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Abstract—In Urban Air Mobility (UAM) networks, takeoff

and landing sites, called vertiports, are likely to experience

intermittent closures due to, e.g., adverse weather. To ensure

safety, all in-flight Urban Air Vehicles (UAVs) in a UAM network

must therefore have alternative landing sites with sufficient

landing capacity in the event of a vertiport closure. In this paper,

we study the problem of safety verification of UAM schedules

in the face of vertiport closures. We first provide necessary

and sufficient conditions for a given UAM schedule to be safe

in the sense that, if a vertiport closure occurs, then all UAVs

will be able to safely land at a backup landing site. We then

extend these results to the scenario of multiple vertiport closures.

Next, we convert these conditions to an efficient algorithm for

verifying the safety of a UAM schedule via a linear program by

using properties of totally unimodular matrices. Our algorithm

allows for uncertain travel time between UAM vertiports and

scales quadratically with the number of scheduled UAVs. We

demonstrate our algorithm on a UAM network with up to 1,000

UAVs.

Index Terms—Safety Verification, Transportation Network,

Urban Air Mobility,

I. INTRODUCTION

Urban airspace is promising for transporting people and
goods in cities and surrounding regions to avoid ground trans-
portation congestion. Both commercial mobility-on-demand
operators [2] and government-sponsored research institutes
such as NASA [3] are actively involved in developing such
urban air mobility (UAM) solutions. Safety and efficiency of
the urban air vehicles (UAVs) are major concerns in all UAM
solutions [4]–[8]. The work [8] observes that safety is one
of the key factors affecting the adoption of UAM, while [4]–
[6] provide guidelines for safely integrating the UAVs into
the existing airspace. The paper [7] provides insight into the
improvement of commute efficiency with the usage of urban
airspace compared to ground transportation. Proposed UAM
solutions cover a wide range of possibilities such as allowing
UAVs to land at vertistops or vertiports installed on roofs of
existing buildings or within cloverleaf exchanges on freeways.
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Some preliminary results presented in this paper have been presented at
NecSys 22 [1].

In addition, a growing number of simulation tools have been
developed to study large-scale interactions of UAVs [9]–[11].

Unforeseen disruptions such as intermittent closure of land-
ing sites due to, e.g., extreme weather conditions must be
considered for any UAM solution [4]. UAVs have limited
energy storage and therefore limited ability to remain in a
hover or holding pattern. Therefore, a key safety constraint is
to ensure that a backup landing spot is available for all in-
flight UAVs. In this paper, we model a UAM network as a
graph with nodes that are finite-capacity vertiports and links
that are transportation links between vertiports. A key feature
of our model is the allowance of uncertain travel time between
vertiports represented as an interval of possible travel times.
Flights depart from origin nodes at a scheduled departure
time and visit one or more vertiports along a route through
the UAM graph. When a vehicle arrives at a vertiport, it
occupies one of a finite number of landing spots for a fixed
ground service time to, e.g., offload and load passengers,
refuel or recharge the battery, etc. In this framework, the
defining feature of safety is that a landing spot must always be
available when the UAV arrives at the vertiport. The fact that
travel times are uncertain adds to the complexity of the safety
problem. In [12], we considered the problem of scheduling
flight departures to ensure arrival at final destinations before
prescribed deadlines while ensuring safety with respect to
landing capacity throughout the network, but did not consider
any vertiport closures which is the focus here.

In this paper, we assume given a schedule that is a priori

nominally safe—that is, a schedule that allows all flights
to land at their intermediate nodes along the routes without
landing-spot conflict despite uncertain travel times—obtained
via, e.g., the methodology proposed in [12]. Given such a
schedule, the goal is to ensure that it remains safe even if
a vertiport closes and in-flight UAVs must be rerouted. We
assume that each link in the UAM network possesses a set of
backup nodes such that any flight on that link that is inbound
for a closed vertiport must be safely rerouted to one of those
nodes at the moment of closure with the restriction that landing
capacity is not exceeded for any node within the network.

Our main contributions are as follows. First, we present
necessary and sufficient conditions for ensuring safety in the
event of a vertiport closure, i.e., for ensuring that all in-
flight UAVs are able to land at a backup vertiport without
exceeding landing spot capacity constraints. These conditions
ensure safety for any realization of the link travel times, which
are uncertain and only assumed to lie between known lower
and upper bounds. We therefore refer to these conditions as
worst-case safety guarantees. Second, we present an efficient
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algorithm for checking whether a schedule satisfies the theoret-
ical necessary and sufficient conditions for worst-case safety.
This algorithm leverages the theory of totally unimodular
matrices to losslessly convert a mixed integer program into
a linear program, enabling scalability to schedules with large
numbers of UAVs. In particular, the proposed algorithm scales
quadratically with the number of scheduled flights. Third, we
present necessary and sufficient conditions for safety under
some realization of the travel times. We refer to this as best-
case safety. These conditions, for example, could help a UAM
operator determine if a schedule could be rendered safe by
reducing travel time uncertainty. Fourth, we extend our results
to the scenario of multiple vertiports being disabled simultane-
ously. This extension requires an additional mild assumption
on the assignment of backup nodes. We demonstrate our
results with several examples. This paper extends our prior
work in [1] which only allowed for one backup node for
each link in the network. Extending to multiple backup nodes
is a significant generalization requiring the theory of totally
unimodular matrices for an efficient algorithm that allows for
checking a much larger class of safe schedules.

Safety of UAM scheduling has been explored in prior work
such as [13], which presents a risk assessment framework
to provide real-time safety evaluation where the risk of off-
nominal conditions in a UAV is assessed by calculating the
potential impact area and the effects of the impact to people
on the ground.

In ground transportation settings, most of the disruptions
in the network can be modeled as capacity reductions, where
totally disabled roads have zero capacity. The challenge is then
to reroute the vehicle flows to ensure resilient operation of the
network, where the flows are often assumed to be continuous
quantities in the network [14], [15].

In this regard, our analysis is closer to classical airspace op-
eration, where disruptions have previously been modeled and
investigated to enable efficient recovery plans after the pertur-
bations. Much of the existing literature focuses on generating
a new recovery schedule [16]–[22], rerouting aircrafts [23]–
[28], or are integrated with recovering crew schedules [29]–
[34] while minimizing a cost related to deviation to original
schedules, available resources, and other system constraints.
Other literature considers airport closures as disruptions [21],
[22], [28]. However, these works do not consider the capacity
constraints of the airports, as needed here for the vertiports.
Moreover, the present paper views the scheduling problem as
a hard safety constraint rather than from the perspective of
efficient operation.

The remainder of the paper is organized as follows: In
Section II, we first define the UAM network model followed by
the disruption model that reduces the capacity of the network.
We then establish safety criteria and develop necessary and
sufficient conditions for a schedule to be safe under disruptions
in Section III. We then develop an efficient algorithm to check
that a schedule satisfies these conditions using the theory of
totally unimodular matrices. In Section V, we demonstrate our
safety verification algorithm on a UAM network. The paper is
concluded with some ideas for future work.

