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Abstract

Asexual populations are expected to accumulate deleterious mutations through a
process known as Muller’s ratchet. Lynch and colleagues proposed that the ratchet
eventually results in a vicious cycle of mutation accumulation and population decline
that drives populations to extinction. They called this phenomenon mutational melt-
down. Here, we analyze mutational meltdown using a multi-type branching process
model where, in the presence of mutation, populations are doomed to extinction. We
analyse the change in size and composition of the population and the time of extinction
under this model.
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1 Introduction

“All populations are doomed to eventual extinction.” (Lynch and Gabriel 1990)

In the absence of back mutations, an asexual individual cannot produce offspring carry-
ing fewer deleterious mutations than itself. Indeed, it is always possible that individual
offspring will accrue additional deleterious mutations. As a result, the class of indi-
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viduals with the fewest deleterious mutations may, by chance, disappear irreversibly
from the population, a process known as Muller’s ratchet (Muller 1964; Felsenstein
1974; Haigh 1978). Successive “clicks” of the ratchet will cause the fitness of asexual
populations to decline. Muller’s ratchet has been invoked to explain the evolution of
sex (Muller 1964; Felsenstein 1974; Gordo and Campos 2008), the extinction of small
populations (Lynch and Gabriel 1990; Lynch et al. 1993; Gabriel et al. 1993), the
accelerated rate of evolution of endosymbiotic bacteria (Moran 1996), the degener-
ation of Y-chromosomes (Charlesworth 1978; Gordo and Charlesworth 2000a), and
cancer progression (McFarland et al. 2013, 2014).

Haigh (1978) argued that, in a population of constant size, the ratchet should click at
a rate inversely proportional to the size of the least loaded class in the population (i.e.,
the number of individuals carrying the lowest number of deleterious mutations). If k is
the lowest number of deleterious mutations present in an individual in the population,
the expected size of the least loaded class at mutation-selection-drift equilibrium is

Aig = Ne /s 1)

where N is the size of the population, u is the expected number of new deleterious
mutations per genome per generation, and s is the deleterious effect of a mutation.

Haigh argued that genetic drift causes the actual value of n; to deviate stochastically
from 5. The smaller the value of ny, the greater the probability that ny will hit zero,
causing the ratchet to click. If 7i > 1, then after a click of the ratchet, the size of
the new least loaded class will go to a new equilibrium, 7z 1, equal to 7i; in Eq. (1).
The value of 71; does not depend on k because, in a population of constant size, the
evolutionary dynamics are governed by the relative fitness of individuals, not their
absolute fitness (Haigh 1978; Maia et al. 2003).

Haigh (1978) concluded that Muller’s ratchet should click faster in small pop-
ulations, experiencing a high deleterious mutation rate, and mutations with milder
deleterious effects (low s). Subsequent work has derived more accurate estimates of
the rate of clicking of the ratchet using a variety of mathematical approaches (Stephan
et al. 1993; Gessler 1995; Gordo and Charlesworth 2000a, b; Rouzine et al. 2003,
2008; Jain 2008; Etheridge et al. 2009; Waxman and Loewe 2010; Neher and Shraiman
2012; Metzger and Eule 2013). Variants of the model have explored the evolutionary
consequences of variable mutational effects (Butcher 1995; Gordo and Charlesworth
2001; Soderberg and Berg 2007), epistasis (Kondrashov 1994; Butcher 1995; Colato
and Fontanari 2001; Jain 2008), compensatory and beneficial mutations (Wagner and
Gabriel 1990; Goyal et al. 2012; Pfaffelhuber et al. 2012; Park et al. 2018), tempo-
ral environmental heterogeneity (Wardlaw and Agrawal 2012), population structure
(Campos et al. 2006; Combadao et al. 2007; Otwinowski and Krug 2014; Park et al.
2018; Foutel-Rodier and Etheridge 2020), and changes in population size (Lynch and
Gabriel 1990; Melzer and Koeslag 1991; Lynch et al. 1993; Gabriel et al. 1993; Lynch
et al. 1995; Fontanari et al. 2003).

Beginning with Haigh’s foundational study, most research on Muller’s ratchet has
assumed that the size of a population remains constant as deleterious mutations accu-
mulate (e.g., Stephan et al. 1993; Gessler 1995; Gordo and Charlesworth 2000a;
Rouzine et al. 2003; Jain 2008; Metzger and Eule 2013) and, therefore, that selection
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is soft (Wallace 1975). This assumption is biologically unrealistic—if true, absolute
fitness would decline relentlessly but the population would be immortal (Lynch and
Gabriel 1990; Melzer and Koeslag 1991). Lynch and colleagues studied more realistic
models where the fitness of an individual influences its fertility—i.e., hard selection
(Wallace 1975)—and populations experience density-dependent regulation (Lynch
and Gabriel 1990; Lynch et al. 1993; Gabriel et al. 1993; Lynch et al. 1995). They
concluded that Muller’s ratchet causes population size to decline, which accelerates
the ratchet, which further reduces population size. This positive feedback results in
a “mutational meltdown” that drives the population to extinction (Lynch and Gabriel
1990; Lynch et al. 1993; Gabriel et al. 1993).

