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ABSTRACT: The glomerulus is a multicellular functional tissue
unit (FTU) of the nephron that is responsible for blood filtration. Number of Pixels
Each glomerulus contains multiple substructures and cell types that
are crucial for their function. To understand normal aging and
disease in kidneys, methods for high spatial resolution molecular
imaging within these FTUs across whole slide images is required.
Here we demonstrate a workflow using microscopy-driven selected
sampling to enable 5 um pixel size matrix-assisted laser
desorption/ionization imaging mass spectrometry (MALDI IMS)
of all glomeruli within whole slide human kidney tissues. Such high
spatial resolution imaging entails large numbers of pixels,
increasing the data acquisition times. Automating FTU-specific
tissue sampling enables high-resolution analysis of critical tissue structures, while concurrently maintaining throughput. Glomeruli
were automatically segmented using coregistered autofluorescence microscopy data, and these segmentations were translated into
MALDI IMS measurement regions. This allowed high-throughput acquisition of 268 glomeruli from a single whole slide human
kidney tissue section. Unsupervised machine learning methods were used to discover molecular profiles of glomerular subregions
and differentiate between healthy and diseased glomeruli. Average spectra for each glomerulus were analyzed using Uniform
Manifold Approximation and Projection (UMAP) and k-means clustering, yielding 7 distinct groups of differentiated healthy and
diseased glomeruli. Pixel-wise k-means clustering was applied to all glomeruli, showing unique molecular profiles localized to
subregions within each glomerulus. Automated microscopy-driven, FTU-targeted acquisition for high spatial resolution molecular
imaging maintains high-throughput and enables rapid assessment of whole slide images at cellular resolution and identification of
tissue features associated with normal aging and disease.
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B INTRODUCTION the basement membrane. Grove et al. demonstrated an
The kidney is a vital organ that filters waste from the blood, increase in lysophospholipid and ganglioside species in
regulates the flow of electrolytes, maintains bodily pH, glomeruli of mice with diabetic nephropathy.” The ability to
reabsorbs nutrients, removes waste, and produces urine."” link molecular drivers to specific cell types and structures in the
These processes take place in roughly one million nephrons glomerulus is necessary for fully understanding kidney disease,

that span the cortex and medulla. The filtration process occurs
at the start of the nephron, the glomerulus, which is a spherical,
multicellular functional tissue unit (FTU) with a diameter of
~200 um.””> A glomerulus contains important substructures
such as fenestrated endothelium, glomerular basement
membrane, and podocytes, among others. Modifications in
the glomeruli’s ability to perform filtration is at the center of
various kidney diseases such as Alport syndrome and diabetic
nephropathy.”"® The former can cause glomerular damage,
which leads to alterations in glomerular substructures, such as

yet this remains a challenge due to the spatial scales and
complexity of the affected cellular neighborhoods.”*
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Liquid chromatography mass spectrometry (LC-MS) is the
traditional approach for identifying and quantifying proteins,
peptides, lipids, and metabolites from whole tissue sections.
Laser capture microdissection (LCM) can be combined with
LC-MS to gain molecular information for specific functional
tissue units, such as glomeruli; however, no spatial information
is learned about the molecular distribution within these
functional tissue units or their surrounding neighborhood."
Imaging mass spectrometry (IMS) can offer relative
quantitative information while also providing high spatial
resolution, in situ maps of hundreds to thousands of molecular
species.' !> IMS measurements can be coregistered with
microscopy, providing morphological as well as cellular context
to IMS molecular images. This multimodal approach enables
comprehensive molecular histology of normal and diseased
tissues.”