II. PROBLEM FORMULATION

A. Network Model and Nominal Scheduling

We model an urban air mobility (UAM) network with a
directed graph G = (V, E), where V is the set of nodes and E
is the set of links for the network. Nodes are physical landing
sites for the UAVs, sometimes called vertistops or vertiports.
Links are corridors of airspace connecting nodes. Each node
v 2 V has capacity Cv 2 N0, that is, there are Cv landing

spots at node v where each landing spot allows at most one
UAV to stay at any time. We denote the vector of capacities
C = {Cv}v2V .

For any link e = (v1, v2) 2 E , we denote �e = v2 (resp.,
⌧e = v1) as the head (resp., tail) of e. Let S ✓ V (resp.,
T ✓ V) be the set of source (resp., terminal) nodes that are not
the head (resp., tail) of any link, S = {v 2 V | �e 6= v 8e 2 E}
and T = {v 2 V | ⌧e 6= v 8e 2 E}. We assume S \ T = ;.

A route R is a path in the graph G from a source
node to a terminal node, i.e., R = (e1, e2, . . . , ekR) is a
sequence of links such that there exists a sequence of vertices
(v0, v2, . . . , vkR) with e` = (v`�1, v`) for all ` 2 {1, . . . , kR},
v0 2 S, and vkR 2 T where kR is the number of links in
route R. We denote the set of nodes that R travels through
as V (R), i.e., V (R) = {v0, v2, . . . , vkR}. We also sometimes
consider R as a set, e.g., e 2 R means e is some link in R.

To simplify subsequent notation and indexing, when the
particular route R is clear, we reference link e` 2 E simply as
link ` and, likewise, vertex v` simply as vertex `. We therefore
use ` to denote both a link and its head node along a route,
i.e., ` = �` for all ` 2 {1, . . . , kR}; the intended meaning will
always be clear from the context. To emphasize which route
we are indexing, we occasionally use a superscript, e.g., 0R
is understood as the source node of route R. We let R denote
the set of allowed routes through the UAV network.

Since, in reality, the travel time depends on external factors
such as weather conditions or a vehicle’s operational capabil-
ity, we assume that the travel time for each link is not exact, but
rather bounded by a time interval. For each link e 2 E , let xe

and xe with xe � xe > 0 denote the maximum and minimum
travel time, respectively, for the link, and let x = {xe}e2E
and x = {xe}e2E be the corresponding aggregated vectors.
Once a UAV has landed at any node, it is assumed to block a
landing spot for a fixed ground service time w � 0. For ease
of notation, we assume the ground service time is uniform at
all nodes, but this assumption is straightforward to relax.

Definition 1 (UAM Network). A UAM network N is a tuple

N = (G, C,R, x, x, w) where G, C,R, x, x, w are the network

graph, node capacities, routes, minimum and maximum link

travel times, and ground service time as defined above.

To model the schedule of UAV flights in a UAM network
N = (G, C,R, x, x, w), we assume that every flight is associ-
ated to a route R 2 R and stops at intermediate nodes along
the route. Therefore, a schedule is a set S = {(Rj , �j)}j2J
where J is a finite index set of flights and for each j 2 J , Rj

is the route of flight j and �j � 0 is the appointed departure
time for the flight from the first node along the route.
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Due to the limited energy storage capacity of UAVs, it is
assumed that a UAV must be able to land immediately upon
arrival at any node along its route. For flight j with schedule
(Rj , �j), for any link ` along route Rj , the earliest (resp.,
latest) arrival time at the `-th node along the route is denoted
a
j
` (resp., aj`) and given by

a
j
` = �j +

X

m2Rj :m`

xm + (`� 1)w , (1)

a
j
` = �j +

X

m2Rj :m`

xm + (`� 1)w , (2)

i.e., aj` (resp., aj`) is the departure time from source node 0 of
the route Rj plus the lower (resp., upper) bound of the time
interval to travel through the links {1, 2, . . . , `} with the time
spent at each intermediate node. Further, the time interval that
the flight will potentially block a landing spot at node ` is
given by

⇥
a
j
` , a

j
` + w

⇤
. If v 2 V (Rj) is the `-th node along

route Rj , we also use the notation a
j
v := a

j
` , and a

j
v := a

j
` .

Definition 2 (Feasible Schedule). A schedule S =
{(Rj , �j)}j2J where �j� 0 for all j 2 J is a feasible
schedule if the number of vehicles at a node never exceeds

capacity, i.e., for all v 2 V and all t � 0,

X

j:v2V (Rj)

1
�
t;
⇥
a
j
v, a

j
v + w

⇤�
 Cv (3)

where the notation 1(·; ·) is an indicator such that

1(t; [a, b]) = 1 if t 2 [a, b] and 1(t; [a, b]) = 0 otherwise.

Since the time interval
⇥
a
j
` , a

j
` + w

⇤
considers lower and

upper bounds on the uncertain travel time, the definition of
feasibility accommodates all possible travel times satisfying
these lower and upper bounds, motivating the next definition.

Definition 3 (Realization). A realization of a scheduled flight

is a realization of the travel times such that the flight departs at

the given departure time and has a fixed travel time along each

link that falls within the given time interval for the link. While

each realization of the same flight has the same departure time,

different realizations generally have different travel times on

at least one link due to uncertain travel times.

A feasible schedule ensures that node capacity is not ex-
ceeded for any realization of scheduled flights. Every feasible
schedule will by definition ensure proper operation of the
UAM network under normal circumstances. Our goal in this
paper is to check whether the schedule is further resilient to
interruptions in the network.

B. Disruption Model

In actual operation, it is expected that unforeseen disruptions
that disable a node, such as adverse weather conditions, will
be common. Flights affected by the disabled node must have
a rerouting plan that ensures the availability of a landing spot.
In this paper, we postulate the existence of a set of backup

nodes for the network so that when any node is disabled, the
flights can be redirected to a backup node depending on the
link they are traveling through.

v1 v2

v3

v4

v5

v6

v7

[8, 10]

e1

[3, 5]

e2

[2, 6]

e3

[4, 8]

e4

[5, 6]

e5

[1, 5]

e6 [3, 6]

e7

Fig. 1. A graph with 7 nodes and 7 links is used to illustrate the network in
Example 1 and the case study.

In this subsection, we introduce the assignment of the
backup nodes and the operating mechanism once a node is
disabled. For clarity, we first consider that only one node
may be disabled at a time. We extend our results to the case
where multiple nodes are disabled in Section III-C. In order to
guarantee that each disrupted flight will be able to be assigned
to a node after the disruption, we assign a set of backup nodes
Be to each link e in the network. The assignment of backup
nodes can be based on some rules, e.g., distances between
nodes and available reserve energy of UAVs. Notice that we
are not optimizing the assignment of backup nodes, however,
we make a natural assumption that the set of backup nodes for
any link includes its tail node and head node, i.e., ⌧e,�e 2 Be

for any e 2 E . Then, a flight traveling on some link e whose
route is potentially blocked by a node closure will continue to
the head node �e on its route if that node is functioning, or
reroute to one of its backup nodes if the head node is disabled.
A similar strategy applies to the case that multiple links with
the same direction exist between two nodes, and hence a UAV
heading toward a destination from an origin may travel with
different routes and thus with different sets of backup nodes.

