
Forward Invariance in Neural Network
Controlled Systems

Akash Harapanahalli, Student Member, IEEE , Saber Jafarpour, Member, IEEE , and Samuel Coogan,
Senior Member, IEEE

Abstract— We present a framework based on interval
analysis and monotone systems theory to certify and
search for forward invariant sets in nonlinear systems with
neural network controllers. The framework (i) constructs
localized first-order inclusion functions for the closed-loop
system using Jacobian bounds and existing neural network
verification tools; (ii) builds a dynamical embedding system
where its evaluation along a single trajectory directly corre-
sponds with a nested family of hyper-rectangles provably
converging to an attractive set of the original system; (iii)
utilizes linear transformations to build families of nested
paralleletopes with the same properties. The framework
is automated in Python using our interval analysis tool-
box npinterval, in conjunction with the symbolic arith-
metic toolbox sympy, demonstrated on an 8-dimensional
leader-follower system.

Index Terms— Neural networks, forward invariance

I. INTRODUCTION

LEARNING enabled components are becoming increas-
ingly prevalent in modern control systems. Their ease

of computation and ability to outperform optimization-based
approaches make them valuable for in-the-loop usage [1].
However, neural networks are known to be vulnerable to
input perturbations—small changes in their input can yield
wildly varying results. In safety-critical applications, under
uncertainty in the system, it is paramount to verify safe system
behavior for an infinite time horizon. Such behaviors are
guaranteed through robust forward invariant sets, i.e., a set
for which a system will never leave under any uncertainty.

Forward invariant sets are useful for a variety of tasks. In
monitoring, a safety specification extends to infinite time if the
system is guaranteed to enter an invariant set. Additionally, for
asymptotic behavior of a system, an invariant set can be used
as a robustness margin to replace the traditional equilibrium
viewpoint in the presence of disturbances. In designing con-
trollers, one can induce infinite-time safe behavior by ensuring
the existence of an invariant set containing all initial states of
the system and excluding any unsafe regions. There are several

Akash Harapanahalli and Samuel Coogan are with the School of
Electrical and Computer Engineering at Georgia Institute of Technology,
Atlanta, GA, USA. {aharapan,sam.coogan}@gatech.edu.

Saber Jafarpour is with the Department of Electrical, Com-
puter, and Energy Engineering, University of Colorado, Boulder.
saber.jafarpour@colorado.edu.

This work was supported in part by the National Science Foundation
under grants 1749357 and 2219755 and the Air Force Office of Scientific
Research under Grant FA9550-23-1-0303.

classical techniques in the literature for certifying forward
invariant sets, such as Lyapunov-based analysis [2], barrier-
based methods [3], and set-based approaches [4]. However,
a naı̈ve application of these methods generally fails when
confronted with high-dimensional and highly nonlinear neural
network controllers in-the-loop.

Literature review: The problem of verifying the input-
output behavior of standalone neural networks has been stud-
ied extensively [5]. There is a growing body of literature
studying verification of neural networks applied in feedback
loops, which presents unique challenges due to the accumu-
lation of error in closed-loop, i.e., the wrapping effect. For
example, there are functional approaches such as POLAR [6],
JuliaReach [7], and ReachMM [8], [9] for nonlinear systems,
and linear (resp. semi-definite) programming ReachLP [10]
(resp. Reach-SDP [11]) for linear systems. While these meth-
ods verify finite time safety, their guarantees do not readily
extend to infinite time. In particular, it is not clear how to
adapt these tools to search and certify forward invariant sets
of neural network controlled systems. There are a handful
of papers that directly study forward invariance for neural
networks in dynamics: In [12] a set-based approach is used to
study forward invariance of a specific class of control-affine
systems with feedforward neural network controllers. In [13]
an ellipsoidal inner-approximation of a region of attraction of
neural network controlled system is obtained using Integral
Quadratic Constraints (IQCs). In [14], a Lyapunov-based ap-
proach is used to study robust invariance of control systems
modeled by neural networks. In [15], an adaptive template
polytopic approach using MILP verifies RL-based controllers.

Contributions: In this letter, we propose a dynamical
system approach for systematically finding nested families of
robust forward invariant sets for nonlinear systems controlled
by neural networks. Our method uses localized first-order
inclusion functions to construct an embedding system, which
evaluates the inclusion function separately on the edges of a
hyper-rectangle. Our first result is Proposition 1, which certi-
fies (and fully characterizes for some systems) the forward in-
variance of a hyper-rectangle through the embedding system’s
evaluation at a single point. Our main result is Theorem 1,
which describes how a single trajectory of the dynamical
embedding system can be used to construct a nested family of
invariant and attracting hyper-rectangles. However, in many
applications, hyper-rectangles are not suitable for capturing
forward invariant regions, and a simple linear transformation
can greatly improve results. In Proposition 2, we carefully

construct an accurate localized inclusion function for any
linear transformation on the original system, which we use
in Theorem 2 to find a nested family of forward invariant par-
alleletopes. Finally, we implement the framework in Python,
demonstrating its applicability to an 8-dimensional leader-
follower system.1 In previous work [8], [9], we consider the
online problem of efficiently overapproximating the reachable
set of nonlinear learning-enabled systems. In this letter, we
consider the offline problem of searching for invariant sets,
which greatly benefit from the novel use of localization and
state transformations.

