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ABSTRACT: The ability to control and tune physicochemical properties that
underscore chemical behavior in living systems and the environment is at the “heart”
of green chemistry. This is especially true for chemical classes designed a priori to be
biologically active, such as pesticides, where the chance of unintended adverse
outcomes is high. We recently proposed a design-vectoring framework, leveraging
validated computational models of ecotoxicity and indirect photodegradation as a
useful, quasisystems-based tool for screening existing and designing new agro-
chemicals. Here, we describe the development of a database that integrates our
models, which link structural and substructural features to process metrics, and
corresponding predicated data for all agrochemicals with photodegradable cores on
the U.S. Environmental Protection Agency’s registry (785 compounds and over
18,000 pairwise interactions with chromophoric dissolved organic matter, CDOM).
The database is searchable by structural and nonstructural identifiers (e.g., chemical
class, oxidizable core, physicochemical and electronic properties, etc.) to aid in
chemical selection, hazard, and alternative assessment. Crucially, it can be easily updated and augmented to aid in interactive data-
sharing across industry, government, and academia. The overarching goal of this project is to spur grander efforts in systems-based
design of pesticides that would see this platform paired with target-based computational methods and incorporated into the
discovery phase of new product development across industry sectors.
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■ INTRODUCTION

It is safe to say that there are no safe chemicals (pun intended),
given that safety is freedom from risk and risk is a probability
function, which can only be minimized but never abolished.
Chemical risk is driven by hazard, which is encoded in the
compound’s molecular structure, with exposure acting as the
confounding variable under conceivable use (and misuse)
scenarios. Because the latter is difficult to characterize and
much less quantify, unless we are concerned with exposure in a
strictly controlled setting (e.g., a highly regulated chemical
laboratory), the focus of risk assessment in new chemical
development should be on hazard minimization, consistent
with modern green chemistry practice.1−4 This is a smart
choice for chemical classes where toxicokinetic and toxicody-
namic processes are mechanistically orthogonal to performance
outcomes (e.g., azo dyes in textiles/printing, orthophthalates in
food-contact applications, organohalogenated flame retardants,
polyfluoroalkyl substances in oil/grease-resistant applications,
etc.), and hazard can be gauged from relevant structure−
activity relationships.5,6 However, for chemicals with intended
biological function (e.g., pesticides or pharmaceuticals), those
pathways (i.e., target vs nontarget toxicity) may overlap to an
extent that thwarts risk minimization and imposes inescapable
trade-offs in new product development7 (this is generally true

for all chemical classes, where transformations that support
function are mimicked in the living systems, generating
toxicity�e.g., antioxidants and antiozonants used in car
tires8,9 or couplers used in peptide synthesis10). The
pharmaceutical industry has grappled with this conundrum
for decades, resulting in the development of rather
comprehensive, systems-based frameworks that optimize the
underlying trade-offs between function, adverse effects, and
environmental persistence.11 However, it can cost the
pharmaceutical industry upward of 2.8 billion dollars to
bring a new medicine to market,12 reflecting the vast amount
of testing and molecular engineering that takes place prior to
commercialization. Most commodity chemicals have far less
favorable (perceived) societal benefits, driving the need to
develop new products at a much lower cost. Even active
ingredients (AIs) in agricultural products, which are produced
at volumes ca. 20-fold higher than medicinal products,13−15
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cost only a fraction of pharmaceuticals in development and
registration fees�low hundreds of millions of dollars on
average.16 This number can be seen both as too high to
innovate frequently (compounded by rising unaffordability of
agricultural products and their declining global cost−benefit
ratio)17 and too low to compete with the rigor of the
pharmaceutical sector’s development process to ensure high
probability of safety and adequately characterized trade-offs.
One avenue for method translation from drug discovery to

lower-cost chemical sectors is in the application of computa-
tional or in silico models, which are considered fast,
inexpensive, and increasingly more accurate.18,19 These
methods are now a mainstay in every pharmaceutical company
to help drive chemical design along multiple vectors of efficacy,
safety, and depletion in the upstream of a new active
pharmaceutical ingredient (API) discovery,20 the latest
prominent example being the COVID-19 treatment and
vaccine development.21,22 In the least, these tools help
downsize the vastness of the chemical space into a manageable
subset that has an increased probability of displaying certain
(favorable) characteristics.23−25 It is unclear to what extent
these practices have already migrated to sectors such as
pesticide design, given the secrecy of industrial practices to
protect intellectual property. Anecdotal evidence suggests a
wide gamut of capabilities, which, based on our conversations
with industry insiders and regulators, range from “none at all”
to “a decent replica of the computational drug discovery
process.” The one element that quite clearly appears to be
missing, however, is a computational consideration of
controlled and tunable depletion, which is concerning given
increased risk to human health because of elevated exposure to
persistent pesticides and/or their transformation products.26

