Shape and Tip Force Estimation of Concentric Tube Robots Based on
Actuation Readings Alone
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Abstract— Recent advances on Concentric Tube Robots
(CTRs) enable the construction and analysis of concentric
combinations of precurved elastic tubes. These robots are
very appropriate for performing Minimally Invasive Surgery
(MIS) with a reduction in patient recovery time. In this
work, we propose a kinetostatic model for CTRs based on the
Geometric Variable-Strain (GVS) approach where the tubes’
sliding motion, the distributed external forces along the tubes
and concentrated external forces at the tip, are included. Our
approach allows us to estimate the shape of CTRs and the tip
forces using the displacements of the tubes and the insertion
and rotation input forces and torques. Moreover, we propose
a modification in the model, which eliminates completely the
sliding friction among the tubes. This new approach opens a
new way to use CTRs in surgical applications without the need
of sensors along the tubes, but only actuation measurements.
The simulation results demonstrate the effectiveness of the
proposed approach.

I. INTRODUCTION

Concentric Tube Robots (CTRs) are considered a class
of continuum robots, especially convenient for Minimally
Invasive Surgery (MIS). These robots consist of nested,
needle-sized, precurved elastic tubes that can rotate and
translate relative to each other [1]. These devices are very
recommendable for surgical interventions because they can
be inserted inside the body through a small incision and
perform some kind of inspection or surgery. The relative
low invasiveness of these techniques significantly improves
the patient recovery. Moreover, the elastic interaction among
the tubes provides an infinitive range of shapes and the
possibility to control the iteration force between the robot
and the environment. These features have recently made
CTRs one of the most promising solutions for some surgical
interventions [2].

The importance and functionality of these robots have
attracted a great interest in the last decades. In particular,
the development of CTRs models has driven a fast growth
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in this field, also leading to numerous problems related with
the development of control and sensory systems. Concerning
the modelling of CTRs, most of the works found in the liter-
ature, develop kinetostatic model based on the equations of
Cosserat rods [3], [4]. In these models, the internal bending
and torsion of the tubes are described by a set of differen-
tial equations and boundary conditions. Moreover, external
forces can be added into these models again recalling the
Cosserat rod equations [5], [6]. Other works have dealt with
the incorporation of the friction forces and torques in the
derivation of the models [7], [8], [9]. Subsequently, in [10],
the inertial dynamics of a concentric precurved tube system
was derived for the first time. This dynamic model deals
with any number of tubes with arbitrary precurvature and
considers external loading, tube inertia, material damping,
Coulomb and viscous friction.

Nowadays there are many techniques that handles the
navigation and estimation problems of CTRs. For example
in [11], [12], the inverse kinematics is used to compute
efficiently the Jacobian for real-time control applications.
In [13], nonlinear Model Predictive Control is proposed in
order to avoid singular configurations and satisfy mechanical
constraints. Also, [14] proposes a task-space position control
which is robust to inaccuracies in the kinematic model.
Concerning to estimation algorithms of CTRs, some works
have developed shape estimators. Shape sensing is necessary
for performing path planning [15] and avoid collisions [16].
Thus, in [17], the authors propose a vision based approach
for estimating the shape based on X-ray-like images, while
[18] predicts the robot’s shape by measuring the robot’s tip
with an electromagnetic sensor together with an accurate
model of the CTR. Another interesting work is [19] where
a tip position estimation method based on 2D ultrasound
images with the help of the forward kinematic model of
CTR is proposed. In [20], a purely mechanical approach
was introduced for stiffness regulation of CTRs that naturally
keeps the tip force within the optimal region of the surgi-
cal requirement. Otherwise, force estimation of continuum
robots is very useful for applications where the motion of the
system is constrained and it is needed a controlled interaction
with the environment. Although many works have addressed
the force estimation in continuum robots (see for example
[21], [22]), very few works have addressed force estimation
in CTRs as it is done in [23], or in [24] where a new
methodology was proposed to perform force sensing and
force control with CTRs.



Recently, a novel modelling approach has been proposed
which is based on a coordinate system which discretizes the
continuous Cosserat model of the flexible components onto a
finite set of strain basis functions [25], [26]. This Geometric
Variable-strain (GVS) approach is a generalization of tradi-
tional robotics’ geometric model [27] to the case of highly
flexible or soft robots [28]. Our previous works [29], [30],
use GVS approach to model the equilibrium equations of
CTRs relaxing one of the most significant assumptions that
were applied in previous works, i.e., quasi-static and time-
dependent tubes’ sliding. This phenomenon, also know as
the sliding spaghetti problem, is intensively studied in the
computational mechanics community [31].

