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ABSTRACT: Charge-transfer (CT) interactions between co-facially aligned z-donor/ 60k T oy i,
acceptor (7-D/A) arrays engender unique optical and electronic properties that could 50kd G ‘—%qﬁ _aar *37%;(;
benefit (supra)molecular electronics and energy technologies. Herein, we demonstrate that ' {:ﬁti ﬁ?ﬁi‘:{i‘%\'—;
a tetragonal prismatic metal—organic cage (MOC1®") having two parallel z-donor s 407 - t*:}\:é[iw\l@mot-:‘\"
tetrakis(4-carboxyphenyl)-Zn-porphyrin (ZnTCPP) faces selectively intercalate planar 7- 5 30k et .
acceptor guests, such as hexaazatriphenylene hexacarbonitrile (HATHCN), hexacyano- & 20k ] Y
triphenylene (HCTP), and napthanelediimide (NDI) derivatives, forming 1:1 7A@ e

MOCI1*" inclusion complexes featuring supramolecular 7-D/A/D triads. The z-acidity of 10k s
intercalated 7-acceptors (HATHCN > HCTP ~ NDIs) dictated the nature and strength
of their interactions with the ZnTCPP faces, which in turn influenced the binding affinities
(K,) and optical and electronic properties of corresponding ZA@MOCI1®" inclusion

= MOC18:2.5x 107 S/m
+ HATHCN@MOC1%": 2.1 x 108 S/m

40K 80k 120k
Z(@/10)

complexes. Owing to its strongest CT interaction with ZnTCPP faces, the most z-acidic
HATHCN guest enjoyed the largest K, (5 X 10° M™"), competitively displaced weaker 7-acceptors from the MOC1®" cavity, and
generated the highest electrical conductivity (2.1 X 107° S/m) among the ZA@MOCI1*" inclusion complexes. This work

demonstrates a unique through-space charge transport capability of ZA@MOC

1%* inclusion complexes featuring supramolecular 7-

D/A/D triads, which generated tunable electrical conductivity, which is a rare but much coveted electronic property of such
supramolecular assemblies that could further expand their utility in future technologies.

KEYWORDS: metallacage, inclusion complex, r-donor/acceptor interaction, charge transfer, electrical conductivity

B INTRODUCTION

Owing to facile through-space charge delocalization, co-facially
stacked 7z-donor/acceptor (7-D/A) arrays'~'* possess diverse
optical and electronic properties ranging from light-harvest-
ing,B_21 electrochromic,”>** and thermochromic>* > behav-
iors to ferroelectric and se}miconducting27’28 nature that could
help advance modern molecular electronics and energy
technologies. Although certain combinations of strong 7-
donor and acceptor molecules, such as tetrathiafulvalene and
tetracyanoquinodimethane, are known to form segregated
homomeric #-donor and acceptor columns, which exhibit
remarkable metallic conductivity due to facile intermolecular
electron transfer, followed by efficient electron and hole
transport through separate channels,”®’ most z-donor and
acceptor units only form 7-D/A heterodimers'"'**” instead of
extended alternating #-D/A stacks. Therefore, to assemble
extended alternating 7-D/A stacks that can potentially support
long-range charge delocalization, complementary 7-donor and
acceptor units are usually linked covalently into 7-D/A
foldamers*>°™>* or furnished with hydrogen bonding,‘”*35
metal coordination sites,*®*” or hydrophobic and amphiphilic
pendants™*™* that create additional stabilization through
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noncovalent interactions. Circumventing the need for tedious
covalent modifications of z-donor and acceptor units to create
extended 7-D/A stacks, Fujita and co-workers™*™>' have
devised an elegant template-directed Pd(II)-driven self-
assembly method, which directly yielded inclusion complexes
of trigonal prismatic metallacages containing extended 7z-D/A
stacks comprising two parallel 7-acidic 1,3,5-triazine faces of
the cages and co-facially intercalated complementary guest 7
systems. While triazine-based trigonal prismatic metallacages
developed by Fujita et al. typically require template-directed
synthesis and directly form inclusion complexes containing
intercalated templating molecules, tetragonal prismatic metal-
lacages featuring two tetrakis(4-carboxyphenyl)-metallapor-
phyrin (MTCPP, M = Pd, Zn) faces connected by four bis-
Pd-hexaazamacrocycle clips developed by Ribas and co-
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Figure 1. Formation of MOC1* and 1:1 7A@ MOCI1® inclusion complexes (zA = HATHCN, HCTP, and NDIs).

