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Abstract

Many solid mechanics problems on complex geometries are conventionally solved using discrete boundary methods. However,
such an approach can be cumbersome for problems involving evolving domain boundaries due to the need to track boundaries
and constant remeshing. The purpose of this work is to present a comprehensive strategy for efficiently solving such problems
on an adaptive structured grid, while expositing some of the basic yet important nuances associated with solving near-singular
problems in strong form. We employ a robust smooth boundary method (SBM) that represents complex geometry implicitly, in
alarger and simpler computational domain, as the support of a smooth indicator function. We present the resulting semidefinite
equations for mechanical equilibrium, in which inhomogeneous boundary conditions are replaced by source terms. In this
work, we present a computational strategy for efficiently solving near-singular SBM-based solid mechanics problems. We
use the block-structured adaptive mesh refinement method, coupled with a geometric multigrid solver for an efficient solution
of mechanical equilibrium. We discuss some of the practical numerical strategies for implementing this method, notably
including the importance of grid versus node-centered fields. We demonstrate the solver’s accuracy and performance for three
representative examples: (a) plastic strain evolution around a void, (b) crack nucleation and propagation in brittle materials,
and (c) structural topology optimization. In each case, we show that very good convergence of the solver is achieved, even
with large near-singular areas, and that any convergence issues arise from other complexities, such as stress concentrations.

Keywords Finite differences - Elasticity - Plasticity - Fracture - Topology optimization

1 Introduction

Many computational mechanics problems involve analyz-
ing mechanical systems with highly variable geometry. Such
problems require that the mechanical deformations, and
resulting stresses, be resolved subject to a set of complex,
time-varying, and sometimes unknown topologies. Such
examples include, but are not limited to, fracture mechan-
ics, problems involving material growth or removal (such
as dendrite growth), or structural topology optimization. In
all of these, it is essential to accurately solve mechanical
equilibrium equations. Computational mechanics has histor-
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ically been overwhelmingly dominated by the finite element
method (FEM) due to its ability to conform to arbitrary
geometry through iso-parametric elements. Indeed, FEM
is nearly synonymous with computational elasticity. How-
ever, in the case of variable topology, the key advantage of
FEM—conformal meshing with isoparametric elements—is
less beneficial. This may necessitate costly mid-simulation
remeshing, the use of an explicitly meshed and overlayed
boundary, or the use of excessive refinement in anticipation
of topological change.

The strong form method with finite differences is an
attractive alternative for such problems. Recently, it was
shown by the authors that this method may be coupled to
the block-structured adaptive mesh refinement (BSAMR)
method, along with the geometric multigrid method, to pro-
duce a highly efficient linear elastic solver [1]. The solver
has been applied to numerous small strain [2—4] and finite
deformation [5] mechanics problems. Phase field methods
have also been implemented using this method, albeit with
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problematically slow convergence rates due to limitations of
the method that will be addressed in this work [6]. Many of
the problems of interest are reducible to representative vol-
ume elements (RVE), for which the finite difference method
is ideally suited. We seek to apply this method to problems
in which the geometry may be considered to be variable.

We let the “smooth boundary method” (SBM) refer to the
approach in which a complex geometry is defined within
a simpler computational domain as the support of some
smooth indicator function ¢ > 0.5. Smoothness requires
that the transition from solid to void is continuous, and
we assume in general that the ¢ varies smoothly from 0
to 1 over some finite interval. We consider SBM to refer
specifically to the technique of replacing discrete boundary
conditions with equivalent source terms, such that the bound-
ary conditions are recovered exactly in the sharp interface
limit. By thus embedding the complex geometry through a
diffused interface, SBM circumvents the challenges associ-
ated with domain meshing encountered in discrete interface
approaches. The SBM has been used to solve partial differen-
tial equations with general boundary conditions on complex
boundaries and can easily be coupled with diffuse boundary
methods (such as phase field) by evolving the order param-
eters using a thermodynamic equation. Some examples of
SBM applications include the use of phase field methods to
study corrosion in Mg alloys [7], mass flux boundary condi-
tions in fluids [8], and general partial differential equations
[9, 10].

The SBM’s efficiency relies heavily on using BSAMR to
resolve the diffuse boundary. When suitably coupled, SBM
effectively eliminates the need for explicitly defining the
mesh since the interface can be resolved with an appropriate
resolution and the mesh can be updated to track the evolv-
ing interface. The above-mentioned BSAMR strategy has
been widely used for high-performance computational fluid
mechanics problems [11-14] and, to some extent, for solid
mechanics problems [1, 3, 6]. BSAMR stores and evolves
each mesh level independently, evolving finer levels with
smaller time steps to avoid overly restrictive CFL conditions
on coarser levels. The information between levels is com-
municated through averaging (fine level to coarse level) and
ghost cells (coarse level to fine level).

Application of SBM in solid mechanics applications can
lead to semi-definite problems due to the lack of uniqueness
resulting from a mesh-resolved “void” region. This situation
often arises in topology optimization problems where the
simulation domain is an output rather than the input but is
endemic to any implicit boundary method. Without properly
addressing the semi-definiteness of the operator, the result
can be poor (or no) convergence and, worse, an incorrect
solution.

In this work, we present computational techniques to allow
for the efficient solution of semi-definite smooth boundary
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problems using the finite difference method with BSAMR.
The paper is structured in the following way. In Sect.2,
the SBM is formalized for elasticity, and the specific chal-
lenges of solving semidefinite problems are addressed. This
section also describes some of the computational methods
and challenges unique to solving problems of this nature.
In Sect. 3, three representative examples are presented that
demonstrate the model’s effectiveness: (1) plasticity with
variable geometry, (2) phase field fracture mechanics, and
(3) structural topology optimization. Each example is some-
what self-contained, so the disparate applications will find
relevance in their respective communities. We conclude by
highlighting some limitations of the framework in its current
form.

2 Computational methods

In this section, we present the key elements of the SBM
method and practical strategies for its implementation. We
first present the formulation of the equations of linear elas-
ticity with traction boundary conditions with SBM. We then
outline the reflux-free multigrid implementation of the solver
using BSAMR. Next, we emphasize the need for choosing
a cell-based indicator field for the stability of the solver.
Finally, we outline the implementation of material models
as a vector space to efficiently work with the solver.

