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AbstractÐ Recent advances on Concentric Tube Robots
(CTRs) enable the construction and analysis of concentric
combinations of precurved elastic tubes. These robots are
very appropriate for performing Minimally Invasive Surgery
(MIS) with a reduction in patient recovery time. In this
work, we propose a kinetostatic model for CTRs based on the
Geometric Variable-Strain (GVS) approach where the tubes’
sliding motion, the distributed external forces along the tubes
and concentrated external forces at the tip, are included. Our
approach allows us to estimate the shape of CTRs and the tip
forces using the displacements of the tubes and the insertion
and rotation input forces and torques. Moreover, we propose
a modification in the model, which eliminates completely the
sliding friction among the tubes. This new approach opens a
new way to use CTRs in surgical applications without the need
of sensors along the tubes, but only actuation measurements.
The simulation results demonstrate the effectiveness of the
proposed approach.

I. INTRODUCTION

Concentric Tube Robots (CTRs) are considered a class

of continuum robots, especially convenient for Minimally

Invasive Surgery (MIS). These robots consist of nested,

needle-sized, precurved elastic tubes that can rotate and

translate relative to each other [1]. These devices are very

recommendable for surgical interventions because they can

be inserted inside the body through a small incision and

perform some kind of inspection or surgery. The relative

low invasiveness of these techniques significantly improves

the patient recovery. Moreover, the elastic interaction among

the tubes provides an infinitive range of shapes and the

possibility to control the iteration force between the robot

and the environment. These features have recently made

CTRs one of the most promising solutions for some surgical

interventions [2].

The importance and functionality of these robots have

attracted a great interest in the last decades. In particular,

the development of CTRs models has driven a fast growth
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in this field, also leading to numerous problems related with

the development of control and sensory systems. Concerning

the modelling of CTRs, most of the works found in the liter-

ature, develop kinetostatic model based on the equations of

Cosserat rods [3], [4]. In these models, the internal bending

and torsion of the tubes are described by a set of differen-

tial equations and boundary conditions. Moreover, external

forces can be added into these models again recalling the

Cosserat rod equations [5], [6]. Other works have dealt with

the incorporation of the friction forces and torques in the

derivation of the models [7], [8], [9]. Subsequently, in [10],

the inertial dynamics of a concentric precurved tube system

was derived for the first time. This dynamic model deals

with any number of tubes with arbitrary precurvature and

considers external loading, tube inertia, material damping,

Coulomb and viscous friction.

Nowadays there are many techniques that handles the

navigation and estimation problems of CTRs. For example

in [11], [12], the inverse kinematics is used to compute

efficiently the Jacobian for real-time control applications.

In [13], nonlinear Model Predictive Control is proposed in

order to avoid singular configurations and satisfy mechanical

constraints. Also, [14] proposes a task-space position control

which is robust to inaccuracies in the kinematic model.

Concerning to estimation algorithms of CTRs, some works

have developed shape estimators. Shape sensing is necessary

for performing path planning [15] and avoid collisions [16].

Thus, in [17], the authors propose a vision based approach

for estimating the shape based on X-ray-like images, while

[18] predicts the robot’s shape by measuring the robot’s tip

with an electromagnetic sensor together with an accurate

model of the CTR. Another interesting work is [19] where

a tip position estimation method based on 2D ultrasound

images with the help of the forward kinematic model of

CTR is proposed. In [20], a purely mechanical approach

was introduced for stiffness regulation of CTRs that naturally

keeps the tip force within the optimal region of the surgi-

cal requirement. Otherwise, force estimation of continuum

robots is very useful for applications where the motion of the

system is constrained and it is needed a controlled interaction

with the environment. Although many works have addressed

the force estimation in continuum robots (see for example

[21], [22]), very few works have addressed force estimation

in CTRs as it is done in [23], or in [24] where a new

methodology was proposed to perform force sensing and

force control with CTRs.





of section k and b j,k is either X j or the abscissa of tube

j corresponding to the end point of section k. Note that,

in general, when we use a subscript of the form ‘ j,k’,

j indicates the tube number and k specifies the section

number. A further subscript s is used to indicate absolute

configurations as opposed to relative ones. The configuration

of the inner tube (tube 2) differs from that of the outer tube

only by a rotation about the local x-axis of the inner tube.