Notation: Define the partial order  on Rn as x  y if and
only if xi  yi for every i = 1, . . . , n. For two vectors x, x 2
Rn such that x  x, denote the (closed) interval [x, x] = {x :
x  x  x}. The set of intervals of Rn is denoted by IRn.
For [a, a], [b, b] 2 IR and [A,A] 2 IRm⇥p, [B,B] 2 IRp⇥n,

1) [a, a]+[b, b] := [a+b, a+b] (also on IRn element-wise);
2) [a, a] · [b, b] := [min{ab, ab, ab, ab},max{ab, ab, ab, ab}];
3) ([A,A][B,B])i,j :=

Pp
k=1[Ai,k, Ai,k] · [Bk,j , Bk,j].

For two vectors x, y 2 Rn and i 2 {1, . . . , n}, let xi:y 2 Rn

be the vector obtained by replacing the ith entry of x with that
of y, i.e., (xi:y)j = yj if i = j and otherwise (xi:y)j = xj .

The partial order  on Rn induces the southeast partial

order SE on R2n as
�
x
bx
�

SE

� y
by
�

if and only if x  y
and by  bx. Let T 2n

�0 = {(xbx) 2 R2n : x  bx}. Note that
T 2n
�0 ' IRn, and define [(xx)] := [x, x]. Given a mapping g and

a set X ✓ dom(g), define the set g(X) := {g(x) : x 2 X}.
For the nonlinear system ẋ = f(x,w) with initial condition

x0 2 X0 and disturbance w 2 W for all time, define the reach-

able set as Rf (t,X0,W) =

(
�f (t, x0,w), 8x0 2 X ,

w : [0,1) ! W PW cont.

)

where t 7! �f (t, x0,w) is the flow of the system from initial
condition x0 at time 0 under disturbance mapping w. A set
X ✓ Rn is W-robustly forward invariant if for every t 2 R�0,
we have Rf (t,X ,W) ✓ X . X is a W-attracting set with
region of attraction Y ✓ Rn if X is W-robustly forward
invariant, and for every x0 2 Y , every piecewise continuous
w : [0,1) ! W , and every open neighborhood N ◆ X , there
exists T ⇤ � 0 such that �f (t, x0,w) 2 N , for every t � T ⇤.

II. PROBLEM STATEMENT

Consider a nonlinear dynamical system of the form

ẋ = f(x, u, w), (1)

where x 2 Rn is the state of the system, u 2 Rp is the control
input, w 2 W ⇢ Rq is a disturbance, and f : Rn⇥Rp⇥Rq !
Rn is a parameterized vector field. We assume that the state
feedback to the system is defined by a continuously applied
k-layer feed-forward neural network controller N : Rn ! Rp:

⇠(0) = x, u = N(x) := W (k)⇠(k)(x) + b(k),

⇠(i) = �(i�1)(W (i�1)⇠(i�1) + b(i�1)), i 2 {1, . . . , k}
(2)

where ni is the number of neurons in the ith layer, W (i�1) 2
Rni⇥ni�1 is the weight matrix of the ith layer, b(i�1) 2 Rni is

1All code for the numerical experiments can be found at
https://github.com/gtfactslab/Harapanahalli_LCSS2024.

the bias vector of the ith layer, ⇠(i)(y) 2 Rni is the ith layer
hidden variable, and �(i�1) : Rni ! Rni is the ith layer diag-

onal activation function satisfying 0  �(i�1)
j (x)��(i�1)

j (y)

x�y  1
for every j 2 {1, . . . , ni}. A large class of activation functions
including ReLU, leaky ReLU, sigmoid, and tanh satisfies this
condition (after a possible re-scaling of their co-domain). In
feedback with this controller, define the closed-loop neural
network controlled system

ẋ = f c(x,w) := f(x,N(x), w). (3)

Our goal is to find sets X such that, starting inside X , the
reachable set of the closed-loop system remains inside X for
all times t � 0 and for any disturbances in W , i.e., W-robustly
forward invariant sets of the closed-loop system (3).

III. INCLUSION FUNCTIONS FOR NEURAL NETWORK
CONTROLLED SYSTEMS

A. Inclusion Functions
Interval analysis aims to provide interval bounds on the

output of a function given an interval of possible inputs [16].
Given a function f : Rn ! Rm, the function F =

⇣
F

F

⌘
:

T 2n
�0 ! T 2m

�0 is called an inclusion function for f if

F(x, x)  f(x)  F(x, x), for every x 2 [x, x], (4)

for every interval [x, x] ⇢ Rn, and is an S-localized inclu-

sion function if the bounds (4) are valid for every interval
[x, x] ✓ S , in which case we instead write FS . Additionally,
an inclusion function is

1) monotone if F(x, x) �SE F(y, y), for any [x, x] ✓ [y, y];
2) thin if for any x, we have F(x, x) = f(x) = F(x, x);
3) minimal if F returns the tightest possible interval, i.e. for

each i 2 {1, . . . ,m},

Fmin
i (x, x) = inf

x2[x,x]
fi(x), F

min
i (x, x) = sup

x2[x,x]
fi(x).