2.1 Diffuse boundary method for linear elasticity

In this section we present the diffuse boundary formulation
of mechanical equilibrium for a linear elastic material. We
consider a body of interest occupying some region Q C R3,
with a natural boundary 92 upon which surface tractions
tO( y) y € 0%2 are prescribed as boundary conditions. (We
do not consider the diffuse formulation of essential, i.e. dis-
placement, boundary conditions at this time.) In the discrete
setting, the problem is posed as a differential equation with
boundary conditions prescribed at the domain boundary. In
the diffuse setting, we represent boundary effects implicitly.
To construct the diffuse problem, we first replace the explicit
domain 2 with a continuous function, called an order param-
eter ¢¢, that represents 2. In the limit as ¢ — 0, the support
of ¢€ is identical to the discrete-boundary domain, €2; this
is called the sharp interface limit. For ¢ > 0, we define the
diffuse domain and boundary to be, respectively: the sup-
port of ¢¢ = 1, denoted €2; the support of V€, denoted
0 2. We require that ¢¢ = 0 outside of 9.2 U Q, and
that 0.2, = 0Q2 x (—e€/2, €/2), bounding the diffuse region
to the € neighborhood of the discrete boundary. As long as
€ << Fmin, the smallest radius of curvature of 9$2, we require
that there exist some parameterization of ¢¢ within the dif-
fuse boudnary by
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A X (—€/2,€e/2) C D0

Fig. 1 Illustration showing the diffuse boundary construction
approaching the sharp interface limit. The diffuse domain €2 is the
support of ¢ = 1, equal to 2 in the limit. The diffuse boundary 9. Q.
is the € an open set defined in the region where 0 < ¢¢ < 1, and

P (y+sn)=d(s) y €, se(—¢/2,¢/2) (1)

where n is the normal to the discrete interface. ¢AS is some
Lipschitz function describing the behavior of ¢ over the dif-
fuse interface, and is generally a regularized step function
over the interval (—e€/2, €/2). Its derivative is not defined in
the limit as € — 0, but approaches the Dirac delta distribu-
tion (Fig. 1). With these definitions and restrictions in hand,
it is possible to establish the following theorem, which was
presented in [8]:

Theorem 1 Let ¢ be an idealized order parameter with
length scale €, and let f and g be either scalar or vector-
valued bounded functions, with n - Vg bounded in 3Q."
Then the following holds:

€/2
limf/ (f¢f+g|v¢f|)dsdA=fgdA VA C 09
e~0J4J—¢2 A
2)
We can now present the diffuse interface formulation of

mechanical equilibrium. Recall the usual sharp-interface
equations of momentum conservation in the context of elas-

ticity, with kinematics linearized about some eigenstrain &,
are:
C(x) (grad u(x) — eo(x)) —0(x)=0, xe€Q

W(y) —u(y) =0, yeanQ (3a)
dive(x) —b(x) =0, xeQ

() —o(Ni(y) =0, y e hQ. (3b)

Equations (3a) and (3b) are the constitutive and mechanical
equilibrium conditions. Here u(x) is the displacement field,

! We note that the n - V¢ boundeness restriction is erroneously absent
from the original presentation of the theorem in [8].

A C 0N

QCR"

00 c R+

vanishes in the limit. It is also defined as the € /2-neighborhood of 0€2.
The shaded region on the left is A x (—€/2, €/2), a subset of 9.2,
corresponding to an arbitrary subset A of 92

C(x) is the fourth order elastic modulus tensor, b(x) is the
body force, u°(x) is the displacement specified at the Dirich-
let boundary 8; 2, £°(x) is the traction specified in the traction
boundary 9,€2, and 71(x) is the normal vector at any point on
the boundary. We also assume the conventional major and
minor symmetries of C(x) to allow us to directly work with
the displacement u (x). While the Dirichlet boundary condi-
tion is essential to solid mechanics problems, imposing them
on the diffused boundary has limited use cases. Therefore,
we limit our attention to the traction boundary condition. To
move to the diffuse boundary setting, we introduce the diffuse

traction 7° : 9.9 — R3,
fo(x =y+sn) =ty). 4)

The diffuse traction is defined everywhere in the diffuse
boundary as the value of the discrete traction at the closest
point on the discrete boundary. (Recall that this is only valid
as long as € is smaller than the smallest radius of curvature of
the discrete boundary; otherwise, the diffuse traction is mul-
tiply defined.) Now, consider the following diffuse-boundary
modification of equation (3b):

(dive — b)¢¢ = (i° — on)|Ve©|. 5)

It is straightforward to show that the interior momentum
equation holds by considering the weak form of the above
equation. Integrate both sides over an arbitrary interior, mea-
surable region V C €,

/ (dive —b)¢*dV =0 Vmeas.V C Q.. (6)
%

The right hand side vanishes since |V¢€| is zero in 2, by
construction. But since equation (6) holds for all subsets of
the diffuse interior, the integrand itself is zero for all x € 2.
To show recovery of the boundary condition, we once again
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take the weak form of equation (5), this time over an arbitrary
region within the diffuse boundary:

€/2
/ / ((diva —b)p — (& —an)|v¢f|) dsdA =0 VA C 39
Ad—ep
@)

Applying Theorem 1 in the sharp interface limit reduces the
above expression to

/A(to—an)dAzo YA C 32, (8)

which shows that the integrand must be true for all y € 92
since the above weak form holds for all subsets of 9.
This confirms that the traction boundary conditions are
exactly recovered as € — 0 for the diffuse interface for-
mulation in Eq. (5). Finally, rearranging and noting that
n = V¢/ V€|, Eq. (5) simplifies to

div (¢°0) — b = 2°|Vge]. )

In summary, the boundary conditions associated with the dis-
crete natural boundary 92 are replaced by an equivalent
source term that mimics the effect of the discrete natu-
ral boundary, exactly recovering its behavior in the sharp
interface limit. The selection of ¢ can be determined by
construction (for instance, explicitly prescribing an indicator
function based on a predetermined geometry) or by coupling
to a separate set of equations that describe the behavior of ¢
(such as phase field). In both cases, care must be taken that
the behavior of ¢ does not deviate far from the requirements
necessary for the validity of the diffuse boundary method to
hold.

2.2 Reflux-free multigrid implementation

We implemented equation (9) in an in-house code, Alamo
[1], a finite-difference based multi-level, multi-grid, and
multi-component solver. Alamo uses AMReX libraries for
block-structured adaptive mesh refinement (BSAMR) [11].
BSAMR divides the mesh into levels such that each level
contains cells of the same size. Each level is treated indepen-
dently, and the information between levels is communicated
through restriction, relaxation, and restriction operations
using ghost cells. As a result, BSAMR is highly scalable
and enables massive parallelism across CPU and GPU cores.
BSAMR can be naturally combined with standard multi-
grid methods by treating refined levels as an extension to
the multigrid method’s coarse/fine level sequence. The mesh
refinement and coarsening are triggered and performed at
regular intervals using the Berger—Rigoutsos algorithm [15].

Multigrid methods often require special treatment at
the coarse-fine level interface during restriction operations.
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Improper handling of the coarse-fine interface can result in
spurious forces at the interface and overall poor convergence
of the solver. The coarse-fine interface can be handled using
a “reflux” operation [16] where the operator is updated at the
interface to use the information at both levels. However, this
process can be difficult for a complicated operator such as
the one for linear elasticity. An alternate “reflux-free” proce-
dure was proposed by [1] where the levels are padded with
an extra layer of ghost nodes/cells to ensure the translational
symmetry of the restriction operator and that information at
the coarse/fine boundary is updated with the current infor-
mation. This circumvents the need for a special stencil at the
coarse/fine boundary and results in good convergence.

