof. See the Supplementary Material (Boss et al., 2023).

The conclusion of Corollary 3.1 is that if the hyperparameter bg → ∞ then there is
at least some amount of shrinkage relative to the ordinary least squares estimator in
the g-th group. If τ2/σ2 is close to zero, then ε(τ2, σ2) ≈ 1, implying shrinkage of the
posterior mean towards zero. Therefore, we can interpret the case when bg → ∞ and
τ2/σ2 close to zero as shrinkage of the entire g-th group towards zero.

Sparse Normal Means

Although we would ideally consider additional posterior concentration results within
the context of a linear regression model, there is not an analytically tractable analog of
componentwise shrinkage factors for a general design matrix without any orthogonality.
Therefore, we will proceed by considering posterior concentration results within the
sparse normal means framework, to make precise statements regarding componentwise
shrinkage, as opposed to shrinkage of the entire L2-norm.

One question that arises is whether the dependence induced between the βgj ’s by
γ2

g will overly dominate the individual-level shrinkage. As an example, one can concep-
tualize a case where a group has only one signal, which is overly shrunk by virtue of
being grouped with an overwhelming majority of null means. An alternative situation
that could occur is a case where few null means are grouped with many non-null means,
leading to insufficient shrinkage of the null means toward zero. These two scenarios are
described by Som et al. (2016) as the Conditional Lindley’s Paradox and Essentially
Least Squares Estimation, respectively. Theorem 3.3a states that if the gl-th observa-
tion is sufficiently large then there will be minimal shrinkage on ygl. This guarantees
that group shrinkage will not overly dominate individual shrinkage if the observation
is large. Conversely, Theorem 3.3b states that if the global shrinkage parameter con-
verges to zero, then the GIGG prior will sufficiently shrink the ygl’s toward zero. Let
yg = (yg1, . . . , ygpg )�.

Theorem 3.3. Suppose that pg ∈ {2, 3, 4, . . .}.

a) Fix ψ, δ ∈ (0, 1). Then there exists a function h(pg, τ2, σ2, ag, bg, ψ, δ) such that

π(κgl > ψ | yg, τ2, σ2, ag, bg)

≤ exp
(

−ψ(1 − δ)
2σ2 y2

gl + ψδ

2σ2

∑
j �=l

y2
gj

)
h(pg, τ2, σ2, ag, bg, ψ, δ).

Consequently, if |ygl| → ∞, then π(κgl ≤ ψ | yg, τ2, σ2, ag, bg) → 1.

b) Fix ε ∈ (0, 1). Then there exists a function h(pg, σ2, yg, ag, bg, ε) such that,

π(κgl < ε | yg, τ2, σ2, ag, bg)

≤
(

τ2

σ2

)pg/2+bg
(

min
(

1,
τ2

σ2

))−pg/2

h(pg, σ2, yg, ag, bg, ε).
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Consequently, π(κgl ≥ ε | yg, τ2, σ2, ag, bg) → 1 as τ2 → 0.

Proof. See the Supplementary Material (Boss et al., 2023).

The theoretical statements outlined in Theorem 3.3 were originally discussed for
the horseshoe prior (Datta and Ghosh, 2013), but have also been used in the context
of several other continuous shrinkage priors (Datta and Dunson, 2016; Bhadra et al.,
2017; Bai and Ghosh, 2019), dynamic trend filtering (Kowal et al., 2019), and small
area estimation (Tang et al., 2018). We also note that Theorem 3.3 does not restrict
the range of values ag and bg can take, meaning that Theorem 3.3 applies to a more
general class of hyperparameter values than those considered in Bai and Ghosh (2019).

4 Computation
4.1 Gibbs Sampler
The full conditional updates corresponding to model (2.1), where β is endowed with a
GIGG prior, are enumerated in the Supplementary Material (Boss et al., 2023). Follow-
ing Polson and Scott (2011), we assign a half-Cauchy prior scaled by the residual error
standard deviation τ | σ ∼ C+(0, σ) and use a prevalent data augmentation trick,

[τ2 | ν] ∼ IG(1/2, 1/ν), [ν | σ2] ∼ IG(1/2, 1/σ2),

to obtain closed form full conditional updates for τ2 and σ2 (Makalic and Schmidt,
2016). There are two major computational bottlenecks for the proposed algorithm. The
first is the full conditional update of β,

[β | ·] ∼ N

(
Q−1 1

σ2 X�
(

y − Cα
)

, Q−1

)
, Q = 1

σ2 X�X + 1
τ2 Γ−1Λ−1.

The second occurs when there are a multitude of group and local parameters that need
to be drawn at each iteration of the Gibbs sampler, which is often the case in “large
p” scenarios. Rather than naïvely sampling from the full conditional distributions there
are several strategies to achieve faster posterior computation:

• Draw v ∼ N
(
σ−2X�(y−Cα), Q

)
, and then solve Qβ = v, rather than explicitly

calculating Q−1.

• For “small n, large p” problems, the Woodbury identity can be utilized so that
the full conditional update of β scales linearly in p (Bhattacharya et al., 2016).

• If n and p are both large, say an order of magnitude of 10,000 each, there are
several recently developed approximation approaches, the former of which exploits
the ability of the horseshoe prior to shrink τ2λ2

gj close to zero (Johndrow et al.,
2020) while the latter uses a conjugate gradient algorithm to find an approximate
solution to Qβ = v (Nishimura and Suchard, 2022).