In one model, Lynch et al. (1993) considered a population of asexual organisms
subject to density-dependent regulation. Each individual produces R offspring. The
number of new deleterious mutations acquired by each offspring individual is Poisson
distributed with parameter u. The offspring then undergo viability selection such that
an individual with k£ > 0 deleterious mutations has a probability of survival of

wp = (1 —5)k ()

where 0 < s < 1 is the deleterious effect of each mutation. If the number of off-
spring surviving viability selection N’ exceeds the carrying capacity K then only
K individuals survive and N’ — K individuals die, independently of their fitness; if
N’ < K, all N’ individuals survive. Reproduction occurs after viability selection and
density-dependent population regulation. Assuming that initially all individuals in the
population are mutation-free and that NR > K, Muller’s ratchet proceeds in three
phases in this model. First, mutations enter the population and accumulate rapidly. As
the distribution of mutation numbers approaches mutation-selection-drift equilibrium
(1) mutation accumulation slows down. Second, the rate of mutation accumulation
settles into a steady rate. This phase proceeds as in Haigh’s model of Muller’s ratchet
and lasts while NRw > K, where w is the mean viability of the population. Third,
when w falls below 1/R (i.e., when NR w < K) the population size begins to decline,
triggering mutational meltdown (Lynch et al. 1993; Bull et al. 2007). Ultimately, the
population goes extinct.

Lynch et al. (1993) derived some analytical expressions to describe the dynamics
of mutation accumulation during the first two phases and the times at which these
two phases end. However, they did not present any analytical theory on the dynam-
ics or duration of the mutational meltdown phase itself (see also Gabriel et al. 1993;
Lynchetal. 1995). Recently, Lansch-Justen et al. (2022) derived analytical expressions
to describe the mean number of deleterious mutations, population size, and extinc-
tion time during mutational meltdown. Here we model mutational meltdown using a
multi-type branching process. We analyse the change in size and composition of the
population and the time of extinction under this model.
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Fig.1 Empirical estimates of
mutational parameters. We
obtained 36 estimates of the
genomic deleterious mutation
rate (1) and mean deleterious
effect of a mutation (s) from 26
studies on 16 species. When a
single study included multiple
estimates for a single species
based on independent data sets,
we used the median of those
estimates. The red cross shows
the median values: u = 0.02 and
s = 0.07. Half of the estimates
(18/36) are contained within the
red box (colour figure online)
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2 Model
2.1 Overview

We model a population of asexually reproducing organisms. Every generation, each
individual has a probability u of acquiring a deleterious mutation. The mutation rate,
u, in our model is defined differently from that in the models of Haigh (1978) and
Lynch et al. (1993); however, the two formulations are equivalent if # is small. All
mutations have the same deleterious effect (s), do not interact epistatically, and are
irreversible.

Generations are non-overlapping. We model reproduction and death using a
branching process (see Sect. 2.3). Every generation, individuals reproduce or die inde-
pendently of each other and experience hard selection. The size of the population can
change over time so the population can go extinct. Deleterious mutations doom the
population to eventual extinction.

2.2 Mutational parameters
We conducted a survey of the literature looking for empirical estimates of the genomic
deleterious mutation rate, u, and the mean deleterious effect of a mutation, s. The

results are summarized in Fig. 1. We adopted the median values of the mutational
parameters (¢« = 0.02 and s = 0.07) as the default in this paper.

2.3 Branching process model

We model reproduction and death using a discrete-time, multi-type branching process
(Haccou et al. 2005). We refer to individuals with k deleterious mutations as belonging
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Fig. 2 Multi-type branching process. At each time step, an individual of type k—i.e, with k deleterious
mutations (light gray)—can have one of four fates (A—D) with different probabilities, IP; wy is the absolute
fitness of an individual of type k defined in Eq. (2). It can either split into two daughters (A—C) or die (D).
The daughters inherit the X mutations from their mother. A daughter can acquire one additional mutation
and become an individual of type k + 1 (dark gray) (B—C)

to type k. Each generation, an individual of type k reproduces by splitting into two
daughters with probability P = wy /> (Fig. 2A—C) and dies with probability P =
1 — wi /2 (Fig. 2D), where wy is the expected number of offspring of an individual
with k > 0 deleterious mutations given by Eq. (2) and 0 < s < 1 is the deleterious
effect of each mutation. Note that in our model wy, corresponds to fertility not viability
(cf. the models of Haigh 1978 or Lynch et al. 1993).

Individual offspring may independently acquire one deleterious mutation with prob-
ability #. The number of mutant offspring of a surviving individual of any type is,
therefore, binomially distributed with parameters 2 and u (Fig. 2A—C). As the mean
number of offspring per individual is less than 1, the process is subcritical and will go
extinct with probability 1 (Haccou et al. 2005).