In this work, we extend our previous work [29], adding
distributed external forces along the tubes (such as gravity)
and concentrated external forces at the tip of CTRs, resem-
bling tissue contact. This allows us to estimate the shape
and the tip forces using the displacements of the tubes and
the insertion and rotation inputs forces and torques, i.e., the
actuation readings alone. We also propose a representative
scenario where the system is able to estimate some properties
of the environment under some relatively mild assumptions.
Once, the environment is perceived, our approach allows us
to implement a hybrid position/force control based on the
inversion of the equilibrium equations. The goal is to present
a conceptual methodology for controlling both the position
and the contact forces generated at the tip of the CTRs, i.e.
the tip can move around the surface [32] while it applies
arbitrary forces normal to the surface (force constraint). To
the best of the authors’ knowledge, this is the first time that
the insertion and rotation inputs forces and torques alone are
used to estimate the shape and the tip force, simultaneously.
This approach opens the possibility to perform surgical
interventions without the need to install sensors or cameras
along the body of the robot which are not appropriate for
the performance of CTRs in real applications [33].

The paper is organized as follows. Section II is devoted
to the modelling of the system. Section III presents the
shape and force estimation methods. Section IV shows the
simulation results of a simulation scenario to demonstrate
the advantages of our model and estimators. Finally, some
conclusions are given in Section VL.

II. SLIDING CTR MODELLING

In this section we revise and extend the static equilibrium
analysis of a sliding-rod variable-strain model for CTRs,
introduced in our previous work [29]. External forces are
now included, and a reduced formulation is presented that
eliminates the need of modeling the sliding friction. To model
the system configuration, we use homogeneous transforma-
tions. Before going into the details of our CTR system, some
preliminaries are defined here. A general space-parametrized
(X) homogeneous transformation matrix g(X) € SE(3) is
defined as:

8(x) = ( ) o ) ()

where, R(X) € SO(3) is a rotation matrix, and r(X) € R?
is the position vector. The time and space derivative of a
general homogeneous transformation matrix, g, defines the
velocity (1) and strain (€) twists:

(&' (X)ex)) =n(X) eR® @)
(8 ') (X)) = E(X) e RC. 3)

where, the superscript V indicates the isomorphism between
the Lie algebra se(3) and R® (A will be used in the opposite
direction) [27].

A. CTR Kinematics

Moving to the specifics of our system, consider the CTR
in Figure 1, with an outer tube (tube 1) of length L; and an
inner tube (tube 2) of length L,. Both tubes are constrained
to be straight before the insertion orifice. We define D and
D5 as the distance from the tube bases to the insertion orifice.
Together with D and D;, the angle of rotation of tube bases
a; and o constitute the base generalized coordinates of
the system g;, = [D) ,Dz,al,az]T. To model the tubes bases
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Fig. 1. Schematic of the CTR system. The CTR with the outer tube (tube 1,
green) and the inner tube (tube 2, red) is divided into four sections. The red-
blue-green arrows indicate coordinate frames, and dot-dash lines indicate the
axes of tube rotations. We define the spatial frame at the insertion orifice
at the end of section 2. 7p, and T4, are the input force and torque acting
at the base of tube 1, while 7p, and 74, correspond to that of tube 2.

kinematics and from there the rest of the system (as it appears
in equation (9)), we fix the spatial frame on the insertion
orifice at the end of section 2 and we define g,(b,a) and

8.(0) as:

st.0=(or "0 ) mio= (B );4)

where, r,(b,a) = [b—a00]” and R,(8) is the rotation matrix
about the x-axis (the axis tangent to the tubes’ midline). The
tubes are modeled as inextensible and shearless Cosserat rods
(Kirchhoff-Love kinematics) along a material curvilinear
abscissa of X; € [0,L;] (j = 1,2) divided into four sections
(Figure 1). In the tubes overlapping sections 2 and 3, the
abscissas are related by:

X1(AD) =X, — AD, (5)

where, AD = D, — Dy. For a given tube j and section k, we
denote the relative section configuration by, & (bjk,ajk),
where ajy is the abscissa of tube j at the starting point



of section k and b;; is either X; or the abscissa of tube
j corresponding to the end point of section k. Note that,
in general, when we use a subscript of the form ‘j k’,
j indicates the tube number and k specifies the section
number. A further subscript s is used to indicate absolute
configurations as opposed to relative ones. The configuration
of the inner tube (tube 2) differs from that of the outer tube
only by a rotation about the local x-axis of the inner tube.
The rotational transformation matrix of tube 2 with respect to
the section base is then given by, gq, (b g, az k). 8, takes
the same form of that of g,(6) in equation (4).

