Interval Signal Temporal Logic from Natural
Inclusion Functions

Luke Baird, Student Member, IEEE, Akash Harapanahalli, Student Member, IEEE, and Samuel Coogan,
Senior Member, IEEE

Absiract— We propose an interval extension of Signal
Temporal Logic (STL) called Interval Signal Temporal Logic
(I-STL). Given an STL formula, we consider an interval
inclusion function for each of its predicates. Then, we use
minimal inclusion functions for the min and max functions
to recursively build an interval robustness that is a natural
inclusion function for the robustness of the original STL
formula. The resulting interval semantics accommodate, for
example, uncertain sighals modeled as a signal of intervals
and uncertain predicates modeled with appropriate inclu-
sion functions. In many cases, verification or synthesis
algorithms developed for STL apply to I-STL with minimal
theoretic and algorithmic changes, and existing code can
be readily extended using interval arithmetic packages at
negligible computational expense. To demonstrate I-STL,
we present an example of offline monitoring from an uncer-
tain signal trace obtained from a hardware experiment and
an example of robust online control synthesis enforcing an
STL formula with uncertain predicates.

Index Terms— Autonomous systems, constrained con-
trol, fault detection.

[. INTRODUCTION

IGNAL Temporal Logic (STL) is an expressive language

for encoding desired dynamic behavior of a system. STL
specifications are built from predicate functions over the
system output as well as Boolean and temporal connectives.
For example, a warehouse robot may be required to visit
regions defined by predicate functions in a prescribed order
and deadline, or a building HVAC system might be allowed
to violate a prescribed temperature range for only a limited
period of time. STL is equipped with both qualitative logical
semantics [1] and quantitative robustness semantics [2] that
quantify the margin by which a specification is violated or
satisfied.

Two major applications of STL include monitoring and
control synthesis. For monitoring, the goal is to determine
whether a given signal satisfies an STL specification [3]. There
are several available tools and algorithms in the literature
for efficient monitoring of an STL specification [4], [5], [6].
For control synthesis, the goal is to obtain a control strategy
such that the resulting system output is guaranteed to satisfy

This work was supported by the National Science Foundation under
grants 1749357 and 2219755 and the Air Force Office of Scientific
Research under Grant FA9550-23-1-0303.

L. Baird, A. Harapanahall, and S. Coogan are with the
Electrical and Computer Engineering Department at the
Georgia Institute of Technology, Atlanta, GA 30318 USA.
{1baird38, aharapan, sam.coogan}@gatech.edu

a given STL specification. Control synthesis is often posed
as an optimal control problem by including the robustness
metric in the cost or constraints. This problem is generally
non-convex and non-smooth due to the composition of min
and max appearing in the definition of the robustness metric
and is often converted to a mixed-integer program [7], [8].
For example, a state-of-the-art mixed-integer linear program
(MILP) for STL control sythesis over affine predicates with
linear costs using a minimal number of binary variables
is proposed in [8] and implemented in the stlpy Python
package. Alternate approaches to control synthesis include
under-approximating the non-smooth robustness metric with
a smooth approximation [9], [10] and using control barrier
functions for certain fragments of STL [11], [12].

One major challenge is accommodating uncertainty in the
system dynamics, the system output, and/or the STL specifica-
tion itself. A variation of STL called pSTL allows satisfaction
or violation of a specification over a signal to occur with
some probability [13]. Similarly, the paper [14] propagates
stochastic robustness intervals of STL robustness with linear
predicates for safe motion planning. The paper [15] proposes a
monitoring algorithm that accommodates uncertainty and time
perturbations using intervals for finite-horizon STL formulas
but is limited to monitoring and does not consider uncertainty
in the STL predicates. In the context of online monitoring,
the paper [6] presents an algorithm where the robustness of a
partial signal is predicted as an interval before an entire signal
is observed so that satisfaction or violation can be reported
early if zero robustness is not in the interval. The paper [16]
develops an offline monitoring algorithm for handling common
models of sensor uncertainty within an STL framework.