Matrix-assisted laser desorption/ionization (MALDI) is one
of the most common IMS technologies for high spatial
resolution molecular imaging.” Briefly, MALDI IMS is
performed by mounting a thin tissue section onto a glass
slide and coating the sample with a UV-absorbing small
molecule (matrix). The sample is desorbed and ionized by
laser irradiation at specific positions across the sample surface,
referred to as pixels. A mass spectrum is acquired at every
position, and heatmap-like images can be generated for each
detected molecule, reporting its intensity across the sampled
tissue area. The ability to deliver untargeted, highly multi-
plexed molecular information while maintaining high spatial
integrity in tissues makes IMS ideally suited for discovering
relationships between molecular distributions and cellular
organization, structure, and signaling.14 Although significant
efforts have been made to improve sample preparation and
storage,'” molecular coverage,16 specificity,’” and spatial
resolution'’™"? for kidney analysis, further work is needed to
routinely investigate molecular changes on a cellular level in
complex tissue structures, like the nephron.*

A crucial component of investigating small biological
features is spatial resolution.”’”** In MALDI IMS, spatial
resolution is determined by the diameter of the laser at the
sample surface, the pitch or movement of the stage from one
pixel to another, and the degree of molecular delocalization
that occurs during sample preparation.'***** Modern MALDI
imaging platforms can routinely achieve 10 ym pixel sizes with
“front-side” laser optics'”'®*” and <1 um using custom
“transmission geometry” ion sources.”>”>’ Continued improve-
ment in spatial resolution is necessary to fully investigate the
molecular profiles of cell types and FTUs with MALDI IMS,
which is especially important for uncovering the molecular
drivers of glomerular diseases.

Imaging whole tissue sections at high spatial resolution
entails large numbers of pixels and requires significant data
acquisition times, increasing the cost and instrument wear for
IMS experiments.”® Multimodal approaches using comple-
mentary microscopy to strategically target structures can
greatly reduce the number of pixels imaged and improve
throughput. Previously, Patterson et al. demonstrated a
histology-directed approach to annotate glomeruli in human
kidney sections using label-free autofluorescence microsco-

y.>”*° The ability to define measurement regions with
unstained imaging approaches, such as autofluorescence
microscopy, can be used to guide IMS experiments for a
variety of tissue types.
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Here we advance this work by using human kidney tissue as
a case study to enable automated tissue feature detection and
the creation of IMS measurement regions for high spatial
resolution molecular imaging. Specifically, we use a deep
learning model to detect and segment glomeruli across whole
slide autofluorescence kidney tissue images. These segments
are then translated into glomeruli-specific IMS measurement
regions, avoiding the need to obtain IMS data from
nonglomerular tissue. This allows for virtually all glomeruli
(100s) to be imaged at S um spatial resolution without
acquiring data from the entire tissue section. This approach
incorporates previously established imaging techniques and
new intelligent data acquisition strategies to enable rapid, high
spatial resolution MALDI imaging of targeted functional tissue
units.

B EXPERIMENTAL SECTION

Materials. Ammonium formate and a periodic acid-Schiff
(PAS) stain kit were bought from Sigma-Aldrich (St. Louis,
MO). 4-(dimethylamino)cinnamic acid (DMACA) with 99%
purity was bought from Thermo Scientific (Waltham, MA).
High-performance liquid chromatography (HPLC)-grade
acetone was purchased from Fisher Scientific (Pittsburgh,
PA). Human kidney samples are from the Cooperative Human
Tissue Network at Vanderbilt University Medical Center.