workers”” ™" can be constructed without any templating
guests. The height of these metallacages, that is, the distance
between two opposite faces, which depends on the length of
the pillar ligands, dictates the nature, number, and order of
intercalated guest & systems, which in turn define their
through-space charge transport capability and electronic
properties. For example, a smaller metallacage with two
parallel PATCPP faces (h ~ 7.5 A) encapsulated planar
anionic metal-bis-dithiolene complexes via an electrostatic
interaction but failed to sandwich any neutral z-acceptor
molecules via a 7-D/A charge-transfer (CT) interaction with
modest 7-donor PATCPP faces,”” whereas ZnTCPP-based
larger metallacages (h & 11 A) encapsulated electron-deficient
fullerene molecules.’***** Meanwhile, we*® and others'' have
demonstrated that Zn-porphyrins (ZnTCPP HOMO: —5.36
eV), which are stronger z-donors than Pd porphyrins
(HOMO: — 549 eV), formed 1:1 z-D/A CT complexes
with highly #-acidic neutral hexaazatriphenylene derivatives.
We have further demonstrated that metal—organic frameworks
(MOFs) containing extended 7-D/A stacks of either mixed-
valent ligands®*~®* or complementary ligands and intercalated
guests®>~® display impressive electrical conductivity due to
facile through-space charge delocalization. Although the
through-space charge transport capability of extended n—x
and 7-D/A stacks has been exploited to develop electrically
conductive MOFs® and a wide variety of metallacages having
diverse composition and architectures have been constructed
in recent years,””* the electrical conductivity of metallacages
and their inclusion complexes containing intercalated comple-
mentary guest 7 systems has remained largely unexplored.””*
To fill this gap and realize this largely untapped potential, we
envisioned that tetragonal prismatic metal—organic cages
(MOCs) having two parallel electron-rich ZnTCPP faces
should be able to encapsulate planar m-acceptor guests and
form inclusion complexes featuring 7#-D/A/D stacks, which
will exhibit tunable optical and electronic properties dictated
by the intercalated 7-acidic guests.

Herein, we demonstrate that a tetragonal prismatic metal—
organic cage, namely, MOCI®*"-8TfO~, having two parallel
ZnTCPP faces located ca. 8 A apart formed 1:1 inclusion

complexes with neutral planar z-acceptors (Figure 1), such as
hexaazatriphenylene hexacarbonitrile (HATHCN), hexacyano-
triphenylene (HCTP), and dimethyl- and dibutyl-naphthale-
nediimide (NDIMe and NDIBu) derivatives with variable 7-
acidity and LUMO levels (HATHCN: — 4.6 eV, HCTP: — 3.7
eV, NDIMe: — 3.4 eV, and NDIBu: — 3.3 eV) but did not bind
to any z-donors, such as pyrene and triphenylene (TP) due to
the lack of electronic complementarity. The structures,
compositions, and electronic and optical properties of
MOCI* and its inclusion complexes were investigated by
'H, 3C, NOESY, and DOSY NMR, UV—vis, and electro-
chemical impedance spectroscopies (EIS). These studies
demonstrated that MOC1®** formed the strongest inclusion
complex with the most z-acidic guest, HATHCN, which
enjoyed the highest binding affinity (K,) and competitively
displaced weaker m-acceptors having lower affinities from the
MOC1%* cavity. The strongest ZnTCPP/HATHCN/ZnTCPP
charge-transfer (CT) interaction in the HATHCN@MOC!1**
inclusion complex enabled the most efficient through-space
charge delocalization and thereby generated the most
prominent CT absorption band and the highest electrical
conductivity (2.1 X 107% S/m).