Recently, we put forth a computational blueprint for
controlling pesticides’ net effects by exploiting physical−
chemical mechanisms in the environment (i.e., soil, water, and
air). Our approach to designing agrochemicals integrates
existing, validated in silico strategies for environmental
toxicity27 with indirect photodegradation,28 which is the
main pathway for removing pesticides from the environ-
ment.7,28,29 The goal was to construct a quasisystems-based
framework for quantifying and reconciling trade-offs in the
upstream of new product development (i.e., at the in silico
stage of design vectoring toward a favorable part of the
chemical space). For practical use, we defined cutoffs related to
ecotoxicity and performance by mode of action (MOA) and
pesticide class, which, when paired with color-coded photo-
degradation metrics, can be used to construct “design maps” to
guide the (expert) end-user on molecular perturbations to
achieve the desired outcome.7

Here, we outline the development of a more immediately
useful data-sharing platform for the general (i.e., nonexpert)
scientific community, which can be leveraged in hazard or
alternative assessment using predicted metrics. Coined the
pesticide indirect photodegradation (PIP) database, this live
project is a collection of data on functionality, biologically
relevant physicochemical properties, degradation kinetics and
thermodynamics, core-substituent information (e.g., electron
density distribution, orbital mixing, etc.), and environmental
toxicity. Crucially, PIP integrates all our predictive models in a
transparent manner, allowing users to interpret, edit, and
expand the underlying data structure with relative ease. Our
goal is to provide a “springboard” for interdisciplinary data-
sharing30 in safer pesticide development that can benefit the

industry, regulators, and academics alike, with potential
transferability to other chemical sectors.

■ METHODS

The PIP database (PIP.xlsm in Supporting Information, also
available via download from https://kostal.columbian.gwu.
edu/software/), was created by compiling data on 785
registered pesticides, which were obtained from the U.S.
EPA’s CompTox Chemical Dashboard and were categorized
by pesticide class, function, and the type of oxidizable core
(phenols, anilines, aryl ethers, sulfides, and thiols).28,31

Predicted kinetic/thermodynamic information on indirect
photodegradation with triplet-state chromophoric dissolved
organic matter, 3CDOM*, was generated based on published
models28 using experimental data in the public domain.32−34

Our models calculate Ecell and log k (second-order rate
constants) values from free energy barriers (ΔG‡) and free
energies (ΔGet

0) of the 3CDOM*-pesticide electron transfer,
respectively. Since both ΔG‡ and ΔGet

0 can be estimated from
the frontier molecular orbital theory (FMOT) using energies
of the highest occupied molecular orbital (HOMO) of the
pesticide and the singly occupied molecular orbital (SOMO)
of the 3CDOM*,7,28 this information was incorporated into
PIP along with corresponding linear models linking FMOT to
ΔG‡/ΔGet

0 and then to Ecell/log k. FMOT is a useful
foundation for structure−property relationships and in PIP is
further supported by Hirshfeld population (HPA) and natural
bond orbital (NBO) analyses, which quantify substituent
effects on pesticide oxidation potential (ΔGet

0) for select
classes (phenols and anilines). The underlying raw data in PIP
describe over 18,000 pairwise interactions with 23 3CDOM*
components, which were grouped by the sensitizer class in the
predictive models (e.g., ketones, aldehydes, quinones, coumar-
ins, or PAHs−polycyclic aromatic hydrocarbons), as the
specific composition of CDOM in nature is unknown.
Ecotoxicity metrics were integrated into PIP using the

validated “Rule of Two” based on the density functional theory
to describe the HOMO−LUMO, i.e., band gap (ΔE), which
has long served as a useful predictor of covalent reactivity (vast
majority of metabolic processes), and the octanol−water
distribution coefficient (log Do/w at pH = 7.4), used to capture
general bioavailability.27,35,36 Past studies identified a safer
chemical space (ΔE > 6 eV log Do/w < 1.7), which has a
statistically higher probability of containing low-concern (i.e.,
benign) chemicals; for pesticides, we augmented this definition
with Briggs rule (log Do/w < 3) to accommodate the function
of AIs.7 Finally, all pesticides were characterized by their
pharmacological properties related to absorption, distribution,
metabolism, and excretion (ADME), predicted from linear-
response calculations based on Monte Carlo simulations in
water using the BOSS program.37 This approach to generate
ADME properties has been successfully used in computational
drug discovery,38 which closely relates to pesticide AI design,
both from the standpoint of safety and unintended hazard.39