Human Kidney Sample Preparation. A normal portion
of a kidney cancer nephrectomy from a 53-year-old white male
with a BMI of 23 was studied. The pathology assessment of
this sample can be found in Table S1. Human kidney blocks
were embedded in carboxymethylcellulose (CMC), flash
frozen in a bath of isopentane and dry ice, and stored in a
—80 °C freezer.’! Tissue was cryosectioned at a 10 um
thickness using a CM3050 S cryostat (Leica Biosystems,
Wetzlar, Germany). The section was thaw-mounted onto
indium tin oxide (ITO) coated glass slides (Delta Tech-
nologies, Loveland, CO). Autofluorescence images were taken
of the section prior to IMS sample preparation with standard
DAPI, eGFP, and DSRed fluorescent filters using a Zeiss
AxioScan.Z1 slide scanner (Carl Zeiss Microscopy GmbH,
Oberkochen, Germany), equipped with a Colibri7 LED light
source. To remove endogenous salts, the section was then
washed with chilled (4 °C) 150 mM ammonium formate 3
times for 45 s each and then dried with nitrogen gas to remove
excess solution. An in-house developed sublimation device was
used to sublimate S mg of 4-(dimethylamino)cinnamic acid
(DMACA) onto the slide while heating (190 °C) for 10 min at
a vacuum of 110—150 mTorr and cooling the sample to —78
°C using a dry ice and acetone slurry in the coldfinger, for a
final density of ~0.22 pug/mm>** The vacuum was broken
once the sample returned to room temperature. After MALDI
IMS data acquisition, a post-IMS autofluorescence image was
acquired on the tissue section prior to matrix removal using a
Zeiss AxioScan.Z1 fluorescence slide scanner that uses the
previously described eGFP fluorescence filter and a mono-
chromatic brightfield image.*® After collection of the post-IMS
autofluorescence image, the sections were stained with a PAS
stain using a standard protocol.”

Glomerular Segmentation. Segmentation of 3glomeruli
was performed using previously described methods.”™® Briefly,
several glomeruli in the pre-IMS autofluorescence images were
manually annotated using polygon regions in QuPath® (a
whole slide image visualization platform), and these masks and
tiles were exported for the training (and testing) of a deep
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learning model that recognizes glomeruli based on an
autofluorescence image input.”> Specifically, a Mask-RCNN
(101 ResNet backbone) convolutional neural network, as
implemented in the detectron2 package,zg’30 was trained to
deliver glomeruli segmentations based on an autofluorescence
image. Evaluation of the model’s performance was conducted
where manual annotations were compared against automated
annotations delivered by the convolutional neural network and
their overlap was computed using the Dice-Sorensen
coefficient. High coeflicient performance indicated that
automated segmentation by a neural network successfully
matched and replicated manual annotation. In translating the
automatically generated glomeruli segments into data acquis-
ition regions for IMS, the segmented glomeruli areas were
scaled by a factor of 1.4 using an affine scale transform to allow
for errors in spatial targeting and to ensure capture of the
border of each glomerulus. Because of this, some measurement
regions contained more than one glomerulus. The automati-
cally generated glomeruli segmentations were manually
reviewed in QuPath, and the coordinate file of the
segmentations was saved as a .geojson. Measurement regions
are defined at the instrument using an optical image (“teach
image”) that is aligned to the sample carrier positions, a
process often referred to as “Teaching the Sample”. Here, the
autofluorescence tissue image used for glomerular segmenta-
tion was also used to teach in FlexImaging. The teaching image
is slightly altered during this process by FlexImaging; therefore,
a Python script using wsireg”* registered a copy of the original
autofluorescence tissue image with the image after teaching.
The Python script then transformed the segmentation
coordinates (stored in geojson) to the FlexImaging teach
image. Once transformed, a modified FlexImaging .mis file
containing the instrument method, stage raster size (i.e., pixel
size), project name, and glomerular ROIs was created
automatically. Practically, the script takes the transformed
coordinate positions of the glomeruli segmentation on the
modified teach image and translates them into the XML format
FlexImaging uses, giving each an enumerated, unique measure-
ment region name.

MALDI IMS. This experiment was performed on a
prototypical timsTOF fleX mass spectrometer (Bruker
Daltonik, Bremen, Germany). Tissue imaging data from
747,214 pixels and 229 regions were collected at 5 ym IMS
pixel size using 60 shots per pixel and 9% total laser power
averaging ~27 pixels/second. Data were collected in negative
ionization qTOF mode from m/z 450 to 2000. Instrument
specific parameters are listed in Table S2. Molecular
identification was done using LC-MS/MS and on-tissue MS/
MS (see Methods S1, Table S3, and Figures S1—S10). Selected
IMS peaks were then annotated using mass accuracy (<S ppm)
to link LC-MS/MS data to ion images (see Table S4 for
details).