Our model is an example of an irreducible multi-type branching process with count-
ably infinite type space; for an overview and examples of such processes, see Kimmel
and Axelrod (2015). Pénisson et al. (2013, 2017) have analyzed models similar to
ours to investigate how the frequency of new alleles (neutral, deleterious, or benefi-
cial) arising in an asexual population is influenced by later accumulation of deleterious
mutations.

2.4 Size and composition of the population

Initially (i.e., at generation ¢t = 0), a population is described by the vector

Zo = (Zo.o Zo1 -+~ Zog) 3)

where Zo  is the number of individuals with £ deleterious mutations and g is the
greatest initial load (i.e., the maximum number of mutations carried by an individual,
Zox = 0 for k > g). The lowest initial load is £ (i.e., the minimum number of
mutations carried by an individual; Zp ; = 0 for 0 < k < £).
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At generation ¢, a population is described by the vector
Zi=(Z10 Zin - Zisgyg) )

where Z; j is the number of individuals with k deleterious mutations. Note that Z; ; =
0 for k > t 4+ g because individuals can acquire no more than one mutation per
generation.

In the following generation, the expected composition of the population is:

E[Z;+1] = E[Z,IM )
where M is the mean reproduction matrix with entries

mek = wi(l—u) )
M k41 = WkU

where m; ; is the expected number of offspring of type j generated by an individual
of type i; all other entries of M are 0. The expected total number of offspring of an
individual of type k is the absolute fitness wy = my x + mi x+1 (2).

Iterating (5) we get

E[Z;] = Zo M’ (7

where Zj is the (constant) initial state of the population (3). For any 7, M’, the ¢-th
power of M, is upper triangular (i.e., all its entries below the diagonal are 0). Assuming
fitness function (2), we can get an explicit form for the entries of M’, the expected
number of descendants of an individual of type k carrying j additional mutations after
t generations:

iG=1) 1 _ (1 _ o\t+1—i
J 12 1—[ 1—(1—y%) '
Nr—a—y

0 , otherwise

O Ju(—wy i =Mt

,0< <t
My g = SIS gy

Shur (2011) provides general recursive formulas for upper diagonal matrices. Although
these would apply here, in “Appendix A” we present an alternative proof of (8) that
utilizes the particular structure of our model.

The elements of IE[Z,] in (7) can be rewritten as

g
E(Zi k] = Z Zo,i ml(t,)C
i=0

8
= —w)' Y Zoi (1—9)"hps ©)

i=0
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where
. JG=D .
Lo _W-s 2 Ll — (1 — )t
" (I—w/ 1 1-(-s)
Ast — oo, we thus have h; j; — h; where
‘ iG=n
B u (1—s) 2 1
I (1 —u)i Ly sy

1

1

If we assume that initially there are Z( o mutation-free individuals in the population,
Eq. (9) yields

E[Z; k]

— Zooh 10

Ty 0.0 Pk (10)

as t — oo. If we further assume weak mutation (i.e., low ) then (1 —u)" ~ ¢~%! and
we can write Eq. (10) as

E[Z; 1] ~ e Zo,0 hi (11)

Therefore, in the long run, the numbers of individuals of all types are expected to
decline exponentially at a rate equal to the mutation rate, u.

The total size of the population at time ¢ is defined as N; = Z; 0+ Z; 1 + Z; 2 +
...+ Z; 14¢; Eq. (9) indicates that its expected value can be computed as

8 t
BIND =3 | Zok D
k=0 j=0
which turns out to be equivalent to
1—1
E[N,] :n,H(l —u+u(l —s)’) (12)

i=0

where
8
n=y_ Zo(l—s)"
k=0

is the expected population size in the absence of mutation. For a proof of (12) see
“Appendix B”.
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Under weak mutation, Eq. (12) can be approximated asymptotically as t — oo as:
E[N,] ~ e " Zy o e"/s (13)

which is proved in “Appendix C”. Figure 3A illustrates this approximation for default
mutational parameters.
By Egs. (11) and (13), we thus get the ratio

ElZidl o up
E[N,] hie (14)

which can be viewed as a quasi-stable distribution over the classes k = 0, 1, ..., as
t — oo (“quasi” because all classes are bound to die out eventually). In particular,
as hgp = 1, the mutation-free class has relative size e /%, the same proportion as
predicted under the Haigh model (Haigh 1978; Maia et al. 2003). Figure 3B illustrates
this approximation for default mutational parameters.

The computations above tacitly assume that initially the population includes some
mutation-free individuals (i.e., Zgo > 0). However, if the least loaded type (i.e., the
lowest number of mutations carried by an individual in the population) is not O but
some number £ > 0, the ratio in Eq. (14) still holds with hj replaced by hi_, for
k > €. This is easily realized by replacing (1 — u)’ by the product (1 — u)"(1 — )%
in the proof in “Appendix C”. Thus, if the ratchet clicks, the distribution will simply
be displaced by one mutation (e.g., from £ to £ 4 1). Haigh (1978) described a similar
phenomenon in his model of Muller’s ratchet under constant population size.