2.3 Node-based and cell-based fields in strong form
multigrid elasticity

The method discussed in Sect. 2.2 works well for elasticity
problems but can behave very poorly unless care is taken to
respect the proper placement of the relevant fields on the grid.
In fluid mechanics, it is often necessary to place some quanti-
ties at nodes, some in cells, and some on cell faces, etc., with
the exact scheme differing between methods [17-20]. On the
other hand, in solid mechanics, values such as displacements
are typically stored at nodes, whereas quantities governing
material response are generally located at quadrature points
within the element. Some solid mechanics methods, such as
optimal transport meshfree [21], smoothed particle hydrody-
namics [22], and the material point method [23-25], though
not strictly finite element, still carefully distinguish between
nodes and material points. The finite volume method has
been used for solid mechanics, though not nearly as exten-
sively as in fluid mechanics, and it is known that a staggered
grid approach is needed to avoid the phenomenon of checker-
boarding [26].

In the present method, which uses a regular cartesian grid,
values may be stored at points, edges, faces, or cells. At first
glance, there is no obvious reason for storing values at one
location over another; indeed, itis possible to develop a solver
in which all values are stored at faces or all values at nodes.
In previous work, nodal locations were chosen for all quanti-
ties of interest [1]. Interestingly, this choice had no previous
negative impact on the solver. However, as we will discuss
here, the location of values is, in fact, quite essential to the
performance of the solver when considering near-singular
problems. Specifically, it is important that displacements be
stored at the nodes, whereas the order parameter must be
stored as a cell-based field. In this section, we provide two
explanations for this: the first, from a practical perspective,
and the second, by considering the geometry of the problem.

Our analysis considers the key aspect of the multigrid
solver as applied to the elasticity problem: smoothing. Multi-
grid methods work primarily through the use of a smoother
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between levels. The choice of smoothing algorithm can
vary, but the preeminent solvers are generally Gauss—Seidel,
Jacobi, or a variant of one of these methods. These methods
are popular due to their ease of implementation, their par-
allel efficiency. For geometric multigrid methods, they are
particularly attractive because they smooth high frequency
error faster than low frequency error (unlike, for instance,
the conjugate gradient method) [27].

Here, we consider the Jacobi method, which for an oper-
ator A is given by

Wt =D b - (A - D), (10)

where #” is the solution at iteration n, D = diag(A), and b
is the right hand side. We see that the inverse of the diago-
nal is of central importance: most notably, that if any of the
diagonal elements of D are zero, the corresponding rows of
(b— (A — D)u") must be zero as well. To see the significance
of this, consider the discretized elastic operator for a constant
modulus C in one dimension, in which all values are stored
at nodes:

€ g€ o
div (¢p“Cgradu), = C < l+12Ax¢z—1) <M1+12A;h—1)

uip1 —2u; + ui—l) (an

+C¢f( N

The diagonal of the operator, then, is nothing other than the
coefficient of the u; term, that is,

Cos

diag(div[¢C grad]); = —2 Al

12)
and so the corresponding Jacobi update is thus given by

S B Ax? {bi B [C(¢i€+l — ¢ )(“?ﬂ - ”?—1)

’ Cof 2Ax 2Ax
weor ()]) (13)
- _2Ax2{¢’;"c _ [(;;(¢f+12;jf_1><u?+12;xu?_1)
" (fozul)” (14)

By inspection, it is clear that any nonzero body force will
produce divergent behavior if applied where ¢ = 0; this is
natural since such a problem would be ill-defined. However,
an inspection of the next term shows a second vulnerability:
a point at which ¢ = 0 may still induce instability depend-
ing on the values at the adjacent nodes. Therefore this can
(and does) induce divergence at the nodes where the order
parameter is zero, but the solution is well-defined: i.e., at the
boundaries of the support of ¢€.

On the other hand, consider the corresponding Jacobi
update if the field ¢€ is stored in cells rather than at nodes,
where fractional indices are used to denote locations of cells:

2b;
1 2
u?"_ = —2Ax { - ! - e
D12 TFi_1)
_ [ 2 (¢f+1/2 - ¢i€—1/2)
(Div1p+ D10 Ax

Wi — “;'1—1> <M?+1 +ui )]
. 15
x ( 2Ax + Ax? (15

One can see by inspecting the second term (assuming, again,
that the body force is responsibly applied) that the problem
of instability is eliminated. Divergent behavior can now only
occur when ¢€ is zero at both i + 1/2 and i — 1/2; but
if this happens, then the difference between the two values
would be zero as well. One may apply this same exercise
to this problem with non-uniform elastic modulus, or to the
problem in 2D or 3D, with the same result. This underscores
the importance of a staggered grid approach that, though
commonly used in other finite difference methods, was absent
from prior finite difference implementations of the SBM on
BSAMR grids.

One may take this analysis several steps further by con-
sidering the geometric significance of the solution and ¢¢
fields. Within the past couple of decades, the tools of exte-
rior calculus have been applied to the problem of linear
elasticity [28-30], which identifies displacement fields as
vector-valued 1-forms, body forces as vector-valued 3-forms,
etc. This has been extended to the field of computational
mechanics through the emerging sub-discipline of discrete
differential geometry (DDG), which allows the explicit real-
ization of exterior calculus constructs in the context of
discrete mesh elements [31-33]. While a thorough treatment
of DDG in the context of mechanics is outside the scope
of the paper, we outline the underlying concept. The tradi-
tional fields (displacements, stress, etc) can be replaced by
the DDG construct of forms, where an n-form is a field that
can be integrated over an n-dimensional manifold. That is,
n-forms contain a notion of geometry that is absent from
raw fields, and which correspond to the proper integration
domain. For instance, stress are integrated over surfaces,
which are two-dimensional manifolds; therefore, stress is
a 2-form; body forces are integrated over volumes, which
are three-dimensional manifolds; therefore, body forces are
3-forms; displacements are evaluated at points, which are
zero-dimensional manifolds; therefore, displacements are 0-
forms; and so on. In the present work, the order parameter ¢
is integrated over a voluem; therefore, ¢ is a 3-form. In the
discrete setting on a regular grid, O-forms may be identified
as nodal fields, 1-forms as edge fields, 2-forms as face fields,
and 3-forms as cell fields. (The study of DDG has produced
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analagous interpretations for non-regular and unstructured
meshes as well.) Thus, we see that by representing dis-
placements using a node-based grid (0-forms) and ¢ using
a cell-based grid (3-forms), we are preserving the geometric
structure of the these fields. For a more thorough discussion
of the geometric interpretation of classical continuum the-
ory, we refer the reader to the above references and to the
excellent book by Frenkel [34].