The main contribution of this letter is an interval extension
of STL called Interval-STL (I-STL) to accommodate interval-
valued uncertainty in the system or specification. Note that
we avoid probabilistic considerations such as [17] and use
intervals to model uncertainty yielding formal guarantees. The
syntax and semantics of I-STL are the same as STL except
interval functions replace predicate functions and min and
max are replaced with their minimal inclusion function coun-
terparts, resulting in interval-valued quantitative robustness
semantics and three-valued qualitative logical semantics for
I-STL. Unlike previous works, our construction accommodates
uncertainty in the predicate functions themselves. Our main
theorem is a soundness result establishing that the interval
robustness of [-STL over-approximates the usual STL robust-
ness under any realization of the uncertainty, and similarly



for the logical semantics. We identify a class of specifications
for which the I-STL robustness interval is minimal. A main
feature of I-STL is that, since its definition is built from natural
inclusion functions and interval arithmetic, existing algorithms
for STL are often easily extended to I-STL using mature
interval analysis packages at negligible computational expense.
In particular, we extend stlpy to I-STL using our interval
toolbox npinterval [18], and we demonstrate the resulting
algorithms on two examples: monitoring an uncertain signal
and synthesizing a controller for an uncertain system.

This letter is outlined as follows. Section II presents math-
ematical preliminaries needed for the interval arithmetic and
STL. Section III is the primary theoretic contribution of this
letter describing I-STL. Section IV gives a brief discussion
of advantages and limitations of I-STL. Section V provides
examples of our method applied to monitoring and control
synthesis followed by Section VI which concludes this letter.

[I. MATHEMATICAL PRELIMINARIES
A. Notation

We denote the standard partial order on R" by <, i.e., for
z,y € R", x < yifand only if z; < y; foralli € {1,...,n}.
A (bounded) interval of R™ is a set of the form {z : z <
z < T} =: [z, 7] for some endpoints z,Z € R", z < T. Let
IR"™ denote the set of all intervals on R™. We also use the
notation [z] € IR™ to denote an interval when its endpoints
are not relevant or implicitly understood to be x and 7. For a
function f : R™ — R™ and a set X C dom(f), define the set
valued extension f(X) := {f(z) : 2z € X}.

A discrete-time signal in R™ is a function x : N — R"
where N = {0,1,2,...}. A discrete-time interval signal in
IR™ is a function [x] : N — IR"™. If x and [x] are such that
x(t) € [x](t) for all t € N, we write x € [x].

B. Interval Analysis

Interval analysis extends operations and functions to in-
tervals [19]. For example, if we know that a € [a,a], and
b € [b,b], it is easy to see that the sum (a+b) € [a+b,a+b].
The same idea extends to general functions, using an inclusion

function to over-approximate its output.

Definition 1 (Inclusion Function [19]). Given a function f :

R™ — R™, the interval function [f] = [f, f] : IR" — IR™

is an inclusion function for f if, for every [z,7] € IR",
f([z,7]) < [f](Jz, T]), or equivalently

f(lz,7) < f(z) < f(lz,7]) forall z € [z,7].

An inclusion function is minimal if for every [z, ], [f]([z, T])
is the smallest interval containing f([x,T]), or equivalently

(Fli(lz,7]) = | inf_ fi(x),

z€[z,7]

sup fl(‘r) ’

z€[z,T]
for each ¢ € {1,...,m}.

Of particular relevance to this letter are the minimal inclu-
sion functions for min and max.

Proposition 1. The minimal inclusion functions for
min(zy,x2) and for max(zy,x2) with 1 € [z,,71] € IR,
T2 € [x4,T2] € IR, denoted as [min| and [max], are given by

(1)
2

(min]([21], [z2]) = [min(z,, z,), min(z, T5)]

[max]([‘rl]’ [xQ]) = [max(glvgﬂvmax(flvfﬂ}'

Moreover, [min] and [max] extend inductively to multiple
arguments in the usual way, e.g., [min]([z1],[x2], [x3]) =
[min(£17£23£3)5 min(flaf%ElS)L efc.

For some common functions, the minimal inclusion function
is easily defined. For example, if a function is monotone, the
minimal inclusion function is simply the interval created by the
function evaluated at its endpoints. However, when considering
general functions, finding the minimal inclusion function is
often not computationally viable. The following proposition
provides a more computationally tractable approach.