Given the one-to-one correspondence T 2n
�0 ' IRn, an inclu-

sion function is often interpreted as a mapping from intervals
to intervals—given an inclusion function F =

⇣
F

F

⌘
: T 2n

�0 !
T 2m
�0 , we use the notation [F] = [F,F] : IRn ! IRm to denote

the equivalent interval-valued function with interval argument.
In this paper, we focus on two main methods to construct

inclusion functions: (i) Given a composite function f = f1 �
f2 � · · · � fN , and inclusion functions Fi for fi for every i 2
{1, . . . , N}, the natural inclusion function

Fnat(x, x) := (F1 � F2 · · · � FN)(x, x) (5)

provides a simple but possibly conservative method to build
inclusion functions using the inclusion functions of simpler
mappings; (ii) Given a differentiable function f , an inclusion
function Jx for its Jacobian, and a centering point �

x 2 [x, x],
the Jacobian-based inclusion function

[Fjac(x, x)] := [Jx(x, x)]([x, x] �
�
x) + f(

�
x), (6)

can provide better estimates by bounding the first order Taylor
expansion of f around �

x. Both of these inclusion functions are

https://github.com/gtfactslab/Harapanahalli_LCSS2024

monotone (resp. thin) assuming the inclusion functions used
to build them are also monotone (resp. thin).

In previous work [17], we introduce the open source
package npinterval which automates natural inclusion
functions in numpy. When used with a symbolic toolbox like
sympy, one can construct Jacobian-based inclusion functions.

B. Localized Closed-Loop Inclusion Functions
One of the biggest challenges in neural network controlled

system verification is correctly capturing the interactions be-
tween the system and the controller. For invariance analysis, it
is paramount to capture the stabilizing nature of the controller,
which can easily be lost with naı̈ve overbounding of the input-
output interactions between the system and controller. We
make the following assumption throughout.

Assumption 1 (Local affine bounds of neural network).
For the neural network (2), there exists an algorithm
that, for any interval [⇠, ⇠], produces a local affine bound
(C[⇠,⇠], d[⇠,⇠], d[⇠,⇠]) such that for every x 2 [⇠, ⇠],

C[⇠,⇠]x+ d[⇠,⇠]  N(x)  C[⇠,⇠]x+ d[⇠,⇠].

Many off-the-shelf neural network verification frameworks
can produce the linear estimates required in Assumption 1,
and in particular, we focus on CROWN [18]. For ReLU and
otherwise piecewise linear networks, one can setup a mixed
integer linear program similar to [19], which is tractable for
small-sized networks. Frameworks like auto_LiRPA [20]
operate on general computational graphs, and thus satisfy this
assumption for a wide variety neural network architectures,
e.g., residual neural networks, recurrent neural networks, and
convolutional neural networks.

The bounds from Assumption 1 can be used to construct a
[⇠, ⇠]-localized inclusion function for N(x):

N[⇠,⇠](x, x) = C+
[⇠,⇠]

x+ C�
[⇠,⇠]

x+ d[⇠,⇠],

N[⇠,⇠](x, x) = C�
[⇠,⇠]

x+ C+
[⇠,⇠]

x+ d[⇠,⇠],
(7)

where (C+)i,j = max(Ci,j , 0), and C� = C � C+.
Using the localized first-order bounds of the neural network,

we propose a general framework for constructing closed-loop
inclusion functions for neural network-controlled systems that
capture the first-order stabilizing effects of the controller.
First, assuming f is differentiable, with inclusion functions
Jx, Ju, Jw for the Jacobians Dxf,Duf,Dwf , one can con-
struct a closed-loop Jacobian-based inclusion function Fc.
Given an interval [z, z], with Jx, Ju, Jw evaluated on the input
(z, z,N[z,z](z, z),N[z,z](z, z), w, w), define

[Fc
[z,z](x, x, w,w)] = ([Jx] + [Ju]C[x,x])[x, x]

+ [Ju][d[x,x], d[x,x]] + [R[z,z](w,w)],
(8)

where �
x 2 [x, x] ✓ [z, z], �

u = N(
�
x), �

w 2 [w,w],
and [R[z,z](w,w)] := �[Jx]

�
x � [Ju]

�
u + [Jw]([w,w] � �

w) +
f(

�
x,

�
u,

�
w). Proposition 2 provides a more general result prov-

ing (8) is a [z, z]-localized inclusion function for f c (T = I).
In the case that f is not differentiable, or finding an

inclusion function for its Jacobian is difficult, as long as a

(monotone) inclusion function F for the open-loop system f
is known, a (monotone) closed-loop inclusion function for
f c from (3) can be constructed using the natural inclusion
approach in (5) with N from (7)

Fc(x, x, w,w) = F(x, x,N[x,x](x, x),N[x,x](x, x), w, w). (9)

Remark 1 (Interval observer). In the case that the system state
is not perfectly known but rather the output of an interval
observer, one can modify (3) to ẋ = f(x,N(x + v), w),
where v 2 [v, v] is the interval observer uncertainty. One
can incorporate this into either inclusion function by bloating
the localization of calls to Assumption 1. For (8), as long
as [x + v, x + v] ✓ [z, z], replace (C[x,x], d[x,x], d[x,x]) with
(C[x+v,x+v], d[x+v,x+v], d[x+v,x+v]). For (9), replace N[x,x]

with N[x+v,x+v].