Rat Brain Homogenate Sample Preparation. Rat brain
homogenate was used as a tissue standard for comparison of §
um versus 10 pum pitch (i.e., pixel size). Tissue homogenates
were cryosectioned at 10 pm thickness and thaw-mounted
onto ITO-coated glass slides. The sections were washed with
ammonium formate and sublimated with the same protocol as
for the human kidney sample. MALDI IMS experiments were
performed in triplicate at a S and 10 pm stage raster with the
same instrument parameters as was done with human kidney.
Imaging data were opened in DataAnalysis, and an average
mass spectrum for each data set was generated. The
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DataAnalysis generated peak list from each data set was
uploaded to LipidMaps database.”” The identifications list
from the LipidMaps database was narrowed down by only
accepting identifications with an absolute ppm error <S and
removing duplicates. The average, standard deviation, and p-
value from a two-tailed paired t test of the average total ion
current, m/z 885.55 intensity, and lipid identifications were
calculated in Excel. The laser ablation craters on the MALDI
matrix layer were captured with brightfield microscopy using a
Nikon Eclipse 90i microscope (Nikon Instruments Inc.,
Melville, NY) at 40X magnification. The diameter of each
crater was measured using Nikon’s NIS-Elements AR 4.11.00
software.

Multimodal Image Registration and Data Analysis.
MALDI IMS and microscopy images were recorded in a two-
step process. First, laser ablation marks, as measured by the
post-IMS autofluorescence image, were aligned to MALDI
IMS pixels using IMS MicroLink®® by manually selecting
corresponding pairs of laser ablation marks and IMS pixels.
Additional microscopy images were then registered to the IMS
data via the previously registered post-IMS autofluorescence
images in the wsireg software.”® All registered whole slide
images were stored in the vendor neutral pyramidal OME-
TIFF format and maintain their original spatial resolution (i.e.,
there is no downsampling or loss of pixel spacing through the
registration process).”” After alignment of all images,
automated glomeruli segmentations, as delivered by the neural
network, were used to find the MALDI IMS pixels associated
with each detected glomerulus and were extracted for further
data analysis.

MALDI-IMS Data Preprocessing. Data were exported
from Bruker timsTOF file format (.d) to a custom binary
format for ease of access and improved performance. Each
pixel/frame contains between 10*—10° centroid peaks that
cover the entire acquisition range and can be reconstructed to
form a pseudoprofile mass spectrum using Bruker’s SDK
(v2.21).*° The data set was m/z aligned using internally
identified peaks (6 peaks that appeared in at least 50% of the
pixels) using the msalign library (v0.2.0)."" This step corrects
spectral misalignment (drift along the m/z domain), resulting
in increased overlap between spectral features (peaks) across
the experiment. Subsequently, the mass axis of the data set was
corrected, using theoretical masses for the 6 peaks, to
approximately +1 ppm precision. After alignment and
calibration, an average mass spectrum based on all pixels
belonging to the glomeruli in the data set was computed. The
spectrum was peak-picked, and 714 peaks were detected and
used for further analysis. Isotopes were not removed and were
allowed to take part in the dimensionality reduction workflow.
Following the preprocessing steps, we computed normalization
correction factors using a total ion current (TIC) approach.
The resulting average spectrum had a mass resolution of
~40,000 at m/z 885.5S.