2.4 Material model vector space

One of the key advantages of the BSAMR approach is its abil-
ity to adapt the mesh rapidly. The block-structured multilevel
data structures afford rapid regridding in a parallel-efficient
manner. Regridding, and inter-level communication, relies
on the ability to rapidly transfer information between AMR
(or multigrid) levels, usually in the form of interpolation
or prolongation. When working with primitive fields such
as velocity, density, pressure, etc., interpolations and pro-
longations are easy to compute. However, such operations
are not always obvious in the context of material model-
ing. Materials often exhibit highly anisotropic behavior, with
material response often depending on numerous parameters
and time-evolving internal variables. In order for BSAMR
to function correctly with such models as these, it is neces-
sary to address the constraints and requirements needed for
material modeling. Moreover, as it is a commonplace in any
solid mechanics code to allow for modular material mod-
els, an ad hoc implementation is insufficient. Therefore, we
prescribe the minimum requirements needed for a versatile
implementation of material models in a BSAMR context.
The aforementioned requirements for BSAMR data struc-
tures are equivalent to those for the mathematical structure
of a vector space. Specifically, BSAMR requires the consis-
tency of solid models between AMR and multigrid levels,
which is achieved through interpolation and restriction oper-
ations, which require the definition of addition and scalar
multiplication of solid model objects. Therefore we impose
the requirement on material models that they must satisfy
the properties of a vector space. Let M denote the vector
space corresponding to a certain material model. The salient
properties are: (1) the existence of a “vector addition” opera-
tion, typically denoted +, such thata +b € M Va, b € M;
and (2) the existence of a “scalar multiplication” operation
denoted by “*” or concatenation, such that « xa = «a € M
Ya € R,Ya € M, and (3) the existence of an identity
element 0 € M such that 0 + a = a Ya € M. Other
requirements include associativity and commutativity of +,
the inverse of +, compatibility of * and identity under *, and
distributivity of *; generally, these are not troublesome to
enforce, and they furnish a valuable framework for unit test-
ing at the implementation phase. Properties 1-3 must hold not
only for the internal variables stored in each material model
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but for their functions as well: specifically, the zeroth, first,
and second derivatives of energy (W, DW, DDW), as well as
any functions defining the evolution of internal variables. For
instance, (a + b).DW (") = a.DW (e) + b.DW (&), where
¢ is the local strain tensor. The structure also allows for the
inverse of models to exist, which allows for derivatives of
models to be calculated, e.g. (da/dx).W (¢). For instance,
the calculation of the gradient in the x; direction of a model
field a(x) using finite difference would be

da qalxr + %Axl,xz,m) —a(xy — %Axl,xg,x3)
(G )2 ~( i~ )
DW (e), (16)

which makes use of the full agebraic structure of a: namely,
algebraic operations of scalar multiplication and addition, as
well as inversion.

The model —a is the inverse of a with negative (and con-
sequently unphysical) material properties. We emphasize the
importance of placing checks in place to ensure that unphysi-
cal models are not accidentally used to calculate real physical
properties.

The vector space material model requirement has imme-
diate implications on the implementation of material models.
Consider the simple case of linear elastic isotropic, which is
generally parameterized by two properties, often chosen as
Young’s modulus E and Poisson’s ratio v. One can construct
a material model based on these two properties (£, v) along
with the addition operation (E1, vi) + (E2,v2) = (E1 +
E>, v1 +v3), and scalar multiplication ¥ (E, v) = (¢ E, av).
However, such a model violates the vector space behavior
of W, DW, and DDW, since the energy, stress, and strain
depend on the ratio v/E rather than bilinearly on v and E
separately. Thus, one can instead store the Lamé constants
A, i, on which the dependence of W, DW, D DW is bilinear.

Another salient example is the implementation of cubic
elasticity, which requires the storage of rotational informa-
tion along with elastic moduli C11, C12, C44. One may also
include an eigenstrain &g, reflecting plastic evolution, ther-
mal expansion, etc. Euler angles are sometimes used to store
the local rotation but are clearly a poor choice here, as
Euler angles do not form a vector space. Instead, we used
quaternions to store rotation information, as they possess an
algebraic structure that is relatively easy to implement. One
complication is that quaternions must be normalized to obtain
rotation information, meaning that the W, DW, D DW func-
tions for the zero element are ill-defined. However, in
practice, it is generally never the case that the zero element
would be called upon to return those values, and if it did, it
would always return zero anyway by necessity. The remain-
ing values in the model readily admit an algebraic structure
and are easily implemented.
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Operator overloading (that is, the definition of functions
using the syntax of operators such as +, —, +=, etc.) was used
to provide both unary and binary vector addition and scalar
multiplication operations, and unit tests can enforce asso-
ciativity, commutativity, etc. We used forced code inlining
(compile-time restructuring to place called code “inline” with
the calling code) to ensure that there is no function call over-
head, and C preprocessor macros can be used to implement all
operators with minimal boilerplate code required automati-
cally. We required functions such as Zero to furnish the zero
element, with template metaprogramming used to enforce
that all models comply with the vector space requirement.
We refer the interested reader to [35-37] for further discus-
sion of relevant high performance computational techniques.

3 Examples

In this section, we demonstrate the performance and accuracy
of the solver and the SBM implementation within Alamo
using problems within solid mechanics.

3.1 Plastic deformation due to spherical void

As afirst step, we solved a standard canonical problem to val-
idate the accuracy of the near singular solver. We considered
the two-dimensional problem of a large linear elastic plate
with a circular hole subjected to uniaxial stress. The stress
fields around the hole are well-defined and can be analytically
computed using the Airy stress function approach [38]. We
chose a two-dimensional domainof x € [—16, 16] x[16, 16]
and introduced a circular hole of radius 1.0 at the center. We
used a range of regularization length scales 0.01, 0.05, 0.1,
0.5, and 1.0. We subject the domain to a uniaxial stress condi-
tion by fixing the left edge and applying a displacement in the
x direction on the right edge. Figure 2a (top left) shows the ¢€
field with a regularization length scale of 0.01 along with the
refined grid. The corresponding stress distributions oy, 0y,
and o, are shown in Fig.2a in the top right, bottom left and
bottom left respectively. We present the comparison of the
numerical solution with the analytical solution at y = 1 line
(tangent to the hole) as a function of the regularization scale
in Fig. 2b—d. We note that the solution predicted by the near-

singular solver converges to the analytical solution [38] as
the regularization length scale decreases. The normalized L2
error (i.e. norm of the difference divided by the norm of the
reference) indicates convergence with respect to ¢ (Fig. 2e).
The increased error for the smallest 1-2 values of ¢ indicates
an error from the discretization since a constant mesh reso-
lution (that is, the same number of AMR levels) was used for
each case for consistency.

Having validated the elastic solver, we demonstrate the
effectiveness of the method by considering the plastic defor-
mation of a cuboidal object with an embedded spherical void
subject to uniaxial loading. We represented the material using
the order parameter ¢ which takes the value O within the void
and 1 outside, with a length scale €. The stress in the SBM
equation (9) is expressed as 0 = C (gradu — &), where
€, is the plastic strain. We used a staggered approach to
solve the elastic equilibrium equation (9) and plastic evo-
lution, and modeled the evolution of plastic strain €, using
the J»-plasticity model for a linear elastic isotropic mate-
rial with Lamé constants A and u. We chose a J, plastic
strength model with isotropic hardening. The yield strength
for isotropic hardening is given by
K(a)=o0y+60Ha, 6¢€[0,1] (17)
where oy is the flow stress, « is the equivalent plastic strain,
H is the hardening modulus and @ is a parameter gov-
erning the hardening slope. We used the internal variables
q = {o, €, B} for the plasticity model, where f is the center
of the von-Mises yield surface in the stress deviator space.
Following are the yield condition flow rule and hardening
rule for the J, plasticity model.