We want to represent the configurations of tubes at each
sections using strain fields, & jx and & 6,, [251, where the
latter represents the additional torsion of the inner tube.
These strain fields are discretized as follows:

Eu(X)) = ®jx(X))q; +E . (6)
86, (X2) = Py, (X2)q0,, - (7)

where, @;; and Py, , are basis functions for the respective
strain fields, g, and g4, are vectors of generalized coeffi-
cients, and & is equal to [00 0 10 0]. Then, the shape gener-
alized coordinates are g, = [qu,l ,q{z,qu.z,q{j,qg“ .q54)".
We used monomial bases for the strain fields that define
the size (n) of the shape generalized coordinates vector. For

instance, in section 3 we used:

1 X 0 0 0 0 1 X
0 0 1 X 0 0 0 0
0 0 0 0 1 X 0 0
P3=10 0000 0 | Pu=|0 o
0000 0 0 0 0
0 000 0 0 0 0 |
8)

Given that, g;, and gq are computed using equation
(3) according to g = exp(2), where £(X) is the Magnus
expansion of the strain field [34]. Putting everything together,
the absolute kinematics of the tubes on each section can be

written as:

81,(X2) = 8(X2,D2)8,(1)8,(2) 85,1 (X2,0)

gL,ZS(Xl) = gz(OaDl)gr(al)gl,z(XlaO)
822, (X2) = g1, (X )892725_ (X2)
86,, (X2) = 8,(0)8e,,(AD,0)ge, ,(X2,AD)

©)
813,(X1) = &1,,(D1)g 3(X1,D1)

823, (X2) = 815,(X1)8e,, (X2)
86,5, (X2) = 86,,, (D2)ge,,(X2,D2)

824, (X2) =853 (AD+L1)g,4(X2,AD +Ly),

Moving to differential kinematics, we start with the equal-
ity of mixed partial derivatives of g(X). For a transformation
matrix of the form, g(b,a), whose boundaries might vary
with time due to sliding, the following relation between

velocity and strain twist is derived [29]:

b , i
n(b) :Adgj(;) / Adg&dX +&(b)b—Ady, E(a)a, (10)
a
where, the operator Ad is the Adjoint map in SE(3) defined
in the Appendix V. Using (10) in the time derivative (2)

of the configuration (9), the differential kinematics of each
section can be derived [29]:
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where @, =[100000]7 and Ek =[0ky k1007 (k,
and k; are bending strains). Note that when X; appears
in the configuration of tube 2, then it become a varying
boundary governed by equation (5). Equations (11) provide
the Jacobians corresponding to the complete set of n+4 gen-
eralized coordinates g = [g],q7]”. It can be seen that there
are N = 6 sets of Jacobians corresponding to each tube and
four sections. We use them to project the static equilibirum
equations of the system by d’Alembert’s principle [29].

B. CTR Statics

The static equilibirum of a cosserat rod in a concentric
tube setting is given by:

Fitady Fi+Fe; =0, (12)
where 7 ;,(X) € RS is the vector of internal elastic moment
and force, .7, .(X) € IRY is the vector of distributed external
force, and ad” is the co-adjoint map in SE(3), defined in
the Appendix V. Note that we exclude the constraint force
due to the concentricity of the tubes by the virtue of the
strain parameterization used and the d’Alembert’s principle.



Integrating the projected equilibirum equations lead to the
final form:

K(g)=71+0.(q),

where K(q) is the generalized internal elastic force, 7 is the
generalized actuation force given by T = [t} 0]7, where 7, =
[—Tp, —Tp, Tay Tay]! (indicated in Figure. 1), and Q,(q) is
the generalized external force. The expression for K(q) is
derived in our previous work [29] and can be found in the
Appendix V. The generalized external force is given by:

(13)

N b
0.(9=Y LT o dXi +JE (L) F ip,

i=174d

(14)

where, .7, is the tip force [0 F tTip]T € R® expressed in the

local coordinate frame and ?ei is the distributed force for
instance due to gravity. Equation (13) summarizes all the
static equilibrium equations of the system. Note that the first
two rows corresponding to D and D, are original of this
work, and allow the main contribution the manuscript about
tip force estimation described in the next sections.