Unsupervised Analysis. Uniform Manifold Approxima-
tion and Projection (UMAP) and k-means clustering was used
to determine molecular trends among the measured glomer-
uli”” UMAP aims to preserve the global neighborhood
structure of the data while reducing it from the original 714-
dimensional space to a lower number of dimensions to enable
easier visualization that captures broader trends in the data.
Clustering groups tissue features or pixels together based on
the similarity of their molecular profiles.
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Analysis was performed at the FTU-level by treating each
detected glomerulus (268 in total) as an observation and using
the list of 714 peaks as features. The average mass spectrum for
each glomerulus was extracted, and all 714 features were
integrated with a + 3—5 ppm window. In addition, pixel-wise
clustering was performed, where each pixel was treated as an
observation. A total of 714 features were extracted for the mass
spectrum of each pixel with a + 3—5 ppm window. Pixels
outside of the glomeruli were excluded from the analysis.

UMAP™ projection was performed in Python using the
umap-learn library (v0.5.2) and k-means clustering using scikit-
learn (v1.2.0).*" UMAP has a large number of hyper-
parameters; however, only several have a substantial impact
on the final embedding. The low-dimensional embedding
shown in this paper was obtained by using 3 target dimensions
(n_component = 3), the cosine distance metric (metric
‘cosine’), S neighbors (n_neighbors = S), and a minimal
distance of 0.1 (min_dist = 0.1). The low-dimensional
representation of the data was subsequently clustered using
the k-means clustering algorithm with 7 clusters (n_clusters =
7). These parameters were obtained by performing a grid
search of approximately 150 parameter configurations where
n_neighbors, min_dist, and n_clusters were permuted from a
subset of available options. The final configuration was selected
by empirical examination of the embedding and spatial
distribution of the clusters. Pixel-wise clustering was optimized
similarly. The entire data set (excluding pixels outside of the
glomeruli) was clustered using k-means clustering algorithm
with 6 clusters (n_clusters = 6).

B RESULTS AND DISCUSSION

5 pm MALDI Imaging Mass Spectrometry. High spatial
resolution MALDI IMS (<10 um pixel size) increases our
ability to study molecular distributions of specific cell types
within tissues. Achieving high spatial resolution with current
commercial IMS platforms is difficult due to limitations in
focusing the MALDI laser at the sample surface and
inconsistencies in stage movements. This often leads to
oversampling, where adjacent laser ablation craters overlap
one another. This can cause signals from one pixel to carry
over into another and diminish si§nal intensity, reducing image
quality and molecular coverage.” To align the laser in our
system, the ion intensity versus focus position of the lens inside
the laser was measured. The maxima of the intensity peak
should be centered between 85 and 88% focus position. If not,
the stage offset value as well as the ring lens above the source
were adjusted until the maxima were at the correct focus
position. As demonstrated in Figure 1A, the laser ablation
crater had a diameter of ~4.7 ym. To verify that this was
sufficient to perform imaging at S pm spatial resolution with
minimal oversampling, a series of experiments were performed
to compare signal intensity using a S and 10 pm pitch.
Triplicate experiments using a S5 and 10 um pitch were
performed on rat brain homogenate. The 5 ym experiments
included ~2,000 pixels from an area of ~0.04 mm?, and the 10
pum experiments covered roughly the same area with ~500
pixels each. For each experiment, the total number of lipid
identifications with a mass error <5 ppm using the LipidMaps
database®” (Figure 1B), average total ion current (Figure 1C),
and base peak intensity (Figure 1D) were evaluated. The
averages of each triplicate experiment were compared with a 2
tailed paired t test to determine if there was a significant
difference between the S and 10 ym experiments (Table S5).
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Figure 1. Assessment of oversampling for S ym MALDI mass
spectrometry. (A) Laser ablation of a matrix-coated slide using a 20
um pitch shows the ablation craters to be <5 pm in diameter when
using 9% total laser power and 60 laser shots. (B) The comparison for
total number of identifications, (C) average total ion current, and (D)
intensity of the base peak show p-values from the t test being >0.05,
which suggests that there is no significant difference between the §
and 10 ym experiments. All experiments were performed in triplicate.

