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Abstract

Many solid mechanics problems on complex geometries are conventionally solved using discrete boundary methods. However,

such an approach can be cumbersome for problems involving evolving domain boundaries due to the need to track boundaries

and constant remeshing. The purpose of this work is to present a comprehensive strategy for efficiently solving such problems

on an adaptive structured grid, while expositing some of the basic yet important nuances associated with solving near-singular

problems in strong form. We employ a robust smooth boundary method (SBM) that represents complex geometry implicitly, in

a larger and simpler computational domain, as the support of a smooth indicator function. We present the resulting semidefinite

equations for mechanical equilibrium, in which inhomogeneous boundary conditions are replaced by source terms. In this

work, we present a computational strategy for efficiently solving near-singular SBM-based solid mechanics problems. We

use the block-structured adaptive mesh refinement method, coupled with a geometric multigrid solver for an efficient solution

of mechanical equilibrium. We discuss some of the practical numerical strategies for implementing this method, notably

including the importance of grid versus node-centered fields. We demonstrate the solver’s accuracy and performance for three

representative examples: (a) plastic strain evolution around a void, (b) crack nucleation and propagation in brittle materials,

and (c) structural topology optimization. In each case, we show that very good convergence of the solver is achieved, even

with large near-singular areas, and that any convergence issues arise from other complexities, such as stress concentrations.

Keywords Finite differences · Elasticity · Plasticity · Fracture · Topology optimization

1 Introduction

Many computational mechanics problems involve analyz-

ing mechanical systems with highly variable geometry. Such

problems require that the mechanical deformations, and

resulting stresses, be resolved subject to a set of complex,

time-varying, and sometimes unknown topologies. Such

examples include, but are not limited to, fracture mechan-

ics, problems involving material growth or removal (such

as dendrite growth), or structural topology optimization. In

all of these, it is essential to accurately solve mechanical

equilibrium equations. Computational mechanics has histor-

B Brandon Runnels

brunnels@uccs.edu

1 Department of Aerospace Engineering, Auburn University,

Auburn, AL, USA

2 Department of Mechanical and Aerospace Engineering,

University of Colorado, Colorado Springs, CO, USA

ically been overwhelmingly dominated by the finite element

method (FEM) due to its ability to conform to arbitrary

geometry through iso-parametric elements. Indeed, FEM

is nearly synonymous with computational elasticity. How-

ever, in the case of variable topology, the key advantage of

FEM—conformal meshing with isoparametric elements—is

less beneficial. This may necessitate costly mid-simulation

remeshing, the use of an explicitly meshed and overlayed

boundary, or the use of excessive refinement in anticipation

of topological change.

The strong form method with finite differences is an

attractive alternative for such problems. Recently, it was

shown by the authors that this method may be coupled to

the block-structured adaptive mesh refinement (BSAMR)

method, along with the geometric multigrid method, to pro-

duce a highly efficient linear elastic solver [1]. The solver

has been applied to numerous small strain [2–4] and finite

deformation [5] mechanics problems. Phase field methods

have also been implemented using this method, albeit with
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problematically slow convergence rates due to limitations of

the method that will be addressed in this work [6]. Many of

the problems of interest are reducible to representative vol-

ume elements (RVE), for which the finite difference method

is ideally suited. We seek to apply this method to problems

in which the geometry may be considered to be variable.

We let the “smooth boundary method” (SBM) refer to the

approach in which a complex geometry is defined within

a simpler computational domain as the support of some

smooth indicator function φ > 0.5. Smoothness requires

that the transition from solid to void is continuous, and

we assume in general that the φ varies smoothly from 0

to 1 over some finite interval. We consider SBM to refer

specifically to the technique of replacing discrete boundary

conditions with equivalent source terms, such that the bound-

ary conditions are recovered exactly in the sharp interface

limit. By thus embedding the complex geometry through a

diffused interface, SBM circumvents the challenges associ-

ated with domain meshing encountered in discrete interface

approaches. The SBM has been used to solve partial differen-

tial equations with general boundary conditions on complex

boundaries and can easily be coupled with diffuse boundary

methods (such as phase field) by evolving the order param-

eters using a thermodynamic equation. Some examples of

SBM applications include the use of phase field methods to

study corrosion in Mg alloys [7], mass flux boundary condi-

tions in fluids [8], and general partial differential equations

[9, 10].

The SBM’s efficiency relies heavily on using BSAMR to

resolve the diffuse boundary. When suitably coupled, SBM

effectively eliminates the need for explicitly defining the

mesh since the interface can be resolved with an appropriate

resolution and the mesh can be updated to track the evolv-

ing interface. The above-mentioned BSAMR strategy has

been widely used for high-performance computational fluid

mechanics problems [11–14] and, to some extent, for solid

mechanics problems [1, 3, 6]. BSAMR stores and evolves

each mesh level independently, evolving finer levels with

smaller time steps to avoid overly restrictive CFL conditions

on coarser levels. The information between levels is com-

municated through averaging (fine level to coarse level) and

ghost cells (coarse level to fine level).

Application of SBM in solid mechanics applications can

lead to semi-definite problems due to the lack of uniqueness

resulting from a mesh-resolved “void” region. This situation

often arises in topology optimization problems where the

simulation domain is an output rather than the input but is

endemic to any implicit boundary method. Without properly

addressing the semi-definiteness of the operator, the result

can be poor (or no) convergence and, worse, an incorrect

solution.

In this work, we present computational techniques to allow

for the efficient solution of semi-definite smooth boundary

problems using the finite difference method with BSAMR.

The paper is structured in the following way. In Sect. 2,

the SBM is formalized for elasticity, and the specific chal-

lenges of solving semidefinite problems are addressed. This

section also describes some of the computational methods

and challenges unique to solving problems of this nature.

In Sect. 3, three representative examples are presented that

demonstrate the model’s effectiveness: (1) plasticity with

variable geometry, (2) phase field fracture mechanics, and

(3) structural topology optimization. Each example is some-

what self-contained, so the disparate applications will find

relevance in their respective communities. We conclude by

highlighting some limitations of the framework in its current

form.

2 Computational methods

In this section, we present the key elements of the SBM

method and practical strategies for its implementation. We

first present the formulation of the equations of linear elas-

ticity with traction boundary conditions with SBM. We then

outline the reflux-free multigrid implementation of the solver

using BSAMR. Next, we emphasize the need for choosing

a cell-based indicator field for the stability of the solver.

Finally, we outline the implementation of material models

as a vector space to efficiently work with the solver.

2.1 Diffuse boundarymethod for linear elasticity

In this section we present the diffuse boundary formulation

of mechanical equilibrium for a linear elastic material. We

consider a body of interest occupying some region � ⊂ R
3,

with a natural boundary ∂� upon which surface tractions

t0( y) y ∈ ∂� are prescribed as boundary conditions. (We

do not consider the diffuse formulation of essential, i.e. dis-

placement, boundary conditions at this time.) In the discrete

setting, the problem is posed as a differential equation with

boundary conditions prescribed at the domain boundary. In

the diffuse setting, we represent boundary effects implicitly.