B RESULTS AND DISCUSSION

To exploit Zn-porphyrin’s ability to form z-D/A CT
complexes with neutral ﬂ'—accegtors and promote through-
space charge delocalization,”* " we synthesized tetragonal
prismatic cage MOCI® by heating a solution mixture of
ZnTCPP (2 equiv), a bis-Pd-hexaazamacrocycle clip (4 equiv),
and Et;N in DMF according to a modified literature protocol
(Figure 1; also see the Supporting Information for details).”
The structure and composition of MOC1** having two parallel
ZnTCPP faces connected by four bis-Pd macrocyclic clips were
verified by 'H, COSY, and NOESY NMR (Figure S1) as well
as high-resolution ESI-MS (Figure S2) analyses. The reported
single-crystal structure of an isostructural metallacage having
two PATCPP faces connected by the same bis-Pd-hexaazama-
crocycle clip revealed that the interfacial distance between the
two porphyrin faces is 7.5 A.>> We expect that our ZnTCPP-
based MOC1%" should also have a similar interfacial distance,
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Figure 2. (a) Partial "H NMR spectra (500 MHz, CD,CN) of empty MOC1%, free m-acceptors, and ZA@MOC1® inclusion complexes show
distinct upfield shifts of ZnTCPP (H,,) and the intercalated 7-acceptors’ proton signals. (b) Partial 'H NMR spectra show HATHCN-induced
complete displacement of HCTP (i and ii) and partial displacement of NDIMe from the MOC1®* cavity (iii and iv), leading to the formation of a

new HATHCN@MOCI1% inclusion complex.

which is suitable for the intercalation of planar m-acceptor
guests and formation of 1:1 inclusion complexes containing
supramolecular 7-D/A/D triads. The distinct z-donor
strengths of different MTCPP (M = Pd or Zn) faces, however,
should have profound effects on the electronic, optical, and
molecular recognition properties of the corresponding metal-
lacages.

We introduced four different neutral planar z-acceptors,
namely, HATHCN, HCTP, N,N’-dimethyl-NDI (NDIMe),
and N,N’-dibutyl-NDI (NDIBu), having distinct LUMO levels
(4.6, — 3.7, — 3.4, and —3.3 eV, respectively), which
indicated their gradually diminishing 7-acceptor strengths. The
most m-acidic, HATHCN, formed the strongest inclusion
complex with MOCI1®*" and produced the most significant
optical and electronic response compared to weaker -
acceptors. Since HATHCN does not have any trackable
protons to indicate its intercalation into MOC1%" by 'H NMR
spectroscopy, isostructural, albeit weaker, z-acidic HCTP was
employed as its structural surrogate to probe this phenomenon
by 'H, NOESY, and DOSY NMR analysis.

The '"H NMR spectra of ZA@MOCI1** inclusion complexes
(Figure 2a) revealed that the pyrrole protons (H,,) of
ZnTCPP faces as well as the aromatic protons of intercalated
m-acceptors shifted upfield, indicating the formation of co-
facially aligned #-D/A/D stacks. The intercalation of the
strongest m-acceptor HATHCN between the two ZnTCPP
faces of a MOCI1®" cage caused a larger upfield shift of the H,,
signal (from 8.36 to 8.12 ppm, AS = 0.24 ppm) than that
caused by weaker z-acidic HCTP and NDIs (from 8.36 to 8.18
ppm; AS = 0.18 ppm), revealing that the former created a
stronger 7-D/A/D interaction. The aromatic protons of
intercalated 7m-acceptors underwent even greater upfield
shifts—the H, signal of HCTP shifted from 9.35 to 5.57
ppm, the H, peak of NDIMe from 8.70 to 4.24 ppm, and H’',
of NDIBu from 8.69 to 4.44 ppm—due to the strong shielding
effect of the electron-rich ZnTCPP faces of the MOC1®" cage.
Although the shielding of intercalated HATHCN could not be
probed by 'H NMR spectroscopy due to the lack of any
protons, the largest upfield shift of the H, signal of the
MOCI1*" cage caused by HATHCN and the large upfield shift
of H, protons of an isostructural HCTP guest corroborated
that HATHCN was also co-facially sandwiched between the
ZnTCPP faces, creating an even stronger #-D/A/D
interaction, which was further evident from the UV-—vis
spectroscopy (vide infra). The intercalation of HATHCN
between two parallel ZnTCPP faces of MOC1®* was further

indicated by *C NMR studies (Figure S3) as the characteristic
peaks of HATHCN (113.23, 135.69, and 142.43 ppm) shifted
upfield in the HATHCN@MOC1* inclusion complex due to
shielding by electron-rich ZnTCPP faces.