The p-value from the t test was above 0.05 for all three
categories, suggesting that there was no significant difference in
the average total ion current, base peak intensity, or number of
identifications between the S and 10 pm pitch experiment.
These results indicate that minimal oversampling occurred
using our 5 um pixel MALDI IMS workflow.

High-Throughput, Microscopy-Driven Sampling.
Using the trained deep learning segmentation model, 268
glomeruli were automatically segmented in the autofluor-
escence image from a whole slide human kidney tissue section
(Figure 2A). Automating the segmentation process eliminates
human drift, reduces human bias, keeps annotations consistent
throughout the tissue section, and allows for comprehensive
FTU segmentation across expansive tissue areas and large
numbers of tissue samples. Additionally, the overall throughput
of the workflow is substantially improved by the glomeruli
being automatically detected rather than requiring manual
annotation of each glomerulus.

The automated glomerular annotations were translated into
measurement regions for high spatial resolution MALDI IMS
data acquisition (Figure 2B). To account for any inaccuracy in
sample registration, each measurement region was computa-
tionally scaled to include an expanded border around the
glomerular segmentation to ensure the IMS experiment
captured the entire FTU. A total of 747,214 (5 ym X S pm)
IMS pixels were collected from the 268 glomeruli, requiring 7
h and 40 min of data acquisition. Note, this is a significant
improvement in throughput relative to traditional imaging
methods, where nonglomerular tissue would also be measured.
To image the entire kidney tissue section used in this
experiment at 5 ym spatial resolution would require 6,645,708
pixels and almost 3 days of acquisition time for the whole
tissue section on the same imaging platform (~30 pixels/
second). This demonstrates just how much time can be saved
using multimodal, selected sampling approaches, enabling
larger tissue areas and, in turn, greater numbers of targeted
FTUs to be analyzed. Furthermore, because the total number
of pixels is greatly reduced, the resulting file sizes are also
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Figure 2. High-throughput workflow for S ym MALDI IMS of glomeruli in human kidney tissue. (A) Segmented glomeruli using autofluorescence
microscopy are shown with the purple annotations. (B) MALDI IMS was performed on each segmented glomerulus across the whole slide image.
(C) After MALDI IMS, the matrix was removed and the tissue was stained with PAS.
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Figure 3. Assessment of healthy and diseased glomeruli using UMAP dimensionality reduction followed by k-means clustering. (A) Three-
dimensional UMAP plot showing the separation between each of the 7 clusters determined by k-means. (B) Each cluster is color-coded, and data
are overlaid onto the autofluorescence microscopy image showing the distribution of each cluster in tissue. The scale bar is equal to 2 mm. (C)
PAS-stained microscopy images of selected glomeruli from each cluster showing their morphological differences. All PAS images are scaled
similarly. The scale bar is equal to 100 ym. (D) Molecular profiles of two clusters of glomeruli showcasing the differences in the relative abundance
of selected ions between normal (cluster 0) and diseased (cluster S) glomeruli.

significantly smaller, requiring less computational resources coregistered with the autofluorescence image can be integrated
and time for subsequent analysis. and used to guide analysis and interpretation. Following
Because all measurement regions are linked directly to MALDI IMS, the matrix was removed, and the tissue was
microscopy data, any other imaging modalities that can be stained with PAS, commonly used by pathologists as a kidney
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Figure 4. High spatial resolution MALDI IMS data from healthy and diseased glomeruli. (A) PAS stained images showing differences in
morphology for each glomerulus—healthy (top) and diseased (bottom). (B) S gm MALDI IMS enables visualization of heterogeneous molecular
distributions within individual FTUs. Overlaid ion images of SM (18:1;20/16:0) (m/z 687.5441, 0.3 ppm) and PS (18:0_18:1) (m/z 788.5444,
1.0 ppm) are shown. (C) Multivariate analysis using k-means clustering (k = 6) and reveals molecular subregions in each glomerulus. (D)
Molecular profiles of prominent k-means clusters 1 (orange) and 2 (pink). The diseased glomerulus has a higher proportion of pixels that fall into
cluster 2 whereas the healthy glomerulus has proportions of pixels associated with clusters 1 (orange), 2 (pink), and 3 (green). Selected peaks from
each profile are annotated to highlight differences in the relative abundance between the clusters. All images are scaled similarly. The scale bars

provided are equal to 100 ym.

morphology stain (Figure 2C). The ability to acquire MALDI
imaging data at S um pixel size and to coregister these data
with complementary microscopy allow more exact connections
to be made between in situ molecular observations and cellular
content.