To construct the diffuse problem, we first replace the explicit

domain � with a continuous function, called an order param-

eter φǫ , that represents �. In the limit as ǫ → 0, the support

of φǫ is identical to the discrete-boundary domain, �; this

is called the sharp interface limit. For ǫ > 0, we define the

diffuse domain and boundary to be, respectively: the sup-

port of φǫ = 1, denoted �ǫ ; the support of ∇φǫ , denoted

∂ǫ�ǫ . We require that φǫ = 0 outside of ∂ǫ�ǫ ∪ �ǫ , and

that ∂ǫ�ǫ = ∂�× (−ǫ/2, ǫ/2), bounding the diffuse region

to the ǫ neighborhood of the discrete boundary. As long as

ǫ << rmin, the smallest radius of curvature of ∂�, we require

that there exist some parameterization of φǫ within the dif-

fuse boudnary by
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Fig. 1 Illustration showing the diffuse boundary construction

approaching the sharp interface limit. The diffuse domain �ǫ is the

support of φǫ = 1, equal to � in the limit. The diffuse boundary ∂ǫ�ǫ

is the ǫ an open set defined in the region where 0 < φǫ < 1, and

vanishes in the limit. It is also defined as the ǫ/2-neighborhood of ∂�.

The shaded region on the left is A × (−ǫ/2, ǫ/2), a subset of ∂ǫ�ǫ

corresponding to an arbitrary subset A of ∂�

φǫ( y + sn) = φ̂(s) y ∈ ∂�, s ∈ (−ǫ/2, ǫ/2) (1)

where n is the normal to the discrete interface. φ̂ is some

Lipschitz function describing the behavior of φ over the dif-

fuse interface, and is generally a regularized step function

over the interval (−ǫ/2, ǫ/2). Its derivative is not defined in

the limit as ǫ → 0, but approaches the Dirac delta distribu-

tion (Fig. 1). With these definitions and restrictions in hand,

it is possible to establish the following theorem, which was

presented in [8]:

Theorem 1 Let φǫ be an idealized order parameter with

length scale ǫ, and let f and g be either scalar or vector-

valued bounded functions, with n · ∇g bounded in ∂ǫ�ǫ .1

Then the following holds:

lim
ǫ→0

∫

A

∫ ǫ/2

−ǫ/2

(

f φǫ +g|∇φǫ |
)

ds d A =

∫

A

g d A ∀A ⊂ ∂�

(2)

We can now present the diffuse interface formulation of

mechanical equilibrium. Recall the usual sharp-interface

equations of momentum conservation in the context of elas-

ticity, with kinematics linearized about some eigenstrain ε0,

are:

C(x)
(

grad u(x) − ε0(x)
)

− σ (x) = 0, x ∈ �

u0( y) − u( y) = 0, y ∈ ∂1� (3a)

div σ (x) − b(x) = 0, x ∈ �

t0( y) − σ ( y)n̂( y) = 0, y ∈ ∂2�. (3b)

Equations (3a) and (3b) are the constitutive and mechanical

equilibrium conditions. Here u(x) is the displacement field,

1 We note that the n · ∇g boundeness restriction is erroneously absent

from the original presentation of the theorem in [8].

C(x) is the fourth order elastic modulus tensor, b(x) is the

body force, u0(x) is the displacement specified at the Dirich-

let boundary ∂1�, t0(x) is the traction specified in the traction

boundary ∂2�, and n̂(x) is the normal vector at any point on

the boundary. We also assume the conventional major and

minor symmetries of C(x) to allow us to directly work with

the displacement u(x). While the Dirichlet boundary condi-

tion is essential to solid mechanics problems, imposing them

on the diffused boundary has limited use cases. Therefore,

we limit our attention to the traction boundary condition. To

move to the diffuse boundary setting, we introduce the diffuse

traction t̂
0

: ∂ǫ�ǫ → R
3,

t̂
0
(x = y + sn) = t0( y). (4)

The diffuse traction is defined everywhere in the diffuse

boundary as the value of the discrete traction at the closest

point on the discrete boundary. (Recall that this is only valid

as long as ǫ is smaller than the smallest radius of curvature of

the discrete boundary; otherwise, the diffuse traction is mul-

tiply defined.) Now, consider the following diffuse-boundary

modification of equation (3b):

(

div σ − b
)

φǫ =
(

t̂
0
− σ n

)

|∇φǫ |. (5)

It is straightforward to show that the interior momentum

equation holds by considering the weak form of the above

equation. Integrate both sides over an arbitrary interior, mea-

surable region V ⊂ �ǫ ,

∫

V

(

div σ − b
)

φǫ dV = 0 ∀ meas. V ⊂ �ǫ . (6)

The right hand side vanishes since |∇φǫ | is zero in �ǫ , by

construction. But since equation (6) holds for all subsets of

the diffuse interior, the integrand itself is zero for all x ∈ �ǫ .

To show recovery of the boundary condition, we once again
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take the weak form of equation (5), this time over an arbitrary

region within the diffuse boundary:

∫

A

∫ ǫ/2

−ǫ/2

(

(

div σ − b
)

φǫ −
(

t̂
0

− σ n
)

|∇φǫ |
)

ds d A = 0 ∀A ⊂ ∂�

(7)

Applying Theorem 1 in the sharp interface limit reduces the

above expression to

∫

A

(

t0 − σ n
)

d A = 0 ∀A ⊂ ∂�, (8)

which shows that the integrand must be true for all y ∈ ∂�

since the above weak form holds for all subsets of ∂�.

This confirms that the traction boundary conditions are

exactly recovered as ǫ → 0 for the diffuse interface for-

mulation in Eq. (5). Finally, rearranging and noting that

n = ∇φǫ/|∇φǫ |., Eq. (5) simplifies to

div
(

φǫσ
)

− φǫ b = t̂
0
|∇φǫ |. (9)

In summary, the boundary conditions associated with the dis-

crete natural boundary ∂� are replaced by an equivalent

source term that mimics the effect of the discrete natu-

ral boundary, exactly recovering its behavior in the sharp

interface limit. The selection of φ can be determined by

construction (for instance, explicitly prescribing an indicator

function based on a predetermined geometry) or by coupling

to a separate set of equations that describe the behavior of φ

(such as phase field). In both cases, care must be taken that

the behavior of φ does not deviate far from the requirements

necessary for the validity of the diffuse boundary method to

hold.

2.2 Reflux-freemultigrid implementation

We implemented equation (9) in an in-house code, Alamo

[1], a finite-difference based multi-level, multi-grid, and

multi-component solver. Alamo uses AMReX libraries for

block-structured adaptive mesh refinement (BSAMR) [11].

BSAMR divides the mesh into levels such that each level

contains cells of the same size. Each level is treated indepen-

dently, and the information between levels is communicated

through restriction, relaxation, and restriction operations

using ghost cells. As a result, BSAMR is highly scalable

and enables massive parallelism across CPU and GPU cores.

BSAMR can be naturally combined with standard multi-

grid methods by treating refined levels as an extension to

the multigrid method’s coarse/fine level sequence. The mesh

refinement and coarsening are triggered and performed at

regular intervals using the Berger–Rigoutsos algorithm [15].

Multigrid methods often require special treatment at

the coarse-fine level interface during restriction operations.

Improper handling of the coarse-fine interface can result in

spurious forces at the interface and overall poor convergence

of the solver. The coarse-fine interface can be handled using

a “reflux” operation [16] where the operator is updated at the

interface to use the information at both levels. However, this

process can be difficult for a complicated operator such as

the one for linear elasticity. An alternate “reflux-free” proce-

dure was proposed by [1] where the levels are padded with

an extra layer of ghost nodes/cells to ensure the translational

symmetry of the restriction operator and that information at

the coarse/fine boundary is updated with the current infor-

mation. This circumvents the need for a special stencil at the

coarse/fine boundary and results in good convergence.