Upon the addition of 1 equiv HATHCN to preassembled
HCTP@MOCI1*" inclusion complexes (Figure 2b-iji), the
signature aromatic peaks of pre-intercalated HCTP (H, at 5.57
ppm) immediately shifted downfield, returning to the original
positions of free HCTP (9.35 ppm), while the H,, signal of
ZnTCPP faces shifted further upfield (from 8.18 to 8.12 ppm),
thus indicating that the stronger m-acceptor HATHCN
completely displaced the weaker m-acceptor from the
MOCI1* cavity, forming a stronger HATHCN@MOC!1*
inclusion complex. On the other hand, in the presence of 1
equiv HATHCN, the '"H NMR spectrum of the pre-assembled
NDIMe@MOC1** inclusion complex changed more slowly as
the free NDIMe signal (H, at 8.70 ppm) appeared while the
ZnTCPP H,, signal shifted further upfield (8.12 ppm) and
reached a steady-state equilibrium after ~3h (Figure 2b-iiiiv).
Based on the integrations of distinct ZnTCPP H,,, signals of
original NDIMe@MOCI1®" and the newly generated
HATHCN@MOCI1* inclusion complexes, roughly ~40% of
the former was converted to the latter after 3 h, and this ratio
remained practically unchanged after 24 h. The displacement
of NDIMe was slightly faster in the presence of 2 equiv
HATHCN as the steady-state equilibrium of the two inclusion
complexes is reached after ~2 h. Unlike HCTP, which was
completely displaced from the MOC1%* cavity by HATHCN,
yielding exclusively HATHCN@MOC1®* (Figure 2b-ii),
NDIMe was never completely replaced by HATHCN as
both inclusion complexes coexisted in a steady-state equili-
brium (Figure 2b-iv). These competition experiments
suggested that the strongest m-acceptor HATHCN had a
much stronger binding affinity than weaker 7-acidic HCTP due
to a stronger 7-D/A/D CT interaction with the ZnTCPP
faces, which led to a fast and complete substitution; however,
its advantage over another weak -acid NDIMe appeared to be
much smaller possibly due to competing desolvation/solvation
effects (vide infra), which led to a slower and partial exchange.
The binding affinities (K,) of the MOC1®** host and different
m-acidic guests were quantified by UV—vis titration studies
(vide infra). Although z-intercalated fullerene guests have been
displaced from a ZnTCPP-based larger metallacage by a
coordinating guest, namely, 4,4’-bipyridine, which bridged the
two ZnTCPP faces via internal axial coordination,” our
studies demonstrated for the first time that a stronger z-
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acceptor HATHCN can also displace weaker z-acceptors from
a smaller ZnTCPP-based MOCI*".

NOESY NMR analysis of ZA@MOCI1* inclusion com-
plexes (Figure S4) revealed through-space coupling between
H,, protons of ZnTCPP faces and the core protons of 7-
acceptors, which further verified the intercalation of -
acceptors between the ZnTCPP faces of MOC1%*. In contrast,
upon the addition of planar z-donor molecules, such as pyrene
and TP, to MOC1%, the '"H NMR spectra of neither species
changed at all, confirming that they did not interact with the
ZnTCPP faces (Figure SS), indicating that a complementary 7-
donor—acceptor interaction was vital for guest intercalation.

DOSY NMR (Figure S6, Table 1) studies further confirmed
intercalation of neutral 7-acceptors inside MOC1**, leading to

Table 1. Diffusion Coefficients (D) and Hydrodynamic
Radii (ry) of Empty MOC1%, Free m-Acceptors, and
Corresponding ZA@MOC1** Inclusion Complexes

compound D (m?*/s) ryq (A)
HCTP 2.00 x 107 3.13
NDIMe 2.82 X 107° 221
NDIBu 226 x 107° 2.75
MOC1% 3.72 x 1071° 16.79
HCTP@MOC1* 3.72 X 107" 16.79
NDIMe@MOC1* 3.74 X 1071 16.67
HATHCN@MOC1%* 5.50 x 1071 11.35