A realization of the j’th flight is affected by some disabled
node vc 2 V at time tc if vc 2 V (Rj), i.e., the route of
the flight travels through node vc, and the flight has not yet
reached vc by time tc. The realization of the j-th flight is not

affected when node vc is disabled at time tc otherwise. The
j’th flight is possibly affected by disabling node vc at time
tc if vc 2 V (Rj) and tc < a

j
vc + w, i.e., the flight may have

to travel through the disabled node later than tc and hence is
affected for some realization of travel times.

Below is a set of natural rules that all flights are assumed
to follow once a node vc is disabled at time tc:

1) flights not affected will continue normal operation;
2) any affected flight that has not yet departed (�j > tc)

will be canceled (no longer depart);
3) an affected flight j with �j  tc traveling on a link e 2 E

with �e 6= vc will continue to the head node �e and stop
there indefinitely (block the landing spot indefinitely);

4) an affected flight j with �j  tc that is temporarily
stopped at a node at time tc will remain there indefi-
nitely;

5) an affected flight j with �j  tc traveling on a link
e 2 E with �e = vc will be rerouted to one of the other
backup nodes of the current link in Be\vc and stop there
indefinitely.

Note that we do not consider the problem of recovering a new
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TABLE I
BACKUP NODES FOR EACH LINK IN EXAMPLE 1

Link (e 2 E) Be Possible backup nodes
when v5 is disabled

e1 = (v1, v2) {v1, v2} v2
e2 = (v2, v3) {v2, v3, v4} v3
e3 = (v2, v4) {v2, v3, v4} v4
e4 = (v3, v6) {v3, v5, v6} Link not affected
e5 = (v3, v5) {v3, v4, v5} v3, v4
e6 = (v4, v5) {v3, v4, v5, v7} v3, v4, v7
e7 = (v5, v7) {v4, v5, v7} Link not affected

schedule after a disabled node becomes operational again, as
our focus is on safety. Further, we postulate the above rules
as to provide a well-defined problem formulation; alternative
rules might be also plausible.

Example 1. Consider Fig. 1 with 7 nodes and 7 links, V =
{v1, v2, . . . , v7} and E = {e1 = (v1, v2), e2 = (v2, v3), e3 =
(v2, v4), e4 = (v3, v6), e5 = (v3, v5), e6 = (v4, v5), e7 =
(v5, v7)}. The set of all possible origins (resp., destinations)

is S = {v1} (resp., T = {v6, v7}). We assume the origin

v1 does not have a capacity constraint, while Cv2 = 8,

Cv3 = 6, Cv4 = 4, Cv5 = 5, Cv6 = 3 and Cv7 = 5. The

links are indicated in the figure and the corresponding travel

time intervals are labeled beside the links, e.g., the interval

[8, 10] above the link e1 means that the shortest (resp., longest)

possible time for traveling through the link is 8 (resp., 10) time

units. We consider three routes R = {R1
, R

2
, R

3} with R
1 =

{e1, e2, e4}, R
2 = {e1, e2, e5, e7} and R

3 = {e1, e3, e6, e7}.

Each UAV remains at the vertistops along its path for w = 1
time unit after landing.

Table I shows an example of the assignment of backup nodes

for each link e 2 E in the second column and the node (or

nodes) that the UAV on the link can be rerouted to if node v5

is disabled according to our rules in the third column. Notice

that a link e is affected by the closure if there exists a route

that traverses e before reaching vc. For example, although

link e1 is not directly affected by the closure of node v5, some

flights using this link have a route that passes through v5 and

will therefore land at the head node v2 and remain there due

to the closure of v5. A similar explanation holds for rows 2

and 3 of the table. Flights traveling on links e4 and (v5, v7)
are not affected if v5 fails, hence the corresponding entries in

the third column are empty. Lastly, flights traveling on links

e5 and e6 must instead route to one of the backup nodes as

indicated.

III. NECESSARY AND SUFFICIENT CONDITIONS FOR SAFE
SCHEDULES

In this section, we formally define safety and present
sufficient and necessary conditions for verification of safety
under different criteria.

Given a network N = (G, C,R, x, x, w) where G = (V, E)
and a feasible schedule S = {(Rj , �j)}j2J , the closure of a
node can affect the schedule in different ways. In particular,
the schedule is:

1) worst-case (resp., best-case) time-node conditionally

safe for node vc and time tc if, supposing that vc is

v1 v2

v3

v4

[8, 10]

e1

[3, 5]

e2

[2, 6]

e3

Fig. 2. A graph consisting of 4 nodes and 3 links is used to illustrate the
simple network in Example 2.

disabled at time tc, then all possibly affected flights are
able to land at their designated backup nodes while not
interfering with any unaffected flights, for all (resp., for
some) realization of link travel times.

2) worst-case (resp., best-case) node conditionally safe for
node vc if it is worst-case (resp., best-case) time-node
conditionally safe for node vc for all time tc � 0.

3) worst-case (resp. best-case) 1-closure safe if it is worst-
case (resp. best-case) node conditionally safe for any
node vc 2 V .

Note that worst-case safety implies best-case safety.

Example 2. We illustrate the safety criteria through the simple

network shown in Fig. 2 with 4 nodes and 3 links. For this

example, the set of nodes V = {v1, v2, v3, v4} and the set of

links E = {e1, e2, e3}. We assume that the origin v1 does

not have a capacity constraint, while Cv2 = 2, Cv3 = 1
and Cv4 = 1. The links are indicated in the figure and

the corresponding travel time intervals are labeled beside

the links. We consider two possible routes R
1 = {e1, e2}

and R
2 = {e1, e3}. Each flight remains at the intermediate

nodes or destination along its path for w = 1 time unit after

landing. The backup nodes for each link are Be1 = {v1, v2},

Be2 = {v2, v3, v4} and Be3 = {v2, v3, v4}. Consider a feasible

schedule S = {S1, S2, S3}, where S1 = (R2
, 1), S2 = (R2

, 8)
and S3 = (R1

, �3) where we consider several possibilities

for �3. Assume v4 is disabled at time tc = 15. Based on the

rerouting rules for the flights, then at time tc, a flight traveling

on link e1 will be rerouted to node v2, while a flight traveling

on link e3 can be rerouted to either v2 or v3. Though it is

possible that flight S1 has already completed its journey by

time tc = 15, in the worst case where we consider any link

that it may be traveling on, it is possible for flight S1 to be

traveling on e3 and needs to be rerouted to v2 or v3, so that

we have to reserve a landing spot at node v2 or v3 for S1;

flight S2 must be traveling on e1 and needs to stay at v2 upon

arrival. If �3 = 0, then flight S3 is not affected and should

continue its journey; however, if �3 = 10, then either v2 or v3

will have insufficient landing spots, since the flight S1 must

have been rerouted to either v2 or v3 upon the arrival of S3.

Therefore, S is worst-case time-node conditionally safe for

node v4 at time 15 if and only if �3  4. In contrast, it is

always best-case time-node conditionally safe for node v4 at

time 15 regardless of the choice of �3.

Now, suppose �3 = 10 and Cv2 = 3. Then there is sufficient

capacity so that the network will be able to accommodate all

rerouted flights after closure no matter when node v4 is closed.
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Therefore, we see that S is worst-case node conditionally safe

for node v4 in this case. We further check that this is true

for all nodes in the network, and thus S is also worst-case

1-closure safe. In contrast, suppose Cv3 = 2 while Cv2 = 2,

then S is worst-case time-node conditionally safe for node v4

and tc = 15 with any choice of �3, but is worst-case node-

conditionally safe for v4 if and only if �3 � 4.