IV. A DYNAMICAL APPROACH TO SET INVARIANCE

Using the closed-loop inclusion functions developed in
Section III, we embed the uncertain dynamical system (3) into
a larger certain system that enables computationally tractable
approaches to verify and compute families of invariant sets.
Consider the closed-loop system (3) with an S-localized
inclusion function Fc

S : T 2n
�0 ⇥ T 2q

�0 ! T 2n
�0 for f c constructed

via, e.g., (8) or (9), with the disturbance set W ✓ [w,w]. Then
Fc
S induces an embedding system for (3) with state (xx) 2 T 2n

�0
and dynamics defined by

ẋi =
⇣
Ec
S(x, x, w,w)

⌘

i
:=

⇣
Fc
S(x, xi:x, w, w)

⌘

i
,

ẋi =
⇣
E
c
S(x, x, w,w)

⌘

i
:=

⇣
F
c
S(xi:x, x, w,w)

⌘

i
,

(10)

where Ec
S : T 2n

�0 ⇥ T 2q
�0 ! R2n. One of the key features

of the embedding system, which evolves on T 2n
�0 , is that the

inclusion function is evaluated separately on each face of the
hyper-rectangle [x, x], represented by [x, xi:x] and [xi:x, x] for
each i 2 {1, . . . , n}. In Proposition 1, this meshes nicely with
Nagumo’s Theorem [4], which allows us to guarantee forward
invariance by checking the boundary of the hyper-rectangle
through one evaluation of the embedding system (10).

Proposition 1 (Forward invariance in hyper-rectangles). Con-

sider the neural network controlled system (3) with the dis-

turbance set W = [w,w] and initial condition x0 2 [x?, x?].
Given a set S ◆ [x?, x?], let Fc

S be a S-localized inclusion

function for f c
, e.g. (8) or (9), and Ec

S be the embedding

system induced by Fc
S . If

Ec
S(x

?, x?, w, w) �SE 0, (11)

then [x?, x?] is a [w,w]-robustly forward invariant set. More-

over, if Fc
S is the minimal inclusion function of f c

, the

condition (11) is also necessary for [x?, x?] to be a [w,w]-
robustly forward invariant set.

Proof. For brevity, since [x?, x?] ✓ S , we drop S from
the notation. Consider the set [x?, x?], and suppose that
Ec(x?, x?, w, w) �SE 0. Therefore, for every i 2 {1, . . . , n},

0  Fc
i(x

?, x?
i:x? , w, w)  inf

x2[x?,x?
i:x?],w2[w,w]

f c(x,w).

This implies that f c(x,w) � 0 for every x on the i-th lower
face of the hyperrectangle [x?, x?

i:x?]. Similarly, f c(x,w)  0
on the i-th upper face of the hyperrectangle [x?

i:x? , x?]. Since
this holds for every i 2 {1, . . . , n}, by Nagumo’s theorem [4,
Theorem 3.1], the closed set [x?, x?] is forward invariant
since for every point x along its boundary

S
i([x

?, x?
i:x?] [

[x?
i:x? , x?]), the vector field f c(x,w) points into the set, for

every w 2 [w,w]. Now, suppose that E is the embedding
system induced by the minimal inclusion function Fmin for f c,
and [x?, x?] is a hyper-rectangle such that E(x?, x?, w, w) 6�SE
0. Then there exists i 2 {1, . . . , n} such that either

Fmin
i (x?, x?

i:x? , w, w) = inf
x2[x?,x?

i:x?],w2[w,w]
f(x,w) < 0, or

F
min
i (x?

i:x? , x?, w, w) = sup
x2[x?

i:x? ,x?],w2[w,w]
f(x,w) > 0.

If the first case holds, then there exists x0 2 [x?, x?
i:x], w 2

[w,w] such that f c(x0, w) < 0 along the i-th lower face
of the hyper-rectangle. If the second case holds, then there
exists x0 2 [x?

i:x, x
?], w 2 [w,w] such that f c(x0, w) > 0

along the i-th upper face of the hyper-rectangle. Thus, by
Nagumo’s theorem, the set [x?, x?] is not [w,w]-robustly
forward invariant, as there exists a point along its boundary
such that the vector field f c points outside the set.

Remark 2 (Linear systems with piecewise linear activations).
For the special case of the linear system ẋ = Ax + Bu +
Dw controlled by a neural network u = N(x) with piecewise
linear activations, e.g. ReLU or Leaky ReLU, one can compute
the minimal inclusion function using a Mixed Integer Linear
Program (MILP) similar to [19]. For i 2 {1, . . . , n},

Fmin
i (x, x, w,w) = min

x2[x,x],w2[w,w]
(Ax+BN(x) +Dw)i,

F
min
i (x, x, w,w) = max

x2[x,x],w2[w,w]
(Ax+BN(x) +Dw)i.

The next Theorem shows how monotonicity of the em-
bedding dynamics define a family of nested robustly forward
invariant sets using the condition from Proposition 1.

Theorem 1 (A nested family of invariant sets). Consider the

neural network controlled system (3) with the disturbance set

W = [w,w] and initial condition x0 2 [x0, x0]. Given a set

S ◆ [x0, x0], let Fc
S be a S-localized monotone inclusion

function for f c
, e.g. (8) or (9), and Ec

S be the embedding

system induced by Fc
S . If

Ec
S(x0, x0, w, w) �SE 0,

then

i) [x(t), x(t)] is a [w,w]-robustly forward invariant set for

the system (3) for every t � 0, and for every t  ⌧ ,

[x(⌧), x(⌧)] ✓ [x(t), x(t)]; and

ii) limt!1

⇣
x(t)
x(t)

⌘
=

⇣
x?

x?