2.5 Time to extinction

By well-known results from the theory of branching processes (Haccou et al. 2005),
if the mean number of offspring per individual is strictly less than 1, the extinction
time of the population has a finite expected value, E[T]. By Eq. (2), an unmutated
individual has wog = 1 offspring on average. Eq. (6), however, shows that my ; < 1 for
any k > 0, that is, individuals of any type have on average less than one offspring of
their own type, provided that mutations occur and are deleterious (# > 0 and s > 0).
Therefore, the population has a finite expected extinction time.

An individual of type k may have offspring of types k or k + 1 according to the
joint probability generating function (p.g.f.)

<1>k(x>=1—% o

+ 7((1 — 1022 + 2u(l — w)xexesr + u2x,§+1) (15)

with k = 0, 1, ... where X = (xg, x1, .. .). Note that although x is of infinite length,
each @, depends on only finitely many coordinates. Denote the joint p.g.f. of Z; by

®(x) = (Po(x) P1(x) ---)
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Fig. 3 Dynamics of total population size, N;, during mutational meltdown. (A) Dynamics of N; in 50
populations founded by Ng = Zp o = 1000 mutation-free individuals and subject to mutations with rate
u = 0.02 and deleterious effect s = 0.07. Gray lines show N; of individual simulated populations. The
red line shows the exact expected Ny from Eq. (12). The yellow dashed line shows the long-term weak
mutation approximation from Eq. (13). Black vertical lines above the time axis indicate extinction times.
(B) Dynamics of the proportion of mutation-free individuals (Z; o/N;) in the simulations shown in (A).
The red line shows the ratio of the exact expected values given in Egs. (9) and (12). The yellow dashed line
shows the long-term weak mutation approximation from Eq. (14). (C) Effect of u on the dynamics of N;
(Noy = Zp,0 = 1000, s = 0.07). (D) Effect of s on the dynamics of Ny (Ng = Z¢,0 = 1000, u = 0.02).
Note that the Ny axes in (C) and (D) are log-transformed. The red lines in all plots correspond to the default
mutational parameters (u = 0.02, s = 0.07) (colour figure online)

By standard branching process theory, the joint p.g.f. of Z; is given by the 7-fold
composition of ® with itself

"V (x) = & <<1>(f—‘>(x)) (16)

witht = 1,2, ..., ®9(x) = x, and V) (x) = ®(x).
More standard theory yields that the probability that the population is extinct by
generation ¢ is

[e¢]

20,k
PIN, =01 =[] (cpk (<1><">(0))> (17)

k=0
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Fig.4 Distribution of extinction 0.008
times, 7. Histogram based on
10* stochastic simulations with
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used in Fig. 3A (Ng = Zo,0 = T_av
1000, u =0.02, s = 0.07). S 0.0047
The red line shows exact a

probabilities computed using 0.002+
Eq. (17) (colour figure online)
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where 0 = (0,0,0,...), and ®;(x) and ®7~D(0) are computed by Eqs. (15) and
(16), respectively (Mode 1971). The probability that the population goes extinct in
generation ¢ is P[N; = 0] — P[N;_; = 0]. Figure 4 illustrates the use of Eq. (17) to
obtain the distribution of extinction times under default mutational parameters.

The expected extinction time 7 of the population can be computed by the formula

E[T] = Z]P’[T > 1] (18)
t=0

which holds for non-negative, integer-valued random variables. Moreover, as P[T >
t] = P[N; > 0], the expression becomes

o0
E[T]=PF[T > 0]+ Y (1 —P[N, = 0])
=1
o
=1 +Z(1 —P[N, :O]) (19)
t=1
where P(N; = 0) is given by Eq. (17), and P[T > 0] = 1 because N; > 0 at time
t=0.
Finally, the variance of T is given by,

Var[T] = E[T(T — 1)] + E[T] — E*[T] (20)

where

WK

E[T(T — 1] =2 BT > 1)

.,
I
—

Il
e

;(1 —P[N, = O])