• Parallelization can be used within the Gibbs sampler to simultaneously update
the shrinkage parameters corresponding to each group (Terenin et al., 2019).
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4.2 Hyperparameter Selection

If the modeler wants to remain relatively agnostic to the choice of hyperparameters,
one can use Marginal Maximum Likelihood Estimation (MMLE) (Casella, 2001), an
empirical-Bayes approach executed iteratively within the Gibbs sampler. The (l + 1)th
update is

a(l+1)
g = ψ−1

0

(
E

a
(l)
g

[
log(γ2

g) | y
])

, b(l+1)
g = ψ−1

0

(
− 1

pg

pg∑
j=1

E
b

(l)
g

[
log(λ2

gj) | y
])

,

where ψ0(·) is the digamma function and the expectation terms can be estimated
through standard Monte Carlo methods. The iterative procedure terminates when

G∑
g=1

(
a(l+1)

g − a(l)
g

)2 +
G∑

g=1

(
b(l+1)

g − b(l)
g

)2

is less than some prespecified error tolerance. However, in our experience it is preferred
to fix ag = 1/n for all g and use MMLE to estimate the bg hyperparameters. The first
reason is that ag controls the strength of the thresholding effect and choosing ag close
to zero guarantees strong shrinkage of null coefficients towards zero. The second reason
is that only estimating one hyperparameter per group is more feasible than estimating
two hyperparameters per group, particularly when the number of groups is large. Since
bg primarily controls how dependent the shrinkage is within-group, it is more important
to focus estimation on the bg hyperparameters. We do recognize that setting ag = 1/n
violates a condition in Theorem 3.1 where the infimum of the set of hyperparameters
cannot converge to zero as n → ∞. However, for practical purposes, this approach
provides an automatic way to set ag while also yielding similar results to ag close to
zero and fixed as a function of the sample size, such as ag = 1/100.

Although MMLE is useful for problems where the number of groups, G, is small
relative to the sample size, the estimates for the ag’s and bg’s will become increas-
ingly variable in high-dimensional settings where the number of groups is large. There
may also be low-dimensional settings where the user wants to incorporate explicit prior
knowledge about the nature of the within-group signal density. In such cases, it may
be preferred to fix hyperparameter values in accordance with subject matter exper-
tise. As with the modified MMLE approach, we recommend setting ag = 1/n for all g.
To fix bg we recommend a useful heuristic whereby local, group, and global shrinkage
parameters are simulated from the GIGG prior. Using the simulated shrinkage parame-
ters, shrinkage factors can be constructed and the correlation between shrinkage factors
within the same group can be empirically calculated. Selecting the hyperparameter bg is
then equivalent to selecting how dependent the shrinkage is within-group, a more easily
understandable concept.

Another alternative in high-dimensional cases is to set ag = a and bg = b for all g =
1, . . . , G and a, b > 0. While this strategy loses the flexibility of customizing shrinkage
for each group, it is at least capable of estimating a global tradeoff between group and
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local shrinkage in a manner that is more feasible for a MMLE procedure to reliably
estimate. The corresponding MMLE updates for this procedure are

a(l+1) = ψ−1
0

(
1
G

G∑
g=1

Ea(l)
[

log(γ2
g) | y

])
, b(l+1) = ψ−1

0

(
−1

p

G∑
g=1

pg∑
j=1

Eb(l)
[

log(λ2
gj) | y

])
.

Implementations of GIGG regression with fixed hyperparameters and hyperparam-
eters estimated via MMLE are available on the Comprehensive R Archive Network
(CRAN). Out of the strategies for achieving faster computation outlined in Section 4.1,
the gigg package implements the approach from Bhattacharya et al. (2016).

5 Simulations
5.1 Generative Model
The data generative mechanism is linear regression model (2.1), where C includes the
intercept term and five adjustment covariates drawn from independent standard nor-
mal distributions, α = (0, 1, 1, 1, 1, 1)�, and X is drawn from a multivariate normal
distribution with mean 0 and covariance matrix ΣX . ΣX is determined such that the
regressors have unit variance and block-diagonal exchangeable correlation structure.
Pairwise correlations within each group are ρ = 0.8 for the high correlation simulation
settings or ρ = 0.6 for the medium correlation simulation settings. For all simulation
settings, the pairwise correlations across groups are 0.2 and the residual error variance,
σ2, is fixed such that β�ΣXβ/(β�ΣXβ + σ2) = 0.7.

The first set of simulation settings will be called the fixed coefficient simulation
settings, where n = 500 and p = 50 (see Table 1 for simulation setting details). In the

Label Group Sizes Correlation Signal Type Signal Details
C10H 10,10,10,10,10 0.8 Concentrated Signal concentrated in one of the regressors in all five groups
D10H 10,10,10,10,10 0.8 Distributed Signal distributed across all regressors within the first group
C10M 10,10,10,10,10 0.6 Concentrated Signal concentrated in one of the regressors in all five groups
D10M 10,10,10,10,10 0.6 Distributed Signal distributed across all regressors within the first group