2.3 Node-based and cell-based fields in strong form
multigrid elasticity

The method discussed in Sect. 2.2 works well for elasticity

problems but can behave very poorly unless care is taken to

respect the proper placement of the relevant fields on the grid.

In fluid mechanics, it is often necessary to place some quanti-

ties at nodes, some in cells, and some on cell faces, etc., with

the exact scheme differing between methods [17–20]. On the

other hand, in solid mechanics, values such as displacements

are typically stored at nodes, whereas quantities governing

material response are generally located at quadrature points

within the element. Some solid mechanics methods, such as

optimal transport meshfree [21], smoothed particle hydrody-

namics [22], and the material point method [23–25], though

not strictly finite element, still carefully distinguish between

nodes and material points. The finite volume method has

been used for solid mechanics, though not nearly as exten-

sively as in fluid mechanics, and it is known that a staggered

grid approach is needed to avoid the phenomenon of checker-

boarding [26].

In the present method, which uses a regular cartesian grid,

values may be stored at points, edges, faces, or cells. At first

glance, there is no obvious reason for storing values at one

location over another; indeed, it is possible to develop a solver

in which all values are stored at faces or all values at nodes.

In previous work, nodal locations were chosen for all quanti-

ties of interest [1]. Interestingly, this choice had no previous

negative impact on the solver. However, as we will discuss

here, the location of values is, in fact, quite essential to the

performance of the solver when considering near-singular

problems. Specifically, it is important that displacements be

stored at the nodes, whereas the order parameter must be

stored as a cell-based field. In this section, we provide two

explanations for this: the first, from a practical perspective,

and the second, by considering the geometry of the problem.

Our analysis considers the key aspect of the multigrid

solver as applied to the elasticity problem: smoothing. Multi-

grid methods work primarily through the use of a smoother
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between levels. The choice of smoothing algorithm can

vary, but the preeminent solvers are generally Gauss–Seidel,

Jacobi, or a variant of one of these methods. These methods

are popular due to their ease of implementation, their par-

allel efficiency. For geometric multigrid methods, they are

particularly attractive because they smooth high frequency

error faster than low frequency error (unlike, for instance,

the conjugate gradient method) [27].

Here, we consider the Jacobi method, which for an oper-

ator A is given by

un+1 = D−1(b − (A − D)un), (10)

where un is the solution at iteration n, D = diag(A), and b

is the right hand side. We see that the inverse of the diago-

nal is of central importance: most notably, that if any of the

diagonal elements of D are zero, the corresponding rows of

(b−(A− D)un) must be zero as well. To see the significance

of this, consider the discretized elastic operator for a constant

modulus C in one dimension, in which all values are stored

at nodes:

div
(

φǫ
C grad u

)

i
= C

(

φǫ
i+1 − φǫ

i−1

2�x

) (

ui+1 − ui−1

2�x

)

+ Cφǫ
i

(

ui+1 − 2ui + ui−1

�x2

)

(11)

The diagonal of the operator, then, is nothing other than the

coefficient of the ui term, that is,

diag(div[φǫC grad])i = −2
Cφǫ

i

�x2
, (12)

and so the corresponding Jacobi update is thus given by

un+1
i = −2

�x2

Cφǫ
i

{

bi −
[

C
(φǫ

i+1 − φǫ
i−1

2�x

)(un
i+1 − un

i−1

2�x

)

+ Cφǫ
i

(un
i+1 + un

i−1

�x2

)]

}

(13)

= −2�x2

{

bi

φǫ
i C

−
[ 1

φǫ
i

(φǫ
i+1 − φǫ

i−1

2�x

)(un
i+1 − un

i−1

2�x

)

+
(un

i+1 + un
i−1

�x2

)]

}

(14)

By inspection, it is clear that any nonzero body force will

produce divergent behavior if applied where φǫ
i = 0; this is

natural since such a problem would be ill-defined. However,

an inspection of the next term shows a second vulnerability:

a point at which φǫ
i = 0 may still induce instability depend-

ing on the values at the adjacent nodes. Therefore this can

(and does) induce divergence at the nodes where the order

parameter is zero, but the solution is well-defined: i.e., at the

boundaries of the support of φǫ .

On the other hand, consider the corresponding Jacobi

update if the field φǫ is stored in cells rather than at nodes,

where fractional indices are used to denote locations of cells:

un+1
i = −2�x2

{

2bi

(φǫ
i+1/2 + φǫ

i−1/2)C

−
[ 2

(φǫ
i+1/2 + φǫ

i−1/2)

(φǫ
i+1/2 − φǫ

i−1/2

�x

)

×
(un

i+1 − un
i−1

2�x

)

+
(un

i+1 + un
i−1

�x2

)]

}

. (15)

One can see by inspecting the second term (assuming, again,

that the body force is responsibly applied) that the problem

of instability is eliminated. Divergent behavior can now only

occur when φǫ is zero at both i + 1/2 and i − 1/2; but

if this happens, then the difference between the two values

would be zero as well. One may apply this same exercise

to this problem with non-uniform elastic modulus, or to the

problem in 2D or 3D, with the same result. This underscores

the importance of a staggered grid approach that, though

commonly used in other finite difference methods, was absent

from prior finite difference implementations of the SBM on

BSAMR grids.

One may take this analysis several steps further by con-

sidering the geometric significance of the solution and φǫ

fields. Within the past couple of decades, the tools of exte-

rior calculus have been applied to the problem of linear

elasticity [28–30], which identifies displacement fields as

vector-valued 1-forms, body forces as vector-valued 3-forms,

etc. This has been extended to the field of computational

mechanics through the emerging sub-discipline of discrete

differential geometry (DDG), which allows the explicit real-

ization of exterior calculus constructs in the context of

discrete mesh elements [31–33]. While a thorough treatment

of DDG in the context of mechanics is outside the scope

of the paper, we outline the underlying concept. The tradi-

tional fields (displacements, stress, etc) can be replaced by

the DDG construct of forms, where an n-form is a field that

can be integrated over an n-dimensional manifold. That is,

n-forms contain a notion of geometry that is absent from

raw fields, and which correspond to the proper integration

domain. For instance, stress are integrated over surfaces,

which are two-dimensional manifolds; therefore, stress is

a 2-form; body forces are integrated over volumes, which

are three-dimensional manifolds; therefore, body forces are

3-forms; displacements are evaluated at points, which are

zero-dimensional manifolds; therefore, displacements are 0-

forms; and so on. In the present work, the order parameter φ

is integrated over a voluem; therefore, φ is a 3-form. In the

discrete setting on a regular grid, 0-forms may be identified

as nodal fields, 1-forms as edge fields, 2-forms as face fields,

and 3-forms as cell fields. (The study of DDG has produced
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analagous interpretations for non-regular and unstructured

meshes as well.) Thus, we see that by representing dis-

placements using a node-based grid (0-forms) and φ using

a cell-based grid (3-forms), we are preserving the geometric

structure of the these fields. For a more thorough discussion

of the geometric interpretation of classical continuum the-

ory, we refer the reader to the above references and to the

excellent book by Frenkel [34].