Differentiation of Healthy and Diseased Glomeruli.
To first provide a global assessment of the data, an average
mass spectrum was calculated per glomerulus, and the
glomeruli-specific spectra were partitioned into clusters using
unsupervised machine learning. Specifically, dimensionality
reduction was performed using UMAP, taking the data set
from a 714-dimensioinal space to a 3-dimensional space,
followed by k-means clustering in the latter space (Figure 3A).
From this analysis, the 268 glomeruli were organized into 7
distinct clusters, which were color-coded and overlaid onto the
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multimodal imaging data to visualize their spatial distribution
within the tissue (Figure 3B). Co-registering the clustering
results with the imaging data allowed for a qualitative
assessment of the members of each cluster. By comparing
the clusters to the associated PAS stain, many of the clusters
differentiated healthy and diseased glomeruli (Figure 3C). For
example, glomeruli found in cluster 0 were considered healthy
with a normal morphology, whereas those found in cluster 5
were all globally sclerosed. The molecular profiles for all the
glomeruli in clusters 0 and S are shown in Figure 3D with the
prominent peaks annotated to highlight differences in their
relative abundance. Molecular profiles for all UMAP/k-means
clusters can be found in Figure S11.

We hypothesize that the clustering results capture a
combination of the disease severity and differences in the

https://doi.org/10.1021/jasms.3c00033
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relative cellular composition of each glomerulus. For example,
the relative cellular composition of each glomerulus can be
dependent on the depth of the plane at which the glomeruli
were sectioned as well as their disease severity. The distinct
morphological characteristics of glomeruli from each cluster
shown with the PAS stain are indicative of cellular
heterogeneity, which is expected to produce unique molecular
profiles. Diseased glomeruli can also be observed in the
autofluorescence image. This is likely due to extracellular
matrix accumulation (e.g., collagen and fibronectin) in
sclerosed glomeruli, causing them to be more autofluorescent
and stain darker with PAS (Figure $12).*>*

Examining the average spectra reveals broad changes in the
relative intensity of the detected lipids (Figure S13) in
glomeruli that were found to be healthy compared to diseased.
This is also reflected in the individual ion images, which show
different spatial patterns for healthy and diseased glomeruli, as
shown in Figure 4B and Figure S14. For example, the
distributions of sphingomyelin (SM) (18:1;20/16:0) with a
loss of a methyl group (m/z 687.5441) and phosphatidylserine
(PS) (18:0 18:1) (m/z 788.5444) are altered in the diseased
glomerulus when compared to healthy. The ion images show
that there is a higher intensity of SM (18:1;20/16:0) in the
diseased glomerulus than the healthy glomerulus. These lipids
were identified with LC-MS/MS and mass accuracy as
described in Methods S1. Details of molecular identifications
can be found in Table S4 for selected ions. This table includes
MALDI m/z, LC-MS/MS m/z, theoretical m/z, ppm error for
both LC-MS/MS and MALDI, average retention time, lipid
name, and adduct type. A LC-MS/MS spectrum and a MALDI
on tissue MS/MS spectrum of SM (18:1;20/16:0) is shown in
Figure S1, and the LC-MS/MS spectrum of PS (18:0_18:1) as
well as the other ions are shown in Figures S2—S10.