C5 5,5,5,5,5,5,5,5,5,5 0.8 Concentrated Signal concentrated in one regressor for five out of ten groups
D5 5,5,5,5,5,5,5,5,5,5 0.8 Distributed Signal distributed across all regressors within the first two groups
C25 25,25 0.8 Concentrated Signal concentrated in three regressors in the first group

and two regressors in the second group
D25 25,25 0.8 Distributed Signal distributed across first ten regressors within the first group
CL 30,10,5,3,2 0.8 Concentrated, Large Groups Signal concentrated in one regressor in the group of size 30

and one regressor in the group of size 10
DL 30,10,5,3,2 0.8 Distributed, Large Groups Signal distributed across all regressors within the group of size 30
CS 30,10,5,3,2 0.8 Concentrated, Small Groups Signal concentrated in one regressor in the group of size 3

and one regressor in the group of size 2
DS 30,10,5,3,2 0.8 Distributed, Small Groups Signal distributed across all regressors within the groups of

size 5, 3, and 2

Table 1: Fixed coefficient simulation settings where n = 500 and p = 50. The label
column refers to the name of the simulation setting that will be used throughout the
rest of the simulation section. The group sizes column shows the sizes of all the groups
within each simulation setting. The correlation column lists the pairwise correlations
between regressors in the same group. The signal type and signal details columns explain
how the signal is distributed among regressors within the active groups.

https://cran.r-project.org/web//packages/gigg/index.html
https://cran.r-project.org/web//packages/gigg/index.html
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context of this simulation study, a concentrated signal qualitatively refers to a simulation
setting where the signal is contained within few regressors in a group and a distributed
signal qualitatively refers to a simulation setting where the signal is shared across many
regressors within the same group. The purpose of the fixed coefficient simulation set-
tings with equally sized groups is to ascertain which methods perform well when the
within-group signal is sparse or dense, and whether or not the performance depends
on group size or strength of the within-group regressor correlations. The purpose of
the fixed coefficient simulation settings with groups of different sizes is to determine if
the performance depends on whether concentrated or distributed signals are contained
within groups of large or small size. Here, the groups of size 30 and 10 are considered
the large groups and the groups of size 5, 3, and 2 are considered the small groups.

Beyond the fixed regression coefficient simulation settings, we also consider random
coefficient simulations in the high correlation setting, where for each simulation iteration
a random regression coefficient vector is generated. Here, we have a low-dimensional
simulation setting with n = 500 and p = 50, as well as a high-dimensional simulation
setting with n = 200 and p = 500. All groups in both random coefficient simulation
settings contain 10 regressors. To construct a regression coefficient vector, we start
by randomly selecting either a concentrated or distributed signal for the first group
with even probability to guarantee that each simulation iteration will have at least one
true signal. The concentrated and distributed signal magnitudes are selected such that
the contribution to β�ΣXβ is equal, namely the distributed signal is βgj = 0.25 for
j = 1, . . . , 10 and the concentrated signal is βg1 = 5.125 and βgj = 0 for j = 2, . . . , 10.
For the remaining groups, we randomly select a concentrated signal with probability
0.2, a distributed signal with probability 0.2, and no signal with probability 0.6. The
goal of the random coefficient simulation settings is to show that, averaged across many
combinations of regression coefficient vectors comprised of sparse within-group signals,
dense within-group signals, and inactive groups, GIGG regression results in low mean-
squared error.

5.2 Competing Methods and Evaluation Metrics
Estimation properties will be evaluated based on empirical mean-squared error (MSE),
stratified by null and non-null coefficients, across 5000 replicates. That is,

M̂SE = 1
5000

5000∑
r=1

(
β̂

r − β
)�(

β̂
r − β

)
,

where β̂
r

is the estimate of β from simulated dataset r. 5000 was selected so that the
MSEs listed in the simulation results section are relatively precise. In the random co-
efficient simulations, calculating the MSE corresponds to an integrated mean-squared
error (IMSE) metric averaged across the generative distribution of the regression co-
efficient vectors. For the fixed coefficient simulations we will consider several special
cases of the GIGG prior with fixed hyperparameters, namely all possible combinations
of ag ∈ {1/n, 1/2} and bg ∈ {1/n, 1/2, 1}. That way, we can check whether the in-
tuition gleaned from Figure 2 empirically translates to the regression setting. We will



J. Boss, J. Datta, X. Wang, S. K. Park, J. Kang, and B. Mukherjee 17

ρ = 0.8ρ = 0.8ρ = 0.8 Concentrated Distributed
Method Null Non-Null Overall Null Non-Null Overall
Ordinary Least Squares 3.74 0.41 4.16 8.09 2.03 10.12
Horseshoe 0.51 0.41 0.92 0.85 2.14 2.99
GIGG (ag = 1/n, bg = 1/n) 0.11 0.30 0.40 0.04 3.60 3.63
GIGG (ag = 1/2, bg = 1/n) 0.11 0.30 0.41 0.04 3.56 3.59
GIGG (ag = 1/n, bg = 1/2) 0.29 0.39 0.67 0.03 1.57 1.61
*GIGG (ag = 1/2, bg = 1/2) 0.33 0.40 0.72 0.24 1.70 1.94
GIGG (ag = 1/n, bg = 1) 0.53 0.49 1.03 0.03 1.43 1.46
GIGG (ag = 1/2, bg = 1) 0.58 0.49 1.07 0.26 1.43 1.69
GIGG (MMLE) 0.23 0.36 0.59 0.04 1.36 1.40
Group Horseshoe+ 0.30 0.39 0.70 0.08 1.64 1.73
Spike-and-Slab Lasso 0.15 0.33 0.48 0.21 4.27 4.49
BGL-SS 2.02 0.80 2.82 0.04 1.31 1.34
BSGS-SS 0.23 0.42 0.65 0.04 1.84 1.88

Table 2: Mean-squared errors (MSE) for simulation settings C10H and D10H in Table 1
(n = 500, p = 50) with high pairwise correlations (ρ = 0.8). Bolded cells indicate the
four methods with the lowest overall MSE. Four methods are highlighted to emphasize
that GIGG (MMLE) is the best method with respect to MSE for both concentrated
and distributed signals aside from methods that only perform well for one of the two
settings. *GIGG (ag = 1/2 and bg = 1/2) is equivalent to group horseshoe regression.

also consider the GIGG prior when the hyperparameters ag = 1/n are fixed and bg are
estimated via MMLE.