2.4 Material model vector space

One of the key advantages of the BSAMR approach is its abil-

ity to adapt the mesh rapidly. The block-structured multilevel

data structures afford rapid regridding in a parallel-efficient

manner. Regridding, and inter-level communication, relies

on the ability to rapidly transfer information between AMR

(or multigrid) levels, usually in the form of interpolation

or prolongation. When working with primitive fields such

as velocity, density, pressure, etc., interpolations and pro-

longations are easy to compute. However, such operations

are not always obvious in the context of material model-

ing. Materials often exhibit highly anisotropic behavior, with

material response often depending on numerous parameters

and time-evolving internal variables. In order for BSAMR

to function correctly with such models as these, it is neces-

sary to address the constraints and requirements needed for

material modeling. Moreover, as it is a commonplace in any

solid mechanics code to allow for modular material mod-

els, an ad hoc implementation is insufficient. Therefore, we

prescribe the minimum requirements needed for a versatile

implementation of material models in a BSAMR context.

The aforementioned requirements for BSAMR data struc-

tures are equivalent to those for the mathematical structure

of a vector space. Specifically, BSAMR requires the consis-

tency of solid models between AMR and multigrid levels,

which is achieved through interpolation and restriction oper-

ations, which require the definition of addition and scalar

multiplication of solid model objects. Therefore we impose

the requirement on material models that they must satisfy

the properties of a vector space. Let M denote the vector

space corresponding to a certain material model. The salient

properties are: (1) the existence of a “vector addition” opera-

tion, typically denoted +, such that a + b ∈ M ∀a, b ∈ M;

and (2) the existence of a “scalar multiplication” operation

denoted by “*” or concatenation, such that α ∗ a = αa ∈ M

∀α ∈ R,∀a ∈ M, and (3) the existence of an identity

element 0 ∈ M such that 0 + a = a ∀a ∈ M. Other

requirements include associativity and commutativity of +,

the inverse of +, compatibility of ∗ and identity under ∗, and

distributivity of ∗; generally, these are not troublesome to

enforce, and they furnish a valuable framework for unit test-

ing at the implementation phase. Properties 1–3 must hold not

only for the internal variables stored in each material model

but for their functions as well: specifically, the zeroth, first,

and second derivatives of energy (W, DW, DDW), as well as

any functions defining the evolution of internal variables. For

instance, (a + b).DW (")
!
= a.DW (ε) + b.DW (ε), where

ε is the local strain tensor. The structure also allows for the

inverse of models to exist, which allows for derivatives of

models to be calculated, e.g. (da/dx).W (ε). For instance,

the calculation of the gradient in the x1 direction of a model

field a(x) using finite difference would be

( da

dx1

)

.DW (ε) ≈
( a(x1 + 1

2 �x1, x2, x3) − a(x1 − 1
2 �x1, x2, x3)

�x1

)

.

DW (ε), (16)

which makes use of the full agebraic structure of a: namely,

algebraic operations of scalar multiplication and addition, as

well as inversion.

The model −a is the inverse of a with negative (and con-

sequently unphysical) material properties. We emphasize the

importance of placing checks in place to ensure that unphysi-

cal models are not accidentally used to calculate real physical

properties.

The vector space material model requirement has imme-

diate implications on the implementation of material models.

Consider the simple case of linear elastic isotropic, which is

generally parameterized by two properties, often chosen as

Young’s modulus E and Poisson’s ratio ν. One can construct

a material model based on these two properties (E, ν) along

with the addition operation (E1, ν1) + (E2, ν2) = (E1 +

E2, ν1 + ν2), and scalar multiplication α(E, ν) = (αE, αν).

However, such a model violates the vector space behavior

of W , DW , and DDW , since the energy, stress, and strain

depend on the ratio ν/E rather than bilinearly on ν and E

separately. Thus, one can instead store the Lamé constants

λ,µ, on which the dependence of W , DW , DDW is bilinear.

Another salient example is the implementation of cubic

elasticity, which requires the storage of rotational informa-

tion along with elastic moduli C11, C12, C44. One may also

include an eigenstrain ε0, reflecting plastic evolution, ther-

mal expansion, etc. Euler angles are sometimes used to store

the local rotation but are clearly a poor choice here, as

Euler angles do not form a vector space. Instead, we used

quaternions to store rotation information, as they possess an

algebraic structure that is relatively easy to implement. One

complication is that quaternions must be normalized to obtain

rotation information, meaning that the W , DW , DDW func-

tions for the zero element are ill-defined. However, in

practice, it is generally never the case that the zero element

would be called upon to return those values, and if it did, it

would always return zero anyway by necessity. The remain-

ing values in the model readily admit an algebraic structure

and are easily implemented.
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Operator overloading (that is, the definition of functions

using the syntax of operators such as +, −, +=, etc.) was used

to provide both unary and binary vector addition and scalar

multiplication operations, and unit tests can enforce asso-

ciativity, commutativity, etc. We used forced code inlining

(compile-time restructuring to place called code “inline” with

the calling code) to ensure that there is no function call over-

head, and C preprocessor macros can be used to implement all

operators with minimal boilerplate code required automati-

cally. We required functions such asZero to furnish the zero

element, with template metaprogramming used to enforce

that all models comply with the vector space requirement.

We refer the interested reader to [35–37] for further discus-

sion of relevant high performance computational techniques.

3 Examples

In this section, we demonstrate the performance and accuracy

of the solver and the SBM implementation within Alamo

using problems within solid mechanics.

3.1 Plastic deformation due to spherical void

As a first step, we solved a standard canonical problem to val-

idate the accuracy of the near singular solver. We considered

the two-dimensional problem of a large linear elastic plate

with a circular hole subjected to uniaxial stress. The stress

fields around the hole are well-defined and can be analytically

computed using the Airy stress function approach [38]. We

chose a two-dimensional domain of x ∈ [−16, 16]×[16, 16]

and introduced a circular hole of radius 1.0 at the center. We

used a range of regularization length scales 0.01, 0.05, 0.1,

0.5, and 1.0. We subject the domain to a uniaxial stress condi-

tion by fixing the left edge and applying a displacement in the

x direction on the right edge. Figure 2a (top left) shows the φǫ

field with a regularization length scale of 0.01 along with the

refined grid. The corresponding stress distributions σxx , σxy ,

and σyy are shown in Fig. 2a in the top right, bottom left and

bottom left respectively. We present the comparison of the

numerical solution with the analytical solution at y = 1 line

(tangent to the hole) as a function of the regularization scale

in Fig. 2b–d. We note that the solution predicted by the near-

singular solver converges to the analytical solution [38] as

the regularization length scale decreases. The normalized L2

error (i.e. norm of the difference divided by the norm of the

reference) indicates convergence with respect to ε (Fig. 2e).

The increased error for the smallest 1–2 values of ε indicates

an error from the discretization since a constant mesh reso-

lution (that is, the same number of AMR levels) was used for

each case for consistency.