⌘
, where

⇣
x?

x?

⌘
2 T 2n

�0 is an

equilibrium point of the embedding system (10) and

[x?, x?] is a [w,w]-attracting set for the system (3) with

region of attraction [x0, x0],

where t 7!
⇣

x(t)
x(t)

⌘
is the trajectory of (10) from

⇣
x0
x0

⌘
.

Proof. (Monotonicity of Ec
S dynamics). Consider any two

points
⇣

x
x

⌘
,
⇣

x0

x0

⌘
2 T 2n

�0 , such that
⇣

x
x

⌘
SE

⇣
x0

x0

⌘
. This

implies that
⇣

x
xi:x

⌘
SE

⇣
x0

x0
i:x0

⌘
and

⇣
xi:x
x

⌘
SE

⇣
x0
i:x0
x0

⌘
.

Since Fc
S is a monotone inclusion function,
�
Fc
S(x, xi:x, w, w)

�
i


�
Fc
S(x

0, x0
i:x0 , w, w)

�
i
,

�
F
c
S(xi:x, x, w,w)

�
i
�

�
F
c
S(x

0
i:x0 , x0, w, w)

�
i
,

for every i 2 {1, . . . , n}. This implies that the embedding
system Ec

S is monotone w.r.t. the southeast partial order
SE [21], [22]. (Part (i)). Now using [23, Proposition 2.1], the
set P+ = {(xx) : (

x
x) �SE 0} is a forward invariant set for Ec

S .
Since

⇣
x0
x0

⌘
2 P+, forward invariance implies

⇣
x(t)
x(t)

⌘
2 P+

for every t � 0. Therefore, using Proposition 1, [x(t), x(t)]
is forward invariant for the closed-loop system (3) for every
t � 0. Additionally, the curve t 7!

⇣
x(t)
x(t)

⌘
is nondecreasing

with respect to the partial order SE [23, Proposition 2.1].
This means that for every t  ⌧ ,

⇣
x(t)
x(t)

⌘
SE

⇣
x(⌧)
x(⌧)

⌘
,

which implies that [x(⌧), x(⌧)] ✓ [x(t), x(t)]. (Part (ii)).
Since t 7!

⇣
x(t)
x(t)

⌘
is nondecreasing w.r.t. SE, for every

i 2 {1, . . . , n}, the curves t 7! xi(t) (resp. t 7! xi(t))
are nondecreasing (resp. nonincreasing) w.r.t.  and bounded
on R. This implies that there exists x⇤

i and x⇤
i such that

limt!1 xi(t) = x⇤
i and limt!1 xi(t) = x⇤

i . By defining
the vector x⇤ = (x⇤

1, . . . , x
⇤
n)

> and x⇤ = (x⇤
1, . . . , x

⇤
n)

>, we
get limt!1

⇣
x(t)
x(t)

⌘
=

⇣
x?

x?

⌘
. Moreover, since

⇣
x(t)
x(t)

⌘
2 T 2n

�0

for every t � 0 and is a continuous curve in time t, we get⇣
x?

x?

⌘
2 T 2n

�0 . Finally, Rf c(t, [x0, x0], [w,w]) ✓ [x(t), x(t)]

for every t � 0 [9, Proposition 5]. Thus, every trajectory of
the system starting from [x0, x0] converges to [x?, x?].

After finding one invariant set using Proposition 1, Theo-
rem 1 obtains a nested family of invariant sets guaranteed to
converge to some [x?, x?], obtained by evolving the embedding
system forwards in time. This is the smallest invariant set
in the family, and is a [w,w]-attractive set with region of
attraction [x0, x0]. Note that the embedding system can also
be evolved backwards in time while [x(t), x(t)] �SE 0
and [x(t), x(t)] ✓ S to expand the invariant sets. Addi-
tionally, Proposition 1 and Theorem 1 do not require thin
inclusion functions, generalizing existing decomposition-based
approaches for finding hyper-rectangular invariant sets [24].

V. PARALLELETOPE INVARIANT SETS

Theorem 1 can be used to verify and search for hyper-
rectangular invariant sets using the embedding system. In this
section, we extend our framework to characterize a more
general class of invariant paralleletopes. For some invertible
matrix T 2 Rn⇥n, define the T -transformed system

y := Tx := �(x)

ẏ = gc(y, w) = Tf(T�1y,N 0(y), w),
(12)

where N 0(y) := N(T�1y) is the neural network from (2),
with an extra initial layer with weight matrix T�1 and linear
activation �(x) = x. There is a one-to-one correspondence

between the transformed system (12) and the original sys-
tem (3), in the sense that every trajectory t 7! y(t) of (12)
uniquely corresponds with the trajectory t 7! ��1(y(t)) of (3).
Given an interval [y, y], the set ��1([y, y]) = {T�1y :
y 2 [y, y]} defines a paralleletope in standard coordinates.
We construct a localized closed-loop Jacobian-based inclusion
function Gc