2
n:=devio] — B, wB:=0. f(o.q) =]l @K(m,

. n \/5 . 2 -

Ep =V C=Vy75 ﬁ=)’*(1—9)H7 (18)
P il 3 3 Il

We solved the above equations using the following radial

return algorithm described in detail in [39]. Given a stress

and strain state at time ¢, as 0, and &,, and the strain &,

at time #,,41, the algorithm involves following steps.
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Algorithm 1 J2 plasticity model update

1: e, <—deve,,e,+] < deve,t1,s, < deva,,

. ofrial trial trial
S S +2u(ent1 — en), Nyp1 < Sup1 — M

. trial trial
BRLTES Vl,ffl/lrl,ffl\

- Solve —\/gK <an + @Ay) + il = 0 for Ay

PN 4
. €n+l =€, + A)’nn+l
2
Apt1 = ap + \/;Ay

Z—H = /3717’ + \/29 I'_I(an+1 — o)yt

[ VS I )

> Compute deviatoric strain and stress
> Compute trial states

> Compute new yield surface normal

> Consistency condition

> Update internal variables

A3Ddomainx = (x1, x2, x3) € [—16, 16] x[—16, 16] x
[—16, 16] (arbitrary units) with an ellipsoidal void centered
at the origin and radii r = (r, ry, ;) was used. The order
parameter ¢ was set to 1 outside the inclusion and O inside
withalength scale e = 0.4. We chose the material parameters
as Young’s modulus £ = 210 GPa, Poisson’s ratio v = 0.3,
yield strength oy = 200 MPa, and hardening parameters
H = 50GPa and = 1. We performed a tension test with
a fixed x; = —16 face and a cyclic displacement applied in
the xj direction on the x; = 16 face. We chose the applied
displacements in the increments of 0.004 going from total
applied displacement from 0.0 to 0.1, then from 0.1 to —0.1,
and finally from — 0.1 to 0.0.

Figure3 shows the stress—strain curves obtained for
six different ellipsoid shapes and sizes. These are r; =
(2.0,0.5,0.5),r2 = (2.0,7.07,7.07),r3 = (7.5, 4.08, 4.08),
rqs = (10,10,10), rs = (2.5,14.14,14.14), and r¢ =
(14.14, 8.16, 8.16). We calculated the strains using the
applied displacement and stresses from the total traction on
the x = 16 face where the displacement is applied. As
expected, the stress—strain curve for each case exhibits the
classic hysteresis loop. As the size and aspect ratio of the void
change, the plastic evolution within the domain changes lead-
ing to different stress—strain curves. The total plastic strain is
higher for larger void with higher aspect ratios aligned with
the loading directions, making the stress—strain curve flatter.
Figure 4 shows the magnitude of plastic strain deviator at the
applied displacement of 0.08 during the unloading cycle.

We performed these simulations on the UCCS INCLINE
cluster using 128 cores on a single node. We chose a base
mesh of 32 x 32 x 32 with 5 levels of refinement. For the
six cases presented, the solver took 4 minutes to 8 hours,
depending on the size of the inclusion and the size of the
portion of the domain refined with high resolution. The solver
converged linearly for all cases despite large regions of voids
within the domain. Therefore the solver performed well in
predicting the stress fields and plastic strains due to voids.

3.2 Brittle fracture

Fracture is one of the most prominent causes of failure for
engineering structures. As such computational modeling of

@ Springer

crack nucleation and propagation in engineering materials
is critical for evaluating their performance. Computational
methods for modeling fracture can be broadly classified
as either discrete boundary or diffused boundary methods.
Among the discrete boundary methods, there are two main
approaches: the eXtended Finite Element Method (XFEM)
[40-42] and the Scaled Boundary Finite Element Method
(SBFEM) [43-46]. XFEM involves enriching classical finite
elements with specialty elements designed specifically for
capturing singularities at crack tips. On the other hand,
SBFEM uses a dimensional reduction technique to reduce
the problem domain to the boundary of the solid and scales
the solution to the crack tip analytically. A detailed review
of discrete methods can be found here [47, 48]. While these
methods have been widely successful, they suffer from lim-
itations when explicitly tracking crack fronts for complex
crack patterns.

Diffuse boundary methods, or “phase field methods” use
a smoothly varying scalar damage field c(x, r) to diffuse
the sharp crack over a length scale & [49]. The differen-
tial equation governing the evolution of c(x, ) is based on
a rigorous variational approach to fracture which uses an
energy functional regularized over the length scale & [50].
The variational method has been shown to be consistent with
linear elastic fracture mechanics under quasi-static loading
[50] for brittle materials. Recently, phase field fracture meth-
ods have been extended to study heterogeneous materials [6,
51, 52], anisotropic materials [53, 54], functionally graded
materials [55-57], dynamic fracture [58—60], ductile fracture
[61-63], and fatigue loading [64]. Phase field fracture has
also been used to study interfacial strength in composites by
incorporating cohesive zone elements into the formulation
[65-67]. Modifications to the traditional formulation have
also been studied with different damage degradation func-
tions and damage energy penalty terms [68, 69].

While phase field methods have gained wide adoption,
they suffer from high computational costs due to typically
small values of £. One way to circumvent this challenge is
to use spectral methods, typically the Fast Fourier Trans-
form (FFT), for memory efficiency [70, 71]. Another more
widely used approach is to couple the phase field fracture
implementation to AMR with higher resolutions near the
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Fig.2 Verification of the method by comparison to the exact solution
for a plate with a hole under uniaxial tension. Convergence with decreas-
ing ¢ (corresponding to increasing decreasing line opacity), compared

crack tip. Among the AMR approaches, the discontinuous
Galerkin approach has been used for single-level AMR [72]
and the finite cell method together with h and p refinement
has been used to achieve multiple levels of refinement on a
regular grid [73]. Other attempts include hybridizing phase
field method with XFEM [74].