Proposition 2 (Natural Inclusion Functions). Given a func-
tion f : R™ — R™ defined by a composition of func-
tions/operations with known inclusion functions as f = ey o
eg_1 0 -+ 0 ey, an inclusion function for f is formed by
replacing each composite function with its inclusion function
as [f] = [ed]oles—1]o- - -ole1], and is called a natural inclusion
Sfunction.

Existing software tools such as CORA [20] and
npinterval [18] automate the construction of natural
inclusion functions from general functions. We refer to [19,
Section 2.4] for further discussion and other techniques to
obtain other inclusion functions.

C. Signal Temporal Logic
Signal Temporal Logic (STL) is defined over a set P of

predicate functions where each y € P is a function p : R™ —
R. STL specifications are formed using the syntax [10], [7]

¢ = (u(@) = 0)[=¢l¢ A Y|dUs, 110 3)

where 1 € P. The operators conjunction A, until U, and
negation — may be used to define disjunction V, eventually
¢, and always [J. We occasionally write ¢p to emphasize that
¢ is over the set of predicate functions P.

An STL specification ¢ is evaluated over a discrete-time
signal x : N — R”. The quantitative robustness p® of a
specification ¢ evaluated over signal x at time ¢ € N is defined
and calculated recursively as in [10, Definition 1].

Qualitative semantics of STL formula ¢ evaluated over
signal x are recovered from the robustness as [10]

if p®
x ¢ = {TRUE if p?(x,0)

if p?(x,0)

>0
< 0. @

FALSE
Note that we adopt the convention that if p?(x,0) = 0, then

[X = ¢] = TRUE, although this case is sometimes considered
an undefined truth evaluation in the literature.



[1l. INTERVAL SIGNAL TEMPORAL LOGIC

In standard STL, the robustness p® of a specification ¢
evaluated over a signal x at a time ¢ is a single number.
With the aim of incorporating bounded uncertainty in signal
values and in predicate functions, in this section, we define
and characterize Interval Signal Temporal Logic (I-STL) that
is evaluated over interval signals and whose quantitative se-
mantics give an interval of robustness. We connect this to
an original STL specification by defining an induced I-STL
specification given inclusion functions for the predicates.

I-STL is defined over a set of interval predicate functions
7T where each M € 7 is an interval function M : IR" — IR.
I-STL syntax is the same as STL except we exchange predicate
functions for interval predication functions.

Definition 2. (I-STL Syntax) Given a set Z of interval
predicate functions, I-STL syntax is defined by

¢ = (M([z]) C [0, 00])[~¢l¢ A P|¢Ust, 110
for M € 7.

&)

An I-STL specification ¢ is evaluated over a discrete-time
interval signal [x] : N — IR"™ where [x](t) € IR™ for each
time ¢ € N. Using the minimal inclusion functions [min] and
[max] given in (1) and (2), we now define the quantitative
interval robustness semantics of I-STL as follows.

Definition 3. (I-STL Quantitative Semantics) The interval
robustness [p]? of an I-STL specification ¢ evaluated over an
interval signal [x] at time step ¢ is calculated recursively using
natural inclusion functions as

A" (. ) M), 1= (M([z]) € [0.0))
A (0. ) = (1. 1)

PPt = i (6l ()0, [0 (. )
AP = ma (), [ ()
Tty = fmin] ([p (), )

t’e[t-‘rtl,t-'rtz](

max] ([p]?
' E€[t+t1,t4t2]

o) a1¥ [, )

= [max] [min]<[p]¢([><],t’),

t'€[t+t1,t+t2]

[min]
€[t 4t1,t/]

([o]” (), t"))) ~
(6)

We also define three-valued logical semantics from the
quantitative interval semantics as follows.

Definition 4. (I-STL Three-Valued Logical Semantics) The
truth-value of I-STL formula ¢ evaluated over interval signal
[x] is denoted [[x] = ¢] and given by

if [p]?(x,0) C
if [p]?(x,0) C [~
UNDEF else.

TRUE

[[x] = ¢] = { FALSE 00,0)  (7)

We now establish the key property of I-STL: it provides
interval bounds on the robustness of an STL specification

given interval uncertainty in the predicate functions and/or
signal.

Definition 5 (Predicate interval extensions). Given a set of
predicate functions P, a set of interval predicate functions 7
is an interval extension of P if for each p € P there exists a
M € T such that M is an inclusion function for .