N
Il
—_

Figure 5 uses Egs. (19) and (20) to compute the expected value and variance of
extinction time 7" under a wide range of values of the mutational parameters. High
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Fig. 5 High deleterious mutation rate accelerates extinction during mutational meltdown. (A) Expected
extinction time, E[T'], of populations founded by Ny = Z ¢ = 1000 mutation-free individuals and subject
to mutations with deleterious effect s and rate u. E[T] was calculated using Eq. (19) for 21 x 21 = 441
combinations of values of s and u evenly spaced on a log-scale spanning 2 orders of magnitude. (B)
Coefficient of variation of extinction time, CV[T] = +/Var[T]/E[T] for the populations shown in (A).
Var[T'] was calculated using Eq. (20). (C) Expected extinction time of the mutation-free class, 7, as a
proportion of E[T] for the populations shown in (A). 7y was calculated using Eq. (21). The red box and
cross are described in Fig. 1 (colour figure online)

values of the deleterious mutation rate, u, and selection coefficient of the mutations, s,
both accelerate extinction (Fig. 5SA). However, over the range explored u# has a much
larger effect on [E[T'] than s. For example, at the default selection coefficient s = 0.07,
reducing the mutation rate by two orders of magnitude (from u = 0.25 to 0.0025)
causes extinction times to increase 27-fold. In contrast, at the default mutation rate
u = 0.02, reducing the selection coefficient by two orders of magnitude (from s = 1
to 0.01), causes extinction times to increase by only 36%. Low values of « and high
values of s make extinction times more variable (Fig. 5B). Again, u has a stronger
effect on the variability of T than s.

2.6 The first click of the ratchet

Let ¢ be the least loaded class at time ¢ = 0 so that initially the population includes
a fixed number Zp, > 0 of least loaded individuals (ancestors). Because of the
irreversible nature of mutations in this model, once the least loaded class goes extinct,

it can never reappear.
Let 7, denote the time of the first click of the ratchet during mutational meltdown

(i.e., the extinction of type-£ individuals), that is
w=min{t >0:Z,, =0}

By the standard results from probability theory introduced in Egs. (18) and (19)

tr = Elry] = Z]Pm > 1]
=0

—1+Y (1 _P[Zy = O]) 1)

t=1
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where P[t, > 0] = 1 because least loaded individuals are present at time ¢t = O.
Figure 5C shows that the time of first click #y makes up a substantial proportion of the
total extinction time except when u/s is large. For example, at the default mutational
parameters, the expected time of first click is 7o = 209.2, that is, 97.3% of the total
time to extinction.

The time of extinction of the entire type-¢ subpopulation is the time of extinction of
the Zy ¢ independent subpopulations started from the ancestors. Thus, let zl(] Z denote
the number of type-¢ individuals in generation # stemming from the jth ancestor and
rg(] ) be the time of extinction of the subpopulation started from the jth type-£ ancestor,
j=12,...,Zy¢. We then have

Zo,¢

Ziy = ZZ(J)

and
7y = max {rz(l), 7:,3(2), . L,(Zo “)}

and the equivalence

V<t & z,(fgzo

An individual of type k has offspring of type k according to the the p.g.f.

o) =1— %-}-%((l — w22 4+ 2u(1 —u)x+u2> 22)
Note that ¢ (x) is obtained by applying ®x(x) to x; in Eq. (15) and ignoring xj41.
By another standard result (Jagers 1994), the p.g.f. of Z; ; is given by the ¢-fold
composition of ¢ with itself, denoted by (p(t).

For t > 0 we get the probability in Eq. (21)

Zo,¢
P[Z¢ = 0] = H Pz} =

- st0)

Let X,41 be the number of individuals of type £ + 1 present after the first click
of the ratchet (i.e., the time 7, of extinction of type £). X1 is a random variable on
{0, 1,2, ...}, noting in particular that X, 1 may be 0, in which case both types ¢ and
£ + 1 are extinct. The expected value of X is given by

E[X¢11] = ZoE [myfg)ﬂ]
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~ Zoem{,, (23)

Note that Eq. (23) is a first-order Taylor approximation. For a proof of (23) see
“Appendix D”.

2.7 Large least loaded class

The expected time to extinction of the least loaded class, #¢, is given by Eq. (21).
Following Jagers et al. (2007), there exists a sequence ¢ (Z()’g) — cas Zgy — 00
such that

. _111 ZO,Z +c (Zo,g) (24)
= In my g

where my < 1 is the expected number of least loaded offspring per least loaded
individual (6) and Z ¢ is the initial size of the least loaded class. Note that the value
of ¢ depends on the parameters.

Eq. (24) shows that #, grows logarithmically with Zy ; with a slope of —1/Inmg .
If mutation and selection are both weak, the slope becomes ~ 1/(u + £s). Thus,
increasing the initial size of the least loaded class delays its extinction more when
mutation and selection are weak than when they are strong.

We now investigate the limiting behavior of E[X,41] as Zog ¢ — 00. By (8), (23)
and (24) we get

E[X 1]~ Zoomy?,,

_ CZo0uw g gy
s(1 —u)

U (25)
s(1 —u)

as Zg ¢ — oo, where C(Zp ) = e 200 and C = ¢~¢. For a proof, see “Appendix

D”. Interestingly, Eq. (25) shows that E[ X ;1] approaches a constantas Z ¢ increases.
If the least loaded class is mutation-free (¢ = 0), the value of 7 is not affected by

the effects of mutations, s (Egs. (21) and (24)), because the rate at which individuals

“leave” the mutation-free class is independent of s. The selection coefficient does,

however, affect the size of the new least loaded class, E[X] (Egs. (23) and (25)), and

therefore the total time to extinction.