the formation of 1:1 inclusion complexes, and ruled out the
formation of 1:2 host—guest complexes having two external 7-
acceptors perched on the external faces of ZnTCPP panels.
The diffusion coefficient of empty MOC1%* (D = 3.7 X 107
m?/s) corresponds to a hydrodynamic radius (ry;) of 16.8 A,
which is in good agreement with the reported single-crystal
radius (16 A) of an isostructural metallacage having PATCPP
faces connected by the same bis-Pd-metallacycle linkers.”> On
the other hand, the diffusion coeflicients of planar 7-acceptors
(D ~ 2.0—2.8 X 107 m*/s) are roughly an order of magnitude
higher and their hydrodynamic radii were commensurately
smaller (2.2—3.1 A) than that of the 3D MOCI1®" cage, which
has a much larger size. The diffusion coefficients and
hydrodynamic radii of zA@MOC1®*" inclusion complexes
containing intercalated HCTP and NDIMe guests (D = 3.7 X
107"° m?/s; ry = 16.7—16.8 A) are similar to those of the
empty cage, indicating that these neutral z-acceptors are
indeed encapsulated by the MOC1%" cage. On the other hand,
the HATHCN@MOCI1®*" inclusion complex displayed con-
siderably a higher diffusion coeflicient and smaller hydro-

dynamic radius (D =~ 5.5 X 107® m?/s; ry = 11.4 A) than the
empty cage and the inclusion complexes of weaker z-acceptors,
indicating that the size of MOCI1®" contracted upon
intercalation of highly m-acidic HATHCN due to a strong 7-
D/A/D charge-transfer interaction, which pulled the ZnTCPP
faces of MOC1®" closer to the sandwiched HATHCN
molecule. The HATHCN-induced contraction of the
MOC1®" cage was possible because the bis-Pd azamacrolacycle
clips connecting the ZnTCPP faces are flexible enough to lend
MOC1®" breathing capability.

To gain further insight into the contraction of the
HATHCN@MOC1* inclusion complex compared to empty
MOCI1* and HCTP@MOC1®, we calculated their energy
optimized structures (Figure 3) using B3LYP/6-31g(d)/
lanl2dz basis sets. The estimated distances between the two
ZnTCPP faces (dz,rcpp_znrcpp) Of empty MOC1%*, HCTP@
MOC1**, and HATHCN@MOC1** complexes are 8.03, 8.31,
and 7.94 A, respectively. These computational results
confirmed that the strongest ZnTCPP/HATHCN/ZnTCPP
CT interaction indeed pulled the 7z-donor faces of MOC1**
closer to the strongest intercalated 7-acceptor, while weaker 7-
acceptors failed to induce such a structural change due to the
lack of any CT interaction (vide infra). Furthermore, in both
HATHCN@MOC1®* and HCTP@MOC1®*" complexes, the
intercalated 7-acceptor resided at the center of the MOC1%*
cavity, that is, at an equal distance from both ZnTCPP faces;
however, dy rcpp_parncy Was ca. 0.2 A shorter than
dzarepp_merp indicating a stronger attractive interaction in
the former.

High-resolution ESI-MS analysis (Figure 4 and Figures S7—
S10) provided direct evidence of 1:1 ZA@MOCI1®" inclusion
complexes (7A = HATHCN, HCTP, NDIMe, and NDIBu) by
revealing the characteristic m/z peaks with the expected
isotope distribution patterns of all [zFA@MOCI1-8TfO —
3TfO]%, [FA@MOCI1-8TfO — 4TfO]*, and [FA@MOCI1-
8TfO — STfO]* species.

Having determined the structures and compositions of 1:1
aA@MOCI1® inclusion complexes, we turned our attention to
their electronic and optical properties. The UV—vis titration
studies showed that (Figure Sa), with increasing the amount of
the strongest 7-acidic HATHCN, the Soret band of ZnTCPP
faces of MOC1®* was rapidly quenched and red-shifted from
422 to 429 nm and a new characteristic broad CT band
appeared above 600 nm, which was even more prominent at a
higher concentration (vide infra), revealing a strong ZnTCPP/
HATHCN/ZnTCPP (z-D/A/D) CT interaction. The plot of
HATHCN-induced intensity changes of the ZnTCPP Soret
band as a function of their relative molar ratio (Figure Sa,