Example 1. Consider the predicate function p : R®™ — R
such that p(z) := |z||3 —r = I, 7 — r, representing,
e.g., a circular obstacle. Then an interval predicate func-

tion M : IR™ — IR can be constructed following the
framework from [18]: for each ¢ = 1,...,n, define y, =
0 <0<7;
o o L = = * , and 7; := max(2?,7?); then,
min(x7,7;) otherwise

M([z,7]) = [y, — 7 Z?:lyi—r} is an inclusion
(

function for p(x

When 7 is an interval extension of 7P, we can obtain an
I-STL specification over Z from an STL specification ¢ over
‘P by replacing every instance of a predicate function p with
the corresponding M.

Definition 6 (Induced I-STL specification). Given an STL
specification ¢p over the set of predicate functions P and a set
of interval predicate functions Z that is an extension of P, the
I-STL specification that is obtained by replacing each instance
of a predicate function u(z) in ¢p with the corresponding
interval predicate function M ([x]) is the I-STL specification
over Z induced by ¢p and is denoted ¢z. When no confusion
arises, we sometimes drop the subscript and write ¢ for an
STL specification and its induced I-STL specification.

We now present the main theoretical result of this letter,
linking the semantics of an STL specification to the semantics
of its induced I-STL specification.

Theorem 1 (Soundness of Quantitative Semantics). Let ¢p
be an STL specification over the set of predicate functions P.
Let T be an interval extension of ‘P and let ¢ be the I-STL
specification over I induced by ¢p. Then, for any interval
signal [x] : N — IR" and any signal x € [x], it holds that

p?” (x,t) € [p]**([x],t) for all t. (8)
Moreover,
[x] E ¢z] = TRUE  implies  [x |= ¢p| = TRUE, and
[x] E ¢z] = FALSE  implies  [x = ¢p| = FALSE.

9)
Proof. Because each M € T is a inclusion function for its
corresponding predicate function p € P and [min| and [max]
are inclusion functions, each equation in (@) is an inclusion
function for the corresponding equation in [10, Definition 1]
by Proposition [2| Thus, [p]%Z is a natural inclusion function
for p®?, immediately implying (8). For (9), we observe that

[X] = ¢z] = TRUE = p?*([x],0) >0

so by @), p?7(x,0) > 0, that is, [z = ¢p] =
Symmetrically,

[[x] = ¢z] = FALSE = p?*([x],0) < 0

TRUE.



so by (@), p?7(x,0) < 0, that is, [« = ¢p| = FALSE where
0?7 and 77 are the lower and upper-bounds of [p]?Z, that is,

(o7 ([x], 0) = [p? ([x], 0), %% ([x], 0)]- O

Note that if [[x] = ¢] = UNDEF we cannot say anything
about the truth value of [x |= ¢|. Although in general the
inclusion function [p]Z([z],t) is not minimal, we give an
example of a class of specifications for which the I-STL
robustness is minimal.

Proposition 3. Let P be a set of monotone non-decreasing
predicate functions p; with associated minimal inclusion func-
tions M; € 1. If the specification ¢p has no negations, then
the interval robustness [p|®* of the induced I-STL specification
o1 from Definition [0] is the minimal inclusion function for the
STL robustness p®? of ¢p.

Proof. Let w1, peo R®” — R be monotone non-

decreasing predicate functions with minimal inclusion func-

tions M1, M. Given an interval [z, Z], due to monotonicity,

the interval robustness from I-STL of p; V pg is

(o ([, 7)) = [max ( min o (e), min_ps(e)),
x€[z,T] x€[xz,T]

mex ( mex i1 (z), max pa(z))],

(max(p (), p2(2)), max(p1 (T), p2(T))),

[ min p"V#2(z), max p"VH2(z)].
v€lw,7] velza]

This follows as min and max are monotone non-decreasing, so
the composition with p; and po is monotone non-decreasing.
The same holds for A and min. Every operator in I-STL is
a composition of min and max, thus it holds inductively that
[p]** is a minimal inclusion function for p®. O

IV. COMPUTATIONAL CONSIDERATIONS OF |-STL

In practice, I-STL specifications most naturally arise by
incorporating uncertainty in settings with STL constraints.
Aside from the theoretical soundness guarantees of Theorem
[1l a key feature of I-STL is that, algorithmically, it is often
straightforward to modify existing STL algorithms such as
offline monitoring, online monitoring, and control synthesis
to incorporate the quantitative semantics in Definition [3| Con-
cretely, as we demonstrate in the case studies, this is often as
simple as replacing appropriate numerical computations with
their interval counterparts using existing interval arithmetic
computation packages, and in many settings, the increase
in computational effort is negligible. A contribution of this
letter, therefore, is an extension of the stlpy package for
STL monitoring and control synthesis [8] to allow for I-STL
monitoring and control synthesis using our interval arithmetic
package npinterval [18], which implements intervals as a
native datatype in the Python numpy package.

