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Objective: The rapid advancement of high-throughput technologies in the biomedical field has resulted in
the accumulation of diverse omics data types, such as mRNA expression, DNA methylation, and microRNA
expression, for studying various diseases. Integrating these multi-omics datasets enables a comprehensive
understanding of the molecular basis of cancer and facilitates accurate prediction of disease progression.
Methods: However, conventional approaches face challenges due to the dimensionality curse problem. This
paper introduces a novel framework called Knowledge Distillation and Supervised Variational AutoEncoders
utilizing View Correlation Discovery Network (KD-SVAE-VCDN) to address the integration of high-dimensional
multi-omics data with limited common samples. Through our experimental evaluation, we demonstrate that
the proposed KD-SVAE-VCDN architecture accurately predicts the progression of breast and kidney carcinoma
by effectively classifying patients as long- or short-term survivors. Furthermore, our approach outperforms
other state-of-the-art multi-omics integration models.

Results: Our findings highlight the efficacy of the KD-SVAE-VCDN architecture in predicting the disease
progression of breast and kidney carcinoma. By enabling the classification of patients based on survival
outcomes, our model contributes to personalized and targeted treatments. The favorable performance of our
approach in comparison to several existing models suggests its potential to contribute to the advancement of
cancer understanding and management.

Conclusion: The development of a robust predictive model capable of accurately forecasting disease progres-
sion at the time of diagnosis holds immense promise for advancing personalized medicine. By leveraging
multi-omics data integration, our proposed KD-SVAE-VCDN framework offers an effective solution to this
challenge, paving the way for more precise and tailored treatment strategies for patients with different types
of cancer.
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1. Introduction prediction [5-12]. However, due to the dimensionality curse problem
(limited number of samples with high dimensional feature space),

The quick advancements of high-throughput technologies in conventional approaches typically faced limited ability to integrate

biomedical domain led to the collection of a wide variety of “omics”
data with unprecedented level of details. This provided the opportunity
to use different genome-wide data with a variety of molecular func-
tions, including mRNA expression, DNA methylation, and microRNA
(miRNA) expression for diverse disease studies. Taken individually,
each of these datasets offers solutions to important domain- and source-
specific challenges. Collectively, they represent complementary views
of related data entities with an aggregate information value often well
exceeding the sum of its parts. Integrative analysis of multi-omics
data has been proposed in many studies for a better understanding
of cancers’ molecular basis and accurate prediction of disease pro-
gression [1-4]. Some have employed statistical analysis and machine
learning methods for multi-omics data integration for cancer survival
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multi-omics data effectively. Although different feature selection and
dimensionality reduction methods have been proposed to tackle the
dimensionality curse problem, this has led inevitably to a loss of valu-
able predictive information. More recently, deep learning approaches
has achieved considerable success in multi-omics data integration on a
variety of tasks, including cancer subtype prediction [13-16], disease
progression prediction [17-19], pathway analysis and clustering [15,
20], and biomarker identification [21-24]. However, existing deep
learning-based data integration approaches able to fuse data from
different modalities still suffer from challenges as (i) inherent asso-
ciations among multiple data, (ii) high dimensionality of the feature
space, (iii) linearity assumptions and (iv) small number of samples
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common among multiple modalities [25]. As a result, there is a crit-
ical need for a novel integrative analysis technique leveraging the
complementary information available in multi-omics data with lim-
ited sample sizes overcoming the aforementioned challenges to better
understand the biology of disease. In this paper, we have focused on
the integration of multiple modalities with limited common samples
by designing a novel framework referred to as Knowledge Distillation
and Supervised Variational AutoEncoders utilizing View Correlation
Discovery Network (KD-SVAE-VCDN). Here, we integrated multi-omics
data using variational autoencoders, and used a knowledge distilla-
tion pipeline to unlock the full information potential among multiple
modalities for a more accurate and robust understanding of disease
progression.

It has long been understood that identifying patients’ disease pro-
gression (short-term survival vs. long-term survival) at the time of
diagnosis will lead to a more personalized and targeted treatment.
While many attempts to achieve this based on integrating multiple
types of high-throughput data have been undertaken, these efforts
yielded only modest success so far due to the heterogeneity of can-
cer with multifactorial etiology. The technology proposed here can
discover disease progression patterns at the time of diagnosis by in-
tegrating collective information available through multiple modalities
with heterogeneous data types (mRNA, miRNA, DNA Methylation, etc.)
and limited number of common samples. The results of this paper
can help optimize treatment by separating the patients with aggres-
sive disease from those with less aggressive disease, as well as to
increase the success of clinical trials by separating the respondents vs.
non-respondents to treatments.

2. Related work

Several studies have focused on omics-data (without integration of
multiple modalities) using statistical analysis to discover associations
among clinical and biological features [21,22,26]. However, the car-
cinogenesis and progression of disease may be a result of complex
mechanisms and changes at different levels, such as genome, proteome,
and transcriptome. Therefore, integration of omics data provides better
opportunities to understand the biology of cancer [27]. Generally, data
integration can fall into three different categories [28]: (i) late or out-
put integration: each data is modeled separately and the final outputs
are combined subsequently (ii) intermediate or partial integration: this
refers to a joint model that learns from multi modalities simultane-
ously and (iii) early or complete integration: this integration method
focuses on combining data before the learning process, either by simple
concatenation or by learning a joint latent representation. Though
successful, integration of multiple modalities suffers from challenges
including the curse of dimensionality, data heterogeneity, inconsistent
data distributions, scaling, small number of common samples among
distinct modalities.