MOC18+

HCTP@MOC18*

HATHCN@MOC18*

Figure 3. DFT energy-minimized structures of empty MOC1*, HCTP@MOCI1*, and HATHCN@MOCI1®*" complexes show the interfacial
distances between two ZnTCPP faces (dy,rcpp_znrcpp) in all three species and indicate that it contracted in the presence of intercalated HATHCN

due to a strong ZnTCPP/HATHCN/ZnTCPP CT interaction.
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indicating different strengths.

inset) fit perfectly with a 1:1 binding model and revealed a
large binding constant (K, = 5.02 X 10° M™!, 7:3 CH,Cl,/
MeCN, 295 K). In contrast, UV—vis titration of MOC1®" with
a weaker m-acceptor NDIBu (Figure Sb) caused gradual
quenching and a red shift of the ZnTCPP Soret band to 427
nm at a much slower rate than HATHCN (100 equiv NDIBu
vs 15 equiv HATHCN was needed to reach respective
saturation points), which indicated a much weaker interaction
of NDIBu with the ZnTCPP faces. Consequently, NDIBu
experienced 2 orders of magnitude smaller K, (1.5 X 10* M,
7:3 CH,Cl,/MeCN, 295 K) than HATHCN. Interestingly, the
UV—vis titration of MOC1** with NDIMe (Figure Sc), which
has a similar 7-acidity as NDIBu, led to a faster quenching and
red shift of the ZnTCPP Soret band. Accordingly, the K, of
NDIMe (4.8 x 10° M~!, 7:3 CH,CL,/MeCN, 295 K) was

considerably higher than NDIBu’s but slightly smaller than
HATHCN’s. However, unlike HATHCN, neither NDI
derivatives produced any noticeable CT absorption band,
indicating the lack of any significant CT interaction (Figure
5d). Since NDIBu and NDIMe have similar z-acidity (i.e.,
LUMO levels of —3.3 and —3.4 eV, respectively) and neither
produced any noticeable CT band with the ZnTCPP faces of
MOCI1*¥, the higher K, of the latter suggested that other
factors, such as its poor solubility and weak solvent interaction
(i.e., solvophobic effect), had an outsized effect on its binding,
which greatly compensated for the lack of a CT interaction.
Intercalation of less soluble NDIMe inside MOC1®*" greatly
improved its solubility in the polar solvent mixture, which
likely contributed to its surprisingly high K, despite the lack of
a CT interaction. On the other hand, the most z-acidic
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HATHCN was very soluble in the same solvent system and
had to shed its solvent shell in order to be intercalated inside
MOCI1®". A strong 7-D/A/D CT interaction evidenced by the
UV—vis spectrum helped HATHCN overcome the large
desolvation penalty and register the highest K, with
MOCI1*¥. Taken together, these results suggested that, while
less soluble NDIMe benefited from a solvophobic effect to
achieve an unusually high K,, the most z-acidic HATHCN
registered the highest K, chiefly due to a strong CT interaction
with MOCI1®* faces, which enabled it to (partially) displace
pre-intercalated NDIMe from the MOC1%* cavity (vide supra).
In other words, two different factors—a strong 7-D/A/D CT
interaction for the most 7-acidic HATHCN and a solvophobic
effect (solvation/desolvation) for a weaker z-acidic and less
soluble NDIMe—played the major role on their respective
association constants.

Cyclic voltammetry (CV, Figure S11) studies revealed the
electrochemical potentials (E,, and E,4) of empty MOCI¥,
free 7-acceptors, and ZA@MOCI® inclusion complexes and
provided insight into the nature of interactions between
ZnTCPP faces and intercalated z-acceptors with varying 7-
acidities. In the presence of the strongest z-acid HATHCN,
the first oxidation (anodic) peak of ZnTCPP faces shifted by
+110 mV (from +360 to +470 mV vs Eg, /g.), while the first
reduction (cathodic) peak of HATHCN shifted by —70 mV
(from —510 to —580 mV vs Ep,p.), further confirming a
strong 7-D/A/D CT interaction, which rendered both donor
oxidation and acceptor reduction processes more difficult. In
comparison, the intercalation of less z-acidic NDIMe inside
MOC1*, which did not produce any noticeable UV—vis CT
band, had much smaller effects on the redox potentials due to
insufficient CT interaction as the first anodic peak of the
ZnTCPP faces and the first cathodic peak of NDIMe shifted
only by +70 and —30 mV, respectively. The intercalation of
NDIBu did not cause any noticeable change in the redox
potentials of the ZnTCPP faces and the z-intercalator. Thus,
corroborating the UV—vis data (Figure Sd), these CV results
demonstrated that the strongest z-acceptor HATHCN with
the lowest LUMO level (E;yyo = —4.8 — E,oq eV & —4.3 eV)
located closest to the host metallacage’s HOMO (Eyopo =
—48 — E, eV ~ —52 eV) enjoyed a significant CT
interaction, while the weaker z-acidic NDI derivatives with
much higher LUMO levels (E yyo = —4.8 — E,q eV & —3.3
eV) failed to do so.