For example, consider a setting in which an STL speci-
fication is given over known and fixed predicate functions
‘P. Suppose the objective is to monitor offline (i.e., after all
measurements are collected) the robustness of ¢ evaluated over
a signal, but the true signal is not known exactly—with this
uncertainty captured in the interval signal [x] instead. In this
case, we construct a set of interval predicate functions Z as,

e.g., the natural inclusion functions of the original predicate
functions, Z = {[u] | © € P}, and then [p]® becomes an
inclusion function for p?.

We generalize further and consider a setting in which the
predicate functions are parameter-dependent, and the parame-
ter is not known exactly but known to be within an interval.
For example, consider an affine predicate of the form p(z) =
a'r —bfora € R" and b € R. If a and b are uncertain and
only known to be within the intervals [a] and [b], it is natural

to consider an interval predicate
M([2]) = [a] " [«] — [o].

As an example, instantiating the predicate p(z) =a'x —b
in st1lpy is achieved with, e.g.,

(10)

stlpy.STL.LinearPredicate (a,b)

for numpy arrays a and b. Creating the interval predicate
is achieved with

a_int = interval.get_iarray(_a,a_)
b_int = interval.get_iarray(_b,b_)
stlpy.STL.LinearPredicate (a_int,b_int)

where _a, a_, _b, b_ are numpy arrays for the lower and
upper endpoints of [a] and [b], and get_iarray returns the
numpy array of the interval data type.

More generally, given a parameterized predicate function of
the form p(x,p) where p € R™ is an unknown parameter
vector known to be within the interval [p], we take as an
interval extension the interval predicate function M([z]) =
[]([x], [p]) where [p] is any inclusion function for .

For example, given a parameterized Python function mu_p :
R” x R™ — R with fixed p € R™,

mu = lambda x mu_p(x, p=p)
stlpy.STL.NonlinearPredicate (mu, n)

instantiates a nonlinear predicate paramerized by numpy array
p. Comparatively, the code

p_int = interval.get_iarray(_p,p_)
M = lambda x mu_p (x, p=p_int)
stlpy.STL.NonlinearPredicate (M, n)

instantiates a nonlinear interval predicate obtained from the
natural inclusion function of the parameterized predicate func-
tion mu_p evaluated with an uncertain parameter in the
interval p_int := [_p, p_] € IR™. Note that npinterval
automatically builds a natural inclusion function for mu when
arrays of interval data-type are passed into the function.

We demonstrate this construction and its application in the
examples in Section [V, We also illustrate how I-STL can be
used for enforcing safety specifications due to the construction
from inclusion functions.

V. EXAMPLES

In this section, we provide two example use cases of I-STL.
First, we demonstrate monitoring on a signal measured from
an experiment with a miniature blimp. We consider both linear
and nonlinear uncertain predicates and measurement uncer-
tainty. Then, we show how I-STL can be used in conjunction



0.5

7\ 4\
= 004 =107 ""‘"“""\ / \ / \ /
\ T Al 4 h Y 4
o\ ¥ ¥,
0 25 50 75 160 125 150 175 L‘) é l‘[] ]‘5 ‘2‘0 2‘.5 3‘0
t(s) t(s)
Fig. 1. The offline computed robustness of ¢ A ~. The trajectory Fig. 2. Synthesized control policy output for a double integrator with

is generated from a way-point following PD controller that regularly
violates the specification, suggesting the need for controller redesign,
for example.

with theory from [21] for control synthesis of a linear sys-
tem. Because our implementation for monitoring and control
synthesis builds on st1lpy [8], we convert STL formulas in
code into positive normal form (PNF), where negation — is
only applied to predicates without loss of generality [22]. All
simulations were performed on a 2022 Dell Precision 5570
running Ubuntu 22.04.3 LTSH