Let us consider the effect of contact friction between the
tubes. The contact friction can be modeled as an external
force with a sliding force component and a torsional compo-
nent. As the contact friction acts in equal magnitude and
opposite directions between tubes, it is easy to see that
the component of sliding fiction cancels out in equation 14
except in the first two rows corresponding to D and D;.
However, summing these two equations, gives

T
Tp; + Tp, + |:§k1 (DT)} Adg, 5..g,,Frip
T *
= (&6, (71 +ad;, 74)) (0F)

where &, = é K E which completely eliminates the com-
ponent of sliding friction. The torsional friction can be
modeled using the Coulomb friction model. However, the
torsional friction, which is dependent on the history of
tube motion, can be reduced/eliminated by specific actuation
histories [35]. Hence, in this paper we do not account for
this component.

15)

III. SHAPE AND TIP FORCE ESTIMATION

In this section, we will discuss two main problem for-
mulations for the system of equations (13): the Forward
Kinematics Problem (FKP) and the Estimation Problem.

A. Forward Kinematics Problem

The FKP is similar to the forward problem for conven-
tional robots, where the kinematics of each actuator is given
to describe the configuration. In the presence of external
loads, their reflection on the actuation loads can be also
monitored. Similarly, for the case of our CTR system, the
base kinematics g, along with the external tip force Fy;, (for
simplicity we ignore the effects of gravity) can be used to
calculate the shape of the CTR g, and the base actuation load
T;. For these inputs and outputs, a system of n+4 nonlinear

TABLE I
PHYSICAL PROPERTIES OF THE STUDIED CTR SYSTEM.

Tube 1 Tube 2
Young’s Modulus (GPa) 58 58
Shear Modulus (GPa) 21.5 21.5
Length (mm) 200 300
Inner Radius (mm) 1.005 0
Outer Radius (mm) 1.195 0.8
Reference Curvature (mm 1) 0.1 0.05+0.025X,

equations (13) and n+4 unknowns can be solved using a
root finding algorithm. We implement the trust-region-dogleg
algorithm through the MATLAB function fsolve to find a root
for this system of equations. Results for the solution of the
forward problem can be seen in Table II and Figure 2, where
different tip forces were applied showing their effect on the
equilibrium configuration and the base actuation load. The
physical properties of the studied system is shown in Table
L.

TABLE II
BASE LOADS FOR DIFFERENT APPLIED TIP FORCES. BASE KINEMATICS
FOR ALL CASES ARE: D| =40mm, Dy = 80mm, oy = op = Orad.

F;T,'p (N) T, N) 1, N) T Nm) T, (N.m)
[0 0 0] -2.1561  2.1561 0 0
[1.500] -5.7139  2.4961 0 0
[010] 0.2815  -0.6712 0 0
[0 0 -0.5] -1.6896  1.6704 0.0462 0.0048
[-10.50] 3.8495  -1.0629 0 0
[0.50.50.5] -23716 0.9074 -0.0339 -0.0038
e
0.06 -
0.04 |
0.02
E o0
Yooz e,
-0.04
-0.06
g 0.15
: T~
0 \\\ \0_05 y (m)
z (m) 0.05 v
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Fig. 2. Configurations of a CTR unloaded (black) and with different tip
forces applied (colored). Corresponding base actuation load and kinematics
is reported in Table II.

B. Estimation Problem

For the second problem, we leverage the equations that
govern the base actuation loads to estimate the applied tip
force. The base kinematics g, and the base actuation load
T, are the inputs of the system, and the CTR shape g, and



the tip force F;, are the outputs. The result is an overde-
termined system of equations with n+4 equations and n+3
unknowns. An approximate solution for such system can
be achieved through a minimization algorithm. We choose
the Levenberg-Marquardt nonlinear least squares algorithm
implemented through the MATLAB function Isqnonlin to
solve the minimization problem defined as:

min |K(q) — - Q. (q)| (16)

q,,F tip

We demonstrate the estimation performance by applying a
random tip force in the range [—5, 5] N in each direction.
We use a linear load ramping technique to properly apply
such large-deformation causing loads in the forward problem.
Using the resulting 7, along with the same g, used for the
forward case, we solve the estimation problem. Fifty out of
fifty samples were estimated with negligible error as seen in
Figure 3.
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Fig. 3. Estimation performance for 50 samples of the system subject to
large deformation-causing tip forces.