The rotational transformation matrix of tube 2 with respect to

the section base is then given by, gggθ2,k
(b2,k,a2,k). gggθ2,k

takes

the same form of that of gggr(θ) in equation (4).

We want to represent the configurations of tubes at each

sections using strain fields, ξξξ j,k and ξξξ θ2,k
[25], where the

latter represents the additional torsion of the inner tube.

These strain fields are discretized as follows:

ξξξ j,k(X j) = ΦΦΦ j,k(X j)qqq j,k +ξξξ , (6)

ξξξ θ2,k
(X2) = ΦΦΦθ2,k

(X2)qqqθ2,k
, (7)

where, ΦΦΦ j,k and ΦΦΦθ2,k
are basis functions for the respective

strain fields, qqq j,k and qqqθ2,k
are vectors of generalized coeffi-

cients, and ξξξ is equal to [0 0 0 1 0 0]. Then, the shape gener-

alized coordinates are qqqs = [qqqT
θ2,1

,qqqT
1,2,qqq

T
θ2,2

,qqqT
1,3,qqq

T
θ2,3

,qqqT
2,4]

T .

We used monomial bases for the strain fields that define

the size (n) of the shape generalized coordinates vector. For

instance, in section 3 we used:

ΦΦΦ1,3 =




1 X1 0 0 0 0

0 0 1 X1 0 0

0 0 0 0 1 X1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



, ΦΦΦθ2,3

=




1 X2

0 0

0 0

0 0

0 0

0 0



.

(8)

Given that, ggg j,k and gggθ2,k
are computed using equation

(3) according to ggg = exp(Ω̂ΩΩ), where ΩΩΩ(X) is the Magnus

expansion of the strain field [34]. Putting everything together,

the absolute kinematics of the tubes on each section can be

written as:

ggg2,1s
(X2) = gggt(X2,D2)gggr(α1)gggr(α2)ggg2,1(X2,0)

ggg1,2s
(X1) = gggt(0,D1)gggr(α1)ggg1,2(X1,0)

ggg2,2s
(X2) = ggg1,2s

(X1)gggθ2,2s
(X2)

gggθ2,2s
(X2) = gggr(α2)gggθ2,1

(∆D,0)gggθ2,2
(X2,∆D)

ggg1,3s
(X1) = ggg1,2s

(D1)ggg1,3(X1,D1)

ggg2,3s
(X2) = ggg1,3s

(X1)gggθ2,3s
(X2)

gggθ2,3s
(X2) = gggθ2,2s

(D2)gggθ2,3
(X2,D2)

ggg2,4s
(X2) = ggg2,3s

(∆D+L1)ggg2,4(X2,∆D+L1),

(9)

Moving to differential kinematics, we start with the equal-

ity of mixed partial derivatives of ggg(X). For a transformation

matrix of the form, ggg(b,a), whose boundaries might vary

with time due to sliding, the following relation between

velocity and strain twist is derived [29]:

ηηη(b) = Ad−1
ggg(b)

∫ b

a
Adgggξ̇ξξ dX +ξξξ (b)ḃ−Ad−1

ggg(b)ξξξ (a)ȧ , (10)

where, the operator Ad is the Adjoint map in SE(3) defined

in the Appendix V. Using (10) in the time derivative (2)

of the configuration (9), the differential kinematics of each

section can be derived [29]:

ηηη2,1s
(X2) =−ξξξ Ḋ2 +ΦΦΦα α̇1 +ΦΦΦα α̇2 +

(∫ X2

0
ΦΦΦθ2,1

dX2

)
q̇qqθ2,1

ηηη1,2s
(X1) =−ξξξ Ḋ1 +ΦΦΦα α̇1 +

(∫ X1

0
ΦΦΦ1,2dX1

)
q̇qq1,2

ηηη2,2s
(X2) =−ξξξ Ḋ2 +ΦΦΦα α̇1 +ΦΦΦα α̇2 +

(∫ ∆D

0
ΦΦΦθ2,1

dX2

)
q̇qqθ2,1

+

(∫ X1

0
ΦΦΦ1,2dX1

)
q̇qq1,2 +

(∫ X2

∆D
ΦΦΦθ2,2

dX2

)
q̇qqθ2,2

ηηη1,3s
(X1) = Ad−1

ggg1,3(X1)