To support interpretation of ADME, we have documented
relevant property ranges based on 95% confidence intervals for
known drugs (viz., embedded MS Word file in PIP.xlsm).
Color-coding across all developed parameters based on
distribution percentiles was used to provide a facile semi-
quantitative means of comparing different chemicals.
The development of PIP was carried out using Microsoft

Excel VBA to facilitate accessibility and usability across fields
and organizations. Functionality behind the data is built within
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the system as a self-sustaining database (i.e., PIP is perfectly
usable in areas with limited internet). We anticipate that broad
familiarity with MS Excel across scientific disciplines will
support modifications to PIP (be it amendments to or
expansion of existing data) based on the existing structure.
This can in turn benefit the evolution of PIP’s role in new
product development beyond its current form, which focuses
on alternative assessment in the upstream of agrochemical
development. End-users can identify chemicals of interest and
potential replacement analogs by leveraging the search and
filter functions (coded using Microsoft Visual Basic on the
backend). PIP supports selection of compound subsets based
on single or multiple user-defined criteria to compare their
metrics, which include exact/partial match for alphabetical
strings (e.g., chemical names, classes, and SMILES) and value
descriptors (e.g., equal/greater/smaller than or within specified
range) for numerical strings.

■ RESULTS AND DISCUSSION

Database Structure and Intended Use. The intent for
PIP is to offer guidance in the discovery phase of chemical
development with regard to agrochemical photodegradation
and ecotoxicity. Before discussing PIP’s utility, it is important
to stress that the underlying tools are probabilistic rather than
deterministic though the latter methods can easily be
incorporated in future iterations of PIP as outlined in our
previous work.6,18

Relying on MS Excel was a strategic decision to build an
easily accessible platform. The PIP.xlsm file contains five tabs.
The first tab (“User Manual”) explains the file structure and
anticipated use and includes an embedded MS Word file that
interprets predicted metrics and properties and outlines our
methodology. The second tab (“All Pesticides”) displays
information about the primary function and a summary of
experimental and modeled photodegradation and ecotoxicity
data. This is the main tab for the end-user, where
photodegradation data are reported for all three model tiers,
i.e., substructural (NBO and HPA, for phenols and anilines
only), structural (FMOT), and process (ΔG‡, ΔGet

0 and
corresponding log k, Ecell), as documented in our past work.

7,28

The third tab (“Data”, Columns A-DU) is the complete data
backend for the “All Pesticides” tab; thus, no data
manipulation by the end user is allowed here. The second
data table in this tab (Columns EA-EH), “Criteria”, supports
the user filtering process via Microsoft VBA. Finally, the third
table (Columns EM-JG) contains data from the first table that
fits the user’s filter selections (i.e., data from the first table are
copied to the third table following an advanced filtering
process, which is subsequently displayed in the “All Pesticides”
tab). The fourth tab (“Models”), describes all underlying
models, partitioned by 3CDOM* and pesticide class to offer
additional refinement in alternative assessments. We recom-
mend this tab for expert users familiar with the modeling
protocol. The last tab (“Data1”) is the source of all of the data
displayed in the “Models” tab. Here, linear models developed
by the Kostal group to predict ΔG‡, ΔGet

0, log k, and Ecell are
embedded into every cell. The data structure of this tab is
analogous to that of the “Data” tab.
The “All Pesticides” and “Models” tabs in PIP have two

filtering features to optimize the functionality and user
experience. The first filter consists of checkboxes on the left
side of each of sheet. Given the overwhelming amount of raw
data, this feature allows users to select the information they

wish to display. A search bar at the top of the tab allows users
to enter a specific query, such as a certain pesticide core, and a
corresponding value range or a character string, to filter the
entire data set to selections that match their criteria. The
number of queries in this filter feature is unlimited, allowing
users to progressively narrow data as necessary.
Interpreting outcomes are straightforward using Supporting

Information in the “User Manual” tab; furthermore, color-
coding is provided for all computed/predicted values based on
distribution percentiles, which goes from red (unfavorable) to
green (favorable) across the 785 pesticides in PIP. The user
can thus lean on comparing specific values, color-coded
outcomes, or “in” vs “out” based on predefined cutoffs. We
should note here that photodegradation is reported on a
continuous scale, while the ecotoxicity/function is based on
value ranges. Despite the limited “resolution” of the latter,
there is a precedent for statistically significant differences in
toxicity outcomes when moving diagonally across the ΔE and
log Do/w-defined chemical space; our past work has shown that
hazard generally increases going from low ΔE and high log
Do/w toward high ΔE and low log Do/w.