For both of the aforementioned problems, we can reap
the benefit of adding the first two equations of (13) to
implicitly model the sliding friction as discussed in Section
II. As a result, the base actuation load vector becomes
Ty =[—(Tp, +,), Tay> Tar]! € R>. This reduces by one the
number of equations and unknowns for the forward problem,
whereas for the estimation problem is only reduced in one
the number of equations. This makes that both problems have
n+ 3 equations and unknowns which can be solved using
root finding problems. However, the main drawback of this
method is its heavy dependency on the initial guess for the
solution of the estimation problem. It was observed that a
same value of Tp, + Tp, corresponds to multiple shapes and
tip force solutions. This phenomenon makes this approach
suitable for cases where information about the history of the
system development is available like dynamic or quasi-static
cases. It will be also tested on a realistic scenario in Section
IV, where a proper guess was given only at the beginning
of the simulation, and the solution at each step is used as

the initial guess for the following step. In this quasi-static
simulation, the step size needs to be sufficiently small to
ensure proper development of the solution. The step size is
experimentally determined through trial and error.

IV. SIMULATED INTERVENTION SCENARIO

In this section, a simulation scenario is conducted in order
to show the efficiency of the proposed approach. We show
a medical intervention where the CTR navigates inside the
body until it achieves a desired part of the body that want to
be analysed or healed (dead tissue/tumour). Once the system
makes contact with the tissue, it starts a palpation process in
order to perceive its properties. Finally, the system performs
some kind of treatment or removal of the perceived tissue
by following a path with a predefined contact force. Three
stages can be differentiated in the proposed application: 1)
navigation control (free force motion) of the end-effector of
the robot until it makes contact with the tissue, 2) perception
of the contact environment and 3) hybrid position/force con-
troller (constrained motion) simulating some kind of surgical
application. We assume that the motion is slow enough
to make the simulation quasi-static. Inverse kinematics is
performed between a set of predefined way-points and the
base kinematics are linearly ramped from the current values
to the target values. The block diagram for this simulation
scenario is shown in Figure 4. A video for the scenario can
be viewed in the supplementary material.

Ffip =0
F, tip
Ta Inverse \—’ Forward qs
Kinematics Problem
qp

i 4s
Estimation [~
Problem F—

F tip

Fig. 4. Block diagram of the proposed simulation scenarios presented in
Sections IV-A and IV-B. The diagram also represents the simulation scenario
presented in Section IV-C but with a non-zero tip force as an input to the
inverse kinematics from the perceived environment model.

We will first formulate the inverse kinematics problem.
The inverse kinematics determines the motion of the base
kinematics, g;,, to reach a desired position with the tip of
the robot, ry;,, under a force at the tip, F;,. This problem
differs from the ones presented in Section III in that it does
not need the equations for the base actuation loads provided
that the force at the tip is known. This implies that the system
of equations being solved now is (13) excluding the first four
rows and adding the tip position constraint equation defined
as:

rtip(qlﬂqs)_rd:() a7

where ry, 1y is the desired and actual tip position vectors,
respectively. ry;), is extracted from g,;, = g, 4 (L2) according
to equation 1. As inputs to this problem, we have r; along
with F;,, and the solution is g, and g,. The result is an



underdetermined system of equations of n+ 3 equations and
n+4 unknowns, that can be solved in a similar fashion as
the estimation problem.

A. Navigation control in free motion

During free motion, the CTR is not exchanging forces with
the environment. Then, the inverse kinematics is performed
for the tip position considering that the tip force is zero,
F,i, = 0. This allows for any desired navigation of the CTR
tip. In Figure 5, the navigation phase is represented (solid
black curve) where the CTR enters the body through an
insertion incision (red circle) and starts following a specific
tip trajectory. At every step, the tip force acting on the
CTR is estimated. Contact with the environment is detected
when the magnitude of this estimation is higher than a
predefined threshold. We set this threshold to be higher
than the maximum force estimate in free motion to avoid
numerical inaccuracies (near zero estimations) being detected
as contact.