[
− Åξξξ k1

(D+
1 )Ḋ1 +ΦΦΦα α̇1+

(∫ D1

0
ΦΦΦ1,2dX1

)
q̇qq1,2 +

(∫ X1

D1

Adggg1,3(X1)
ΦΦΦ1,3dX1

)
q̇qq1,3

]

ηηη2,3s
(X2) = Ad−1

gggθ2,3s
(X2)

ηηη1,3s
(X1)−

Åξξξ k2
(X2)∆ Ḋ+ΦΦΦα α̇2+

(∫ ∆D

0
ΦΦΦθ2,1

dX2

)
q̇qqθ2,1

+

(∫ D2

∆D
ΦΦΦθ2,2

dX2

)
q̇qqθ2,2

+

(∫ X2

D2

ΦΦΦθ2,3
dX2

)
q̇qqθ2,3

ηηη2,4s
(X2) = Ad−1

ggg2,4(X2)

[
Ad−1

gggθ2,3s
(L1+∆D)ηηη1,3s

(L1)−

Åξξξ k2
(L1 +∆D+)∆ Ḋ+ΦΦΦα α̇2 +

(∫ ∆D

0
ΦΦΦθ2,1

dX2

)
q̇qqθ2,1

+

(∫ D2

∆D
ΦΦΦθ2,2

dX2

)
q̇qqθ2,2

+

(∫ L1+∆D

D2

ΦΦΦθ2,3
dX2

)
q̇qqθ2,3

+

(∫ X2

L1+∆D
Adggg2,4

ΦΦΦ2,4dX2

)
q̇qq2,4

]
,

(11)

where ΦΦΦα = [1 0 0 0 0 0]T and Åξξξ k = [0 ky kz 1 0 0]T (ky

and kz are bending strains). Note that when X1 appears

in the configuration of tube 2, then it become a varying

boundary governed by equation (5). Equations (11) provide

the Jacobians corresponding to the complete set of n+4 gen-

eralized coordinates qqq = [qqqT
b ,qqq

T
s ]

T . It can be seen that there

are N = 6 sets of Jacobians corresponding to each tube and

four sections. We use them to project the static equilibirum

equations of the system by d’Alembert’s principle [29].

B. CTR Statics

The static equilibirum of a cosserat rod in a concentric

tube setting is given by:

F
′
i j
+ ad∗ξξξ j

F i j
+F e j

= 000, (12)

where F i j
(X) ∈R

6 is the vector of internal elastic moment

and force, F e j
(X) ∈R

6 is the vector of distributed external

force, and ad∗ is the co-adjoint map in SE(3), defined in

the Appendix V. Note that we exclude the constraint force

due to the concentricity of the tubes by the virtue of the

strain parameterization used and the d’Alembert’s principle.



Integrating the projected equilibirum equations lead to the

final form:

KKK(qqq) = τττ +QQQe(qqq), (13)

where KKK(qqq) is the generalized internal elastic force, τττ is the

generalized actuation force given by τττ = [τττT
b 000]T , where τττb =

[−τD1
− τD2

τα1
τα2

]T (indicated in Figure. 1), and QQQe(qqq) is

the generalized external force. The expression for KKK(qqq) is

derived in our previous work [29] and can be found in the

Appendix V. The generalized external force is given by:

QQQe(qqq) =
N

∑
i=1

∫ bi

ai

JJJT
i F ei

dXi + JJJT
6 (L2)F tip, (14)

where, F tip is the tip force [000 FFFT
tip]

T ∈ R
6 expressed in the

local coordinate frame and F ei
is the distributed force for

instance due to gravity. Equation (13) summarizes all the

static equilibrium equations of the system. Note that the first

two rows corresponding to D1 and D2 are original of this

work, and allow the main contribution the manuscript about

tip force estimation described in the next sections.

Let us consider the effect of contact friction between the

tubes. The contact friction can be modeled as an external

force with a sliding force component and a torsional compo-

nent. As the contact friction acts in equal magnitude and

opposite directions between tubes, it is easy to see that

the component of sliding fiction cancels out in equation 14

except in the first two rows corresponding to D1 and D2.