Having validated the elastic solver, we demonstrate the

effectiveness of the method by considering the plastic defor-

mation of a cuboidal object with an embedded spherical void

subject to uniaxial loading. We represented the material using

the order parameter φǫ which takes the value 0 within the void

and 1 outside, with a length scale ǫ. The stress in the SBM

equation (9) is expressed as σ = C
(

grad u − ε p

)

, where

ε p is the plastic strain. We used a staggered approach to

solve the elastic equilibrium equation (9) and plastic evo-

lution, and modeled the evolution of plastic strain ε p using

the J2-plasticity model for a linear elastic isotropic mate-

rial with Lamé constants λ and µ. We chose a J2 plastic

strength model with isotropic hardening. The yield strength

for isotropic hardening is given by

K (α) = σY + θ H̄α, θ ∈ [0, 1] (17)

where σY is the flow stress, α is the equivalent plastic strain,

H̄ is the hardening modulus and θ is a parameter gov-

erning the hardening slope. We used the internal variables

q = {α, ε p,β} for the plasticity model, where β is the center

of the von-Mises yield surface in the stress deviator space.

Following are the yield condition flow rule and hardening

rule for the J2 plasticity model.

η := dev[σ ] − β, tr β := 0, f (σ , q) = ||η|| −

√

2

3
K (α),

ε̇ p = γ
η

||η||
, α̇ = γ

√

2

3
, β̇ = γ

2

3
(1 − θ)H̄

η

||η||
(18)

We solved the above equations using the following radial

return algorithm described in detail in [39]. Given a stress

and strain state at time tn as σ n and εn , and the strain εn+1

at time tn+1, the algorithm involves following steps.
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Algorithm 1 J2 plasticity model update

1: en ← dev εn , en+1 ← dev εn+1, sn ← dev σ n , ⊲ Compute deviatoric strain and stress

2: strial
n+1 ← sn + 2µ(en+1 − en), ηtrial

n+1 ← strial
n+1 − ηn ⊲ Compute trial states

3: nn+1 ← ηtrial
n+1/|η

trial
n+1| ⊲ Compute new yield surface normal

4: Solve −

√

2
3

K

(

αn +

√

2
3
�γ

)

+ ||ηtr ial
n+1 || = 0 for �γ ⊲ Consistency condition

5: ε
p
n+1 = ε

p
n + �γ nn+1

αn+1 = αn +

√

2
3
�γ

β
p
n+1 = β

p
n +

√

2
3

θ H̄(αn+1 − αn)nn+1 ⊲ Update internal variables

A 3D domain x = (x1, x2, x3) ∈ [−16, 16]×[−16, 16]×

[−16, 16] (arbitrary units) with an ellipsoidal void centered

at the origin and radii r = (rx , ry, rz) was used. The order

parameter φ was set to 1 outside the inclusion and 0 inside

with a length scale ǫ = 0.4. We chose the material parameters

as Young’s modulus E = 210 GPa, Poisson’s ratio ν = 0.3,

yield strength σY = 200 MPa, and hardening parameters

H̄ = 50 GPa and θ = 1. We performed a tension test with

a fixed x1 = −16 face and a cyclic displacement applied in

the x1 direction on the x1 = 16 face. We chose the applied

displacements in the increments of 0.004 going from total

applied displacement from 0.0 to 0.1, then from 0.1 to −0.1,

and finally from − 0.1 to 0.0.

Figure 3 shows the stress–strain curves obtained for

six different ellipsoid shapes and sizes. These are r1 =

(2.0, 0.5, 0.5), r2 = (2.0, 7.07, 7.07), r3 = (7.5, 4.08, 4.08),

r4 = (10, 10, 10), r5 = (2.5, 14.14, 14.14), and r6 =

(14.14, 8.16, 8.16). We calculated the strains using the

applied displacement and stresses from the total traction on

the x = 16 face where the displacement is applied. As

expected, the stress–strain curve for each case exhibits the

classic hysteresis loop. As the size and aspect ratio of the void

change, the plastic evolution within the domain changes lead-

ing to different stress–strain curves. The total plastic strain is

higher for larger void with higher aspect ratios aligned with

the loading directions, making the stress–strain curve flatter.

Figure 4 shows the magnitude of plastic strain deviator at the

applied displacement of 0.08 during the unloading cycle.

We performed these simulations on the UCCS INCLINE

cluster using 128 cores on a single node. We chose a base

mesh of 32 × 32 × 32 with 5 levels of refinement. For the

six cases presented, the solver took 4 minutes to 8 hours,

depending on the size of the inclusion and the size of the

portion of the domain refined with high resolution. The solver

converged linearly for all cases despite large regions of voids

within the domain. Therefore the solver performed well in

predicting the stress fields and plastic strains due to voids.

3.2 Brittle fracture

Fracture is one of the most prominent causes of failure for

engineering structures. As such computational modeling of

crack nucleation and propagation in engineering materials

is critical for evaluating their performance. Computational

methods for modeling fracture can be broadly classified

as either discrete boundary or diffused boundary methods.

Among the discrete boundary methods, there are two main

approaches: the eXtended Finite Element Method (XFEM)

[40–42] and the Scaled Boundary Finite Element Method

(SBFEM) [43–46]. XFEM involves enriching classical finite

elements with specialty elements designed specifically for

capturing singularities at crack tips. On the other hand,

SBFEM uses a dimensional reduction technique to reduce

the problem domain to the boundary of the solid and scales

the solution to the crack tip analytically. A detailed review

of discrete methods can be found here [47, 48]. While these

methods have been widely successful, they suffer from lim-

itations when explicitly tracking crack fronts for complex

crack patterns.

Diffuse boundary methods, or “phase field methods” use

a smoothly varying scalar damage field c(x, t) to diffuse

the sharp crack over a length scale ξ [49]. The differen-

tial equation governing the evolution of c(x, t) is based on

a rigorous variational approach to fracture which uses an

energy functional regularized over the length scale ξ [50].

The variational method has been shown to be consistent with

linear elastic fracture mechanics under quasi-static loading

[50] for brittle materials. Recently, phase field fracture meth-

ods have been extended to study heterogeneous materials [6,

51, 52], anisotropic materials [53, 54], functionally graded

materials [55–57], dynamic fracture [58–60], ductile fracture

[61–63], and fatigue loading [64]. Phase field fracture has

also been used to study interfacial strength in composites by

incorporating cohesive zone elements into the formulation

[65–67]. Modifications to the traditional formulation have

also been studied with different damage degradation func-

tions and damage energy penalty terms [68, 69].

While phase field methods have gained wide adoption,

they suffer from high computational costs due to typically

small values of ξ . One way to circumvent this challenge is

to use spectral methods, typically the Fast Fourier Trans-

form (FFT), for memory efficiency [70, 71]. Another more

widely used approach is to couple the phase field fracture

implementation to AMR with higher resolutions near the
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(a) Plot of φ (top left) and stress fields σxx (top right), σyy

(bottom right), σxy (bottom left) for uniaxial tension in the x
direction. (b) σxx

(c) σyy (d) σxy

(e) L2 error (as compared to the exact solution) with respect
to diffuse boundary thickness ε.

Fig. 2 Verification of the method by comparison to the exact solution

for a plate with a hole under uniaxial tension. Convergence with decreas-

ing ε (corresponding to increasing decreasing line opacity), compared

to the exact solution (dashed lines), along y = R = 1, which is the

tangent to the hole (dashed white line)

crack tip. Among the AMR approaches, the discontinuous

Galerkin approach has been used for single-level AMR [72]

and the finite cell method together with h and p refinement

has been used to achieve multiple levels of refinement on a

regular grid [73]. Other attempts include hybridizing phase

field method with XFEM [74].