There has been several machine learning and deep learning al-
gorithms able to integrate multi-modal data by overcoming several
aforementioned challenges including the high dimensionality [13,
14,23,25,29-32]. Some of these proposed models are better suited
than others for integration of various kinds of data, such as autoen-
coders (AE). Simidjievski, et al. [28] have proposed a network based
on different variational autoencoders (VAEs) for data integration to
classify patients into breast cancer subtypes. They have designed and
tested different network architectures and reported that the perfor-
mance of X-shaped VAEs (that learns to reconstruct the input data
from a single shared homogenous latent representation that is built
from different heterogenous data sources) and Hierarchical VAEs (that
learns a high-level representation with the input of low-level repre-
sentations that are built on each single data, separately) outperformed
all other network architectures. Arslanturk et al. have proposed a data
integration methodology to identify subtypes of cancer using multiple
data types (mRNA, methylation, microRNA and somatic variants) and
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different data scales that come from different platforms (microarray,
sequencing, etc.) [33]. Their proposed data integration and disease
subtyping approach accurately identifies novel subgroups of patients
with significantly different survival profiles. Ma et al. [34] proposed
an autoencoder based architecture for cancer progression and survival
prediction integrating multi omics data. They built hidden latent rep-
resentations of the data separately and then utilized them to calculate
the patients’ similarity matrix to feed to a neural network classifier. In
another study, Mitchel et al. [35] pre-selected the important features
based on mutual information gain and then applied principal com-
ponent analysis to the selected features and fed them into a neural
network for subsequent breast cancer survival prediction. They em-
ployed gene expression, DNA methylation, miRNA expression, and copy
number variations as the input. Wang et al. [22] have proposed a model
based on graph convolutional networks (GCNs) to integrate omics data
for cancer detection. After training GCNs on each individual data sepa-
rately, they performed the classification task and fused the probabilities
in a cross-omics discovery network to feed into the final classifier.
This way, they were able to measure the correlation among modalities
besides feature extraction to boost the classification performances.
Multi-modal learning generally aims to integrate information from
distinct modalities with heterogeneous features that describe the same
set of subjects. Utilizing the information available from different modal-
ities will lead to an enhanced performance as compared to learning
with the information available from only one modality. Though suc-
cessful, a common drawback of multi-modal learning is to only utilize
the shared information of multiple modalities. Different modalities may
have distinct sample sizes with only a limited number of samples in
common among modalities. For instance, the Kidney Renal Clear Cell
Carcinoma (KIRC) dataset available at TCGA has around 530 patients
with gene expression, copy number variation, and DNA Methylation
data but only 339 patients with single nucleotide variant (SNV) data.
This may result in (i) either excluding the SNV from the analysis and
developing models using the remaining datatypes or (ii) using only
the 339 patients that are in common across all data types within
the analysis. Both solutions would lead to a significant information
loss and hence can affect the model’s ability to demonstrate optimal
performance. Several studies have discarded the samples with missing
modalities and only focused on samples common across all modalities
[5,9,13,22,36]. However, discarding such valuable information is a ma-
jor concern especially with small samples as the amount of information
from the onset is already limited making each observation crucial to
preserve. One solution to this problem is to use missing value imputa-
tion techniques to replace the missing entries with an estimated value
based on other available information, however this may introduce bias
that can affect the subsequent prediction tasks [27,28,37,38]. Zhou
et al. proposed a method that incorporates the missing modalities into
the training network [25]. They initially used only complete samples
of all modalities to get the shared latent representation to capture the
intra-correlation among data and then used the incomplete data sep-
arately to learn each data’s features as accurately as possible. Finally,
they combined all representations to map into the label space. They
used neuroimaging and genetic data (single nucleotide polymorphism)
for diagnosing Alzheimer’s disease. Wang et al. [39] proposed a frame-
work that has inspired and given us the basis on which we have built
our KD-SVAE-VCDN architecture. In their proposed framework, they
have used a knowledge distillation-based model that is able to utilize
the supplementary information of all modalities, and hence preventing
large amounts of data to be wasted. Knowledge distillation allows the
transfer of knowledge encoded in the pseudolikelihoods assigned to
the output of a large model (i.e., a teacher model) to a smaller model
(i.e., a student model). Learning the distribution of likelihoods among
classes for a sample during training through the large model, and then
distilling such knowledge into the smaller model results in a better
ability to learn concise knowledge representations. In their proposed
approach, they initially train models on each modality separately using
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all the available data. Then the trained models are used as teachers
by transferring the concise knowledge representations to the student
model, which is trained with only those samples having complete
modalities. In this paper, we proposed a novel approach referred to as
KD-SVAE-VCDN for cancer progression prediction. Our contributions
are summarized as follows:

+ We have defined an end-to-end pipeline able to integrate data
from multiple modalities for subsequent disease progression pre-
diction tasks. Compared to various information fusion strategies,
our model is able to enrich the study population through a
knowledge distillation-based model that is able to utilize the sup-
plementary information of all modalities, and hence preventing
large amounts of data to be wasted.

In addition, through utilizing cross-omics correlation tensors and
VCDN, we obtained the intra-correlation among multi-modalities
in the latent representation space to be included in the classifica-
tion task.

Our proposed network outperformed other state of the art multi-
omics integration models.

3. Methodology
3.1. Supervised variational AutoEncoders

Recently, many machine learning algorithms have been employed
to enhance treatment and to better understand disease progression for
patients with cancer. Some of these models are better suited than others
for integration of various kinds of data [28]. In our study, we use vari-
ational autoencoders (VAEs) due to the fact that they are generative,
non-linear, and capable of learning meaningful information as well as
integrating different types of high dimensional data modalities.

In general, an autoencoder encompasses two networks, an encoder
and a decoder, that perform (i) encoding, i.e., transforming input data
with high dimensions into a latent representation with lower dimen-
sions and (ii) decoding, i.e., reconstructing the input data from the
embedding output of the encoder with minimal loss [28]. The model
includes an encoder function e(.) and a decoder function d(.) parame-
terized by ¢ and 6, respectively. The lower dimensional representation
learned from an input x is referred to as e(x) and the reconstructed
input is x’ = d(ey(x)).

The key problem in designing an autoencoder is that it is highly
affected by its input data. A VAE, one of the recent variants of au-
toencoders is capable of addressing the aforementioned problem. The
VAE uses variational inference to estimate the underlying probability
distribution of the data, in the form of latent variables z. In a proba-
bilistic framework, a VAE draws the high-dimensional data x from a
random variable with distribution p,,,, (x). The hidden representation
space (also referred to as a ‘bottleneck’) is stochastic with a gaussian
probability density. Let us denote the encoder output as g, (x | z) so the
VAE tries to estimate the true posterior p, (x | z) with true parameters ¢
by adopting a recognition model with trainable parameters 0 of a fully
connected neural network.