However, summing these two equations, gives

τD1
+ τD2

+

[
Åξξξ k1

(D+
1 )

]T

Adggg1,3...ggg2,4
F tip

=
(

ξξξ
T
k1

(
F i1 +Ad∗gggθ2s

F i2

))(
D+

2

) (15)

where ξξξ k =
Åξξξ k −

Åξξξ , which completely eliminates the com-

ponent of sliding friction. The torsional friction can be

modeled using the Coulomb friction model. However, the

torsional friction, which is dependent on the history of

tube motion, can be reduced/eliminated by specific actuation

histories [35]. Hence, in this paper we do not account for

this component.

III. SHAPE AND TIP FORCE ESTIMATION

In this section, we will discuss two main problem for-

mulations for the system of equations (13): the Forward

Kinematics Problem (FKP) and the Estimation Problem.

A. Forward Kinematics Problem

The FKP is similar to the forward problem for conven-

tional robots, where the kinematics of each actuator is given

to describe the configuration. In the presence of external

loads, their reflection on the actuation loads can be also

monitored. Similarly, for the case of our CTR system, the

base kinematics qqqb along with the external tip force FFF tip (for

simplicity we ignore the effects of gravity) can be used to

calculate the shape of the CTR qqqs and the base actuation load

τττb. For these inputs and outputs, a system of n+4 nonlinear

TABLE I

PHYSICAL PROPERTIES OF THE STUDIED CTR SYSTEM.

Tube 1 Tube 2

Young’s Modulus (GPa) 58 58

Shear Modulus (GPa) 21.5 21.5

Length (mm) 200 300

Inner Radius (mm) 1.005 0

Outer Radius (mm) 1.195 0.8

Reference Curvature (mm−1) 0.1 0.05+0.025X2

equations (13) and n+ 4 unknowns can be solved using a

root finding algorithm. We implement the trust-region-dogleg

algorithm through the MATLAB function fsolve to find a root

for this system of equations. Results for the solution of the

forward problem can be seen in Table II and Figure 2, where

different tip forces were applied showing their effect on the

equilibrium configuration and the base actuation load. The

physical properties of the studied system is shown in Table

I.

TABLE II

BASE LOADS FOR DIFFERENT APPLIED TIP FORCES. BASE KINEMATICS

FOR ALL CASES ARE: D1 = 40mm, D2 = 80mm, α1 = α2 = 0 rad .

FFFT
tip (N) τD1

(N) τD2
(N) τα1

(N.m) τα2
(N.m)

[0 0 0] -2.1561 2.1561 0 0

[1.5 0 0] -5.7139 2.4961 0 0

[0 1 0] 0.2815 -0.6712 0 0

[0 0 -0.5] -1.6896 1.6704 0.0462 0.0048

[-1 0.5 0] 3.8495 -1.0629 0 0

[0.5 0.5 0.5] -2.3716 0.9074 -0.0339 -0.0038

Fig. 2. Configurations of a CTR unloaded (black) and with different tip
forces applied (colored). Corresponding base actuation load and kinematics
is reported in Table II.

B. Estimation Problem

For the second problem, we leverage the equations that

govern the base actuation loads to estimate the applied tip

force. The base kinematics qqqb and the base actuation load

τττb are the inputs of the system, and the CTR shape qqqs and





underdetermined system of equations of n+3 equations and

n+ 4 unknowns, that can be solved in a similar fashion as

the estimation problem.

A. Navigation control in free motion

During free motion, the CTR is not exchanging forces with

the environment. Then, the inverse kinematics is performed

for the tip position considering that the tip force is zero,

FFF tip = 000. This allows for any desired navigation of the CTR

tip. In Figure 5, the navigation phase is represented (solid

black curve) where the CTR enters the body through an

insertion incision (red circle) and starts following a specific

tip trajectory. At every step, the tip force acting on the

CTR is estimated. Contact with the environment is detected

when the magnitude of this estimation is higher than a

predefined threshold. We set this threshold to be higher

than the maximum force estimate in free motion to avoid

numerical inaccuracies (near zero estimations) being detected

as contact.