In this work, we implemented a hybrid model of phase

field brittle fracture to study crack propagation in Mode-

I loading. We use a regularized field c(x, t) with values 1

outside the crack and 0 inside the crack and length scale

parameter ξ . The phase field fracture energy functional is

given by,

L =

∫

�
(g(c) + η) W0(ε(u))dV +

∫

�
Gc

[

w(c)

4ξ
+ ξ |∇c|2

]

dV ,

(19)

where W0 is the elastic strain energy of the material without

a crack field, Gc is the fracture energy, and η = 10−4 chosen

for computational stability. The interpolation function g(c)

takes the value 0 inside the crack and 1 outside. The interpo-

lation function w(c) takes the value 1 inside the crack and 0

outside. In this work, we choose a quartic interpolation func-

tion [69] with g(c) = 4c3 − 3c4 and w(c) = 1 − g(c). The

crack and displacement fields are evolved using the varia-

tional derivative of L.
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Fig. 3 Stress–strain hysteresis

results for a variety of void

shapes and sizes
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Fig. 4 Isocontours showing the magnitude of the plastic strain deviator at t = 0.3. From top right to bottom left, the void radii are r1 = (2.0, 0.5, 0.5),

r2 = (2.0, 7.07, 7.07), r3 = (7.5, 4.08, 4.08), r4 = (10, 10, 10), r5 = (2.5, 14.14, 14.14), and r6 = (14.14, 8.16, 8.16)

We chose a linear elastic isotropic material with Lamé

constants λ and µ with the strain energy density and stress

as

W0 =
1

2
λ(tr ε)2 + µ tr

(

ε2
)

, σ =
∂W0

∂ε
(20)

To account for the tension-compression asymmetry, we

assume an additive decomposition of the strain energy W0 =

W +
0 + W −

0 which uses the spectral decomposition of the

strain tensor ε =
∑d

i=1 εi v̂i ⊗ v̂i . The strain energies are

given by

W ±
0 =

1

2
λ(tr ε±)2 + µ tr

(

ε2
±

)

, ε± =

d
∑

i=1

(εi )± v̂i ⊗ v̂i ,

(21)

and the energy functional is updated to

L =

∫

�

[

(g(c) + η) W+
0 + W−

0

]

dV +

∫

�
Gc

[

w(c)

4ξ
+ ξ |∇c|2

]

dV .

(22)
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We note that the above strain-based decomposition of energy

does not always ensure that the compressive states do not con-

tribute to crack growth [75, 76] and a stress based approach

has been used recently to circumvent this issue [77]. The

equations for the hybrid formulation of phase-field fracture

are obtained by taking the variational derivative of the energy

functional above.

div σ = 0, σ = (g(c) + η)
∂W0

∂ε
,

0 = g′(c)H+ − Gc

[

2ξ�c +
w′(c)

2ξ

]

,

where H
+ := max

τ∈[0,t]
W +

0 (ε(x, t))

∀x : W +
0 < W −

0 ⇒ c(x) = 1 (23)

We replace Eq. (23b) with a Ginzburg–Landau type evolution

law by introducing crack mobility M as

ċ = −M

[

g′(c)H+ − Gc

(

2ξ�c +
w′(c)

2ξ

)]

. (24)

Using Eqs. (23a), (23c), and (24), we solve a classic Mode-

I fracture propagation problem using a staggered scheme

within Alamo. The order parameter φǫ from the SBM equa-

tion (9) corresponds to g(c) in the phase fracture equations.

At each time step, as the crack field c evolves, we update

the order parameter φǫ for the next iteration of the staggered

solver.

Figure 5 (right) shows snapshots of mode-I crack propa-

gation over a domain of x ∈ [−0.01, 0.01] × [−0.01, 0.01].

We chose a material with λ = 121.15 GPa, µ = 80.77 GPa,

ξ = 1.0 × 10−5, Gc = 2700 Pa, and M = 1.0 × 10−5. We

initialized a notch of length 1.5 × 10−4 at the center of the

left edge. We then fixed the bottom boundary, and apply a

fixed y displacement of 1.5×10−5 on the top edge. We used

six levels of refinement on a base grid of 64×64 to appropri-

ately capture the interface. The refinement criteria was based

on the gradient of the crack field as |∇c|∇x | > 0.01. We

performed mesh-regridding every 10 time-steps, with a sin-

gle time-step being �t = 10−4. As expected, we obtain a

steadily propagating crack in the x direction with an adap-

tively refining grid following the crack field.

We ran this simulation on Auburn University’s Easley

computing cluster using 32 cores on a single node which

took a total of 4.5 h. We note that a major portion of the sim-

ulation time was used to perform Ginzberg Landau evolution

of the crack field (Eq. 24). Figure 5 (left) shows the number

of multigrid iterations needed by the near-singular solver to

solve Eq. (23a). The solver required 108 iterations for the

first elastic solve. Since the solver uses the previous solution

as a starting point, the number of iterations sharply declined

immediately after the first elastic solve. We note a steady

increase in required iterations as the crack progresses fol-

lowed by a peak and slow decline. We attribute this trend to

the changing nature of the mesh as the crack propagates and

the fraction of the near-singular domain. Overall the solver

never took more than 160 iterations throughout the entire

simulation.

We further illustrate the performance of the near-singular

solver by studying crack nucleation and propagation due to

stress concentration in an L-shaped domain. We initialized

the domain � := x ∈ [−0.01, 0.01] × [−0.01, 0.01] using

a smooth differentiable function with length scale 4 × 10−5

that takes value 0 in �1 := x ∈ [0, 0.01] × [0, 0.01] and 1

in �\�1. We fixed the bottom edge and applied a constant

displacement of 1.5×10−5 on the top edge in the y direction.

Figure 6 (right) shows the propagation of crack along with

Von-Mises stress distribution in the domain. As expected,

the crack nucleated at the corner x = (0, 0) with the highest

stress concentration and propagated upwards towards the top

free surface. This is confirmed by the Fig. 6 (left) where we

plot the force (in non-dimensional units) on the top edge. We

observe a linear decline in the force as the crack propagates,

indicating the weakening of the material. Eventually a sec-

ondary crack nucleates at the top left corner, which coalesces

with the primary crack causing the final failure of the mate-

rial. This is indicated by a sharp decline in measured traction

and the snapshot of crack at t = 3.2.

We performed this simulation on the UCCS INCLINE

high-performance computing cluster using 128 cores on a

single node. The simulation took a total of 6.5 h most of it,

once again, was the Ginzberg Landau evolution of the crack

field. We observe an increase in solver iterations after an ini-

tial decline. The maximum number of iterations required was

500, while the smallest was 48. Once again, we attribute this

pattern to the evolving crack field and near-complete failure

of the material. Overall, we observed results as expected and

the solver performed well even near complete failure.

3.3 Structural topology optimization

Topology optimization refers to the computational method

of determining the geometry of a material or set of mate-

rials that produce the optimal result subject to constraints.

Topology optimization generally implies the minimization

over a very high dimensional space, the space of all admis-

sible geometries. Topology optimization has been applied

to myriad fields of study, ranging from battery design [78]

to fluid–structure interaction [79]. Structural topology opti-

mization refers specifically to the problem of designing

load-bearing structures, subject to constraints typically on

the amount of material allowed in a certain volume, that

minimizes compliance and maximizes the stiffness of the

structure. Topology optimization has existed as a popular

field of study for more than thirty years, stemming from ideas
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Fig. 5 Phase field fracture—Canonical Mode I loading. (Left) Perfor-

mance of the MLMG solver during Mode I crack showing the number

of MLMG iterations required during simulation time (indicated by posi-

tion on x axis and by color). (Right) Snapshots showing the phase field

evolution at indicated times (t = 0, 1, 3, 5, 7, 9 indicated by black cir-

cles) on the performance plot

Fig. 6 Phase field fracture—Crack nucleated by stress concentration.