To visualize molecular subregions within the glomeruli, we
used k-means clustering and segmentation at the IMS pixel
level (Figure 4). This multivariate analysis was performed on
all pixels within the imaged glomeruli (Figure S15).
Comparisons to complementary microscopy and individual
ion images can be found in Figures 4A and S14, respectively.
Clustering in this manner finds pixels with distinct molecular
profiles within all glomeruli and, when visualized, can help find
spatial patterns and ratios of each cluster between healthy and
diseased glomeruli (Figure 4C,D). For example, SM (18:1;20/
16:0), PS (18:0 18:1), and phosphatidic acid (PA) (36:1)
(m/z 701.5108) are more prominent in the pink cluster (k =
2) as compared to the orange cluster (k = 1). Molecular
profiles for each cluster can be found in Figure S16. This
workflow showcases the ability of high spatial resolution
MALDI IMS to uncover localized lipidomic differences within
individual FTUs, in this case, the ability to detect subregions
within each glomerulus.

An additional 10 ion images of four glomeruli with their
respective k-means clustering and UMAP are shown in Figure
S14. Furthermore, a molecular profile from each pixel-wise k-
means cluster (k = 6) is shown in Figure S16 with an enhanced
region between m/z 650 and 900, and Figure S11 shows the
molecular profiles from m/z 650 to 900 for each UMAP k-
means cluster.

The observed molecular differences in the analyzed
glomeruli may be related to the severity of glomerulosclerosis.
Glomerulosclerosis can occur in healthy, aging patients as well
as patients with an underlying disease.”* ™" The affected
glomeruli typically perform hyperfiltration and can leak excess
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- L 46,47,53 : .
protein into urine. Our microscopy-driven approach for

high spatial resolution MALDI IMS could provide a way to
rapidly screen disease severity in large numbers of glomeruli
across sizable sample cohorts.

B CONCLUSIONS

This work demonstrates microscopy-driven high spatial
resolution MALDI IMS of segmented glomeruli in a whole
slide human kidney tissue section. Our optimized method was
found to enable 5 ym MALDI IMS with minimal over-
sampling. Autofluorescence microscopy was used to automati-
cally segment glomeruli and to determine IMS measurement
regions, improving data acquisition time almost 10X compared
to imaging the entire tissue at S ym pixel size. Unsupervised
machine learning methods were used to explore the lipidomic
trends underlying the measurements, and some were found to
differentiate healthy and diseased glomeruli. These observa-
tions were subsequently confirmed by using complementary
stained microscopy. Further analysis was done to visualize
molecular heterogeneity and distinguish subregions within the
individual glomeruli. Specifically, the ability to perform both
high spatial resolution and high-throughput MALDI imaging
concurrently using this approach allowed molecular patterns
associated with glomerulosclerosis across large human kidney
tissue sections to be captured.

Although this technical demonstration of our automated
workflow is necessary for comprehensive molecular imaging of
glomeruli, similar approaches are even more critical for other
kidney FTUs that are present at higher numbers, such as
proximal tubules in the kidney or colonic crypts. Strategies for
automated, high throughput IMS analysis are also critical for
studies that require analysis of large cohorts of samples.
Specifically for this case study on the human kidney, further
development is necessary to link observed patterns to specific
cell types within the glomerulus, and this will likely require
integration with immunofluorescence and more advanced data
mining (e.g., using Tideman et al.’s approach’®). The workflow
presented herein is a key advancement in making these studies
practical. Multimodal molecular imaging technologies that
provide both high spatial resolution analysis and deep
molecular coverage while also delivering results rapidly will
be critical for next-generation biomedical research applications.
Microscopy-driven high spatial resolution MALDI IMS offers
the potential to more thoroughly characterize diseases of the
kidney, or any organ system, providing a systems biology view
of FTUs, cellular neighborhoods, and cell types in situ.

B ASSOCIATED CONTENT
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their in situ position on the tissue section, and molecular
profiles for each pixel-wise k-means cluster (ZIP)
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