To obtain constraints for 1-closure safety, we start by ob-
serving that a feasible schedule is trivially node conditionally
safe for any node v 2 S, where we recall S the set of source
nodes that are not the head of any link. Whenever a node
v 2 S is disabled, there will not be any UAV traveling toward
node v while no future journey will depart from v.

We next explore the safety of a disabled node that is
not a source node. There are several special sets we now
define before presenting conditions for 1-closure safety when
disabling a node vc 2 V\S. We let the set of links with head
v 2 V be

Ev := {e 2 E | �e = v} , (4)

and we let B0
e be the set of nodes that any flight traveling on

link e can be rerouted to if vc is disabled:

B0
e =

(
{�e} if �e 6= vc ,

Be\vc if �e = vc .
(5)

B0
e is the set of possible backup nodes for link e when vc is

disabled. We then denote be as the node that a flight traveling
on link e will be rerouted to if vc is disabled, so that be 2 B0

e.
We denote the set of links on which flights will possibly be

rerouted to node v when vc is disabled as Bv , which includes
the links with the head node as v when v 6= vc and the links
with the head node as vc whose backup nodes include v, i.e.,

Bv := {e 2 E | v 2 B0
e} . (6)

If node vc is along the route Rj of flight j, we define the set
Ej
vc as the links along the route of flight j whose head node is

one of the backup nodes of link `0 where `0 2 {1, . . . , kRj}
is the link along route Rj satisfying �`0 = vc, i.e.,

Ej
vc = {` | ` < `0,�`0 = vc,�` 2 B0

`0} . (7)

We define the set Jv as the index set of the flights with routes
passing through node v,

Jv := {j 2 J | v 2 V (Rj)} , (8)

and we further define the index set of the possibly affected
flights when node vc is closed at time tc as

J ⇤ = J ⇤(vc, tc) := {j 2 Jvc | ajvc + w > tc} , (9)

where we drop arguments (e.g., vc and tc), when they are
clear. Therefore, the index set for the flights passing through
node v that are not possibly affected when node vc is closed
at tc is Jp(v) := Jv\J ⇤.

Similarly, we use J c to represent the set of indices for
canceled journeys with departure time greater than the node-
disabling time tc:

J c= J c(vc, tc) := {j 2 Jvc | �j > tc} . (10)

We then define the index set of rerouting flights J ⇤\c as the
possibly affected flights not canceled when node vc is disabled
at time tc, i.e., J ⇤\c := J ⇤\J c

. We let NR(v) be the maximal
number of not possibly affected flights that may land at node
v at the same time once node vc is disabled at time tc, which
can be computed as

NR(v) = sup
t�tc

X

j2Jp(v)

1
�
t;
⇥
a
j
v, a

j
v + w

⇤�
. (11)

All of the above components (4)–(11) are easily computed
from a given feasible schedule.

A. Necessary and Sufficient Condition for Worst-Case Safe

Schedules

Our first main result provides necessary and sufficient
conditions for worst-case safe schedules in the form of a
Mixed Integer Linear Program (MILP). MILPs are generally
sensitive to scale and can be time-consuming once the size of
the schedule under verification grows. In Section IV, we will
losslessly recast this MILP as a linear program (LP), leading
to an efficient safety-verification algorithm.

Theorem 1. Consider a network N = (G, C,R, x, x, w),
where G = (V, E) and given backup nodes assignment Be

for all e 2 E . Assume given a feasible schedule S =
{(Rj , �j)}j2J .

The schedule S is worst-case time-node conditionally safe

for node vc and time tc if and only if there exists an integer

set {Ne,v}e2E,v2V that satisfies the following constraints for

all v 2 V and e 2 E:

X

e2Bv

Ne,v  Cv �NR(v) , 8v 2 V , (12)

X

v2B0
e

Ne,v =
X

j2J ⇤\c

1
⇣
tc; [L

j
e, U

j
e ]\{[`2Ej

vc
[Lj

`Rj
, U

j

`Rj
]}
⌘
,

8e 2 Evc , (13)

Ne,�e =
X

j2J ⇤\c

1(tc; [L
j
e, U

j
e ]) , 8e /2 Evc , (14)

Ne,v = 0 , 8e 2 Evc , v /2 B0
e , (15)

Ne,v � 0 , 8e 2 Evc , v 2 B0
e , (16)

where for all j 2 J , the lower and upper bounds of the time

interval are defined as

L
j
e =

(
a
j
⌧e + w if ⌧e 6= 0Rj

�j if ⌧e = 0Rj ,
(17)

and

U
j
e =

(
a
j
�e

+ w if �e 6= vc

a
j
�e

if �e = vc .
(18)

Further, S is worst-case node-conditionally safe for node vc

if and only if such a set {Ne,v}e2E,v2V satisfying (12)–(16)
exists for the finite number of times tc where the values

of NR(v) and the time-varying index sets J ⇤
, J c

possibly

change, i.e., at both endpoints of the interval Mj
v for all

v 2 V , at times �j for all j 2 J , and at times L
j
e, U

j
e for all

j 2 J and e 2 E .
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The second part of Theorem 1 states that, while the defi-
nition for a schedule to be worst-case node-conditionally safe
requires checking safety for all times tc � 0, such conditions
in fact only need to be checked at a finite number of times.

Proof. The schedule is worst-case time-node conditionally
safe for node vc and time tc if and only if, for any possibly
affected flight that is not canceled and may be rerouted to
some node in V at time tc, an available landing spot needs
to be reserved. Hence the problem becomes to ensure the
flights surely not affected will have no capacity conflict with
any possibly rerouted flights. We then consider the maximum
(worst-case) occupation of the node in V .

We let the set {Ne,v}e2E,v2V be the set of variables
that denote the number of possibly affected flights that may
proceed to node v 2 V when traveling on the link e 2 E .
Hence, for all v 2 V, e 2 E , Ne,v is required to be a non-
negative integer. The interval defined as [Lj

e, U
j
e ] is the time

interval during which flight j will possibly be rerouted to be

if vc is closed, where the lower bound L
j
e is the earliest time

that the flight may leave the previous node ⌧e, and if �e is not
disabled, the upper bound U

j
e is the latest time that the flight

may leave the head node while, in the case that �e is disabled,
the upper bound U

j
e for the time interval that the flight may be

rerouted to the backup node ⌧e will be the latest time that the
corresponding flight may arrive at node vc, since otherwise it
will continue its normal operation without rerouting. For any
e 2 E , if �e 6= vc, then the possibly affected flights traveling
on the link will land at its head node �e, and thus the number
of possibly affected flights rerouting to node �e from link e,
Ne,�e is deterministic, which can be simply counted as in (14).
The constraint (15) prevents flights from proceeding to any
node v not in the set of possible backup nodes for link e

when node vc is disabled, B0
e.