B. Estimators based on actuation readings

Once the contact is detected, we propose to perceive the

environment with our approach. In the proposed scenario,

we assume that the environment that we want to identify is

a spherical body of an unknown radius and with a force field

that grows inversely with the distance from the center. This

force field is defined using an nth order polynomial. Then,

the force at the tip of the robot, FFF tip(rrrtip), contacting with

the environment can be defined in function of the tip position

rrrtip, as follows:

D = ||rrrtip − rrrc||, (18)

Pn(s) =
n

∑
i=1

ais
i
, (19)

FFF
tip
(rrrtip) =





0 if D > Rs

Pn(Rs −D)
rrrtip − rrrc

D
if D < Rs

, (20)

where D is the distance from the center, rrrccc is the position of

the center of the sphere, Rs is the sphere radius and ai are

the polynomial coefficients that describe the force field. We

choose an nth order polynomial because any function can

be approximated through Taylor series of infinite number

of terms. We perform unconstrained inverse kinematics to

palpate the soft body. It is done between each of the

predefined waypoints. For i waypoints we have qqqbi
, then

motion is achieved by linear interpolation between each

corresponding element in qqqbi
and qqqbi+1

into a specific number

of steps. In every step, we estimate the force at the tip

by solving the estimation problem as shown in Figure 4.

Due to the unmodelled tip force in the inverse kinematics,

a mismatch may arise between the desired and actual tip

positions. However, that should not pose any concern as the

primary target is just to palpate the soft body. In the forward

problem, the tip force of the concentric tube robot in contact

with the environment is calculated from equation (20) where

the direction is pointing out the sphere in the radial direction.

That defines a new variant for the FKP where the applied

tip force is model-based rather than arbitrarily given. Under

these assumptions, the following methodology to perceive

the environment is proposed:

1) Center: Radial parameterized lines, pppi = rrrtip,i +

t
FFFtip,i

||FFFtip,i||
, are reconstructed through the current contact

point and the direction of the estimated force vector.

Let two reconstructed radial lines be ppp1 and ppp2, the

center of the sphere is defined by the intersection of

these lines.

2) Force field: Solving the minimization problem defined

as:

min
ai,Rs

k

∑
j=1

(
∥FFF tip, j − F̂FF j∥

)2
, (21)

where F̂FF j is the jth recorded estimated force , and

FFF tip, j is the the force from the proposed force model

(20), the estimation of the coefficients of the force

field, âi, and the radius of the sphere R̂s are obtained.

Fig. 5. (a) The CTR at the end of the sensing scenario touching the
identified soft sphere. Dashed lines (black) indicate the reconstructed radial
lines to estimate the sphere center (cyan). The free motion navigation path is
shown as the solid thick line (black) from the insertion incision (red circle)
to the close vicinity of the soft sphere. (b) The final estimation results for
the sphere center, radius and stiffness.

A snapshot from the end of the sensing scenario can be

seen in Figure 5 where all the parameters of the soft body

were estimated with a small error. For this simulation, we

choose the variants for the forward and estimation problems



with the added base load equations (15). We choose a

polynomial of 3rd order to define the force field with the

coefficients a0 = 0, a1 = 25, a2 = 2500, a3 = 105. The esti-

mated coefficients are â0 =−9.17×10−4, â1 = 25.54, â2 =
2484.2, â3 = 0.844×105.

C. Hybrid position/force control in constrained motion

Once the environment is estimated, we can use our ap-

proach to implement a hybrid position/force control emulat-

ing some kind of surgical applications. Here, the position

around a surface (tissue) is controlled while a force normal

to this surface is applied. In contrast to the inverse kinematics

performed in section IV-A where the applied tip force was

zero, the information from the estimated environment along

with equation (17) can be used to perform constrained

inverse kinematics. This additional information is used to

compensate for any mismatch in the tip position due to

the constrained motion and allows us to perform hybrid

position/force control for the CTR. We demonstrate this by

following a trajectory at a constant distance from the center

of the sphere. The trajectory is a projected ellipse on a sphere

of radius 25 mm with the center at r̂rrc. Results for the tracking

performance is presented in Figure 6.

Fig. 6. Trajectory following results for the hybrid position/force control
after the estimation of the soft body parameters. The Root Mean Squared
Error (RMSE) for each value is as follows: RMSEx = 0.0154 mm, RMSEy =
0.0239 mm, RMSEz = 0.0694 mm, RMSE||FFFtip || = 0.0019 N.