�([z,z]) for gc as follows. Given an interval [z, z] in
standard coordinates, with inclusion functions Jx, Ju, Jw for
the Jacobians Dxf,Duf,Dwf of the original system evaluated
on the input (z, z,N[z,z](z, z),N[z,z](z, z), w, w), define

[Gc
�([z,z])(y, y, w,w)] = T ([Jx] + [Ju](C

0
[y,y]T))T

�1[y, y]

+ T [Ju][d
0
[y,y], d

0
[y,y]] + T [R[z,z](w,w)], (13)

where (C 0, d0, d
0
) are from Assumption 1 evaluated over [y, y]

on the transformed neural network N 0(y) = N(T�1y), �
x 2

��1([y, y]) ✓ [z, z], �
u 2 N[z,z](z, z),

�
w 2 [w,w], and

[R[z,z](w,w)] = �[Jx]
�
x�[Ju]

�
u+[Jw]([w,w]�

�
w)+f(

�
x,

�
u,

�
w).

Proposition 2. Consider the neural network controlled sys-

tem (3) and let T 2 Rn⇥n
be an invertible matrix transform-

ing the system into (12). Then (13) is a �([z, z])-localized

(monotone) inclusion function for gc.

Proof. For x 2 [z, z] (mean-value, see [16, Section 2.4.3]),

Tf c(T�1y, w) 2 T [Jx](T
�1y � �

x) + T [Jw](w � �
w)

+ T [Ju](N(T�1y) � �
u) + Tf(

�
x,

�
u,

�
w).

Considering any interval [y, y] ✓ �([z, z]) containing y, using
(C 0

[y,y], d
0
[y,y], d

0
[y,y]) from Assumption 1 on N 0,

gc(y, w) 2 T [Jx](T
�1y � �

x) + T [Jw](w � �
w)

+ T [Ju](C
0
[y,y]y + [d0[y,y], d

0
[y,y]] �

�
u) + Tf(

�
x,

�
u,

�
w),

gc(y, w) 2 T ([Jx] + [Ju](C
0
[y,y]T))T

�1[y, y]

+ T [Ju][d
0
[y,y], d

0
[y,y]] + T [R[z,z](w,w)].

It is important to note that the inclusion functions Jx, Ju, Jw
in (13) are evaluated in the original coordinates. Instead, one
could symbolically write g as a new system and directly apply
the closed-loop Jacobian-based inclusion function from (8).
In practice, however, these transformed dynamics often have
complicated expressions that lead to excessive conservatism
when using natural inclusion functions, and are not suitable
for characterizing invariant sets. In the next Theorem, we link
forward invariant hyper-rectangles in transformed coordinates
to forward invariant paralleletopes in standard coordinates.

Theorem 2 (Forward invariance in paralleletopes). Consider

the neural network controlled system (3) with the disturbance

set W = [w,w]. Let T 2 Rn⇥n
be an invertible matrix

transforming the system into (12), with initial condition y0 2
[y

0
, y0]. Given a set S ◆ [y

0
, y0], let Gc

S be a S-localized

inclusion function for gc, e.g. (13), and let Ec
T,S be the

embedding system (10) induced by Gc
S . If

Ec
T,S(y0, y0, w, w) �SE 0,

then the paralleletope ��1([y
0
, y0]) is a [w,w]-robustly for-

ward invariant set for the neural network controlled system (3).

Proof. Consider any trajectory t 7! x(t) of the original sys-
tem (3) starting from x0 2 ��1([y

0
, y0]). Given the one-to-one

correspondence between (3) and (12), the curve t 7! �(x(t))
is the trajectory of the transformed system (12) starting from
y0 = �(x0). Using Proposition 1, Ec

T,S(y0, y0, w, w) �SE 0
implies that the hyper-rectangle [y

0
, y0] is [w,w]-robustly

forward invariant in the transformed system (12). This implies
that y(t) 2 [y

0
, y0] for every t � 0. Since x(t) = ��1(y(t)),

it follows that x(t) 2 ��1([y
0
, y0]) for every t � 0.

When using (13) as Gc
S , the neural network verification step

from Assumption 1 to find (C 0, d0, d
0
) is evaluated separately

on each face of the hyperrectangle [y
0
, y0], i.e., each face of

the paralleletope ��1([y
0
, y0]). The dynamical approach from

Theorem 1 yields a nested family of invariant hyperrectangles
for the transformed system (12), corresponding to a nested
family of invariant paralleletopes for the original system (3).
There are principled ways of choosing T , e.g., the Jordan
decomposition of the linearization about an equilibrium.