As a safety requirement, when vc is disabled at time tc,
any possibly affected flight needs to be rerouted to a node.
Consider a fixed e 2 Evc , a flight whose possibly traveling on
this link at time tc is obviously a possibly affected flight when
node vc is disabled at time tc and needs to be rerouted to one of
its backup nodes. Therefore, (13) is the link safety constraint
depicting that all flights possibly traveling on e at tc need to be
rerouted to one of the possible backup nodes for link e when
vc is disabled. Notice that, supposing the backup nodes of the
link e include a node v

0  vc that is along the route of the
flight, and the flight is also possibly traveling on a link whose
head node is v

0 at tc, then this means a landing spot at node
v
0 has to be reserved, and we do not need to prepare another

one. This situation is reflected through {[`2Ej
vc
[Lj

`Rj
, U

j

`Rj
]}

in (13). Finally, NR(v) is the maximum number of flights not
possibly affected that may park at node v at any time once
vc is disabled at tc, and the summation

P
e2Bv

Ne,v is the
total number of possibly affected flights rerouting to node v.
Therefore, (12) is a necessary and sufficient condition to avoid
the capacity conflict between the rerouted flights and those
surely not affected by all realization of link travel times.

Theorem 1 provides a finite number of conditions to verify
a schedule is worst-case node conditionally safe for node vc.
Furthermore, by checking that a schedule is worst-case node

conditionally safe for all vc 2 V , we can conclude the 1-
closure safety.

In the following subsection, we explore the safety con-
straints for a given UAM schedule in the best-case scenario.

B. Necessary and Sufficient Condition for Best-Case Safe

Schedules

Theorem 1 provides a set of constraints that serve as a
necessary and sufficient condition for a feasible schedule to
be worst-case time-node conditionally, node conditionally, or
1-closure safe. In this subsection, we provide constraints for
a feasible schedule to be best-case safe. In the best-case
scenario, we consider the realization with the least number of
rerouting flights and the most flexible rerouting plan needed
among all possible realizations. Therefore, we assume that all
flights possible to have arrived at or passed through the closed
node vc have already arrived or left by the time of node failure.

We denote the index set of the definitely affected flights as

Jm = {j 2 J ⇤\J c | ajvc
� tc} . (19)

The definitely affected flights are the flights that must be
rerouted under any possible realization.

Theorem 2. Consider a network N = (G, C,R, x, x, w),
where G = (V, E) and given backup nodes assignment Be

for all e 2 E . A given feasible schedule S = {(Rj , �j)}j2J
is best-case time-node conditionally safe for node vc and

time tc if and only if there exists a non-negative integer set

{Nj,v}j2Jm,v2V that satisfies the following constraints for all

j 2 Jm
and v 2 V:

Cv �
X

j2Jm

Nj,v � NR(v) , 8v 2 V , (20)

X

v2V
Nj,v = 1 , 8j 2 Jm

, (21)

0  Nj,v  max
e2Rj

1(tc; [L
j
e, Û

j
e ]) · 1(v;B0

e) ,

8v 2 V , j 2 Jm
, (22)

where L
j
e is defined in (17) and

Û
j
e =

(
a
j
�e

+ w if �e 6= vc ,

a
j
�e

if �e = vc .
(23)

Further, S is best node-conditionally safe for node vc if

and only if the set {Nj,v}j2Jm,v2V that satisfies (20)–(22)
exists and the conditions holds for the finite number of times

tc where the values of NR(v) and the time-varying index set

Jm
possibly change, i.e., at both endpoints of the interval⇥

a
j
v, a

j
v + w

⇤
for all v 2 V , �j for all j 2 J and at times L

j
e,

Û
j
e for all j 2 J and e 2 E .

Proof. The proof of Theorem 2 applies the similar logic
as in Theorem 1 to the best-case scenario, while from the
perspective of flights instead of the links. First of all, we can
focus only on the definitely affected flights, since any flight
that is possibly affected but not definitely affected is either
canceled or has at least a realization of travel time such that
the flight has already passed through or landed at node vc and
does not need to be rerouted.
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We regard Nj,v as the indicator of j’th flight to be rerouted
to node v if node vc is disabled at time tc, for all j 2 J
and v 2 V . As a result, the non-negative variable Nj,v is
actually binary. We enforce this binary condition in (22), where
Nj,v  1 if there exists e 2 Rj such that v is one of its
possibly backup nodes when vc is closed and the flight is
definitely affected and possibly traveling on the link e at time
tc and Nj,v = 0 otherwise. Notice that the upper-bound of the
time interval for the flight to travel through link e and its head
node and be rerouted to one of its possible backup nodes, Û j

e ,
is adjusted comparing to U

j
e defined in (18) to include only

the definitely affected flights. Once node vc is disabled at time
tc, a flight will actually be rerouted to exactly one node, which
is depicted in (21). Moreover, (20) is the capacity constraint,
where

P
j2Jm Nj,v is the number of definitely affected flights

rerouted to node v.
If we are not able to find a set of non-negative integers

{Nj,v}j2Jm,v2V that satisfies (20)–(22), then there must exist
a conflict of occupation at one or more nodes once vc is closed
at time tc, and hence (20)–(22) are sufficient and necessary
conditions for the set of schedules to be best-case time-node
conditionally safe for node vc and time tc.

Theorem 1 is both sufficient and necessary for worst-case
1-closure safety, while Theorem 2 is sufficient and necessary
for best-case 1-closure safety. Since worst-case safety implies
best-case safety, satisfaction of the conditions in Theorem 1
implies satisfaction of the conditions in Theorem 2.

C. Extension to Multiple Node Closures

In this subsection, we consider the possibility that multiple
vertiports are disabled simultaneously. Our main result is to
show that, with slight modifications and a mild additional
assumption, the conclusions of Theorem 1 and 2 remain true.

We first revise the definitions of some sets to suit the
multiple-closure case. As before, consider a UAM network
N = (G, C,R, x, x, w) where G = (V, E), given backup node
assignment Be for all e 2 E , and schedule S = {(Rj , �j)}j2J .
Now, consider a set of nodes Vc ✓ V disabled simultaneously.
Paralleling the prior notation, define

EVc := {e 2 E | �e 2 Vc}, (24)

B0
e :=

(
{�e} if �e /2 Vc

Be\Vc if �e 2 Vc ,
(25)

JVc := {j 2 J | Vc \ V (Rj) 6= ;} . (26)

For any flight j 2 J and for all vc 2 Vc, let Ej
vc = ; if

vc 62 V (Rj), i.e., vc is not along the route of flight j, and
otherwise, let

Ej
vc :={` | ` < `0 and B0

` ✓ B0
`0}

[ {` | `0 < ` < `, ` /2 Vc and �` 2 B0
`0} (27)

where `0 is the index of the link along route Rj with head node
vc, i.e., �`0 = vc, and ` is the largest index of the link along
route Rj whose head node is disabled, i.e., �` = max{` 2
Rj | �` 2 Vc}. All the other related sets and variables—such
as J ⇤, J c, and NR(v)—then change subsequently.

We then analogously define a schedule as
1) worst-case time-node conditionally safe for the set of

nodes Vc ✓ V and time tc if, supposing that the nodes
in Vc are disabled at time tc, then all possibly affected
flights JVc are able to land at their designated backup
nodes while not interfering with any unaffected flights
for all realization of link travel times.

2) worst-case node conditionally safe for Vc if it is worst-
case time-node conditionally safe for the set of nodes
Vc for all time tc > 0.