Finally, we studied the effects of intercalation of the
strongest (HATHCN) and weakest (NDIBu) 7-acceptors on
the electronic properties of the corresponding inclusion
complexes. For this, we measured the electrical conductivity
of drop-cast films of empty MOC1%*, HATHCN@MOCI1¥,
and NDIBu@MOCI1* complexes deposited on interdigitated
Au electrodes on nonconductive glass surfaces by electro-
chemical impedance spectroscopy (EIS). The Nyquist plots of
(Figure 6) revealed that, compared to empty MOCI1*", both
inclusion complexes enjoyed a much smaller charge transfer
resistance (i.e., smaller semicircles), which corresponded to an
order of magnitude higher electrical conductivity for
HATHCN@MOCI1®* (2.1 X 107° S/m) and NDIBu@
MOC1% (1.2 X 107 S/m) than the empty MOC1% (2.5 x
1077 S/m). The conductivity of HATHCN@MOCI®*" was
roughly double that of NDIBu@MOCI1*", indicating that the
stronger guest-mediated 7-D/A/D CT interaction in the
former facilitated a more efficient charge delocalization. These
results demonstrated that the most 7-acidic HATHCN with
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Figure 6. Nyquist plots of empty MOC1%, HATHCN@MOC1¥,
and NDIMe@MOC1®* inclusion complexes reveal their respective
charge transfer resistances and electrical conductivity.

the lowest LUMO level, which created the strongest 7-D/A/D
CT interaction with the ZnTCPP faces of the MOC1®" cage,
also generated the highest electrical conductivity by enabling
the most efficient through-space charge delocalization.

B CONCLUSIONS

In summary, we have synthesized a new ZnTCPP-based
tetragonal prismatic MOC1** via a template-free Pd(II)-driven
self-assembly protocol. Unlike an analogous metallacage having
weaker s-donor PdTCPP faces, which encapsulated only
planar anionic metal—dithiolene complexes via electrostatic
interactions but did not create any 7-D/A/D CT interaction,
the stronger 7-donor ZnTCPP-based MOC1®* faces selectively
encapsulated neutral planar m-acceptors, forming 1:1 7A@
MOC1®" inclusion complexes. The strength of the z-acceptors
indicated by their respective LUMO levels dictated the
strength of ZnTCPP/zA/ZnTCPP interactions, which in
turn defined the guest binding affinity, selectivity, efficacy of
through-space charge delocalization, and thus the optical and
electronic properties of the resulting ZA@MOC1®" complexes.
The strongest m-acceptor HATHCN, which enjoyed the
strongest 7-D/A/D CT interaction with the ZnTCPP faces
as evident from the most prominent CT band, not only
displaced the weaker 7-acceptors from the MOC1®" cavity but
also generated the highest electrical conductivity in the
resulting HATHCN@MOC1®*" inclusion complex. Although
n-donor/acceptor and 7—7 interactions have been widely
exploited for guest encapsulation, separation, and sensing
applications, this study presents a rare example where
supramolecular 7z-D/A/D triads formed by intercalation of
complementary planar sz-acceptors inside a ZnTCPP-based
metallacage facilitated through-space charge delocalization,
thus creating a higher electrical conductivity. This work paves
the way for employing ZnTCPP-based larger metallacages to
encapsulate multiple complementary guests and create more
elongated #-D/A arrays that can serve as electrically
conductive supramolecular wires by facilitating though-space
charge delocalization over longer distances—a tantalizing
possibility, which is currently under investigation in our
laboratory.
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