V. CONCLUSIONS

In this paper, we utilized the actuation measurements of

a CTR system to perform model-based shape and tip force

estimation. Unlike other techniques, our approach does not

rely on body integrated sensors. Somehow, it reminds us of

conventional robot systems where only the loads at the actua-

tors can be used to estimate external loads. Simulations show

the capability of our approach to estimate large deformation-

causing tip forces with high accuracy. We have also proposed

a modification to the model that completely eliminates the

sliding friction between the tubes. We present with a realistic

scenario the effectiveness of this new approach. Simulations

demonstrate free motion, environment perception, and accu-

rate hybrid position/force control. As future work, we aim to

design and fabricate an experimental CTR prototype having

minimal friction and base load measurement capabilities,

allowing for experimental -alongside numerical- validation

of the proposed approach.

APPENDIX

K(D1) = EIx1

[(
ξξξ

T
k1

(
ξξξ k1

−ξξξ
∗
k1

))(
D+

1

)]
+EIx2

[
1

2

(
ξξξ

T
k1

ξξξ k1

)(
D+

2

)
+

∫ L1+∆D

D2

(
ξξξ
′
k1
+ adξξξ 1

Åξξξ k1

)T

Adgggθ2s
ξξξ
∗
k2

dX+

(
ξξξ

T
k1

(
1

2
ξξξ k1

−Adgggθ2s
ξξξ
∗
k2

))(
L1 +∆D−

)
−

(
ξξξ

T
k2

(
ξξξ k2

−ξξξ
∗
k2

))(
L1 +∆D+

)]

K(D2) = EIx2

[(
ξξξ

T
k1

(
1

2
ξξξ k1

−Adgggθ2s
ξξξ
∗
k2

))(
D+

2

)
−

∫ L1+∆D

D2

(
ξξξ
′
k1
+ adξξξ 1

Åξξξ k1

)T

Adgggθ2s
ξξξ
∗
k2

dX−

(
ξξξ

T
k1

(
1

2
ξξξ k1

−Adgggθ2s
ξξξ
∗
k2

))(
L1 +∆D−

)
+

(
ξξξ

T
k2

(
ξξξ k2

−ξξξ
∗
k2

))(
L1 +∆D+

)]

K(α1) = ΦΦΦT
α

∫ L1+∆D

D2

ad∗ξξξ 1
Ad∗gggθ2s

F i2 dX

K(α2) =−ΦΦΦT
α

∫ L1+∆D

D2

ad∗ξξξ 1
Ad∗gggθ2s

F i2 dX

KKK(((pppθ2,1
))) =

∫ ∆D

0
ΦΦΦT

θ2,1
F i2 dX − JJJT

θ2,1
(∆D)

∫ ∆D+L1

D2

ad∗ξξξ 1
Ad∗gggθ2s

F i2 dX

KKK(((ppp1,2))) =
∫ D2

∆D
ΦΦΦT

1,2

(
F i1 +F i2

)
dX

KKK(((pppθ2,2
))) =

∫ D2

∆D
ΦΦΦT

θ2,2
F i2 dX − JJJT

θ2,2
(D2)

∫ ∆D+L1

D2

ad∗ξξξ 1
Ad∗gggθ2s

F i2 dX

KKK(((ppp1,3))) =
∫ ∆D+L1

D2

ΦΦΦT
1,3

(
F i1 +Ad∗gggθ2s

F i2

)
dX

KKK(((pppθ2,3
))) =

∫ ∆D+L1

D2

ΦΦΦT
θ2,3

F i2 dX −
∫ ∆D+L1

D2

JJJT
θ2,3

ad∗ξξξ 1
Ad∗gggθ2s

F i2 dX

KKK(ppp2,4) =
∫ L2

∆D+L1

ΦΦΦT
2,4F i2 dX

where, E is the Young’s modulus and Ix is the polar moment
of inertia of tubes.

Adggg =

(
RRR 0003×3

r̃RRR RRR

)
, Ad∗ggg =

(
RRR r̃RRR

0003×3 RRR

)
,

adξξξ =

(
k̃ 0003×3

ũ k̃

)
,ad∗ξξξ =

(
k̃ ũ

0003×3 k̃

)
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