The list of competing methods include Ordinary Least Squares (OLS), Horseshoe re-
gression, Group Horseshoe+ regression (Xu et al., 2016), Spike-and-Slab Lasso (Rockova
and George, 2018), Bayesian Group Lasso with Spike-and-Slab Priors (BGL-SS) (Xu
and Ghosh, 2015), and Bayesian Sparse Group Selection with Spike-and-Slab Priors
(BSGS-SS) (Xu and Ghosh, 2015). As a reminder, to avoid confusion with the group
horseshoe prior proposed in this paper, we will refer to the group horseshoe prior from
Xu et al. (2016) as the group horseshoe+ prior. We will use the posterior mean estima-
tor for all Bayesian methods, with the exception of Spike-and-Slab Lasso, BGL-SS, and
BSGS-SS. BGL-SS and BSGS-SS will use the posterior median estimator and Spike-
and-Slab Lasso will use the posterior mode estimator. Most methods requiring Markov
chain Monte Carlo (MCMC) sampling have 10000 burn-in draws, followed by 10000 pos-
terior draws with no thinning. Some exceptions are BGL-SS and BSGS-SS which have
1000 burn-in draws and 2000 posterior draws with no thinning, due to the relatively
slower posterior sampling algorithms. Another exception is group horseshoe+ regression
in the high-dimensional random coefficient simulation, which required 100000 burn-in
draws to consistently converge.

5.3 Simulation Results

Table 2 presents the MSE for simulation settings C10H and D10H and Supplementary
Tables 1-3 list the MSEs for the C10M, D10M, C5, D5, C25, and D25 simulation settings
(Boss et al., 2023). Because the results for C10H and D10H are similar to C10M, D10M,
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ρ = 0.8ρ = 0.8ρ = 0.8 Concentrated Distributed
Method Null Non-Null Overall Null Non-Null Overall
Ordinary Least Squares 2.02 0.08 2.11 1.58 2.85 4.43
Horseshoe 0.19 0.06 0.25 0.16 1.04 1.20
GIGG (ag = 1/n, bg = 1/n) 0.02 0.04 0.07 0.01 1.92 1.93
GIGG (ag = 1/2, bg = 1/n) 0.03 0.07 0.10 0.01 1.88 1.89
GIGG (ag = 1/n, bg = 1/2) 0.06 0.05 0.10 0.01 0.99 1.00
*GIGG (ag = 1/2, bg = 1/2) 0.06 0.05 0.11 0.05 0.99 1.04
GIGG (ag = 1/n, bg = 1) 0.12 0.06 0.19 0.01 0.85 0.86
GIGG (ag = 1/2, bg = 1) 0.13 0.06 0.19 0.05 0.83 0.88
GIGG (MMLE) 0.03 0.04 0.07 0.01 0.80 0.81
Group Horseshoe+ 0.06 0.05 0.11 0.04 1.00 1.03
Spike-and-Slab Lasso 0.04 0.03 0.07 0.08 3.29 3.36
BGL-SS 1.26 0.22 1.48 0.02 1.36 1.38
BSGS-SS 0.06 0.06 0.12 0.01 1.30 1.31

Table 3: Mean-squared errors (MSE) for simulation settings CL and DL in Table 1
(n = 500, p = 50) with high pairwise correlations (ρ = 0.8). Bolded cells indicate the
four methods with the lowest overall MSE. Four methods are highlighted to emphasize
that GIGG (MMLE) is the best method with respect to MSE for both concentrated
and distributed signals aside from methods that only perform well for one of the two
settings. *GIGG (ag = 1/2 and bg = 1/2) is equivalent to group horseshoe regression.

C5, D5, C25, and D25, we will only focus our discussion around the C10H and D10H
simulation settings. The first noteworthy observation is that group horseshoe regression
has a uniformly lower MSE than both OLS and horseshoe regression for both null and
non-null estimation, although the discrepancy between horseshoe and OLS is much
larger than the difference between group horseshoe and horseshoe, particularly for the
null coefficients. For GIGG regression with fixed hyperparameters, the top performer
is GIGG regression with bg = 1/n when the signal is concentrated within-group (Null
MSE = 0.11, Non-Null MSE = 0.30) and ag = 1/n, bg = 1 when the signal is distributed
within-group (MSE = 1.46), exactly as Figure 2 suggests. However, if the user sets bg = 1
when the signal is concentrated (Null MSE = 0.53, Non-Null MSE = 0.49) or bg = 1/n
when the signal is distributed (Null MSE = 0.04, Non-Null MSE = 3.60), then the
“incorrect” prior information results in notably worse MSE compared to the “correct”
prior information. That being said, bg = 1/2 appears to be a middle ground where
the performance for both concentrated and distributed simulation settings is generally
good.