A. Interval Monitoring on a Miniature Blimp

We illustrate monitoring of a signal taken from an exper-
iment with the GT-MAB miniature blimp hardware platform
[23]. We wish to monitor the following two specifications,
o =(zy" ¢ 9V Q[O,%[At]D[O,Q/At]([x y]" ¢ 5) and
v = Op,3/ag(—|[ve vy v2]"[l2 +2 > 0), where At = 0.2s
and the expression [z y]' & S is written as (z > d) V (z <
—d)V (y > d)V (y < —d), where d = 1.41m is half of the
width of a square plus the radius of the blimp. The signal is
generated from a PD controller with four way-points placed at
the coordinates (0, 1.51), (1.51,0), (0, —1.51) and (—1.51,0)
in the xy-plane. Due to measurement uncertainty, we add an
interval of +£0.075m/s to each of the velocity states and an
interval of +0.020m to each of the position states. We use a
natural inclusion function to handle the nonlinear predicate.

The results of monitoring offline for ¢ Ay is shown in Figure
[[} Note that I-STL adds minimal overhead beyond what is
equivalent to monitoring two signals instead of one due to the
use of the npinterval Python package [18]. Standard STL
robustness computations without uncertainty took 0.0035s per
time step while I-STL computations with uncertainties took
0.0073s per time step, which is about 5% more than twice a
standard STL robustness computation.

B. Robust Control Synthesis for a Linear System
Consider the following specification adapted from [21], [5]

¢ =00, 21((y 0.7V (y > 1.3))A (11)
((0.7 <y < 1.3) VOpp, 21 0j0, 21(0.7 < y < 1.3)),

on the discrete-time double integrator with bounded additive
disturbance

m(t—f—l):{(l) Alt] x(t)—l—[AOt] wt) +w(®),  (12)
i -

IThe code for these examples is available at https://github.com/
gtfactslab/Baird_LCSS2024,

uncertain states and predicates. A MILP finds the smallest input in
magnitude at each time step such that the lower bound of the interval
robustness is non-negative for all time. The uncertain interval predicates
are plotted in red.

with z(t) € R?, for all t € N, u(t) € [-1,1], and w(t) €
[w,w] = [-0.001,0.001]%. Set At = 0.25. The horizon of an
STL formula ¢, denoted ||¢||, is the number of future time
steps of a signal necessary to evaluate an STL formula. Its
computation is given in [1], yielding ||¢|| = 4/0.25 = 16 time
steps for ¢ in (11). The output of the system is the position,
Y= xq.

The requirement 0.7 < y < 1.3 may be written as the
conjunction of two affine predicate functions ay — 51 > 0,
and —ay — B2 > 0 where a = 1, $; = 0.7, and By = —1.3.
Similarly, the requirement (y < 0.7)V(y > 1.3) can be written
as the disjunction of the negation of the same predicates.
Suppose, however, that there is uncertainty in the linear pred-
icates captured with the interval bounds [a, @] = [0.95,1.05],
[8,,51] = [0.68,0.72], and [3,, B,] = [-1.28, —1.32] for a,
051, and Bo. We wish to minimize the control input such that
the robustness is non-negative for all possible disturbances and
all possible realizations of the interval predicates.

Using Theorem [I] with the I-STL specification induced by
(L1, our control objective is achieved by requiring that the
lower bound on the interval robustness be non-negative. We
use the formulation from [21, Algorithm 1], with slight modi-
fications to accommodate I-STL. In particular, we replace the
original dynamics constraints with a new embedding system
giving lower and upper bounds x and T on the state trajectory
which over-approximates the true behavior of the system, i.e.,
for all possible disturbances, (t) € [z(t), T(¢)]. In general, an
embedding system may be constructed for a large class of sys-
tems using mixed-monotone systems theory [18]. Therefore,
from [21, Equation (8)] using instead interval robustness, we
obtain the optimization problem

min |u(t)]
u={u(t),...,u(t+N—-1)}

o] -0 ] e+ o
p?(ly),m) 2 0, max{t—|[¢],0} <T<t+N—b.