3 Discussion

Most models of Muller’s ratchet have assumed that populations maintain a constant
size as deleterious mutations accumulate (e.g., Haigh 1978; Gessler 1995; Gordo and
Charlesworth 2000a, b; Rouzine et al. 2003; Jain 2008; Metzger and Eule 2013). This
is typically justified as resulting from density-dependent regulation of population size.
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However, the assumption is unrealistic because it prevents populations from ever going
extinct (Lynch and Gabriel 1990; Melzer and Koeslag 1991). In a series of studies
relaxing the assumption of constant population size, Lynch and colleagues argued
that Muller’s ratchet eventually generates a positive feedback where the ratchet clicks,
which causes population size to decline, which strengthens genetic drift relative to
natural selection, which in turn accelerates the ratchet (Lynch and Gabriel 1990; Lynch
et al. 1993; Gabriel et al. 1993). They called this vicious cycle mutational meltdown
and concluded that it drives populations to extinction.

Until recently, there was no quantitative theory of the mutational meltdown phase.
We believe this theoretical neglect is unwarranted. Mutational meltdown offers a last
chance for the population to be rescued by beneficial mutations or a change in the
environment and avoid extinction. Thus, the dynamics and duration of the mutational
meltdown phase are expected to be important determinants of the probability of evo-
lutionary rescue (Orr and Unckless 2008; Martin et al. 2013; Orr and Unckless 2014;
Azevedo and Olofsson 2021).

Lansch-Justen et al. (2022) derived analytical expressions to describe the mutational
meltdown phase in a model similar to that originally analyzed by Lynch et al. (1993).
Briefly, Lansch-Justen et al began by deriving the mean number of deleterious muta-
tions in a population assuming that natural selection is no longer effective. They then
used this number to derive the expected population size through time, N;—analogous
to our Eq. (12)—and then estimated time to extinction as the 7 at which N; drops
below 1. Lansch-Justen et al. (2022) found that their approximation for extinction
time matched simulation results well.

The approach described by Lansch-Justen et al. (2022) does not, however, work
well in our model. For example, the (exact) expected time to extinction under default
mutational parameters is E[7] = 214.9 generations according to Eq. (19) (Fig. 4).
The variance is Var[T] = 3913.6 (20). Under the same parameters, the time required
for the expected population size to drop below E[N;] = 1 is t = 357 generations
according to Eq. (12). This time overestimates the true value of E[T'] by over two
standard deviations. Furthermore, the expected population size at E[T] is over 17
individuals. This discrepancy is understandable because E[N;] takes into account
populations that have already gone extinct; the probability that a population has gone
extinct after 1 = 357 generations is 97% (Eq. 17; Fig. 4).

The extent to which real populations undergo mutational meltdown is unclear.
Models of Muller’s ratchet in populations of constant size have identified three major
risk factors that can drive populations into the mutational meltdown regime: long-term
reductions in population size, increases in mutation rate, and intermediate deleterious
effects of mutations. Next, we consider each risk factor in turn.

Population size can decline as a result of changes in the environment, such as,
climate change, decreased food availability, emergence of infectious diseases, and
habitat loss or fragmentation. For example, the emergence of Devil Facial Tumor
Disease, a transmissible cancer, has caused the size of the Tasmanian devil population
to decline by ~77% within 5 years (Hawkins et al. 2006; Lazenby et al. 2018). As
a result, the devils are under risk of extinction (McCallum et al. 2009). Our results
indicate that increasing population size causes relatively small delays in extinction
during mutational meltdown. E[T] is approximately proportional to the logarithm of
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initial population size (24). Similar results have been obtained in other stochastic
models of population dynamics (Lande 1993; Jagers et al. 2007).

Increased mutation rates can drive even very large populations into the mutational
meltdown regime—a phenomenon known as lethal mutagenesis (Bull et al. 2007).
Increases in mutation rate have been observed directly in experimental populations. For
example, a population of Escherichia coli adapting to a constant environment evolved a
mutator mutation after ~25,000 generations that increased mutation rate by ~150-fold
(Barrick et al. 2009; Wielgoss et al. 2013). Evolution experiments have revealed that
real populations can, indeed, experience increased extinction risk when the mutation
rate is high. Zeyl et al. (2001) allowed 12 populations of the yeast Saccharomyces
cerevisiae with genetically elevated mutation rate to evolve and found that two of them
went extinct within 2900 generations. One of these populations went extinct shortly
after alarge decline in fitness. Bank et al. (2016) subjected two populations of influenza
A virus to gradually increasing concentrations of favipiravir, a drug that increases the
mutation rate of the virus, and observed that both populations accumulated mutations
rapidly and went extinct. The results from both of these studies are broadly consistent
with the occurrence of a mutational meltdown.