We make Assumption 1 below about the network topology
and travel-time uncertainty before extending Theorem 1 to be
compatible with multiple simultaneous closures of vertiports.
Assumption 1 below states that if, due to uncertain travel
times, there is a time when a flight may be traveling on two
different links both destined for possibly closed vertiports Vc,
then the backup set of one link is either a subset of or is
disjoint with the other’s. This avoids the ambiguity of rerouting
an affected flight when the link it is traveling on is not definite
at the time of vertiports closure.

Assumption 1. Let R 2 R be any route passing through at

least two nodes from the set of disabled nodes excluding the

source node of R. That is, recalling that we enumerate the

links in route R as {1, . . . , kR} ⇢ E , there exists some pair

`1, `2 2 {1, . . . , kR} such that �`1 ,�`2 2 Vc\0R. Without loss

of generality, take `1 < `2. For any such pair, compute

L`i =
X

m2R:m`i�1

xm + (`i � 1)w , i 2 {1, 2} , (28)

U`i =
X

m2R:m`i

xm + (`i � 1)w , i 2 {1, 2} . (29)

We assume that, whenever [L`1 , U`1 ]\ [L`2 , U`2 ] 6= ;, either

B
0
`1

✓ B0
`2

or B
0
`1
\ B0

`2
= ;.

We now extend Theorem 1 as follows:

Theorem 3. Consider a UAM network N = (G, C,R, x, x, w)
where G = (V, E), given backup node assignment Be for all

e 2 E . Assume given a feasible schedule S = {(Rj , �j)}j2J
and the set of disabled nodes Vc. We further assume that the

network N satisfies the Assumption 1.

The schedule S is worst-case time-node conditionally safe

for the set of nodes Vc and time tc if and only if there

exists an integer set {Ne,v}e2E,v2V that satisfies the following

constraints for all v 2 V and e 2 E:

X

e2Bv

Ne,v  Cv �NR(v) , 8v 2 V , (30)

X

v2B0
e

Ne,v =
X

j2J ⇤\c

1
⇣
tc; [L

j
e, U

j
e ]\{[`2Ej

�e
[Lj

`Rj
, U

j

`Rj
]}
⌘
,

8e 2 EVc , (31)

Ne,�e(tc) =
X

j2J ⇤\c

1(tc; [L
j
e, U

j
e ]) , 8e /2 EVc , (32)

Ne,v = 0 , 8e 2 EVc , v /2 B0
e , (33)

Ne,v � 0 , 8e 2 EVc , v 2 B0
e . (34)
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Further, S is worst-case node-conditionally safe for the set

of nodes Vc if and only if such a set {Ne,v}e2E,v2V satisfy-

ing (30)–(34) exists for the finite number of times tc where

the values of NR(v) and the time-varying index sets J ⇤
, J c

possibly change, i.e., at both endpoints of the interval Mj
v for

all v 2 V , at time �j for all j 2 J , and at times L
j
e, U

j
e for

all j 2 J and e 2 E .

A similar extension of the conditions for best-case safety
applies as well, and the proofs are essentially the same as the
proofs of Theorem 1 and 2. We observe that Assumption 1
together with (31) guarantees that, if a flight j is possibly
traveling on link e whose head node is in Vc and is disabled
at time tc 2 [`2Ej

�e
[Lj

`Rj
, U

j

`Rj
], we do not double-count the

number of landing sites needed at the backup nodes.

IV. SIMPLIFICATION FOR VERIFICATION

The necessary and sufficient conditions for safety derived
in Section III involve integer constraints and therefore are
inefficient for use in direct numerical implementation. In this
section, we show that these conditions can in fact be translated
to efficient linear programming (LP) constraints. We first
establish a lemma explaining the mathematical foundation for
our simplification of Theorem 1 and 2, followed by a theorem
that turns the MILP problem in Theorem 1 and 2 into an LP
problem. In particular, the following lemma shows that, for a
special set of constraints on a set of variables, the existence
of a solution over the real numbers induces the existence of a
solution over the integers.

Lemma 1. Given a set L = {(l1, l2) 2 N2
>0 | l1  N1, l2 

N2} for some positive integers N1, N2, and let Lvar be a

subset of L. Let ↵l1 (resp., �l2 ) be non-negative integers for all

l1 = 1, . . . , N1 (resp., l2 = 1, . . . , N2), and �l1,l2 be integers

for all (l1, l2) 2 Lvar. If there exists a set of real numbers

{nl1,l2}(l1,l2)2L that satisfies

N2X

l2=1

nl1,l2 = ↵l1 , 8l1 = 1, . . . , N1 , (35)

N1X

l1=1

nl1,l2  �l2 , 8l2 = 1, . . . , N2 , (36)

nl1,l2 = �l1,l2 , 8(l1, l2) 2 Lvar , (37)
nl1,l2 � 0 , 8(l1, l2) 2 L , (38)

then there exists a set of integers {n0
l1,l2

}(l1,l2)2L also satis-

fying (35)–(38).

The proof for Lemma 1 can be found in Appendix A.
Further, the remark below can be shown with some trivial
revisions to the proof.

Remark 1. Lemma 1 holds if nl1,l2 is bounded from above

by an integer, i.e., (38) is changed to 0  nl1,l2  Ul1,l2 for

all (l1, l2) 2 L for some integer number Ul1,l2 > 0.

The simplified corollary below makes use of Lemma 1
above and provides an LP alternative to the MILP problem
in Theorem 1.

Corollary 1. Consider a network N = (G, C,R, x, x, w),
where G = (V, E). Assume given a feasible schedule

S = {(Rj , �j)}j2J . There exists a set of real numbers

{Ne,v}e2E,v2V that satisfies the constraints (12)–(16) if and

only if there exists a set of integers {N 0
e,v}e2E,v2V that satisfies

the constraints.

Proof. We first show that the conditions (12) and (13) conform
to the form in Lemma 1. For the sake of convenience, we fix
tc and vc and drop the notation from Ne,v and NR(v), i.e.,
we write them as Ne,v and NR(v) in this proof.

We can observe that, by the definition of Bv in (6), assume
e /2 Bv , if �e = vc, then v /2 Be\vc, otherwise �e 6= vc. We
can therefore conclude from (14) and (15) that Ne,v is a fixed
number that can be computed if e /2 Bv .

By adding the fixed terms of Ne,v for e /2 Bv,vc to both
sides of (12) we can then obtain that, for all v 2 V ,

X

e2Bv,vc

Ne,v  Cv �NR(v)

X

e2E
Ne,v  Cv �NR(v) +

X

e/2Bv,vc

Ne,v . (39)

Similarly, if v /2 B0
e, then Ne,v is a fixed number. By addingP

v/2B0
e
Ne,v to both sides of (13), we have

X

v2V
Ne,v =

X

v/2B0
e

Ne,v+

X

j2J ⇤\c

1
⇣
tc; [L

j
e, U

j
e ]\{[`2Ej

vc
[Lj

`Rj
, U

j

`Rj
]}
⌘
. (40)

We then let L = {(e, v) | e 2 E , v 2 V}, and Lvar =
L\{(e, v) | �e = vc, v 2 B0

e}. Then we can combine and
rewrite (14)–(16) as

Ne,v = �e,v , 8(e, v) 2 Lvar , (41)
Ne,v � 0 , 8(e, v) 2 L , (42)

where �e,v =
P

j2J ⇤\c 1(tc; [Lj
e, U

j
e ]) if �e = v 6= vc and

�e,v = 0 if �e 6= v and v /2 B0
e.