B. Estimators based on actuation readings

Once the contact is detected, we propose to perceive the
environment with our approach. In the proposed scenario,
we assume that the environment that we want to identify is
a spherical body of an unknown radius and with a force field
that grows inversely with the distance from the center. This
force field is defined using an n'* order polynomial. Then,
the force at the tip of the robot, F,(rsp), contacting with
the environment can be defined in function of the tip position
Tip, as follows:

D =||rip —rell, (18)
Pi(s) = Y ais' 19
i1
0 if D> R;
R o Q0
n])( ”P) Pn(R‘—D)% lfD<Rs ( )

where D is the distance from the center, r. is the position of
the center of the sphere, R; is the sphere radius and a; are
the polynomial coefficients that describe the force field. We
choose an n'" order polynomial because any function can
be approximated through Taylor series of infinite number
of terms. We perform unconstrained inverse kinematics to
palpate the soft body. It is done between each of the
predefined waypoints. For i waypoints we have g, , then
motion is achieved by linear interpolation between each
corresponding element in g, and gy, into a specific number
of steps. In every step, we estimate the force at the tip
by solving the estimation problem as shown in Figure 4.
Due to the unmodelled tip force in the inverse kinematics,
a mismatch may arise between the desired and actual tip
positions. However, that should not pose any concern as the
primary target is just to palpate the soft body. In the forward
problem, the tip force of the concentric tube robot in contact

with the environment is calculated from equation (20) where
the direction is pointing out the sphere in the radial direction.
That defines a new variant for the FKP where the applied
tip force is model-based rather than arbitrarily given. Under
these assumptions, the following methodology to perceive
the environment is proposed:

1) Center: Radial parameterized lines, p; = ryp; +
tuifﬁ’ are reconstructed through the current contact
point and the direction of the estimated force vector.
Let two reconstructed radial lines be p; and p,, the
center of the sphere is defined by the intersection of
these lines.

2) Force field: Solving the minimization problem defined
as:

2D

a;,Rs

k
min Z (IIFsip,; —FjH)z’
=1

where F j is the j’h recorded estimated force , and
F,;p j is the the force from the proposed force model
(20), the estimation of the coefficients of the force
field, a@;, and the radius of the sphere R, are obtained.

a)
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Fig. 5. (a) The CTR at the end of the sensing scenario touching the
identified soft sphere. Dashed lines (black) indicate the reconstructed radial
lines to estimate the sphere center (cyan). The free motion navigation path is
shown as the solid thick line (black) from the insertion incision (red circle)
to the close vicinity of the soft sphere. (b) The final estimation results for
the sphere center, radius and stiffness.

A snapshot from the end of the sensing scenario can be
seen in Figure 5 where all the parameters of the soft body
were estimated with a small error. For this simulation, we
choose the variants for the forward and estimation problems



with the added base load equations (15). We choose a
polynomial of 3" order to define the force field with the
coefficients ag = 0, a; = 25, a» = 2500, a3 = 10°. The esti-
mated coefficients are dy = —9.17 X 10’4, a; =25.54, 4, =
2484.2, 43 =0.844 x 10°.

C. Hybrid position/force control in constrained motion

Once the environment is estimated, we can use our ap-
proach to implement a hybrid position/force control emulat-
ing some kind of surgical applications. Here, the position
around a surface (tissue) is controlled while a force normal
to this surface is applied. In contrast to the inverse kinematics
performed in section IV-A where the applied tip force was
zero, the information from the estimated environment along
with equation (17) can be used to perform constrained
inverse kinematics. This additional information is used to
compensate for any mismatch in the tip position due to
the constrained motion and allows us to perform hybrid
position/force control for the CTR. We demonstrate this by
following a trajectory at a constant distance from the center
of the sphere. The trajectory is a projected ellipse on a sphere
of radius 25 mm with the center at #.. Results for the tracking
performance is presented in Figure 6.
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Fig. 6. Trajectory following results for the hybrid position/force control

after the estimation of the soft body parameters. The Root Mean Squared
Error (RMSE) for each value is as follows: RMSE\ = 0.0154 mm, RMSE, =
0.0239 mm, RMSE, = 0.0694 mm, RMSEHFn,;H =0.0019 N.

V. CONCLUSIONS

In this paper, we utilized the actuation measurements of
a CTR system to perform model-based shape and tip force
estimation. Unlike other techniques, our approach does not
rely on body integrated sensors. Somehow, it reminds us of
conventional robot systems where only the loads at the actua-
tors can be used to estimate external loads. Simulations show
the capability of our approach to estimate large deformation-
causing tip forces with high accuracy. We have also proposed
a modification to the model that completely eliminates the
sliding friction between the tubes. We present with a realistic
scenario the effectiveness of this new approach. Simulations
demonstrate free motion, environment perception, and accu-
rate hybrid position/force control. As future work, we aim to
design and fabricate an experimental CTR prototype having
minimal friction and base load measurement capabilities,
allowing for experimental -alongside numerical- validation
of the proposed approach.

APPENDIX
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where, E is the Young’s modulus and I, is the polar moment
of inertia of tubes.
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