Examining the performance of the competing methods, we note that Spike-and-Slab
Lasso does very well for the concentrated signal setting (MSE = 0.48), but struggles
when the signal is distributed (MSE = 4.49). Conversely, BGL-SS does poorly when
the signal is concentrated (MSE = 2.82), but has good performance when the signal
is distributed (MSE = 1.34). Group horseshoe+ regression and BSGS-SS have rela-
tively low MSE across the low-dimensional simulation settings, however, GIGG with
MMLE almost always outperforms both methods in the low-dimensional cases with
respect to overall MSE. The improved performance for GIGG regression with MMLE
over a method like group horseshoe+ regression is precisely because GIGG regression
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ρ = 0.8ρ = 0.8ρ = 0.8 Concentrated Distributed
Method Null Non-Null Overall Null Non-Null Overall
Ordinary Least Squares 2.05 0.06 2.11 2.07 0.39 2.46
Horseshoe 0.19 0.03 0.22 0.37 0.52 0.89
GIGG (ag = 1/n, bg = 1/n) 0.02 0.03 0.04 0.02 1.06 1.08
GIGG (ag = 1/2, bg = 1/n) 0.02 0.04 0.06 0.02 1.06 1.08
GIGG (ag = 1/n, bg = 1/2) 0.04 0.04 0.08 0.00 0.37 0.37
*GIGG (ag = 1/2, bg = 1/2) 0.05 0.03 0.08 0.04 0.36 0.40
GIGG (ag = 1/n, bg = 1) 0.06 0.05 0.11 0.00 0.32 0.33
GIGG (ag = 1/2, bg = 1) 0.09 0.04 0.13 0.04 0.32 0.36
GIGG (MMLE) 0.02 0.03 0.05 0.00 0.32 0.32
Group Horseshoe+ 0.04 0.03 0.07 0.09 0.43 0.52
Spike-and-Slab Lasso 0.04 0.02 0.06 0.09 1.49 1.58
BGL-SS 0.08 0.06 0.13 0.00 0.28 0.28
BSGS-SS 0.02 0.03 0.06 0.00 0.45 0.45

Table 4: Mean-squared errors (MSE) for simulation settings CS and DS in Table 1
(n = 500, p = 50) with high pairwise correlations (ρ = 0.8). Bolded cells indicate the
four methods with the lowest overall MSE. Four methods are highlighted to emphasize
that GIGG (MMLE) is the best method with respect to MSE for both concentrated
and distributed signals aside from methods that only perform well for one of the two
settings. *GIGG (ag = 1/2 and bg = 1/2) is equivalent to group horseshoe regression.

with MMLE is able to data-adaptively control the dependence of the grouped multi-
variate shrinkage. Group horseshoe+ regression cannot directly control within-group
dependence because there are no hyperparameters in the prior specification.

Table 3 shows the MSE results for the CL and DL simulation settings and Table 4
lists the MSE results for the CS and DS simulation settings. As with the other fixed
coefficient simulation settings, the same general conclusions hold. Whether or not a
concentrated signal is contained in large or small groups, GIGG with MMLE and GIGG
with fixed hyperparameters where bg = 1/n have some of the lowest overall MSEs across
all methods. Whether or not a distributed signal is contained in large or small groups,
GIGG with MMLE and GIGG with fixed hyperparameters where bg = 1 have some
of the lowest overall MSEs. Spike-and-Slab LASSO performed well in the concentrated
simulation settings, but BGL-SS only performed well in the distributed setting when
the groups containing the true signals were small. Overall, it does not appear that group
size and signal distribution within the groups fundamentally change the performance of
GIGG with MMLE or GIGG with fixed hyperparameters, within the scope of the data
generative parameters that we explored.

Next, Table 5 summarizes the bg hyperparameter estimates across 5000 simulation
iterations for all high correlation simulation settings with n = 500, p = 50, and G =
5. For simulation setting C10H we see that median bg hyperparameter estimate for
groups 1-5 goes from 0.52 in group 1, which contains the smallest signal, to 0.27 and
0.26 for the largest signals. That is, as the concentrated signal becomes stronger, the
median bg estimate starts moving towards zero. Conversely, for all simulation settings
with distributed signals, we generally observe that groups with either all signals or
all noise regressors tend to result in bg estimates that are greater than one regardless
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Label Group Sizes Group 1 Group 2 Group 3 Group 4 Group 5
C10H 10,10,10,10,10 0.52 (0.32-0.84) 0.35 (0.25-0.71) 0.29 (0.23-0.55) 0.27 (0.22-0.43) 0.26 (0.22-0.44)
D10H 10,10,10,10,10 1.84 (1.11-2.59) 1.19 (0.75-1.80) 1.19 (0.74-1.81) 1.19 (0.74-1.81) 1.19 (0.71-1.81)

CL 30,10,5,3,2 0.28 (0.24-0.40) 0.22 (0.19-0.30) 1.30 (0.69-2.69) 1.51 (0.68-3.41) 1.73 (0.72-4.00*)
DL 30,10,5,3,2 1.96 (1.04-2.91) 1.60 (0.83-2.45) 2.09 (0.94-3.51) 2.59 (1.04-4.00*) 3.13 (1.03-4.00*)
CS 30,10,5,3,2 0.66 (0.54-0.88) 0.79 (0.57-1.22) 0.92 (0.60-1.54) 0.16 (0.13-0.23) 0.14 (0.12-0.21)
DS 30,10,5,3,2 0.95 (0.64-1.47) 1.31 (0.75-2.33) 2.07 (1.21-2.97) 1.51 (0.72-2.14) 1.03 (0.25-1.46)

Table 5: Median (2.5% Quantile - 97.5% Quantile) bg estimates for GIGG regression
with MMLE in all fixed regression coefficient, high correlation simulations settings with
n = 500, p = 50 and G = 5 with 5000 replicates. See Table 1 for the simulation setting
details. Here, large groups correspond to groups of size 30 and 10 and small groups
correspond to groups of size 5, 3, and 2. *bg is capped at four to facilitate numerical
stability of the MMLE procedure.