As E and V are both finite sets, while the right sides of the
inequalities (39) and (40) are integers, the conditions (39)–(42)
exactly follows the conditions (35)–(38) in Lemma 1. There-
fore, by Lemma 1, there exists a integral set {Ne,v}e2E,v2V .

As a result, given the schedule S , if there exists a set of
real numbers {Ne,v}e2E,v2V that satisfies the constraints (12)–
(16), then there exist a set of integers {N 0

e,v}e2E,v2V that
satisfies the constraints. The other direction of the corollary is
immediate.

Combining Theorem 1 and Corollary 1, we are then able to
verify 1-closure safety of given feasible schedules by solving
an LP. Similarly, we develop a corollary for simplification of
best-case safety mirroring Corollary 1 given Remark 1.

Corollary 2. Consider a network N = (G, C,R, x, x, w),
where G = (V, E). Assume given a feasible schedule

S = {(Rj , �j)}j2J . There exists a set of real numbers

{Nj,v}j2Jm
vc

,v2V that satisfies the constraints (20)–(22) if

and only if there exists a set of non-negative integers

{N 0
j,v}j2Jm

vc
,v2V that satisfies the constraints.
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Fig. 3. Observation of whether the network is safe when node v5 is disabled
or when the set {v4, v6} is disabled at any time tc > 0.

The proof for Corollary 2 is immediate from Lemma 1 as
we can easily convert the constraints (20)–(22) to the same
form as in Lemma 1 and Remark 1.

Remark 2. Theorem 3 in Section III-C for the multiple-closure

scenario can also be simplified to an LP with the same method.

V. CASE STUDY

In the case study, we demonstrate the verification algorithm
based on Theorem 1 and Corollary 1 on the UAM network
in Example 1 with 20 scheduled flights. We also demonstrate
the efficient scaling of the algorithm on examples with up to
1,000 UAVs.

To ensure the worst-case node conditional safety when vc

is closed, we check whether there exists a set of real numbers
{Ne,v}e2E,v2V that satisfies the constraints (12)–(16) over the
time interval tc 2 [0,+1) As stated in Theorem 1, we only
need to solve the LP feasibility problem at each point of time
that any value may change, i.e., Lj

e, U j
e , both ends of Mj

v ,
and �j for any counted flight j 2 J and link e 2 E for some
fixed node v, since the system of linear inequalities (12)–(16)
will not change between these points. We randomly generate
a feasible schedule with 20 flights and consider the constraints
(12)–(16) in Theorem 1 for time-node conditionally safe for
node vc = v5 at any time tc > 0. We also check the worst-
case safety when the set of nodes Vc = {v4, v6} is disabled at
some time. The verifications are implemented in MATLAB1.

We observe when the schedule is safe in Fig. 3 (first stripe)
and the redistribution of flights on link e5 and e6 in Fig. 4
when node v5 is disabled at any time tc. The first stripe of
Fig. 3 demonstrates whether disabling node v5 at time tc is
worst-case time-node conditionally safe (the blue segments) or
not (the grey segments). For example, if node v5 is disabled
at time tc = 40, the network is not worst-case safe.

The redistribution of flights on link e5 (resp., e6) shown
in the top (resp., bottom) graph of Fig. 4 when node v5 is
disabled at any time tc provide a detailed partition of flights
onto the nodes to which they are rerouted. Since the head
of the link e5 (resp., e6), v5, is disabled, the flights traveling
on the link need to be rerouted to one of the possible backup
nodes, v3 or v4 (resp., v3, v4, or v7). We use orange and purple
(resp., green, red, and blue) rectangles to represent Ne5,v3 and

1The related MATLAB code can be found in https://github.com/gtfactslab/
Wei TCNS ScheduleVerification.git.

Ne5,v4 (resp., Ne6,v3 , Ne6,v4 , and Ne6,v7 ), i.e., the number of
affected flights traveling on link e5 (resp., e6) rerouted to the
backup nodes v3 and v5 (resp., v3, v4, and v7). We use grey
rectangles to indicate the failure of obtaining the solution to
the LP problem (12)–(16). The height of the grey rectangles
represents the total number of flights that need to be rerouted
from link e5 (resp., e6) when node v5 is disabled at time tc,
i.e.,

P
v2B0

e5
Ne5,v . Notice that the solution to the LP problem

(N·,·) for tc > 0, if it exists, is not unique, and hence Fig. 4 is
only one possible rerouting arrangement. Thus, as an example,
the schedule is not time-node conditionally safe for node v5

at tc = 40, as the grey rectangle indicates there does not exist
a solution to the problem (12)–(16) at time tc. Therefore, the
network is not able to accommodate the failure of v5 at time
tc = 40.

For the sake of comparison, we then increase the capacity
of v4 to Cv4 = 8 while the other parts of the network remain
the same. We then verify the safety of the same schedule with
the algorithm, and these results are shown in Fig. 5.

In Fig. 5 (top), the blue rectangles correspond to flights that
are not affected and continue to v3 if node v5 is disabled at
time tc, which is NR(v3) in (12); the pink rectangles corre-
spond to flights rerouted to node v3 from link e2 = (v2, v3) if
v5 is disabled at time tc, which is Ne2,v3 ; the orange (resp.,
green) rectangles correspond to the number of flights rerouted
to node v3 from link e5 = (v3, v5) (resp., e6 = (v4, v5)) if
node v5 is disabled at time tc, which is Ne5,v3 (resp., Ne6,v3 ).
Notice that Ne2,v3 is fixed and can be computed by (14), since
any flight traveling on e2 at time tc has to land at v3 if v5 is
disabled at that time; meanwhile, Ne5,v3 (resp., Ne6,v3 ) is an
optimization variable computed through the LP problem (12)–
(16). As a reference, the capacity Cv3 = 6 is shown as the
dotted, horizontal line so that the height of the entire bar (the
sum of all rectangles) must not exceed the capacity for safety.
As shown in the plots, after increasing the capacity of v4,
which is a backup node for both e5 and e6, the solution to
the problem (12)–(16) exists all the time. To conclude if the
schedule is node conditionally safe when v5 is disabled, we
would need to observe all affected nodes and links in the
network in the same way.

Further, as shown in the second stripe of Fig. 3, we verify
when the schedule is safe if the set of nodes Vc = {v4, v6}
is disabled. We observe that the schedule is not worst-case
safe if the disabling time tc falls within much of the window
[25, 35] and a few other periods such as tc = 17, 37, 39, and
42.

The computation time for NR(v) in (12) increases quadrat-
ically with the size of the schedule, and as indicated in [35],
solving the LP problem (12)–(16) with a fixed number of
variables can be computed within linear time with respect to
the number of constraints, while the number of constraints
in the LP problem and the number of times the LP needs
to be solved both grow linearly with the size of schedule.
We thus conclude that the verification process is completed in
O(n2) time. This efficient scaling implies that we are able to
verify worst-case safety with large schedules. As an example,
consider increasing the capacity for each node of the network
in Fig. 1 by 10 to produce feasible schedules more easily.
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Fig. 4. Observation of the network when node v5 is disabled at any time
tc > 0 when Cv4 = 4. (Top) Redistribution of flights on link e5 to its backup
nodes when node v5 is disabled. (Bottom) Redistribution of flights on link
e6 to its backup nodes when node v5 is disabled.