(Left) Performance of the MLMG solver along with the measured

applied traction due to the imposed displacement as a function of

simulation time (indicated by position on x axis and by color in the

iteration plot). (Right) Snapshots of the stress state in time (t =

0, 0.8, 1.6, 2.4, 3.2, 4.0) as the crack propagates. The region where

ψ < 0.1 is colored white

originally proposed more than 150 years ago [80]; today,

topology optimization is an entire sub-discipline in its own

right. Topology optimization methods have even found their

way into some commercial codes and consequently experi-

enced accelerating usage, partly due to the recent interest in

additive manufacturing.

There are a number of prevailing methods for solving

structural topology optimization problems. Common to all

structural topology optimization methods is (i) the need to

solve the stress equilibrium problem, and (ii) the ability

to resolve arbitrary geometry, without a priori knowledge,

with resolution sufficient to resolve lengthscales of inter-

est, and without excessive computational cost. Following

the seminal work by Bendsoe [81, 82], other methods have

included shape derivatives [83], the level set method [84–86],

and evolutionary methods [87] as techniques for solving the

optimization problem. Recently surging interest in machine

learning has led to artificial intelligence-based newcomers,

such as generative adversarial networks, that are not necessar-

ily based in physics but are nonetheless capable of generating

optimal or near-optimal structures very quickly [88–90]. A

full review of structural topological optimization is well out-

side this work’s scope, so we refer the reader to [91, 92] for

a more comprehensive overview.

The phase field method is yet another option for solv-

ing the structural topology optimization problem. It is, in

some sense, a natural choice, as the phase field method is

used specifically for problems involving variable topology.

Phase field was applied to topology optimization by [93],

where the free energy functional contains the elastic strain
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energy for the given configuration. Volumetric constraints

can be applied by using a conservative Cahn–Hilliard equa-

tion that preserves volume [94], or by a constrained gradient

descent method [95, 96]. Jeong et al. [97] implemented vol-

ume constraints, as well as additional design constraints,

using augmented Lagrange multipliers. A limitation of cur-

rent phase field methods is the need for high resolution across

the diffuse boundary to prevent mesh dependence. Here,

adaptive mesh refinement is needed; while AMR has been

applied to phase field topology optimization [98, 99], the

application has been limited.

The finite element method is used nearly universally in

topology optimization. However, the smoothed boundary

method for solving near-singular problems presented in this

work is ideally suited for solving phase field topology opti-

mization problems. The method’s ability to rapidly regrid,

and efficiently solve the near-singular mechanical equilib-

rium equation, ideally suit it for this application. In this

section, we present results for a basic phase field topology

optimization problem.

We use η as the order parameter to represent the topology

over a domain �. Next, we define the free energy in terms

of η (where square brackets implicitly indicate a functional

over the value and its derivatives) to be:

W [η] =

∫

�

(

αη2(1 − η)2 +
β

2
|∇η|2)

)

dx

+ inf
u

[

1

2

∫

�

∇u · ((η + ζ )2
C)∇u dx

−

∫

∂2�

u · t0 dx

]

, (25)

subject to the constraint

∫

�

η dx = V0 (26)

where α and β are numerical parameters controlling segre-

gation and boundary energy, C is the fourth order elasticity

tensor, t0 is prescribed surface traction, and V0 is the allow-

able volume of material. (We note that α ∼ 1
ǫ
, β ∼ ǫ where ǫ

controls the boundary width. We retained α and β for simplic-

ity.) As discussed above, the volume requirement induces a

constraint on the optimization problem. We adopt a straight-

forward regularization, allowing the optimum to be found by

a modified version of the Allen-Cahn equation:

∂η

∂t
= −L

( δ

δη
W + λ(t)

(

∫

�

η dx − V0

))

(27)

where L is a mobility parameter and ∂/∂η is the variational

derivative. The function λ(t) is a Lagrange multiplier that

enforces the constraint in Eq. (26). In general, we let λ(t)

tend towards infinity as t → ∞, to allow the constraint

to be approached at a gradual rate. In problems with mul-

tiple optima, the form for λ(t) may determine which local

minimum is found. Each evaluation of Eq. (27) requires the

evaluation of the elastic minimization problem in Eq. (25),

which is solved using the proposed method. As in all exam-

ples, η is a cell-centered field while the displacement is

node-centered. Node-to-cell averages are computed for each

iteration.

We considered the classical problem of a load supported

by a cantilevered structure. We selected dimensionless val-

ues for all quantities. For the two-dimensional results, we

chose the domain to be 1 in height, and ranging from 1 to

4 in length. We used base-level grids of 32 × 32, 64 × 32,

and 128 × 32 corresponding to the different aspect ratios.

We used the powers of two for all grid dimensions, at the

cost of some non-square unit cells, to optimize the multigrid

solver’s performance. We used a total of three AMR levels,

with a refinement criterion |∇η||�x| ≥ 0.05. We used a less

restrictive refinement criterion for the strain, ε, although it

did not contribute significantly to the results. We performed

mesh regridding at each phase field iteration step.

For the cases considered here, we constrained the vol-

ume to 25% of the domain volume. We chose the phase field

parameters as α = 200, β = 0.01, λ = 400.0. We used an

isotropic material model with E = 1480, and ν = 0.22. We

applied a point load of magnitude − 0.1 per unit length at

the center of the right face over a region 0.01 in height. We

specified Neumann conditions for the order parameter, and

it is possible to see slight artifacts at the edges of the domain

that result from this condition. We chose the regularization

parameter ζ to be 0.01. While we considered smaller values,

they did not affect the performance of the solver. However,

they did affect the nucleation behavior of the phase field

method, causing spurious material segments to be generated

and eventually resulting in some instability that caused the

solution to diverge. Therefore, we attribute this to limitations

of the phase field model and leave further optimization of the

model to future work.

The algorithm’s results were generally as expected for

models of this type (Fig. 7). For the 1 × 1 case, the result is a

fairly simple triangular brace structure. Varying the volume

fraction and boundary width terms generally did not produce

a substantial change. Increasing the domain to 1.5 × 1 pro-

duced a truss-like structure that is generally in line with the

canonical result for this standard problem. Increasing again

to 2 × 1 produced an irregular, asymmetric structure, likely

due to the inaccessibility of an optimal symmetric structure

for that aspect ratio. Asymmetries were common in this work,

especially for cases with higher boundary penalization terms.