In this work, we implemented a hybrid model of phase
field brittle fracture to study crack propagation in Mode-
I loading. We use a regularized field c(x, ) with values 1
outside the crack and O inside the crack and length scale
parameter £&. The phase field fracture energy functional is
given by,

to the exact solution (dashed lines), along y = R = 1, which is the
tangent to the hole (dashed white line)

E:fﬂ(g(c)+77)W0(€(u))dV+/QGc [w

2
26 Vel ]dv,

(19)

where W) is the elastic strain energy of the material without
acrack field, G is the fracture energy, and = 10~* chosen
for computational stability. The interpolation function g(c)
takes the value 0 inside the crack and 1 outside. The interpo-
lation function w(c) takes the value 1 inside the crack and O
outside. In this work, we choose a quartic interpolation func-
tion [69] with g(c) = 4¢> — 3¢* and w(c) = 1 — g(c). The
crack and displacement fields are evolved using the varia-
tional derivative of L.
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Fig.3 Stress—strain hysteresis
results for a variety of void
shapes and sizes
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Fig.4 Isocontours showing the magnitude of the plastic strain deviator atz = 0.3. From top right to bottom left, the voidradiiare r; = (2.0, 0.5, 0.5),
ro =(2.0,7.07,7.07), r3 = (7.5,4.08, 4.08), r4 = (10, 10, 10), r5s = (2.5, 14.14, 14.14), and r¢ = (14.14, 8.16, 8.16)

We chose a linear elastic isotropic material with Lamé
constants A and p with the strain energy density and stress
as

_ Wy

1
Wo = E)\(tre)2 + ptr (32> , 0= e (20)

To account for the tension-compression asymmetry, we
assume an additive decomposition of the strain energy Wy =
W(;r + W, which uses the spectral decomposition of the
strain tensor & = Zf.lzl €i0; ® v;. The strain energies are
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given by

d
1 o
W$=5Am6ﬂ2+unGi» ex =) (84 i ® i,

i=1

2y
and the energy functional is updated to
_ + — w(e) 2
E—/Q[(g(cHn)WO + W, }dv+/QGc[ 18 +£|Vel ]dV.
(22)
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We note that the above strain-based decomposition of energy
does not always ensure that the compressive states do not con-
tribute to crack growth [75, 76] and a stress based approach
has been used recently to circumvent this issue [77]. The
equations for the hybrid formulation of phase-field fracture
are obtained by taking the variational derivative of the energy
functional above.

dive =0, o= (g(c)+n) %
w'(c)
26 |

where HT := max WO+(€(x, 1))
7€[0,1]

0=g¢ (OH" -G, [2§Ac +

Vx W < W, =cx)=1 (23)

We replace Eq. (23b) with a Ginzburg—Landau type evolution
law by introducing crack mobility M as

f=-M |:g/(c)H+ —G. (25 Ac + w;(;) )} . 24)

Using Egs. (23a), (23c), and (24), we solve a classic Mode-
I fracture propagation problem using a staggered scheme
within Alamo. The order parameter ¢, from the SBM equa-
tion (9) corresponds to g(c) in the phase fracture equations.
At each time step, as the crack field ¢ evolves, we update
the order parameter ¢, for the next iteration of the staggered
solver.

Figure 5 (right) shows snapshots of mode-I crack propa-
gation over a domain of x € [—0.01, 0.01] x [—0.01, 0.01].
We chose a material with A = 121.15 GPa, u = 80.77 GPa,
£=10x10", G, = 2700 Pa,and M = 1.0 x 107>, We
initialized a notch of length 1.5 x 10~ at the center of the
left edge. We then fixed the bottom boundary, and apply a
fixed y displacement of 1.5 x 10~ on the top edge. We used
six levels of refinement on a base grid of 64 x 64 to appropri-
ately capture the interface. The refinement criteria was based
on the gradient of the crack field as |Vc|Vx| > 0.01. We
performed mesh-regridding every 10 time-steps, with a sin-
gle time-step being Az = 107%. As expected, we obtain a
steadily propagating crack in the x direction with an adap-
tively refining grid following the crack field.

We ran this simulation on Auburn University’s Easley
computing cluster using 32 cores on a single node which
took a total of 4.5h. We note that a major portion of the sim-
ulation time was used to perform Ginzberg Landau evolution
of the crack field (Eq. 24). Figure 5 (left) shows the number
of multigrid iterations needed by the near-singular solver to
solve Eq. (23a). The solver required 108 iterations for the
first elastic solve. Since the solver uses the previous solution
as a starting point, the number of iterations sharply declined
immediately after the first elastic solve. We note a steady

increase in required iterations as the crack progresses fol-
lowed by a peak and slow decline. We attribute this trend to
the changing nature of the mesh as the crack propagates and
the fraction of the near-singular domain. Overall the solver
never took more than 160 iterations throughout the entire
simulation.

We further illustrate the performance of the near-singular
solver by studying crack nucleation and propagation due to
stress concentration in an L-shaped domain. We initialized
the domain 2 := x € [—0.01,0.01] x [—0.01, 0.01] using
a smooth differentiable function with length scale 4 x 107>
that takes value 0 in 21 := x € [0,0.01] x [0, 0.01] and 1
in 2\21. We fixed the bottom edge and applied a constant
displacement of 1.5 x 107> on the top edge in the y direction.
Figure 6 (right) shows the propagation of crack along with
Von-Mises stress distribution in the domain. As expected,
the crack nucleated at the corner x = (0, 0) with the highest
stress concentration and propagated upwards towards the top
free surface. This is confirmed by the Fig. 6 (left) where we
plot the force (in non-dimensional units) on the top edge. We
observe a linear decline in the force as the crack propagates,
indicating the weakening of the material. Eventually a sec-
ondary crack nucleates at the top left corner, which coalesces
with the primary crack causing the final failure of the mate-
rial. This is indicated by a sharp decline in measured traction
and the snapshot of crack at t = 3.2.

We performed this simulation on the UCCS INCLINE
high-performance computing cluster using 128 cores on a
single node. The simulation took a total of 6.5h most of it,
once again, was the Ginzberg Landau evolution of the crack
field. We observe an increase in solver iterations after an ini-
tial decline. The maximum number of iterations required was
500, while the smallest was 48. Once again, we attribute this
pattern to the evolving crack field and near-complete failure
of the material. Overall, we observed results as expected and
the solver performed well even near complete failure.

3.3 Structural topology optimization

Topology optimization refers to the computational method
of determining the geometry of a material or set of mate-
rials that produce the optimal result subject to constraints.
Topology optimization generally implies the minimization
over a very high dimensional space, the space of all admis-
sible geometries. Topology optimization has been applied
to myriad fields of study, ranging from battery design [78]
to fluid—structure interaction [79]. Structural topology opti-
mization refers specifically to the problem of designing
load-bearing structures, subject to constraints typically on
the amount of material allowed in a certain volume, that
minimizes compliance and maximizes the stiffness of the
structure. Topology optimization has existed as a popular
field of study for more than thirty years, stemming from ideas
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Fig.5 Phase field fracture—Canonical Mode I loading. (Left) Perfor-
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Fig. 6 Phase field fracture—Crack nucleated by stress concentration.
(Left) Performance of the MLMG solver along with the measured
applied traction due to the imposed displacement as a function of
simulation time (indicated by position on x axis and by color in the

originally proposed more than 150 years ago [80]; today,
topology optimization is an entire sub-discipline in its own
right. Topology optimization methods have even found their
way into some commercial codes and consequently experi-
enced accelerating usage, partly due to the recent interest in
additive manufacturing.