of how large the groups containing the distributed signals are. For the CL simulation
setting, we observe that the general trends for concentrated and distributed signals
hold, namely that group 1 and group 2, which contain the concentrated signals, have
median bg estimates between 0.2 and 0.3, and groups 3-5, which are null groups, have
median bg estimates greater than one. However, the CS simulation setting is a little
more interesting. Group 4 and group 5 in the CS simulation setting are the active
groups with concentrated signals and we see that the median bg estimates are 0.16 and
0.14, respectively. That is, small groups with concentrated signals seem to result in
bg hyperparameter estimates that are even closer to zero compared with larger groups
with concentrated signals. Moreover, groups 1-3 in the CS simulation setting are all
null groups, and they show a general trend of the median bg hyperparameter estimates
getting smaller, the larger the group is. Specifically, the group of size 30 in the CS
simulation setting has a median bg estimate of 0.66 and the group of size 5 in the CS
simulation setting has a median bg estimate of 0.92. Finally, it is important to mention
that bg is capped at four in our implementation to facilitate numerical stability of the
MMLE procedure. For group 5 in the CL simulation setting, bg was set to four in 131
out of 5000 simulation iterations. For group 4 in the DL simulation setting, bg was set to
four in 350 out of 5000 simulation iterations. For group 5 in the DL simulation setting,
bg was set to four 1195 times out of 5000 simulation iterations. Capping bg at four
was chosen so to facilitate numerical stability of the MMLE procedure, but alternative
ceilings on bg can be considered.

Lastly, we consider the IMSE for the random coefficient simulation settings pre-
sented in Table 6. As with the fixed regression coefficient simulations, group horseshoe
(Null IMSE = 0.39) and group horseshoe+ regression (Null ISME = 0.36) lead to a sub-
stantial improvement in IMSE compared to horseshoe regression in the low-dimensional
simulation setting. However, in the low-dimensional simulation setting, we also observe
that the additional flexibility of GIGG regression with MMLE to self-adapt to different
types of within-group signal distributions results in noticeable improvements in IMSE
for the null coefficients (Null IMSE = 0.21). Spike-and-Slab Lasso and BGL-SS strug-
gle in the random coefficient simulation scenario because they tend to only work well
when the signal is concentrated or distributed, respectively, leading to unfavorable aver-
age performance. The high-dimensional simulation setting shows that GIGG regression
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Low-Dimensional High-Dimensional
Method Null Non-Null Overall Null Non-Null Overall
Ordinary Least Squares 8.84 3.38 12.21 - - -
Horseshoe 0.70 1.18 1.88 86.04 215.36 301.40
GIGG (ag = 1/n, bg = 1/n) 0.09 1.79 1.88 131.32 252.04 383.36
GIGG (ag = 1/2, bg = 1/n) 0.10 1.83 1.93 128.61 250.49 379.10
GIGG (ag = 1/n, bg = 1/2) 0.33 1.15 1.47 80.61 213.24 293.85
*GIGG (ag = 1/2, bg = 1/2) 0.39 1.13 1.52 60.73 207.55 268.29
GIGG (ag = 1/n, bg = 1) 0.69 1.11 1.79 90.12 210.61 300.74
GIGG (ag = 1/2, bg = 1) 0.75 1.11 1.85 53.66 203.86 257.53
GIGG (MMLE) 0.21 1.06 1.27 93.11 220.90 314.01
Group Horseshoe+ 0.36 1.14 1.49 82.91 213.06 295.97
Spike-and-Slab Lasso 0.16 3.65 3.81 159.02 344.82 503.84
BGL-SS 2.84 2.44 5.28 1918.84 678.36 2597.19
BSGS-SS 0.36 1.45 1.81 2.22 254.02 256.25

Table 6: Integrated mean-squared errors (IMSE) for the random regression coefficient
simulation settings with high pairwise correlations (ρ = 0.8). The low-dimensional sim-
ulation setting has n = 500 and p = 50 and the high-dimensional simulation setting has
n = 200 and p = 500. Bolded cells indicate the four methods with the lowest overall
IMSE. *GIGG (ag = 1/2 and bg = 1/2) is equivalent to group horseshoe regression.

with MMLE does not perform as well as group horseshoe regression, group horseshoe+
regression, and BSGS-SS, likely due to the fact that there is limited sample size to
estimate many more group-specific bg hyperparameters. Note that BSGS-SS has very
low Null MSE (Null MSE = 2.22), but very high Non-Null MSE (Non-Null MSE =
254.02) compared with many of the GIGG regression methods. Being a spike-and-slab
based method, BSGS-SS has an inherent advantage over continuous shrinkage methods
in estimating the null counterpart of sparse parameters because it shrinks coefficients
to exact zero. Moreover, because BSGS-SS is based off of sparse group lasso, it shrinks
all coefficients much more strongly toward zero than GIGG regression methods. GIGG
regression with fixed hyperparameters ag = 1/2 and bg = 1 has the best performance
of the continuous shrinkage prior methods, likely because averaging a signal across
highly correlated regressors in a high-dimensional setting is preferable to assigning the
entire signal to one regressor, with respect to a squared error loss function. The high-
dimensional simulations indicate that better strategies to determine hyperparameter
values for high-dimensional regression problems could result in improved estimation
properties.