The results described in the previous paragraph indicate that mutational meltdown
might have clinical applications. Mutagenic agents are being explored as antiviral
drugs (Loeb et al. 1999; Crotty et al. 2001; Pariente et al. 2001; Bank et al. 2016).
Increased mutation rate in tumor cells has been found to correlate with improved
outcomes for some cancers (Silva et al. 2000; Birkbak et al. 2011; Andor et al. 2016).
Several inhibitors of key components of the DNA-repair and DNA damage-response
machinery (e.g., PARP inhibitors, Lord et al. 2015), are currently being used to treat
cancer, or are under preclinical or clinical development (Brown et al. 2017).

Models of Muller’s ratchet have shown that the rate at which the mean fitness of
a population, w, declines before entering the mutational meltdown phase is maximal
at intermediate selection coefficients (Gabriel et al. 1993; Lynch et al. 1993; Gessler
1995; Gordo and Charlesworth 2000a,b; Lansch-Justen et al. 2022). For example,
under the default mutation rate of u = 0.02, the decline in the w of a population
of N = 1000 individuals is predicted to be fastest when deleterious mutations have
selection coefficients of s = 0.0057 [decline in w per generation was measured as
s/At, where At is the time between clicks of the ratchet calculated using the method
of Gordo and Charlesworth (2000a, b)]. This pattern arises because when deleterious
mutations have small effects selection is less efficient at purging them so the ratchet
clicks faster; however, because s is small those clicks cause w to decline slowly.
Conversely, when deleterious mutations have large effects selection is efficient at
purging them so the ratchet clicks slowly which also results in a slow decline of w.
Faster declines of w are achieved for intermediate values of s because selection is
inefficient enough at purging deleterious mutations that the ratchet clicks relatively
quickly and each click has a significant impact on w. Once mutational meltdown
begins, the expected extinction time decreases monotonically with s (Fig. 5A).

As we pointed out above, mutational meltdown offers a last chance for a population
in the throes of Muller’s ratchet (Lynch and Gabriel 1990; Lynch et al. 1993; Gabriel
etal. 1993) or lethal mutagenesis (Bull et al. 2007; Matuszewski et al. 2017) to undergo
evolutionary rescue (Orr and Unckless 2008; Martin et al. 2013; Orr and Unckless
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2014; Azevedo and Olofsson 2021). A standard model of evolutionary rescue (Orr
and Unckless 2008, 2014; Azevedo and Olofsson 2021) considers a population that is
somehow maladapted (perhaps due to sudden environmental deterioration) such that it
is doomed to extinction. In the absence of beneficial mutations, this population can be
modeled by a single type branching process. Models of evolutionary rescue typically
ignore deleterious mutations. Interestingly, our results indicate that that simplifying
assumption may be reasonable in the range of mutational parameters explored in this
paper. Figure SA shows that for values of # and s spanning two orders of magnitude
of values, the total extinction time is reasonably approximated by the case of s = 1,
which is effectively a single type branching process.

Acknowledgements We thank Alex Stewart, Ata Kalirad, Herbert Levine, and Erin Kelleher for helpful
discussions and Richard Neher for comments on an earlier version of the manuscript. The National Science
Foundation (Grants DEB-1354952 and DEB-2014566 awarded to R.B.R.A.) and National Institutes of
Health (Grant ROIGM 101352 awarded to R.B.R.A. and Grant R15GM093957 awarded to P.O.) funded this
work.

Funding This work was supported by National Science Foundation Grants DEB-1354952 and DEB-
2014566 (awarded to R.B.R.A.) and National Institutes of Health (Grant ROIGM101352 awarded to
R.B.R.A. and Grant R15GMO093957 awarded to P.O.).

Data availability Data available at https://github.com/rbazev/doomed.

Code Availability Numerical calculations and stochastic simulations of the branching process models were
done using software written in Python 3.7 and are available at https://github.com/rbazev/doomed.

Declarations

Conflict of interest The authors have no competing interests to declare that are relevant to the content of
this article.

Appendix A Proof of (8)

Given real numbers b and x and n € N (the nonnegative integers), let A denote the
“almost diagonal” n x n matrix

1 b
x bx
A= x? bx?

xnfl

whose ith row is simply x'~! multiplied by (00 ---0 15000 ---), the | occuring
in the ith position. In Eq. (5), M = (1 — u)A withx = | — s and b = —

—u
Since A is upper triangular, so is its kth power (for k € N), with diagonal entries

ai(ki) — k=1
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The superdiagonal entries are more complicated, but can also be expressed explicitly
in terms of x, k and b.

Lemmal Forn,keN 1 <i<n—1land1 < j<n—ionehas

k+1-€ _ 1

- J
® i k- T
ajl ; =bx"3 I1 o (A1)

=1

provided that we declare x° = 1.