There are a number of prevailing methods for solving
structural topology optimization problems. Common to all
structural topology optimization methods is (i) the need to
solve the stress equilibrium problem, and (ii) the ability
to resolve arbitrary geometry, without a priori knowledge,
with resolution sufficient to resolve lengthscales of inter-
est, and without excessive computational cost. Following
the seminal work by Bendsoe [81, 82], other methods have
included shape derivatives [83], the level set method [84-86],
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tion on x axis and by color). (Right) Snapshots showing the phase field
evolution at indicated times (r = 0, 1, 3, 5, 7, 9 indicated by black cir-
cles) on the performance plot

iteration plot). (Right) Snapshots of the stress state in time (f =
0,0.8,1.6,2.4,3.2,4.0) as the crack propagates. The region where
¥ < 0.1 is colored white

and evolutionary methods [87] as techniques for solving the
optimization problem. Recently surging interest in machine
learning has led to artificial intelligence-based newcomers,
such as generative adversarial networks, that are not necessar-
ily based in physics but are nonetheless capable of generating
optimal or near-optimal structures very quickly [88-90]. A
full review of structural topological optimization is well out-
side this work’s scope, so we refer the reader to [91, 92] for
a more comprehensive overview.

The phase field method is yet another option for solv-
ing the structural topology optimization problem. It is, in
some sense, a natural choice, as the phase field method is
used specifically for problems involving variable topology.
Phase field was applied to topology optimization by [93],
where the free energy functional contains the elastic strain



Computational Mechanics

energy for the given configuration. Volumetric constraints
can be applied by using a conservative Cahn—Hilliard equa-
tion that preserves volume [94], or by a constrained gradient
descent method [95, 96]. Jeong et al. [97] implemented vol-
ume constraints, as well as additional design constraints,
using augmented Lagrange multipliers. A limitation of cur-
rent phase field methods is the need for high resolution across
the diffuse boundary to prevent mesh dependence. Here,
adaptive mesh refinement is needed; while AMR has been
applied to phase field topology optimization [98, 99], the
application has been limited.

The finite element method is used nearly universally in
topology optimization. However, the smoothed boundary
method for solving near-singular problems presented in this
work is ideally suited for solving phase field topology opti-
mization problems. The method’s ability to rapidly regrid,
and efficiently solve the near-singular mechanical equilib-
rium equation, ideally suit it for this application. In this
section, we present results for a basic phase field topology
optimization problem.

We use 1 as the order parameter to represent the topology
over a domain Q2. Next, we define the free energy in terms
of n (where square brackets implicitly indicate a functional
over the value and its derivatives) to be:

B

Winl = [ (e’ = + S19aP)) x

+inf[1/ Vu - ((n+ ¢)*C) Vudx
u |2 Q

—/ u-todxi|, (25)
02

subject to the constraint

/Q ndx =V (26)

where « and B are numerical parameters controlling segre-
gation and boundary energy, C is the fourth order elasticity
tensor, ¢( is prescribed surface traction, and Vj is the allow-
able volume of material. (We note that « ~ %, B ~ € where €
controls the boundary width. We retained « and S for simplic-
ity.) As discussed above, the volume requirement induces a
constraint on the optimization problem. We adopt a straight-
forward regularization, allowing the optimum to be found by

a modified version of the Allen-Cahn equation:
o _ —L(iw + /\(r)(/ ndx — vo)) 27)
at 87] Q

where L is a mobility parameter and d/07 is the variational
derivative. The function A(?) is a Lagrange multiplier that
enforces the constraint in Eq. (26). In general, we let A(?)

tend towards infinity as + — oo, to allow the constraint
to be approached at a gradual rate. In problems with mul-
tiple optima, the form for A(¢#) may determine which local
minimum is found. Each evaluation of Eq. (27) requires the
evaluation of the elastic minimization problem in Eq. (25),
which is solved using the proposed method. As in all exam-
ples, n is a cell-centered field while the displacement is
node-centered. Node-to-cell averages are computed for each
iteration.

We considered the classical problem of a load supported
by a cantilevered structure. We selected dimensionless val-
ues for all quantities. For the two-dimensional results, we
chose the domain to be 1 in height, and ranging from 1 to
4 in length. We used base-level grids of 32 x 32, 64 x 32,
and 128 x 32 corresponding to the different aspect ratios.
We used the powers of two for all grid dimensions, at the
cost of some non-square unit cells, to optimize the multigrid
solver’s performance. We used a total of three AMR levels,
with a refinement criterion |Vn||Ax| > 0.05. We used a less
restrictive refinement criterion for the strain, €, although it
did not contribute significantly to the results. We performed
mesh regridding at each phase field iteration step.

For the cases considered here, we constrained the vol-
ume to 25% of the domain volume. We chose the phase field
parameters as « = 200, 8 = 0.01, A = 400.0. We used an
isotropic material model with £ = 1480, and v = 0.22. We
applied a point load of magnitude — 0.1 per unit length at
the center of the right face over a region 0.01 in height. We
specified Neumann conditions for the order parameter, and
it is possible to see slight artifacts at the edges of the domain
that result from this condition. We chose the regularization
parameter ¢ to be 0.01. While we considered smaller values,
they did not affect the performance of the solver. However,
they did affect the nucleation behavior of the phase field
method, causing spurious material segments to be generated
and eventually resulting in some instability that caused the
solution to diverge. Therefore, we attribute this to limitations
of the phase field model and leave further optimization of the
model to future work.

The algorithm’s results were generally as expected for
models of this type (Fig. 7). For the 1 x 1 case, the resultis a
fairly simple triangular brace structure. Varying the volume
fraction and boundary width terms generally did not produce
a substantial change. Increasing the domain to 1.5 x 1 pro-
duced a truss-like structure that is generally in line with the
canonical result for this standard problem. Increasing again
to 2 x 1 produced an irregular, asymmetric structure, likely
due to the inaccessibility of an optimal symmetric structure
for that aspect ratio. Asymmetries were common in this work,
especially for cases with higher boundary penalization terms.
Since we did not initialize the problem asymmetric perturba-
tions, any deviation generally stemmed from perturbations
induced by the regridding algorithm. For the 2.5 x 1 case,
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shown every 10 timesteps. The full simulation took 4h to run on 128 levels

@ Springer



Computational Mechanics

10
10711 8 9
10724 8
< 10731 7 9}
S £
hed 6 i=
§ 107494 5
5 2
3 105 ©
E -5 4 >
5 4 E
= @
107% 3 3
10-7 4 2
1
108§

0 20 40 60 80 100 120 140 160
Solver iterations

(a) Mode I crack growth

4.252
1]
10 3.826
1072 3 3.401
5] F2.97
§ 10-3 976 g
3 F2.551
§ 1073 <
F2.126 2
3 1075 3 5
£ 1701 2
=4 6 n
10 r1.275
10-7 1 F 0.850
0.425
10_8 3 ‘
T T T T T T 0.000