Generally, the VAE model assumes that the latent representation
follows a centered isotropic multivariate gaussian distribution denoted
as py(z) = N(z;0,I) and it will be necessary for the variational approx-
imate posterior to have a multivariate gaussian structure as formulated
by the following equation:

ap(z1x") = N(z; u, 6 1) ¢b)

where y, and ¢ represent the mean and variance vectors. The
difference between p, (z) and g, (z|x®) can be easily computed and
discriminated as both are normally distributed. Therefore, the loss
function for a datapoint x) can be written as:

110, ) = —E, 10, [10gpy(x|2)] + K L(gg(zx? || py(2))] @
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Here, the first term is the reconstruction loss which refers to the
decoder’s output to regenerate the datapoint with minimal information
loss. The expected negative log-likelihood is taken into consideration
with regard to the distribution of the encoder over the representa-
tions. The second term, Kullback-Leibler divergence (KL-divergence),
encourages the difference between the true prior p(z) and posterior dis-
tributions q(z | x) to be minimized. The latent variables z generated by
the encoder can be fed to a classifier. Therefore, the output layer of the
encoder is connected to a neural network classifier. The classification
performance can be heavily affected by the quality of the generated
features by the encoder. As a result, we specify the total loss for the
SVAE as the following:

110, ) = —E, 0, [10gpy(x|2)] + K L(gg(zx? || py(2)) — [y;-log(p(37))
+ (1 = y)dog(1 = p(y,)] 3

Here, the third term represents the binary cross entropy loss (BCE),
so the latent representations generated by the encoder influence the
classification criteria to make a better inference.

3.2. Knowledge distillation

Transferring knowledge from a teacher to a student is considered
as knowledge distillation. At first, the teacher model is trained using
a single modality on a given dataset D = {{ X,y }. { X2, » HX n. YN } )5
where X; representing the data features for the ith sample with one-
hot actual labels y; and learning parameters ¢, denoted as Te ¢. The
prediction model will then generate logits z; for each sample i. Then,
the student model tries to replicate the teacher’s output. Assuming there
are C classes, (2 in our case study), the generated labels are given by:

2z, =Te(X,;, §) @

Afterwards, the student model is trained with both one-hot actual
labels {y;,y,,...,yy} and the logits {z,,z,,...,} which are softened
using temperature scaling, denoted by the following:

exj/r

—kaorj=1,2,...,C,andt>1 5)

c
Zk:]e [

a;’(x) =

Here, ajN’(x) represents the softened class probability distribution
produced by the model Te (¢). The main idea behind using soft labels
in knowledge distillation is that it is more informative about a data
sample than the peaky probability distributions. For example, if there
are multiple classes and the predicted probabilities for all classes are
high, it means that the sample of interest might lie on the decision
boundary. Therefore, forcing a student to imitate these probabilities
should encourage the network to absorb some of the teacher’s knowl-
edge in addition to what is contained in the true labels alone. Assume
the student model is trained by parameter ¢, denoted as St(¢) which
takes the input X;. In the student network, the loss function for training
phase is defined as follows:

m = (X v @)+ 1(X 25 9) (6

where [, is related to a classification loss with the genuine label,
which its formula has been provided in Eq. (3). I; denotes the dis-
tillation loss which can take the form of negative cross-entropy loss
or KL-divergence. In this paper, the KL-divergence loss is used as the
distillation loss. The formula is represented as:

14(X;, 25 9) = Dy (6" (SH(X;, ;1) 6" (Te(X;, ); 1)) (7)

where ¢/(Te(X;, ¢); 1) is the generated probabilities with temperature t
rescaled by SoftMax. Also, the term a’Te (z;;1) refers to soft labels of
the teacher network for the same sample X;. It is worth noting that the
higher the temperature t, the more smoothed the output probability.
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Fig. 1. (a) represents the structure of data used for first-level teachers. Samples in blue dashed-line box are utilized to train the first teacher model, namely Tel, the orange

dashed-line box are for the second teacher model, namely Te,, and samples included in green dashed-line box are for the third teacher model, namely Te;. (b) shows the structure
of the data used for second-level teachers. Samples in red dashed-line box are included in training of the model Te¢,_,, samples in black dashed-line box are for Te,_;, and samples

in purple dashed-line box are used for training of Te, ;.
article.)

3.3. Multi-modal learning with missing modalities

It is rather typical for some samples in multimodal learning to lack
some modalities. In our case study, we have three modalities with
their data features and actual labels denoted as {X! € R"*4 X2 ¢
R X3 ¢ R™*%GY) with n; and d; representing the sample size
and feature dimensions of the ith modality, respectively. Data samples
having all modalities present (or complete) are indicated as X!¢ €
Rexdi x2 e RneXdy and X3¢ e R"*4 for the first, second, and
third modalities, respectively. Samples having two complete modalities
(which are the first and second modalities) are denoted as X!~2 e
RM-2%4 and X2~1# € R™-wX%, To clarify, it is worth mentioning that
Mi_p, = Np_y,> Since those notations each represent the same set of
samples that are common among the first and second modalities. Simi-
larly, the data with the first and third modalities present are denoted as
X734 ¢ Rm-3>d1 and X3~ € R™-1.%% and the data with their second
and third modalities present are indicated as X2 € R™-3%*% and
X3~ g R™-2%d3 Moreover, samples having only one modality present
are denoted as X'u € R"w>di X2 ¢ RmuXd2 and X3 g R"wxds2,
Note that, n; = n, + ny, + ny_y,(or ny_y,) + nj_3,(0r n3_y,),ny = n, +
ny, + ny_y,(or ny_y,) + ny_3,(or n3_y,), andnsy = n, + ny, + ny_y,(or ny_3,) +
n3_p,(0r ny_3,).