Proof We induct on k. When k = 1, for j = 1 and any i Eq. (A1) becomes

ax =1 .
bx’ [ = bxl ! =dajj+1

x—1

When j > 2, then the £ = 2 factor in the product in Eq. (A1) is £ — 1 =0, so
that regardless of i the entire expression becomes 0, which again equals ajivj. We
conclude that Eq. (A1) holds for k = 1.

Now assume the result is true for some k > 1. Since A¥*! = A - A¥ and ai¢g =0
unless £ € {i,i + 1},

(k+1)
4 itj Za, Ea@ l+1

-1 (k) i—1 (k)
_x 11+]+bx t+lz+j

_ (k) (k)
=x'" ( iivj T baerl (z+1)+(,71)>

Using the inductive hypothesis' we obtain

o I=1 kt1—e k+1—j
(k1) _ g i— 14 U= g * mil W -1 1
Lit] p xt—1 xl —1

| (1 NI 1)

_ pi i 1D

plle xt—1 xJ —1
o =l k+1—¢ k+1
_ bjxl'_l_;,_(/*l)z(/*z)+ki+j_k_l 1—[ X — 1 X — 1
xt—1 x/ —1

=1

- J=l kt1—e k+1
_ b~/x](];l)+(k+l)(i_l) 1—[ X + — 1 X +_ 1
ik xt—1 x/ —1

1 Strictly speaking, the inductive hypothesis will only apply to the term al.(]jr)l G+1)+(—1) when j > 2.
However, if we adopt the convention that any empty product is equal to one, the expression stated in the

result agrees with a( )

i1, G+ D+G—1) when j =1 as well.
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i—1
H(xk+l—£ —

o J J

— pl MR+ D G- I1
xt—1

(=1 =0

I ktDH1-C _q

— pi AR+ D G-
xt—1

=1

which shows that Eq. (A1) holds for the exponent k + 1. This concludes the proof. O

Appendix B Proof of (12)

Eq. (12) provides an exact calculation of the expected population size at generation ¢
given the initial state Z:

t—1
E[N,]zn,]_[<1—u+u(1—s)") (B1)
i=l1
where
8
=7 Zox(l =)

k=0

and g is the maximum number of mutations carried by individuals present at time
t=0.

Proof Let z; x = E[Z; ] when starting from one individual of type k, so that
8
E[N/] = Z Z0,k%1,k
k=0

We also have

t
k=Y mih, (B2)
j=0

where m,(f)kJr . is defined in Eq. (8).

Equatif)n (B1) will follow if we can prove that
1—1 ‘
zp == TT(1=wtu = s)) (B3)

i=1
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We will use induction on ¢. From Eq. (B2) we get zox = m,(col)( = land z;x =

m,({ll)c + m,(:,)H_l = (1 — s)*, which agree with Eq. (B3). Now condition on the first

generation. The expected number of offspring of the type-k ancestor is (1 —u)(1 — s)*
of type k and u(1 — s)¥ of type k + 1 [Eq. (6)], and we get

zk == =)z 1 +ull =)z 140
(t) (1)
Mg eyig = (= S)tmk,k+j
we get
Zimthpr = (L= )"z g g
and hence the recurrence relation
2k = zmra(l = ) (1= u+u = 9'™") (B4)
The induction hypothesis is that Eq. (B3) holds for + — 1, whence it immediately
follows that it also holds for 7. O
Appendix C Proof of (13)

Eq. (13) provides the following asymptotic formula under the assumption of weak
mutation (i.e., small u):

E[Nt] ~ eful‘ZO’O eu/s

Proof We have

t—1
E[N]=n[] (1 —utu(l — s)")

i=0

where
¢
n=y_ Zoi(l—s)"
k=0

First note that because 0 < 1 —s < 1, we getn; — Zpo ast — oo. Next, let

t—1
u i
Q’=H<l+m(1_s)>

i=0
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so that E[N;] = n,(1 — u)" Q. For small u, we use the approximation 1 + x ~ ¢* to
get

t—1

u .
O~ | |exp <—(1 - S)’)
l_l:!) 1—u

t—1
u Z i
= exXp (m (1 —S) )

i=0

u I —(1—s)
=exp(l_u- K )

— exp S PP
(1 —u)s

proving Eq. (13). O

Appendix D Proof of (25)
We have

E[X¢y1]1 2 Zoe mfffg)H

(D1)
where by Eq. (8)

1 —(1—s)

(7e) te—1 12
m =u(l—uw)"" (-5
(= e =0l =) ;

u

= (@ -wa-9)" (-9

= (me,e)" - s(lu——u) : (1 -(1- S)”)

By Eq. (24),
1 InZo ¢ +c(Zoe)

(mg,[)t( — (mE,K)_lnme’g
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noting that, for any a > 0,

Thus, Eq. (D1) becomes

C(Zo,0)u (1—(— s)t’f) N Cu

ElXeril~ s(1 —u) s(1 —u)

as Zop x — oo, which is Eq. (25).
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