VI. NUMERICAL EXPERIMENTS

Consider two vehicles L and F each with dynamics

ṗjx = vjx, v̇jx = �(uj
x) + wj

x,

ṗjy = vjy, v̇jy = �(uj
y) + wj

y,
(14)

for j 2 {L,F}, where pj = (pjx, p
j
y) 2 R2 is the displacement

of the center of mass of j in the plane, vj = (vjx, v
j
y) 2 R2

is the velocity of the center of mass of j, (uj
x, u

j
y) 2 R2 are

desired acceleration inputs limited by the nonlinear softmax
operator �(u) = ulim tanh(u/ulim) with ulim = 20, and
wj

x, w
j
y 2 [�0.005, 0.005] are bounded disturbances on j. De-

note the combined state of the system x := (pL, vL, pF, vF) 2
R8. We consider a leader-follower structure for the system,
where the leader vehicle L chooses its control u = (uL

x , u
L
y)

as the output of a state feedback continuously applied neural
network controller (4⇥100⇥100⇥2, ReLU activations), with
input (pLx , pLy , vLx , vLy). The neural network was trained using
imitation learning on 5.7M data points from an offline MPC
control policy for the leader only, with control limits imple-
mented as hard constraints rather than �. The offline policy
minimized a quadratic cost aiming to stabilize to the origin
while avoiding four circular obstacles centered at (±4,±4)
with radius 2.25 each, implemented as hard constraints with
33% padding and a slack variable. The follower vehicle F
follows the leader with a PD controller

uF
d = kp(p

L
d � pFd) + kv(v

L
d � vFd), (15)

for each d 2 {x, y} with kp = 6 and kv = 7.
First, a trajectory of the undisturbed system is

run until it reaches the equilibrium point x? ⇡
[0.01, 0, 0, 0, 0.01, 0, 0, 0]T . Then, using sympy, the
Jacobian matrices Dsf(x?, N(x?), 0) for s 2 {x, u, w}
are computed, along with CROWN (same-slope)
using auto_LiRPA [20] along the interval [z, z] :=
x? + [�0.06, 0.06]4 ⇥ [�0.25, 0.25]2 ⇥ [�0.325, 0.325]2

yielding (C[z,z], d[z,z], d[z,z]). Then, the Jordan decomposition
T�1JT = (Dxf(x?, N(x?), 0) + Duf(x?, N(x?), 0)C[z,z])

�0.02 0.00 0.02 0.04
pL

x

�0.05

0.00

0.05

pL
y

�0.050 �0.025 0.000 0.025 0.050
vL

x

�0.05

0.00

0.05

vL
y

�0.1 0.0 0.1
pF

x

�0.2

0.0

0.2

pF
y

�0.2 0.0 0.2
vF

x

�0.25

0.00

0.25

vF
y

Fig. 1. A family of 93 paralleletope invariant sets for the leader-
follower system (14) are visualized using projections from R8 onto 4
R2 planes. Top Left: projection onto leader’s position pL

x, p
L
y ; Top

Right: projection onto leader’s velocity vL
x , v

L
y ; Bottom Left: projection

onto follower’s position pF
x , p

F
y ; Bottom Right: projection onto follower’s

velocity vF
x , vF

y . After one invariant set ��1([y
0
, y0]) is found (blue

line), the transformed embedding system is integrated forwards until
approximate convergence, and backwards until Proposition 1 is violated,
yielding a monotonically decreasing collection of nested invariant sets
converging to an attractive set (innermost lines).

yields the transformation T , and the matrix J ⇡
diag(�6,�6,�4.12,�4.26,�0.93,�0.95,�1,�1) is
filled with negative real eigenvalues, signifying that
the equilibrium x? is locally stable. The T -transformed
system (12) is analyzed with the embedding system
induced by (13), using npinterval [17] to compute
the natural inclusion functions of the symbolic Jacobian
matrices to obtain Jx, Ju, Jw. The interval [y

0
, y0] =

Tx? + [�0.05, 0.05]4 ⇥ [�0.08, 0.08]2 ⇥ [�0.11, 0.11]2 yields
��1([y

0
, y0]) ✓ [z, z], and ET,�([z,z])(y0, y0, w, w) �SE 0.

Thus, using Theorem 2, the paralleletope ��1([y
0
, y0]) is an

invariant set of (14). The embedding system in y coordinates
is simulated forwards using Euler integration with a step-size
of 0.1 for 90 time steps, and at each step the localization
[z, z] = T�1[y(t), y(t)] is refined. Starting from

⇣
y
0

y0

⌘
,

the forward-time embedding system converges to a point⇣
y?

y?

⌘
, where ET,�([z,z])(y

?, y?, w, w) = 0. The transformed
embedding system is also simulated backwards using Euler
integration with a step-size of 0.05 until the condition⇣

y(t)

y(t)

⌘
�SE 0 is violated (call the final time t0). Using

Theorems 1 and 2, the collection {��1([y(t), y(t)])}t�t0

consists of nested invariant paralleletopes converging to
the attractive set ��1([y?, y?]) with region of attraction
��1([y(t0), y(t0)]). The initial paralleletope takes 0.38
seconds to verify, and the entire nested family of 93
paralleletopes takes 40.28 seconds to compute.

VII. CONCLUSIONS

Using interval analysis and neural network verification
tools, we propose a framework for certifying hyper-rectangle
and paralleletope invariant sets in neural network controlled
systems. The key component of our approach is the dynamical
embedding system, whose trajectories can be used to construct
a nested family of invariant sets. This work opens up an avenue
for future work in designing safe learning-enabled controllers.

REFERENCES

[1] S. Chen, K. Saulnier, N. Atanasov, D. D. Lee, V. Kumar, G. J. Pap-
pas, and M. Morari, “Approximating explicit model predictive control
using constrained neural networks,” in 2018 Annual American Control

Conference (ACC), 2018, pp. 1520–1527.
[2] U. Topcu, A. Packard, and P. Seiler, “Local stability analysis using

simulations and sum-of-squares programming,” Automatica, vol. 44,
no. 10, pp. 2669–2675, 2008.