Fig. 1 shows the structure of the data used in our case study.
There are two steps to train the teacher models, Fig. 1(a) shows the
data used for first-level single modal models acting as teachers for the
subsequent step. Therefore, in this step we are using all the available
samples including the data with missing modalities. Here, we construct
these teacher models as three SVAEs, namely SVAE; (¢;), SVAE,
(¢,), and SVAE; (¢3) with parameters ¢;,¢,, and ¢; using the data
from X! = [X“,Xl‘z“,Xl‘3“,X1“],X2 — [ch,Xz‘I”,X2‘3l‘,X2“], and
X3 = [x3¢, x3-1u x3-2u x3u] respectively. The teacher j is trained by
minimizing the equations of losses for SVAEs by using the following
equation.

Te;(®;) = miny, %' BCE(d(e(X];0): ), X)) + K L(gp(z1X]) |l p(2))

lvae

+ax clf(SVAE,X] ¢)).y).j € (1,2,3) ®)

N

lery

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

The Iy, 45 part of Eq. (8) represents the VAE’s loss and the /,,, part
represents the classification loss with « defined as the coefficient. Next,
we use these three first-level teacher models to label the next step’s
samples. The logits zf , representing the labels defined by teacher j on
the ith sample can be denoted as:

zl =Te,(X*";pk.1.j € (1,2.3} k<t 9

Fig. 1(b) shows the data samples utilized for second-level teachers.
In this step we are using all the data available in each pair of modalities.
We construct the second-level teacher models as three SVAEs, namely,
SVAE,_, (¢,_,), SVAE,_3 (¢,_3), and SVAE,_; (¢,_3) with parameters
®1_2, $1_3, and ¢,_; using the data from X'~ = [X'¢, X%, x!-2,
XZ—lu]’ X1—3 - [ch, X3c’ Xl—3u’ X3—1u’]’ and X2—3 - [ch, XSC’ X2—3u’
X3724], respectively.

Note that, here we also use the aforementioned first-level teacher
models’ logit outputs to train the second-level teacher models so the
loss for these three teachers can be minimized as defined in the follow-
ing equation:

Te(dp—y) = ming,_ E' 170 + 1571+ fDy (6" (SV AE,_,
X (X i i), 0" (Te (XM, i)+

Y Dy (6" (SVAE,_ (X", py_): ),

a’(Te,(Xk_’,qb,);t))k,t e{1,2,3},k<t

(10)

In the above formula, Dg; denotes the distillation loss and g and
y are tunable parameters that can determine how much knowledge
can be distilled from the previous teachers’ network to the current
teacher network. For instance, if k = 1 and t = 2, the knowledge of
previous step teachers, namely Te; (Te;) and Te, (Te,), will be distilled
to Te,_,(Te,_,) which is trained on the modalities indexed by k(1) and
t(2) using the SVAE,_ (¢;_)(SVAE,_,(¢,_,)) models. We use these
teachers to label the ith sample which is common among all three
modalities X'¢, X?¢, and X3¢, so the logits produced by the teachers
k-t are as the following:

2K = Te,_ (X%, X"1; ¢p_ k.t € {1,2,3}, k <t an
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Fig. 2. Proposed KD-SVAE architecture. (a) shows the teacher models in each level along with the student model, (b) represents the architecture of the SVAE model (left) and

the architecture of the student model (right).

Finally, we use the second-level teachers to train the student model
St(¢) by minimizing the following loss function:

St() = min, X “ly 4 + 1.y + aDy (6" (SVAE(X ', X*, X1, 0); 1),
o' (Tey (X", X*), ) )i )+
bDy (0" (SVAE(X", X*, X3, p);1),
o' (Tey_5(IX", X3V, ¢y _3): )+
D (o' (SVAE(X', X, X, @) 1),
o' (Tey_3(IX7, X7, p_3): 1)
(12)

The student model is an SVAE with parameter ¢, denoted as
SVAE(g), which uses data from the samples that have all three modal-
ities present, X'¢, X2¢, and X¢. The hyperparameters a,b, and c are the
tunable in order to control the amount of knowledge to be distilled to
the student model from the previous teachers.

3.4. The proposed KD-SVAE-VCDN architecture

When we have multiple modalities and desire to integrate them for
a subsequent classification task, useful information could be discarded
if we were to only use the common samples among modalities with
limited sample sizes. Here, we propose a 3-fold KD-SVAE architecture,
as shown in Fig. 2.

The first fold (referred to as Teachers of level 1) includes the
three 1st-level teacher models, namely Te;, Te,, and Tes, each taking
a single modality as an input. Next, the mean and variance vectors
identified through the SVAE models were used to generate the output
logits denoted as z!, z?, and z3. Note that, each teacher models’ loss

has been calculated and optimized differently to focus specifically
on each individual modality using Eq. (8). The second fold (referred
to as Teachers of level 2) of the architecture includes the 2nd-level
teacher models, namely Te,_,,Te,_3,and Te,_;. Here, we use each
pair of modalities as an input in an effort to learn the features of
the integrated data among multiple modalities to produce the logits
2172, 2273 and z'-3. The models are optimized for each teacher model
separately using Eq. (10). The softened labels generated in the previous
step are then used as actual labels for defining the distillation losses.
Finally, the common samples among all three modalities are integrated
within the student model which consists of three VAEs. In order to
build an effective multi-omics data integration framework, we obtained
the cross-omics correlation. To specify, the mean and variance vectors
generated through the VAEs for each modality were utilized differently
through a View Correlation Discovery Network (VCDN) at the latent
representation space to generate two discovery tensors (See Fig. 2b,
right). Then the tensors were directly concatenated and fed to the
neural network layers to get the final prediction labels. Note that, if the
latent representations were used to generate only one cross discovery
tensor, it would result in a larger computational complexity. Therefore,
we generated two different tensors using the mean and variance vec-
tors, separately. By using Eq. (12), the loss was calculated and each
SVAE was optimized. Also, the previous teacher models’ softened labels
were utilized as actual labels in the calculation of distillation losses
within the student model. The pseudocode of the proposed method is
described in Algorithm 1.