6 Data Example
The National Health and Nutrition Examination Survey (NHANES) is a collection of
studies conducted by the National Center for Health Statistics with the overarching
goal of evaluating the health and nutritional status of the United States’ populace.
Data collection consists of a written survey and physical examination which records
demographic, socioeconomic, dietary, and health-related information, including physio-
logical measurements and laboratory tests. We will specifically apply GIGG regression
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to a subset of 990 adults from NHANES 2003-2004 with 35 measured contaminants
across five exposure classes: metals (3 exposures), phthalates (7 exposures), organochlo-
rine pesticides (8 exposures), polybrominated diphenyl ethers (PBDEs) (7 exposures),
and polycyclic aromatic hydrocarbons (PAHs) (10 exposures). Figure 1 illustrates the
block diagonal correlation structure of these exposures, where areas of high correla-
tion are mostly contained within exposure class. Gamma glutamyl transferase (GGT),
an enzymatic marker of liver functionality, is the outcome of interest. GGT and all
environmental exposures were log-transformed to remove right skewness and then sub-
sequently standardized. The final model was adjusted for age, sex, body mass index,
poverty-to-income ratio, ethnicity, and urinary creatinine.

Figure 3 presents the estimated percent change in GGT corresponding to a twofold
change in each environmental exposure and their associated 95% credible intervals for
methods commonly used in multipollutant modeling. Bayesian linear regression with
noninformative priors and ridge regression were implemented in R Stan using four chains
with no thinning, each with 1000 burn-in draws and 1000 posterior draws. Horseshoe
regression and GIGG regression with MMLE used 10000 burn-in samples, followed by
10000 posterior draws with a thinning interval of five. As with the simulation section,
GIGG regression with MMLE refers to an implementation of GIGG which fixes ag =
1/n for all g and then uses MMLE to estimate the bg hyperparameters. Convergence
of the MCMC chains was evaluated using Gelman-Rubin’s potential scale reduction
factor (PSRF) (Gelman and Rubin, 1992). All methods had a PSRF of 1.00 − 1.01
for the regression coefficients, indicating that all MCMC chains converged. For GIGG
regression with MMLE, the median effective sample size for the βgj ’s was 7309 with an
interquartile range (IQR) of 3634-9266 and the effective sample size for σ2 was 10000.
For the shrinkage parameters, the local shrinkage parameters had a median effective
sample size of 9541 with an IQR of 7819-10000, the group shrinkage parameters had a
median effective sample size of 1790 with an IQR of 1707-2271, and the global shrinkage
parameter had an effective sample size of 983.

Figure 3 compares GIGG regression with Bayesian linear regression (non-informative
priors), ridge regression, and horseshoe regression. GIGG is generally more efficient than
the other methods, having narrower credible intervals, because GIGG better deals with
multicollinearity and homogeneous within-group effect sizes. When there is little multi-
collinearity and heterogeneous within-group effect sizes, GIGG has similar efficiency to
the horseshoe. Further, GIGG allows for different shrinkage on coefficients, unlike ridge
regression which overshrinks large coefficients. In detail, the median credible interval
length for GIGG regression with MMLE is 21.0% shorter for the PAHs, 63.2% shorter
for the PBDEs, and 22.5% shorter for the phthalates compared to horseshoe regression,
which are all exposures classes with high pairwise correlations and common estimated
effect sizes. However, the metals exposure class, which has weak pairwise correlations
and heterogeneous estimated effect sizes, results in a median credible interval length of
0.31 for GIGG regression with MMLE and 0.28 for horseshoe regression. Ridge regres-
sion estimates that a twofold change in lead exposure is associated with 1.21% higher
GGT (95% CI: 0.09, 2.54), while horseshoe regression estimates 1.76% higher GGT
(95% CI: -0.02, 3.68) and GIGG regression with MMLE estimates 2.04% higher GGT
(95% CI: 0.01, 3.87). From a computational perspective, GIGG regression with MMLE
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Figure 3: Estimated associations between environmental toxicants (metals, phthalates,
pesticides, PBDEs, and PAHs) and gamma glutamyl transferase (GGT) from NHANES
2003-2004 (n = 990).

generated a median effective sample size of 559.6 per second for the βgj ’s, compared to
a median effective sample size of 791.1 per second for horseshoe regression.

Supplementary Figure 1 provides a focused comparison of the various group shrink-
age methods from the simulation study (Boss et al., 2023). GIGG is generally more
efficient than the other continuous shrinkage prior methods, having narrower credible
intervals than group horseshoe and group horseshoe+. As with the results in Figure 3,
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these efficiency gains are attributable to GIGG with MMLE better handling multi-
collinearity and homogeneous within-group effect sizes. In detail, GIGG regression with
MMLE, group horseshoe regression, and group horseshoe+ regression all have very sim-
ilar performance in terms of point estimation. The 95% credible interval for lead covers
zero for group horseshoe+ regression (1.82% higher GGT; 95% CI: -0.02, 3.70), while
the 95% credible interval for lead does not cover zero for group horseshoe regression
(1.88% higher; 95% CI: 0.01, 3.72) and GIGG regression with MMLE (2.04% higher
GGT; 95% CI: 0.01, 3.87). For the PAHs, GIGG regression with MMLE has a 26.1%
shorter median credible interval length than group horseshoe regression and a 25.7%
shorter median credible interval length than group horseshoe+ regression. For the PB-
DEs, GIGG regression with MMLE has a 57.7% shorter median credible interval length
than group horseshoe regression and a 60.6% shorter median credible interval length
than group horseshoe+ regression. Differences in credible interval length for the metals
and pesticides among GIGG regression with MMLE, group horseshoe regression, and
group horseshoe+ regression were much smaller. The posterior median estimator cor-
responding to BGL-SS selected both the metals and pesticides groups, despite the fact
that no other method identified any pesticides based on 95% credible intervals covering
zero or posterior inclusion probabilities being larger than 0.5. BSGS-SS selected lead
and cadmium, while the 95% credible intervals for GIGG regression with MMLE and
group horseshoe regression only identified lead.