[3] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and
P. Tabuada, “Control barrier functions: Theory and applications,” in 18th

European control conference (ECC). IEEE, 2019, pp. 3420–3431.
[4] F. Blanchini, “Set invariance in control,” Automatica, vol. 35, no. 11,

pp. 1747–1767, 1999.
[5] C. Liu, T. Arnon, C. Lazarus, C. Strong, C. Barrett, M. J. Kochenderfer

et al., “Algorithms for verifying deep neural networks,” Foundations and

Trends® in Optimization, vol. 4, no. 3-4, pp. 244–404, 2021.
[6] C. Huang, J. Fan, X. Chen, W. Li, and Q. Zhu, “POLAR: A polynomial

arithmetic framework for verifying neural-network controlled systems,”
in Automated Technology for Verification and Analysis. Springer
International Publishing, 2022, pp. 414–430.

[7] C. Schilling, M. Forets, and S. Guadalupe, “Verification of neural-
network control systems by integrating Taylor models and zonotopes,”
in Proceedings of the AAAI Conference on Artificial Intelligence, 2022.

[8] S. Jafarpour, A. Harapanahalli, and S. Coogan, “Interval reachability
of nonlinear dynamical systems with neural network controllers,” in
Learning for Dynamics and Control Conference. PMLR, 2023.

[9] ——, “Efficient interaction-aware interval analysis of neural network
feedback loops,” arXiv preprint arXiv:2307.14938, 2023.

[10] M. Everett, G. Habibi, C. Sun, and J. How, “Reachability analysis of
neural feedback loops,” IEEE Access, vol. 9, pp. 163 938–163 953, 2021.

[11] H. Hu, M. Fazlyab, M. Morari, and G. J. Pappas, “Reach-SDP: Reach-
ability analysis of closed-loop systems with neural network controllers
via semidefinite programming,” in 59th IEEE Conference on Decision

and Control (CDC), 2020, pp. 5929–5934.
[12] A. Saoud and R. G. Sanfelice, “Computation of controlled invariants for

nonlinear systems: Application to safe neural networks approximation
and control,” IFAC-PapersOnLine, vol. 54, no. 5, pp. 91–96, 2021,
conference on Analysis and Design of Hybrid Systems (ADHS).

[13] H. Yin, P. Seiler, and M. Arcak, “Stability analysis using quadratic con-
straints for systems with neural network controllers,” IEEE Transactions

on Automatic Control, vol. 67, no. 4, pp. 1980–1987, 2022.
[14] H. Dai, L. Landry, B.and Yang, M. Pavone, and R. Tedrake, “Lyapunov-

stable neural-network control,” arXiv preprint arXiv:2109.14152, 2021.
[15] E. Bacci, M. Giacobbe, and D. Parker, “Verifying reinforcement learning

up to infinity,” in Proceedings of the International Joint Conference

on Artificial Intelligence. International Joint Conferences on Artificial
Intelligence Organization, 2021.

[16] L. Jaulin, M. Kieffer, O. Didrit, and É. Walter, Applied Interval Analysis.
Springer London, 2001.

[17] A. Harapanahalli, S. Jafarpour, and S. Coogan, “A toolbox for fast
interval arithmetic in numpy with an application to formal verification
of neural network controlled system,” in 2nd ICML Workshop on Formal

Verification of Machine Learning, 2023.
[18] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel, “Efficient

neural network robustness certification with general activation func-
tions,” in Advances in Neural Information Processing Systems, vol. 31,
2018, p. 4944–4953.

[19] V. Tjeng, K. Y. Xiao, and R. Tedrake, “Evaluating robustness of neural
networks with mixed integer programming,” in International Conference

on Learning Representations, 2019.
[20] K. Xu, Z. Shi, H. Zhang, Y. Wang, K.-W. Chang, M. Huang,

B. Kailkhura, X. Lin, and C.-J. Hsieh, “Automatic perturbation analysis
for scalable certified robustness and beyond,” Advances in Neural

Information Processing Systems, vol. 33, pp. 1129–1141, 2020.
[21] D. Angeli and E. D. Sontag, “Monotone control systems,” IEEE Trans-

actions on Automatic Control, vol. 48, no. 10, pp. 1684–1698, 2003.
[22] G. A. Enciso, H. L. Smith, and E. D. Sontag, “Nonmonotone systems

decomposable into monotone systems with negative feedback,” Journal

of Differential Equations, vol. 224, no. 1, pp. 205–227, 2006.
[23] H. L. Smith, Monotone Dynamical Systems: An Introduction to the

Theory of Competitive and Cooperative Systems, ser. Mathematical
Surveys and Monographs. American Mathematical Society, 1995.

[24] M. Abate and S. Coogan, “Computing robustly forward invariant sets for
mixed-monotone systems,” in 2020 59th IEEE Conference on Decision

and Control (CDC), 2020, pp. 4553–4559.

	Introduction
	Problem Statement
	Inclusion Functions for Neural Network Controlled Systems
	Inclusion Functions
	Localized Closed-Loop Inclusion Functions

	A Dynamical Approach to Set Invariance
	Paralleletope Invariant Sets
	Numerical Experiments
	Conclusions
	References