The training has been performed on a computer equipped with
Intel(R) Core(TM) i5-4300U CPU @ 1.90 GHz 2.50 GHz using 8.00 GB
of RAM. The model complexities for KD_SVAE_VCDN and KD_SVAE_NN
are listed in Table S1.
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Algorithm 1. The proposed KD-SVAE-VCDN model for three modalities

Initialization

Inputs: X/, y/, X*~' and y*~'(j, k.t € {1,2,3},k < 1), X', X% X3¢,
y¢,a,p,Y, a, b, and ¢

Training teacher models in level 1:

1: For number of training iterations do

2: Train teachers Te; with {[X/,)/]} using Equation (8);

3: end For

4: Obtain soft labels for X' using Equation (9);

Training teacher models in level 2:

5: For number of training iterations do

6: Train teachers Te,_, with {[X*~/, y*"']} using Equation (10);

7: end For

8: Obtain soft labels for X'¢, X%¢, X3¢ employing Equation (11);

Training student model:

9: For number of training iterations do

10: Train student St with {[X'¢, X2¢, X3¢, y¢]} using Equation (12);

11: end For

3.5. Dataset

We conducted our study using multi omics data (including mRNA
expression, miRNA, and DNA methylation) from breast carcinoma
(BRCA) and pan-kidney cohort (KIPAN) samples available at The Can-
cer Genome Atlas (TCGA). For BRCA, using the survival days available
within the clinical data, patients were stratified into two groups namely
short- vs. long-term survivors (defined based on survival < 3 years
vs. survival > 5 years). The five year cut-off was determined using
an Expectation Maximization (EM) algorithm. Through EM, we were
able to fit two Gaussian distributions as shown in Fig. 3 that were
well separated using 1079 breast cancer samples. The two distributions
were representing two separate clusters (short- vs. long-term survival)
intersecting at approximately 1800 days (~5 years). Therefore, we refer
to patients with survival greater than five years as long-term survivors.
Patients whose survival days were between three and five years were
excluded from this study due to the uncertainty of their progression
status. This exclusion prevents any potential bias affecting models
ability to correctly predict patient progression. Similarly, patients with
survival less than three years were referred to as short-term survivors.
Hence, the labeling of data was achieved through an unsupervised
clustering approach. Note that, the already challenging circumstance
of low sample counts, particularly for long-term survivors prevented us
from introducing larger number of clusters. After excluding several pa-
tients with survival between three to five years, the number of samples
with mRNA, miRNA, and DNA methylation modalities were reported
to be 907, 633, and 656, along with feature dimensions of 18276,
638, and 17 037, respectively. Since redundant features and noise may
impact the classification performance, preprocessing and preselection
of features were carried out on each omics data, separately. After min—
max scaling, the features of mRNA and DNA methylation data with
low variance (with threshold 0.02) were eliminated. Additionally, using
ANOVA test on all modalities, with features having p-values > 0.05
were also excluded. This resulted in 2723, 582, and 129 features for
mRNA, DNA methylation, and miRNA modalities, respectively. In order
to train our proposed architecture, we randomly selected 80% of the
data as training and 20% of the data as the hold-out (test set). The class
distribution in the constructed test set was preserved as the original
dataset. Table 1 shows the total number of samples for each class (long-
vs. short-term survival) and each combination of modalities before the
train-test split.
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Fig. 3. Distribution of two classes (short- and long-term survivors) achieved through
Expectation Maximization algorithm. Here the intersecting point between the two
distributions (~1800 days) is used as the cutoff for short- vs. long-term survivors.

3.6. Generalized method for multiple modalities

Considering having m distinct modalities X! € R"*%, X2 € R"*%,
X™ € R'Xdn_ the data can be partitioned into n different subsets:
(i) samples having all modalities present with X© € R"%*¢ and i €
{1,2,3,..m}. (ii) samples that have only one modality present with
X" e RwXdi and i € 1,2,3,...,m (iii) samples having two modalities
present X4\2 g R"4\2X9/ where A \ 2 denotes two-level combination
of subsets written as i-j with i,j € {1,2,3,...,m} and i # j. Here, the
subset i-j differs from the subset j-i and f denotes the first index of
the subset i-j, ...(n) and (iv) samples having m-1 modalities present
with X {A\m=1u g RMaw-114s in which A\ m — 1 representing the (m-
1)-member subsets written as i — j... — k where i # j # ... # k €
{1,2,3,...,m} and f is the first index in the subset where the order of
indexes matter. Hence, X!1~2-3% ¢ Rm-2-3%d1 and X2-1-3 ¢ RM-2-3%d2
are two separate representations.

For training the teachers in a hierarchical manner, we first train the
models on each modality separately and get Te; with i € {1,2,3,...,m}.
Afterwards, we use these models to train the subsequent teachers with
two modalities present and obtain Te;_; with i,j € {1,2,3,....m}.
Next, we use the teachers Te;_;, to obtain teachers trained on three
common modalities and so on. As a result, we get the teacher models
hierarchically. Note that the teachers trained with h modalities (i.e., h-
level teachers) denoted by M, which has the size of (m..h). For instance,
ifm=1,2,3,4then M, =1-2,1-3,1-4,2-3,2-4,3-4, and M5 =
1-2-3,1-2-4,1-3-4,2—-3—4. Note that, the h-level teachers
use the data from all possible subset of indexes in M. For instance,
the teacher model with index 1-3-4 is trained with each combination
of modalities consisting of 1,3, and 4, i.e., X(-3-%) xG-1-40 anq
X“-1-30_ Here, we assume Te,, , with network parameters ¢y, rep-
resenting the model of the kth teacher from the h-level teachers. Note
that M, refers to the kth element in set h. Hence, M,; = 1 — 4. The
loss function to be minimized for the teacher Te,,  is defined as:

I "M M Mpy MMy 2| My |
Ter,, (Bi) = ming, 2" Ly 1,1+ S0 00 Dy,

X[6"(SV AEy,, (XM
s bpi)s 1), O'I(T‘«’M(hfl))
x (X Ma-vi), Pn—1)j3 11

Note that the above equation is the general form of Eq. (10). M,,_,
represents the cardinality of set M,_; and ny,, is the sample size whose
modalities are indexed by M,,. Finally, we train the student model
using all the obtained teachers. The number of teachers models to be
trained with m modalities is 2"~!. Hence, large number of modalities
will result in high computational costs. A simple solution for reducing
the computational complexity would be to prune the subset of teachers
with suboptimal performances.