7 Discussion
The principal methodological contribution of this paper is to construct a continuous
shrinkage prior that improves regression coefficient estimation in the presence of grouped
regressors. GIGG regression flexibly controls the relative contributions of individual and
group shrinkage to improve regression coefficient estimation, resulting in a relative IMSE
reduction of 32.4% compared to horseshoe regression. One of the main limitations of
GIGG regression is that regressor groupings must be explicitly specified and regressor
groupings may not overlap. Additionally, although the GIGG prior can be imposed on
regression coefficients in Bayesian generalized linear models, a theoretical evaluation of
the shrinkage properties for non-normal outcome data would be necessary to determine
if the GIGG prior is appropriate for such models.

There are several considerations for deciding between a spike-and-slab based bi-level
selection method and a grouped multivariate shrinkage prior based method. The first
how large the dataset is. Computationally, it is much slower to sample from the posterior
corresponding to BSGS-SS than it is to sample from the posterior distribution corre-
sponding to GIGG regression. Therefore, in higher dimensional problems, sampling the
posterior corresponding to BSGS-SS may be computationally prohibitive. The second
consideration is with regard to the tradeoff between group and local shrinkage. BSGS-
SS only has two hyperparameters, so fixing those hyperparameters defines a group-local
tradeoff for all groups. The GIGG prior is different in that a unique ag and bg for each
group allows group-local tradeoffs for each group. If the expectation is for some groups
to have concentrated signals and for others to have distributed signals, then GIGG re-
gression with MMLE is better able to tailor the shrinkage corresponding to each group.
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The third is how important variable selection is. There are several techniques to define
selection for continuous shrinkage priors, however spike-and-slab based methods define
variable selection much more naturally through posterior inclusion probabilities. There-
fore, if selection is a primary goal, then a spike-and-slab based method like BSGS-SS
might be preferred.

The analysis of multiple pollutant data and chemical mixtures is a key thrust of the
National Institute of Environmental Health Sciences, and the GIGG prior provides a
useful framework for achieving variance reduction in the presence of group-correlated
exposures, characterizing uncertainties in point estimates, and constructing policy rel-
evant metrics, like summary risk scores, in a principled way. However, the generality
of the GIGG prior coupled with the relative ease of computation means that, despite
its motivation coming from environmental epidemiology, the GIGG prior is applicable
to many other areas. For example, in neuroimaging studies, scalar-on-image regres-
sion (Kang et al., 2018) has been widely used to study the association between brain
activity and clinical outcomes of interest. The whole brain can be partitioned into a
set of exclusive regions according to brain functions and anatomical structures. Within
the same region, the brain imaging biomarkers tend to be more correlated and have
similar effects on the outcome variable. The GIGG prior can be extended for scalar-on-
image regression and it has great potential to improve estimating the effects of imaging
biomarkers by incorporating brain region information.

In this paper, our focus was sparse estimation, but it is also natural to inquire about
uncertainty quantification and variable selection. Based on our simulations, the conclu-
sions of van der Pas et al. (2017) are relevant for the GIGG prior when 0 < ag ≤ 1/2, but
a comprehensive study needs to be carried out. There is no consensus way of defining
variable selection for continuous shrinkage priors, however there are several approaches
to determine a final active set, including credible intervals covering zero (van der Pas
et al., 2017), decoupling shrinkage and selection (DSS) (Hahn and Carvalho, 2015), and
penalized credible regions (Zhang and Bondell, 2018). For horseshoe-style shrinkage,
variable selection defined through credible intervals covering zero is highly conservative,
but works well if one wants to limit the number of false discoveries. The penalized cred-
ible region approach searches for the sparsest model that falls within the 100× (1−α)%
joint elliptical credible region, while DSS constructs an adaptive lasso-style objective
function with the goal of sparsifying the posterior mean such that most of the predictive
variability is still explained. Since the DSS construction is framed from a prediction per-
spective, this approach may not be ideal for regression coefficient estimation problems
in the presence of correlated regressors. Another crucial point to make is that if one is
interested in selection, the posterior mode estimator for the horseshoe prior will result
in exact zero estimates, and an approximate algorithm for calculating the joint posterior
mode was developed in Bhadra et al. (2019) using the horseshoe-like prior. Therefore,
one could conceptualize an extension of the expectation-maximization algorithm de-
veloped by Bhadra et al. (2019) using a “GIGG-like” prior. A second option, from a
variable selection perspective rather than a model selection perspective, is to ascertain
whether or not the marginal posterior modes equal zero, based on the posterior draws
(Liu and Ghosh, 2020). Here, a posterior mode equal to zero refers to a regressor that is
not selected and a posterior mode not equal to zero refers to a regressor that is selected.
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Further work is needed to juxtapose the behavior of all of these different methods for
selection and develop novel algorithms for calculating the marginal and joint posterior
modes.

Supplementary Material
Supplementary Material for “Group Inverse-Gamma Gamma Shrinkage for Sparse Lin-
ear Models with Block-Correlated Regressors” (DOI: 10.1214/23-BA1371SUPP; .pdf).
Distributional definitions, proofs for all theoretical results, full conditional distributions
for Gibbs sampling, and group shrinkage methods from the simulation applied to the
data example.
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