where A and B are the matrices from (12). We select N = 16,
b = 1 and solve in a receding horizon fashion as a MILP
using Gurobi. The resulting output sequence initialized at the
state z = [1 0]" is plotted in Figure [2} In Figure |3} we
provide an empirical analysis of the tightness of the bounds of
I-STL and its computational burden compared to computing
true robustness intervals from MILPs. For this analysis, we
consider the case without uncertainty in the predicates and at
each time step, we fix a proposed input sequence from the

13)


https://github.com/gtfactslab/Baird_LCSS2024
https://github.com/gtfactslab/Baird_LCSS2024

—o— True robustness interval

0.20 - —e— |-STL robustness approximation
2 015
=y
£ 0.10
2
o
& 0.05 4

0.00 4

0 5 10 15 20 25 30
t(s)
Fig. 3. I-STL robustness vs. exact interval robustness comparison for

the double integrator case study without uncertain predicates to avoid
bilinear constraints. At each time step, the I-STL interval robustness for
a proposed safe trajectory is plotted in blue. The true interval robustness
is plotted in red, solved by maximizing and minimizing p for the original
system ([2), with w € [—0.001,0.001]2, u set to the proposed safe
input trajectory, and x initialized with historical states. Solving for the
true interval robustness with a MILP takes on average 0.015s while
computing the I-STL robustness takes on average 0.0014s. Out of a
total of 119 time steps, the I-STL robustness interval is minimal for 107
time steps and is no more than 10% larger than the exact robustness
interval for 116 time steps.

solution of (13).

Note that the set of predicates for ¢ includes two predi-
cates and their complements. Thus, it is not obvious which
realization in the interval is the most conservative assumption.
The most conservative realization of an interval predicate
function depends on the history and the current time step,
e.g., whether to maintain satisfaction the signal must return to
within 0.7 < y < 1.3 nominally, or leave this range nominally.

The I-STL implementation doubles the state dimension
and output dimension due to the embedding system, yielding
double the dynamics equality constraints. Enforcing predicates
in the I-STL constraint requires additional binary variables.
When applying the mixed-integer encoding from [8] with
affine interval predicates, the expression

alyt) —b+ M1 —2) > p(t)

is modified by using the minimal inclusion function for [a] " [y]
(where p is the dimension of the output) to

P
Y min{ay 0y, @y @7} — b+ M(1—2) = p(t),
j=1

which introduces extra binary variables. Otherwise, the num-

ber of constraints used to encode I-STL robustness remains

the same. Over a 119 time step trajectory in simulation, the

I-STL implementation takes 0.46s to compute a safe control

input per time step, while the STL implementation without

disturbances and without uncertain predicates takes 0.15s per
time step.

VI. CONCLUSION

We presented an interval extension of STL that uses in-
clusion functions to give sound interval overestimates of STL
robustness. Using the npinterval package, I-STL can be
efficiently used for robust monitoring or control synthesis
with minimal code adaptation and computation time that is
approximately twice that of the standard STL counterpart. In
contrast, computing exact minimal and maximal robustness
bounds is considerably more computationally intensive as
demonstrated in the case study.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

REFERENCES

O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals,” in Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems, pp. 152—166, Springer, 2004.

G. Fainekos and G. Pappas, “Robustness of temporal logic specifications
for continuous-time signals,” Theoretical Computer Science, vol. 410,
no. 42, pp. 4262-4291, 2009.

E. Bartocci, J. Deshmukh, A. Donzé, G. Fainekos, O. Maler,
D. Nickovi¢, and S. Sankaranarayanan, “Specification-based monitoring
of cyber-physical systems: a survey on theory, tools and applications,”
in Lectures on Runtime Verification, pp. 135-175, Springer, 2018.

A. Donzé, “Breach, a toolbox for verification and parameter synthesis
of hybrid systems,” in International Conference on Computer Aided
Verification, pp. 167-170, Springer, 2010.

A. Dokhanchi, B. Hoxha, and G. Fainekos, “On-line monitoring for
temporal logic robustness,” in International Conference on Runtime
Verification, pp. 231-246, Springer, 2014.

J. Deshmukh, A. Donzé, S. Ghosh, X. Jin, G. Juniwal, and S. Seshia,
“Robust online monitoring of signal temporal logic,” Formal Methods
in System Design, vol. 51, no. 1, pp. 5-30, 2017.