13)
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Table 1

Number of samples for each class and each combination of modalities.
Modalities #of patients with #of patients with

long-term survival short-term survival

mRNA 252 655

Level 1 combinations methylation 182 474
miRNA 174 459
mRNA-methylation 176 471

Level 2 combinations methylation-miRNA 126 395
mRNA-miRNA 168 457

Level 3 combinations Complete data 130 393

Confusion matrix of KD-SVAE-VCDN with acc = 0.94
| )
40

20 20

True label

0 1
Predicted label

Fig. 4. Confusion Matrix of the KD_SVAE_VCDN model on test data for breast cancer
progression prediction.

4. Results

4.1. Comparison of KD-SVAE-VCDN and its variations with existing multi-
omics integration methods

For evaluation of the proposed KD-SVAE-VCDN, we compared the
classification performance with some state-of-the-art multi-omics in-
tegration methods, including MOGONET [22] and DeepMO [13].
We also compared the results with some traditional machine learning
approaches, including Xgboost and SVM using PCA analysis for fea-
ture dimension reduction (referred to as pca_Xgboost, and pca_svm,
hereafter). In order to evaluate and compare the performances of
each model, we employed the accuracy (ACC), balanced accuracy, F1
score (F1), area under the ROC curve (AUC), precision, and recall.
We evaluated the performance of all models across 30 runs, with the
mean and standard deviations of all performance measures reported
in Table 2. Note that, the classification results for pca_Xgboost and
pca_svm models are obtained by training on the directly concatenated
preprocessed multi omics data as input.

Moreover, to test the effectiveness of SVAE and VCDN models
separately, we compared the proposed method to its three different
variations. (1) KD_AE_VCDN: Here, simple autoencoders (AE) were
replaced by VAEs with the same number of layers and the same number
of hidden layers. (2) KD_SVAE_NN: Here, a fully connected NN with
the same number of layers as VCDN was used for integration. Instead
of constructing a cross-discovery tensor, the latent representations of
VAES for multi-omics data were concatenated and fed as input to the
final NN. (3) SVAE_VCDN: Here, the common samples among multiple
modalities were used as input to the student model, i.e., the knowl-
edge distillation process and knowledge transfer via teacher models
were not utilized. The KD_SVAE_VCDN outperformed its variations and
alternative methods as shown in Table 2. The results have shown
that the knowledge distillation has a significant contribution to the
classification performance. Also, using a cross view tensor boosts the

classification results slightly compared to KD_SVAE NN due to the
fact that it considers the intra-correlation among modalities during
integration. Given that VCDN multiplies the hidden representations
to build the cross-omics discovery tensor, accurate representations of
the hidden layers will lead to exploiting the full potential of VCDNs.
In fact, the noisy input can increase the prediction error; therefore,
SVAEs contributed better as compared to traditional AEs. Note that,
the obtained results in Table 2 indicate a statistically significant p-value
(< 0.001).

Fig. 4 represents the confusion matrix on the test data with an
accuracy of 94%. Moreover, for model performance comparison of
KD_SVAE_VCDN with its variations, area under the ROC curves are
depicted in Fig. 5a.

4.2. Performance of KD_SVAE_VCDN using different combinations of multi-
omics data

Although we used three distinct modalities for the classification pur-
pose, we evaluated the effectiveness of our proposed KD_SVAE_VCDN
model under different combination of modalities to assess the neces-
sity of integration of multi-omics data. The classification performance
results of KD_SVAE_VCDN using three different omics data (combin-
ing mRNA expression, DNA methylation, and miRNA expression data
denoted as mRNA + meth + miRNA), and using two different com-
bination of modalities (combination of mRNA and miRNA expression
data denoted as mRNA + miRNA, combination of DNA methylation and
miRNA expression data denoted as meth + miRNA, combination of DNA
methylation and mRNA expression data denoted as meth + mRNA),
and using only single modalities are depicted in Fig. 5b. Also note that,
during training using single modality, there was only one teacher and
one student model involved.

4.3. Learning curve of distillation loss (Dg; )

As an additional evaluation, the learning curve with different values
of weights (a, b, ¢) for Dy; using the final student model is calculated
on the test data which is presented in 5c. The parameters a, b, and
c represent the weights of the distilled knowledge using the combi-
nation of modalities mRNA-methylation, mRNA-miRNA, and miRNA-
methylation, respectively. As shown in Fig. 5¢c when there is no distilled
knowledge, the loss value is not stable. However, when the Dg; is
activated, the model is stabilized and the probability distributions along
the class labels are well aligned.

4.4. Comparison of results using different temperature values

In Fig. 5d, we have shown different temperature hyperparameters
tuned in the student model’s loss. Results show that when the tem-
perature is 1.5, the performances of the KD_SVAE_VCDN in general
outperforms all other temperature value performances.
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Table 2
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Comparison of classification model performances on TCGA breast carcinoma (BRCA) and the pan-kidney cohort (KIPAN) data using different
variations of the proposed model, alternative deep learning models and traditional machine learning models. The top three performances are

highlighted in green, yellow, and blue, respectively.