Since we did not initialize the problem asymmetric perturba-

tions, any deviation generally stemmed from perturbations

induced by the regridding algorithm. For the 2.5 × 1 case,

123



Computational Mechanics

Fig. 7 Topology optimization results for point load supported by a cantilever, wtih 25% fill and increasing aspect ratio

(a)

t = 1.0 t = 4.7 t = 6.5

t = 7.6 t = 10.9 t = 25.9

(b)

Fig. 8 Progression of the energy and the corresponding performance

of the elastic solver during topology optimization. a Contributions of

chemical potential, boundary energy, and elastic energy to the objec-

tive function. Number of solver iterations required are indicated by the

position along the x axis and by color. b Snapshots corresponding to

the black dots in a

Fig. 9 Three dimensional topology optimization results for a cantilever

load. Contours correspond to increments of �η = 0.1, snapshots are

shown every 10 timesteps. The full simulation took 4 h to run on 128

processors; the approximate result was reached after about 1 h of com-

puting time. Two levels of refinement are used for a total of 3 BSAMR

levels
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(a) Mode I crack growth (b) Stress-concentration fracture

(c) Topology optimization

Fig. 10 Convergence of the linear elastic solver for mode I fracture,

stress-concentration fracture, and topology optimization. In each plot,

each line represents the residual versus iteration number for a single

elastic solve. The colors of the lines correspond to the time at which

the solve occurred in the larger simulation, as well as the color in the

corresponding convergence plots. The highlighted lines (with markers)

correspond to the specific simulation points as highlighted in Figs. 5,

6, and 8

the resulting structure is similar to the 1.5 × 1 case except

with a secondary truss structure in addition to the first. The

top and bottom support beams also decrease in width so as to

prioritize support near the wall where the bending moment

is the highest. As the domain continues to increase in length,

the double support structure is elongated but does not gener-

ate the third structure. This is due to the width of the diffuse

interface, as the thickness of the third support structure would

be thinner than the diffuseness of the boundary. Therefore, it

is not possible to nucleate the third structure. We emphasize

that we did not account for buckling in this model. The slen-

derness of the beams would, in reality, result in buckling that

renders the structure unstable. While it is possible to modify

the model to avoid this effect by differentiating between ten-

sion and compression, it is outside the scope of the present

work.

Of particular interest is the performance of the solver dur-

ing the solution of the phase field topology optimization

problem. We present the history of the design evolution for a

representative structure in Fig. 8a. The colored regions repre-

sent contributions of the energy functional corresponding to

the chemical potential, boundary energy, and elastic energy.

(We note that the regions are stacked and are plotted on a log

scale in the x and y axes.) The initial iterations are dominated

by the chemical potential, which drives the segregation and,

as a result, a sharp increase in the elastic energy. Eventu-

ally, support structures are spontaneously nucleated, rapidly

relieving the elastic stress and moving the solution toward

its equilibrium state. We superimpose the performance of

the multigrid solver (gray points) and plot it with respect

to the right axes, also on a log scale. In general, the solver

always converged linearly within a couple hundred iterations

and generally no more than 400. (See 1 for more details on
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solver convergence.) We notice a decrease in the solver’s

performance when topological changes occurred, which can

be connected to the presence of problematic “islands” and

“peninsulas” in the solution. This can be seen by observing

the design evolution (Fig. 8b) at the indicated points (black

circles) on the performance curve.

All of the simulations took less than an hour to complete

on a single node with 32 cores. We used the UCCS INCLINE

cluster to perform the simulations, but only due to the large

number of simulations that were considered. We note that all

the 2D results can be quickly reproduced on a desktop com-

puter in a matter of minutes to hours (depending on domain

size and computing power). We emphasize that the objective

of this work is not to compete with commercially available

topology optimization codes, but to demonstrate the verstil-

ity of the method and its ability to easily adapt to a diverse

range of problems..

Finally, we tested the method in three dimensions (Fig. 9).

We chose a configuration that was generally similar to the

2D case except for the following differences. We chose the

domain as 1.8 × 1.0 × 1.0, with a base grid of 64 × 32 ×

32. We used a larger value of β = 0.1. We applied the same

point load at the right end, except that it was applied at the

center over an area of 0.1 × 0.1. The figure shows the evo-

lution of η during the solution, with isosurfaces plotted at

increments of �η = 0.1. We ran the simulation on a single

node (128 processors) of the INCLINE cluster for four hours,

although we observed that the result converged well before

the conclusion of the run time (about an hour). As with the

two-dimensional case, the result is a truss-like structure with

a central support mechanism. The result differs from the 2D

case in that the central truss is replaced with a webbed struc-

ture. (Once again, we note that our model did not account for

buckling, which would significantly change the final result.)

In general, we observed results as expected and satisfactory

performance from the model in 3D.

4 Conclusion

In this work, we presented a comprehensive computa-

tional approach for solving near-singular problems with the

smoothed boundary method and block-structured adaptive

mesh refinement. Problems in solid mechanics are nearly

universally solved using weak form methods (finite ele-

ments), and this work aims to formalize and elucidate the

theory and best practices associated with solving problems

of interest (specifically, near-singular problems) using the

near-singular, smoothed boundary, strong-form approach. In

particular, a key insight of this work is the essential role that

is played by placing certain quantities at node or cell centers

in finite difference elasticity. This has been well-known in

fluid mechanics and has generally been enforced implicitly

in solid mechanics due to the prevalence of strong-form meth-

ods. This, combined with the model vector space construction

and the reflux-free method for elasticity on BSAMR grids,

results in a powerful technique for quickly solving many

problems of interest in solid mechanics. We demonstrated

this approach’s versatility and the solver’s performance by

studying three problems: plasticity, fracture, and topology

optimization.

We conclude by discussing the limitations of this work.

As with all diffuse boundary methods, a higher resolution

is needed than most discrete boundary approaches. BSAMR

is able to alleviate this computational cost significantly, but

the number of points will still scale with the amount of

surface area, even for surfaces with low stress. (Discrete

boundary methods, by contrast, can afford low resolution at

uninteresting boundaries.) While this may be unavoidable,

we believe that the proposed approach offers increased ver-

satility and ease of implementation. We also note that while

the solver performs well on near-singular problems, it can

still struggle on problems that exhibit extreme irregularity

or high stress concentrations. In this regard, it is comparable

to equivalent solvers for alternative approaches. Finally, we

emphasize that the examples considered here do not reflect

the state-of-the-art in the fields of plasticity, fracture, and

topology optimization; rather, we have used tested and well-

understood models in order to showcase the performance of

the elastic solver. Implementing more sophisticated methods

using this solver shall be left to future work.
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Appendix A: Convergence data

The linear elastic, strong-form near-singular multigrid solver

exhibited nearly universally linear convergence in the exam-

ple problems presented in this work. Here, we present a more

detailed exposition of the solver behavior in time for the frac-

ture cases and the topology optimization example (Fig. 10).

We note that in all cases, the results from the initial solve

are not included because it is for the initial, non-regularized

version of the problem. In all examples, we observe a rapid

convergence during the first 3–4 iterations. This rapid conver-

gence lasts until the error is reduced to 10−3, 10−4, and 10−1

for mode I, stress-concentration, and topology optimization,

respectively. A sharp reduction follows this in the conver-
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gence rate, which is almost always non-decreasing during

the remaining solve.

In mode-I fracture and topology optimization, interest-

ingly, the worst convergence occurs during the middle of

the simulation; subsequently, convergence improves and

approaches a constant rate. Both exhibit a couple of solves

in which the convergence rate turned sharply from a higher

to a lower value; in both cases, the convergence might be

described as “piecewise linear.”

In the stress-concentration fracture case, linear conver-

gence is constantly observed, but the convergence rate

decreases steadily as the simulation progresses. We attribute

this to the increasing irregularity of the problem, resulting

from large chunks of material that have been degraded, and

regions of the boundary that are under-regularized. In other

words, it appears to be the fracture model, not the solver, that

is responsible for the degrading convergence.
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