C. Belta and S. Sadraddini, “Formal methods for control synthesis:
An optimization perspective,” Annual Review of Control, Robotics, and
Autonomous Systems, vol. 2, pp. 115-140, 2019.

V. Kurtz and H. Lin, “Mixed-integer programming for signal temporal
logic with fewer binary variables,” IEEE Control Systems Letters, vol. 6,
pp- 2635-2640, 2022.

K. Leung, N. Aréchiga, and M. Pavone, “Back-propagation through
signal temporal logic specifications: Infusing logical structure into
gradient-based methods,” in International Workshop on the Algorithmic
Foundations of Robotics, pp. 432—449, Springer, 2020.

Y. Gilpin, V. Kurtz, and H. Lin, “A smooth robustness measure of signal
temporal logic for symbolic control,” IEEE Control Systems Letters,
vol. 5, no. 1, pp. 241-246, 2020.

L. Lindemann and D. V. Dimarogonas, “Control barrier functions for
signal temporal logic tasks,” IEEE control systems letters, vol. 3, no. 1,
pp. 96-101, 2018.

M. Charitidou and D. V. Dimarogonas, “Receding horizon control with
online barrier function design under signal temporal logic specifica-
tions,” IEEE Transactions on Automatic Control, 2022.

D. Sadigh and A. Kapoor, “Safe control under uncertainty with proba-
bilistic signal temporal logic,” in Proceedings of Robotics: Science and
Systems XII, 2016.

R. Ilyes, Q. Ho, and M. Lahijanian, “Stochastic robustness interval for
motion planning with signal temporal logic,” in 2023 IEEE International
Conference on Robotics and Automation, pp. 5716-5722, 1EEE, 2023.
B. Zhong, C. Jordan, and J. Provost, “Extending signal temporal logic
with quantitative semantics by intervals for robust monitoring of cyber-
physical systems,” ACM Transactions on Cyber-Physical Systems, vol. 5,
no. 2, pp. 1-25, 2021.

B. Finkbeiner, M. Frinzle, F. Kohn, and P. Kroger, “A truly robust
signal temporal logic: Monitoring safety properties of interacting cyber-
physical systems under uncertain observation,” Algorithms, vol. 15,
no. 4, p. 126, 2022.

L. Lindemann, L. Jiang, N. Matni, and G. J. Pappas, “Risk of stochastic
systems for temporal logic specifications,” ACM Transactions on Em-
bedded Computing Systems, vol. 22, no. 3, pp. 1-31, 2023.

A. Harapanahalli, S. Jafarpour, and S. Coogan, “A toolbox for fast
interval arithmetic in numpy with an application to formal verification of
neural network controlled systems,” in ICML 2023 Workshop on Formal
Verification of Machine Learning, 2023.

L. Jaulin, M. Kieffer, D. Olivier, and E. Walter, Applied Interval analysis.
Springer, 2001.

M. Althoff and D. Grebenyuk, “Implementation of interval arithmetic
in CORA 2016,” in Proc. of the 3rd International Workshop on Applied
Verification for Continuous and Hybrid Systems, pp. 91-105, 2016.

L. Baird and S. Coogan, “Runtime assurance from signal temporal logic
safety specifications,” in American Control Conference (ACC), pp. 3535—
3540, 2023.

J. Ouaknine and J. Worrell, “Some recent results in metric temporal
logic,” in Formal Modeling and Analysis of Timed Systems: 6th Inter-
national Conference, FORMATS 2008, Saint Malo, France, September
15-17, 2008. Proceedings 6, pp. 1-13, Springer, 2008.

Q. Tao, J. Wang, Z. Xu, T. X. Lin, Y. Yuan, and F. Zhang, “Swing-
reducing flight control system for an underactuated indoor miniature
autonomous blimp,” IEEE/ASME Transactions on Mechatronics, vol. 26,
no. 4, pp. 1895-1904, 2021.



	Introduction
	Mathematical Preliminaries
	Notation
	Interval Analysis
	Signal Temporal Logic

	Interval Signal Temporal Logic
	Computational Considerations of I-STL
	Examples
	Interval Monitoring on a Miniature Blimp
	Robust Control Synthesis for a Linear System

	Conclusion
	References