Method ACC Balanced F1-Score Precision Recall AUC
accuracy
Breast carcinoma
KD_SVAE_VCDN* 0.92 + 0.01 0.90 + 0.02 0.85 + 0.02 0.85 + 0.04 0.86 + 0.04 0.93 + 0.02
KD_AE_VCDN? 0.86 + 0.02 0.82 + 0.02 0.80 + 0.02 0.77 + 0.04 0.82 + 0.03 0.88 + 0.03
KD_SVAE_NN* 0.90 + 0.02 0.87 = 0.02 0.82 + 0.03 0.83 + 0.04 0.80 + 0.05 0.91 + 0.02
SVAE_VCDN?* 0.78 + 0.03 0.76 + 0.02 0.72 + 0.03 0.74 + 0.02 0.69 + 0.04 0.81 + 0.03
MOGONET [22] 0.83 + 0.5 0.77 = 0.4 0.66 + 0.2 0.65 + 0.3 0.65 + 0.3 0.86 + 0.4
pca_Xgboost 0.86 + 0.02 0.78 + 0.04 0.69 + 0.06 0.80 + 0.07 0.61 + 0.07 0.89 + 0.02
pca_svm 0.85 + 0.02 0.80 + 0.03 0.70 + 0.04 0.73 + 0.06 0.69 + 0.07 0.90 + 0.02
DeepMO [13] 0.80 + 0.03 0.78 + 0.04 0.61 + 0.04 0.52 + 0.04 0.8 + 0.03 0.86 + 0.01
CustOmics [40] 0.72 + 0.05 0.68 + 0.05 0.73 + 0.06 0.86 + 0.06 0.72 + 0.05 0.87 + 0.04
SNF_SVM 0.70 + 0.06 0.61 + 0.06 0.41 + 0.05 0.38 + 0.06 0.44 + 0.06 0.33 + 0.05
tSNE_SVM 0.58 + 0.05 0.56 + 0.04 0.38 + 0.04 0.29 + 0.05 0.52 + 0.05 0.61 + 0.04
ConsensusClustering_ SVM 0.68 + 0.02 0.67 + 0.03 0.50 + 0.03 0.40 + 0.03 0.67 + 0.02 0.72 + 0.02
Pan-kidney cohort
KD_SVAE_VCDN* 0.90 + 0.01 0.84 + 0.02 0.81 + 0.02 0.93 + 0.04 0.71 + 0.04 0.93 + 0.02
KD_AE_VCDN? 0.87 + 0.02 0.79 + 0.04 0.73 + 0.05 0.88 + 0.06 0.82 + 0.03 0.89 + 0.03
KD_SVAE_NN* 0.88 + 0.02 0.82 + 0.04 0.78 + 0.05 0.91 + 0.04 0.69 + 0.07 0.91 + 0.02
SVAE_VCDN® 0.79 + 0.02 0.73 + 0.03 0.69 + 0.04 0.82 + 0.05 0.60 + 0.04 0.81 + 0.03
MOGONET [22] 0.77 + 0.2 0.74 = 0.3 0.60 + 0.2 0.81 + 0.3 0.78 + 0.3 0.86 + 0.2
pca_Xgboost 0.86 + 0.04 0.73 = 0.04 0.61 + 0.06 0.88 + 0.07 0.54 + 0.05 0.80 + 0.04
pca_svm 0.83 + 0.05 0.72 + 0.05 0.59 + 0.06 0.63 + 0.08 0.53 + 0.05 0.76 + 0.04
DeepMO [13] 0.85 + 0.04 0.82 + 0.03 0.72 + 0.03 0.67 + 0.04 0.79 = 0.04 0.87 + 0.02
CustOmics [40] 0.72 + 0.04 0.68 + 0.05 0.73 + 0.06 0.86 + 0.05 0.72 + 0.05 0.87 + 0.05
SNF_SVM 0.68 + 0.03 0.57 + 0.04 0.37 + 0.03 0.42 + 0.03 0.33 + 0.04 0.63 + 0.03
tSNE_SVM 0.66 + 0.05 0.61 + 0.05 0.46 + 0.06 0.42 + 0.05 0.50 =+ 0.04 0.64 + 0.04
ConsensusClustering SVM 0.67 + 0.03 0.66 + 0.03 0.60 + 0.03 0.52 + 0.03 0.69 + 0.03 0.72 + 0.03

2 The different variations of the proposed model.

4.5. Pathway analysis and biomarker discovery

Fig. 6 shows the top impacted pathways and their corresponding
FDR adjusted p-values associated with aggressive breast carcinoma
(<3 years of survival) using impact analysis [41]. Significant genes
are presented in the diagram with their fold-changes color-coded. The
results for KIPAN are listed in Figure S3.

We also conducted upstream miRNA analysis and identified several
miRNAs as potential biomarkers. The prediction of active miRNAs is
based on enrichment of differentially downregulated target genes of
the miRNAs. In general, miRNAs have an inhibitory effect on their
targets. Therefore, for any given miRNA the method computes the
ratio between the number of differentially downregulated targets, and
all differentially expressed targets, and compares it to the ratio of all
downwardly expressed targets to all targets. Overall, we calculate the
probability of observing at least the number of differentially downreg-
ulated target genes for a given miRNA just by chance. This p-value
is computed using the hypergeometric distribution. Figure S1 and S2
show the list of miRNAs with statistically significant (p < 0.05) FDR
adjusted p-values along with the number of differentially expressed
targets for BRCA and KIPAN.

5. Discussion

Omics technologies have rapidly advanced personalized medicine
by using molecular-level data with unprecedented details. Thus, it
has become increasingly important to leverage these omics data for
supervised learning problems such as disease progression prediction. To
this end, KD_SVAE_VCDN is proposed as a supervised multi-omics inte-
gration method for patients’ survival prediction, where each omics data
type is considered as one view of samples. The proposed
KD_SVAE_VCDN model utilizes a knowledge distillation framework
for incomplete multi-omics data integration in which SVAEs aims to
learn omics specific features and VCDN tries to capture cross-omics
correlations at the high-level latent representation space effectively. By
conducting ablation studies, we have shown that using the KD structure

and including incomplete data in the training phase for prediction of
complete multi-modal data, we are able to achieve superior results
compared to models using only common samples among modalities.
Also, using SVAE as the main model in the KD_SVAE_VCDN architecture
with VCDN for data integration was essential for successful multi-omics
data integration and classification.

Furthermore, our model was trained on each individual type of
omics data as well as various combinations of them, and the results
were compared, as depicted in Fig. 5b. The performance of the model
varied across different levels of combinations. Specifically, the results
indicated that the combination of methylation, miRNA, and mRNA data
outperformed other combinations. This suggests that the integration
of these three modalities yields the most favorable outcomes in terms
of model performance. Notably, DNA methylation was found to be
the most effective in predicting breast cancer progression, followed by
miRNA data. These results are consistent with findings in the literature.
DNA methylation is a major epigenetic alteration that is commonly
perturbed in breast cancers [13,28,39]. Note that, using only mRNA
expression data in the model did not yield meaningful results, and
hence its performance was not included in the plot for clarity.