We generate 10 more sets of random feasible schedules with
sizes 100, 200, 300, . . . , 1000 and verify their safety using the
same algorithm. Fig. 6 demonstrates the O(n2) computation
complexity and shows that we are able to verify safety or
demonstrate the safety failure for a schedule with 1,000 flights
in under 50 seconds. As a baseline comparison, we also
implement the verification algorithm with the naive MILP
implied by Theorem 1 without the efficient simplification to an
LP derived in Section IV. This implementation is solved using
the Gurobi [36] solver through with the YALMIP MATLAB
toolbox [37]. We test the same 20-flight schedule on this
MILP algorithm, which takes 7.34 seconds to verify, while the
algorithm we use with simplification to LP takes only 1.43
seconds. A 100-flight schedule takes around 40 seconds to
verify with the naive MILP formulation, and 8 seconds with
the LP algorithm.

VI. CONCLUSION

We studied the safety verification problem for Urban Air
Mobility (UAM) schedules in the face of vertiport (i.e., landing
site) closures. We adopt a UAM network model that considers
a set of finite-capacity vertiports and links between vertiports
with uncertain travel time. If a vertiport is closed at some
time, then flights destined for the closed vertiport must be
rerouted to one of a set of link-dependent backup nodes. A
safety violation occurs if the finite landing capacity at any
node is exceeded due to the rerouting. We first considered a
single node closure and then extended these conditions to the
possibility of multiple simultaneous node closures.

We consider the travel time uncertainty as a nondeterminis-
tic uncertainty, and therefore, we define appropriate notions of
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Fig. 5. Observation of the network when node v5 is disabled at any time
tc > 0 when we adjust the capacity of node v4 to Cv4 = 8. (Top) Expected
landing-spot occupation at node v3. (Middle) Redistribution of flights on link
e5 to its backup nodes. (Bottom) Redistribution of flights on link e6 to its
backup nodes.
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Fig. 6. The computation time for verifying the worst-case safety of schedules
with different sizes. We test on 11 different sets of schedules with sizes
from 20 to 1000. The data points demonstrate the O(n2) computational
complexity.

worst-case and best-case safety. We give necessary and suffi-
cient conditions in both cases. As formulated, these conditions
take the form of mixed integer linear programming (MILP)
constraints. We then showed that these numerically inefficient
MILP constraints are able to be converted into efficient linear
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programming (LP) constraints using the theory of totally uni-
modular matrices (TUMs), resulting in an efficient algorithm
for safety verification. We demonstrated our approach through
several case studies.

There are several possibilities for extending the results of
this paper. For example, we regard a disrupted node as com-
pletely malfunctioning, but a partial malfunctioning disruption
model, where not all landing spots of the disrupted node are
disabled, could also be investigated.
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APPENDIX A
PROOF OF LEMMA 1

We prove in this appendix. The proof makes use of proper-
ties of Totally Unimodular Matrices (TUMs).

Definition 4. (Totally Unimodular Matrix) A matrix is totally
unimodular if every square submatrix has determinant 0,+1,

or �1.
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TUMs are widely used in the context of optimization
problems. In particular, it can be shown that for a large class
of linear programs defined via TUMs, the resulting optimal
solution takes on integer values [38]. We use this property in
the proof of Lemma 1 next.

Proof of Lemma 1. We first let the vector ~n be the vectorized
sequence {nl1,l2}

l1=N1,l2=N2

l1=1,l2=1 , so that

~n = [n1,1, n1,2, . . . , n1,N2 , n2,1, . . . , nN1,1, . . . , nN1,N2 ]
T
.

(43)
We can then simplify the constraint (35)–(36) as

A1~n = ~↵ , A2~n  ~� (44)

where ~↵ = [↵1, . . . ,↵N1 ]
T and ~� = [�1, . . . ,�N2 ]

T , and A1

(resp., A2) is a N1 ⇥ N1N2 (resp., N2 ⇥ N1N2) matrix that
reflects the matrix form of the multiplication of the constraints.
In particular, the row-i-column-j element of A1 is A1(i, j) =
1 if (i � 1)N2 < j  iN2 and A1(i, j) = 0 otherwise, and
A2(i, j) = 1 if j = m ·N2 + i for m = 0, 1, . . . , N1 � 1 and
A2(i, j) = 0 otherwise.

Since for (l1, l2) 2 Lvar, nl1,l2 = �l1,l2 , we then subtract
corresponding entries from both left sides of (44), and subtract
the values from their right sides. We let A3 (resp., A4) be the
resulting matrices, so that A3 (resp., A4) is a N2 ⇥ N1N2

(resp., N1 ⇥ N1N2) and the row-i-column-j element of A3

is A3(i, j) = 0 if (i, j � (i � 1)N2) 2 Lvar and A3(i, j) =
A1(i, j) otherwise, and A4(i, j) = 0 if (i, (j � i)/N2 + 1) 2
Lvar and A4(i, j) = A2(i, j) otherwise. Let

↵
0
l1 = ↵l1 �

X

l2:(l1,l2)2Lvar

�l1,l2 for all l1, (45)

�
0
l2 = �l2 �

X

l1:(l1,l2)2Lvar

�l1,l2 for all l2, (46)

~↵0 = [↵0
1, . . . ,↵

0
N1

]T , (47)
~�0 = [�0

1, . . . ,�
0
N2

]T . (48)

We can then reformulate (44) together with the con-
straints (37)–(38) as

2

664

A3

�A3

A4

�IN1N2

3

775

| {z }
=:A

~n 

2

664

~↵0

�~↵0

~�0

~0N1N2

3

775

| {z }
=:~b

, (49)

where IN1N2 is the identity matrix with N1N2 rows and ~0N1N2

is the zero vector of length N1N2.
The first part of the lemma is then turned into the standard

linear programming problem, which is finding the existence
of ~n that satisfies A~n  ~b. The next step is to prove that A is
a totally unimodular matrix (TUM) as defined in Definition 4.

We first consider the matrix

A3

A4

�
. Notice that for each

column of A3 and A4, there exists at most one nonzero entry,

1, therefore, for each column of the matrix

A3

A4

�
, there exists

at most two nonzero entries, and for any column with two non-
zero entries, both of them will be 1, and the row of one is in

A3 while the other is in A4. According to Hoffman’s sufficient

conditions [39, Appendix],

A3

A4

�
is a TUM. By the general

rule of TUM, �

A3

A4

�
is a TUM and thus

2

664

A3

A4

�A3

�A4

3

775 is also a

TUM. According to the definition of TUM, deleting some rows
from a TUM will produce a TUM, as any square non-singular
submatrix of the new matrix will still be unimodular. As a

result,

2

4
A3

A4

�A3

3

5 is TUM and so is

2

664

�A3

�A4

A3

IN1N2

3

775 and it’s additive

inverse by the general rule of TUM. As switching rows does
not affect the absolute value of the determinant of a matrix,
then we conclude from above that A is a TUM.

Therefore, [38, Theorem 2] implies that if there exists a
solution for the LP in (49), then there exists an integral solution
for the same LP problem, which concludes the lemma.
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