0 100 200 300 400 500
Solver iterations

(b) Stress-concentration fracture

102 1

10° 1

1072 1

Normed residual

10741

107° 1

270
240
210
180
[ 150
120

90

Topology Optimization Iterations

60

0 100 200

; ; 0
300 400

Solver iterations

(¢) Topology optimization
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elastic solve. The colors of the lines correspond to the time at which

the resulting structure is similar to the 1.5 x 1 case except
with a secondary truss structure in addition to the first. The
top and bottom support beams also decrease in width so as to
prioritize support near the wall where the bending moment
is the highest. As the domain continues to increase in length,
the double support structure is elongated but does not gener-
ate the third structure. This is due to the width of the diffuse
interface, as the thickness of the third support structure would
be thinner than the diffuseness of the boundary. Therefore, it
is not possible to nucleate the third structure. We emphasize
that we did not account for buckling in this model. The slen-
derness of the beams would, in reality, result in buckling that
renders the structure unstable. While it is possible to modify
the model to avoid this effect by differentiating between ten-
sion and compression, it is outside the scope of the present
work.

the solve occurred in the larger simulation, as well as the color in the
corresponding convergence plots. The highlighted lines (with markers)
correspond to the specific simulation points as highlighted in Figs. 5,
6, and 8

Of particular interest is the performance of the solver dur-
ing the solution of the phase field topology optimization
problem. We present the history of the design evolution for a
representative structure in Fig. 8a. The colored regions repre-
sent contributions of the energy functional corresponding to
the chemical potential, boundary energy, and elastic energy.
(We note that the regions are stacked and are plotted on a log
scale in the x and y axes.) The initial iterations are dominated
by the chemical potential, which drives the segregation and,
as a result, a sharp increase in the elastic energy. Eventu-
ally, support structures are spontaneously nucleated, rapidly
relieving the elastic stress and moving the solution toward
its equilibrium state. We superimpose the performance of
the multigrid solver (gray points) and plot it with respect
to the right axes, also on a log scale. In general, the solver
always converged linearly within a couple hundred iterations
and generally no more than 400. (See 1 for more details on
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solver convergence.) We notice a decrease in the solver’s
performance when topological changes occurred, which can
be connected to the presence of problematic “islands™ and
“peninsulas” in the solution. This can be seen by observing
the design evolution (Fig. 8b) at the indicated points (black
circles) on the performance curve.

All of the simulations took less than an hour to complete
on a single node with 32 cores. We used the UCCS INCLINE
cluster to perform the simulations, but only due to the large
number of simulations that were considered. We note that all
the 2D results can be quickly reproduced on a desktop com-
puter in a matter of minutes to hours (depending on domain
size and computing power). We emphasize that the objective
of this work is not to compete with commercially available
topology optimization codes, but to demonstrate the verstil-
ity of the method and its ability to easily adapt to a diverse
range of problems..

Finally, we tested the method in three dimensions (Fig.9).
We chose a configuration that was generally similar to the
2D case except for the following differences. We chose the
domain as 1.8 x 1.0 x 1.0, with a base grid of 64 x 32 x
32. We used a larger value of § = 0.1. We applied the same
point load at the right end, except that it was applied at the
center over an area of 0.1 x 0.1. The figure shows the evo-
lution of n during the solution, with isosurfaces plotted at
increments of An = 0.1. We ran the simulation on a single
node (128 processors) of the INCLINE cluster for four hours,
although we observed that the result converged well before
the conclusion of the run time (about an hour). As with the
two-dimensional case, the result is a truss-like structure with
a central support mechanism. The result differs from the 2D
case in that the central truss is replaced with a webbed struc-
ture. (Once again, we note that our model did not account for
buckling, which would significantly change the final result.)
In general, we observed results as expected and satisfactory
performance from the model in 3D.

4 Conclusion

In this work, we presented a comprehensive computa-
tional approach for solving near-singular problems with the
smoothed boundary method and block-structured adaptive
mesh refinement. Problems in solid mechanics are nearly
universally solved using weak form methods (finite ele-
ments), and this work aims to formalize and elucidate the
theory and best practices associated with solving problems
of interest (specifically, near-singular problems) using the
near-singular, smoothed boundary, strong-form approach. In
particular, a key insight of this work is the essential role that
is played by placing certain quantities at node or cell centers
in finite difference elasticity. This has been well-known in
fluid mechanics and has generally been enforced implicitly
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in solid mechanics due to the prevalence of strong-form meth-
ods. This, combined with the model vector space construction
and the reflux-free method for elasticity on BSAMR grids,
results in a powerful technique for quickly solving many
problems of interest in solid mechanics. We demonstrated
this approach’s versatility and the solver’s performance by
studying three problems: plasticity, fracture, and topology
optimization.

We conclude by discussing the limitations of this work.
As with all diffuse boundary methods, a higher resolution
is needed than most discrete boundary approaches. BSAMR
is able to alleviate this computational cost significantly, but
the number of points will still scale with the amount of
surface area, even for surfaces with low stress. (Discrete
boundary methods, by contrast, can afford low resolution at
uninteresting boundaries.) While this may be unavoidable,
we believe that the proposed approach offers increased ver-
satility and ease of implementation. We also note that while
the solver performs well on near-singular problems, it can
still struggle on problems that exhibit extreme irregularity
or high stress concentrations. In this regard, it is comparable
to equivalent solvers for alternative approaches. Finally, we
emphasize that the examples considered here do not reflect
the state-of-the-art in the fields of plasticity, fracture, and
topology optimization; rather, we have used tested and well-
understood models in order to showcase the performance of
the elastic solver. Implementing more sophisticated methods
using this solver shall be left to future work.
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Appendix A: Convergence data

The linear elastic, strong-form near-singular multigrid solver
exhibited nearly universally linear convergence in the exam-
ple problems presented in this work. Here, we present a more
detailed exposition of the solver behavior in time for the frac-
ture cases and the topology optimization example (Fig. 10).
We note that in all cases, the results from the initial solve
are not included because it is for the initial, non-regularized
version of the problem. In all examples, we observe a rapid
convergence during the first 3—4 iterations. This rapid conver-
gence lasts until the error is reduced to 1073, 107, and 10!
for mode I, stress-concentration, and topology optimization,
respectively. A sharp reduction follows this in the conver-
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gence rate, which is almost always non-decreasing during
the remaining solve.

In mode-I fracture and topology optimization, interest-
ingly, the worst convergence occurs during the middle of
the simulation; subsequently, convergence improves and
approaches a constant rate. Both exhibit a couple of solves
in which the convergence rate turned sharply from a higher
to a lower value; in both cases, the convergence might be
described as “piecewise linear.”

In the stress-concentration fracture case, linear conver-
gence is constantly observed, but the convergence rate
decreases steadily as the simulation progresses. We attribute
this to the increasing irregularity of the problem, resulting
from large chunks of material that have been degraded, and
regions of the boundary that are under-regularized. In other
words, it appears to be the fracture model, not the solver, that
is responsible for the degrading convergence.
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