Moreover, the learning curve plotted in Fig. 5¢ shows the effect of
the amount of distilled knowledge transferred from the teachers which
includes a combination of two different omics data on the student
model. This observation reflects that when a =1, b = 0.1, and ¢ = 10
the loss, Dy, has more stability. This further explains that the higher
weight for the distilled knowledge from the integration of miRNA and
methylation lead the final student loss to have less divergency. On
the other hand, when a = 1, b = 10, and ¢ = 0.1 (i.e., more distilled
knowledge is transferred from the teachers to mRNA and miRNA data
during training), there is a higher unstable loss in the student model.
This shows that larger the weight for the distilled knowledge (such
as the case for miRNA and methylation) the better the results in the
student model.

In addition, the learning curve illustrates the impact of the amount
of distilled knowledge from the previous teacher, which involves the
integration of two distinct omics data, on the student model. This
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Fig. 5. (a) Performance comparison using different model variations for predicting the progression of breast cancer. (b) Performance comparison of multi-omics data integration
on different combination of modalities using the proposed KD_SVAE_VCDN model. Results are generated on test data across n = 30 runs. (c) Comparison of learning curves for KL
divergence at different weights. (d) Student model performance comparison for different temperature values in KL divergence loss.
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Fig. 6. Significantly impacted pathways for aggressive breast carcinoma along with the set of genes within each pathway. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

observation reveals that when the hyperparameters are set to a = 1, obtained from the integration of miRNA and methylation data results
b = 0.1, and ¢ = 10, the loss Dg; exhibits greater stability. This in a more consistent and less divergent student loss. Conversely, when
suggests that assigning a higher weight to the distilled knowledge the hyperparameters are set to a = 1, b = 10, and ¢ = 0.1, implying



S. Ranjbari and S. Arslanturk

a higher weight for the distilled knowledge from mRNA and miRNA
data, the student model exhibits a more unstable loss. This indicates
that a larger weight for the distilled knowledge obtained from the
combination of miRNA and methylation data yields superior results in
the student model.

Our results, as illustrated on Fig. 6 have shown that HHV-8, also
known as Kaposi’s sarcoma-associated herpesvirus (KSHV) which
causes Kaposi’s sarcoma, a cancer commonly occurring in patients with
AIDS, is identified as a significantly impacted pathway on patients with
aggressive breast cancer. Several studies suggested that HHV-8 was re-
lated to breast cancer by immuno-serological testing, PCR and southern
hybridization [42,43] We identified the chemokine signaling pathway
as another significantly impacted pathway. The chemokine receptors
have been reported as prognostic markers in breast cancer metasta-
sis [44] which confirms our findings. Inflammation has emerged as a
pivotal factor in various stages of tumor development, encompassing
initiation, promotion, angiogenesis, and metastasis. Notably, cytokines
occupy a significant role in driving these processes [45,46] The findings
presented within this dataset underscore the substantial influence of
the family of cytokine pathways, implying their integral involvement
in governing both the initiation and protection mechanisms associated
with breast cancer. The significance of central carbon metabolism in the
advancement of mammary carcinoma has also been underscored [47]
Furthermore, the role of EGRF Tyrosine Kinase Inhibitor has been
highlighted in HER2-enriched breast cancer [48], and the stimulation
of breast cancer growth through the up-regulation of the oncoprotein
hepatitis B X-interacting protein has been associated with TNF-« all
confirming our findings [49]

MicroRNA-124 is reported to suppress the invasion and proliferation
of breast cancer cells in several studies [50,51] Dong et al. reported the
decreased expression of miR-124 as a cause of tumor progression and
poor prognosis in patients with breast cancer [40] Further studies are
required to investigate the role of miR-124 in patients with aggressive
breast cancer. Note that, these data were analyzed in the context of
pathways obtained from the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database (Release 100.0+/11-12, Nov 21) and miRNAs from
the miRBase (MIRBASE Version:22.1,10/18).

Regarding the limitations of our study, we acknowledge the chal-
lenges posed by the scarcity of common samples among multi-omics
datasets and the limited availability of data for each modality. This
constraint prompted us to carefully select a subset of cancer types to
ensure meaningful integration and robust results. Additionally, the ne-
cessity to establish a reliable and accurate labeling strategy compelled
us to exclude samples with survival days falling between short- and
long- survival intervals.

We identified some directions for future research including (i) Eval-
uation of generalizability: This involves evaluating the generality of the
proposed approaches on diverse datasets and biological systems. This
could include benchmarking the performance of the KD_SVAE_VCDN
on different datasets with varying characteristics, such as different data
sizes, and data distributions to assess its robustness and generalizability
across different contexts. (ii) Extending to multiple sources: While the
experiments in the current study focused on integrating data from three
heterogeneous modalities, there is potential to further extend the model
by integrating data from additional modalities from different sources.
This could involve incorporating additional types of omics data, such
as transcriptomics, proteomics, or epigenomics, to capture a more com-
prehensive view of the biological system. Empirical evaluation of these
approaches could help assess the model’s generality and performance
in handling diverse data types. (iii) Extension to imaging data: While
the current study focused on integrating multi-omics data, future work
could involve extending the proposed approaches to incorporate imag-
ing data. Integration of histopathological images with multi-omics data
can enrich the information which could lead to more comprehensive
view and better prediction results. (iv) Interpretability and explain-
ability: While KD_SVAE_VCDN can learn complex representations of
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data, the learned representations may not always be easily interpretable
or explainable. Developing methods or techniques to improve the in-
terpretability and explainability of the learned representations could
facilitate the adoption of the approach in real-world applications and
aid in generating biologically meaningful insights.

6. Conclusion

In this paper, we presented a novel framework, referred to as Knowl-
edge Distillation and Supervised Variational AutoEncoders utilizing
View Correlation Discovery Network (KD_SVAE_VCDN), for integrative
analysis of multi-omics data with limited common samples. By lever-
aging variational autoencoders and knowledge distillation techniques,
our framework unlocks the full information potential among multiple
modalities, allowing for a more accurate and robust understanding of
disease progression. Our approach addresses the challenges associated
with integrating multi-omics data, such as high dimensionality, data
heterogeneity, inconsistent data distributions, and small number of
common samples, which are commonly faced in traditional approaches.
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