27

Overview and Interpretation of Outcomes. In
providing a basic overview of the 785 pesticide chemicals in
PIP, only 52 compounds (or ca. 7% of the PIP database) meet
the ΔE > 6 eV and log Do/w < 1.7 guidelines for safer chemicals
(Figure 1), which is hardly surprising given that many of these

compounds are biologically active ingredients. When factoring
in the remaining criterion for safety, molecular volume (<620
Å),27 only 12 chemicals meet these guidelines. One of these
chemicals is the well-known herbicide dicamba, which is low in
toxicity toward aquatic organisms, mammals, and honeybees,
but is moderately toxic to birds.40 Unfortunately, dicamba
scores poorly in terms of indirect photodegradation (90th
percentile in ΔG‡ and ΔGet

0 values), owing to multiple
electron-withdrawing rings on the aromatic core, which
impede oxidation (i.e., the rate-determining electron transfer
to 3CDOM*). Because pesticides must be sufficiently lip-
ophilic to exert selective toxicity, it is reasonable to amend this
analysis, expanding the log Do/w cutoff (<3, as per Briggs Rule
of 3), while maintaining the general reactivity criterion (ΔE >
6 eV). This approach expands the list of compounds to 93;
however, it now features compounds such as malathion (and

Figure 1. Density scatterplot of octanol−water distribution coefficient
(log Do/w) versus energy difference between the highest occupied and
lowest unoccupied molecular orbitals (ΔE). Safer chemical space,
defined by the current method (mPW1PW91/MIDIX+), is high-
lighted in the upper left-hand quadrant in green color (log Do/w < 1.7
and ΔE > 6 eV).
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its reactive malaoxon metabolite) or oxamyl, which are both
insecticides (acting as acetylcholinesterase inhibitors) with
documented mammal toxicity and aquatic toxicity.41 Thus,
clear trade-offs emerge between function and toxicity when
applying rather simple design guidelines.
Alternatively, one may consider decoupling the safety criteria

(using either ΔE or log Do/w), on the imperfect premise that, in
the extremes, compounds that are not bioavailable can be
reactive with no adverse effects and nonreactive compounds
can be readily bioavailable due to lack of target-based toxicity.
We note these scenarios since they are frequently invoked in
green chemistry and safer chemical design,42 and they can be
problematic. While a lack of bioavailability may be a useful
safety metric for many commercial chemicals, pesticide AIs rely
on bioavailability to support selective toxicity; furthermore,
highly reactive chemicals can cause adverse effects via dermal
contact (e.g., irritation and sensitization). Conversely, non-
reactive compounds may be metabolically activated into potent
toxicants (viz. oxidation of malathion to malaoxon) or may be
toxic via narcosis (i.e., disruption of ion channels by
embedding into cell membranes and causing their swelling).
The latter case appears more concerning than the former as
documented in our previous analyses.27,35,36 Considering the
“off-diagonal” regions in Figure 1 (i.e., the lower-left and
upper-right quadrants), there are 194 compounds that follow
log Do/w < 1.7 and 168 compounds that fit ΔE > 6 eV. The
distribution of oxidizable cores within these categories is
shown in Figure 2. Most of the compounds that are considered

safe in at least one parameter are aryl ethers or sulfides, which
suggests that de novo pesticide design is needed primarily for
the other two classes, i.e., phenols and anilines.
The limitation of the current hazard approach, which

imposes clear trade-offs between function and toxicity for AIs
can be alleviated in three ways: one, using performance-defined
cutoffs (described in Lewer et al.),7 which allow for some
flexibility in structural manipulations that affect log Do/w and
ΔE to both promote safety and retain the acceptable function
for a given pesticide class and/or MOA; two, by promoting
depletion as implemented in PIP, which assumes oxidation
byproducts are of lesser concern due to increased water
solubility; and three, by incorporating target-based models of
toxicity, which offer greater level of refinement and selectivity.6

Controlling depletion to mitigate hazard concerns is an

interesting proposition. In PIP, this prediction rests on the
pesticide’s oxidation potential (i.e., electron-transfer to a
3CDOM* mixture), which is reasonable given that reduction
potentials of known 3CDOM* sensitizers encompass other
photochemically produced reactive intermediates (PPRIs),
such as a singlet oxygen or a hydroxyl radical.43 Furthermore,
we assume that the electron transfer is the rate-determining
step, followed by a downhill proton transfer to generate the
pesticide radical.33 While degradation pathways can yield
(reactive) intermediate byproducts of concern, the end-
products are usually of lower toxicity. For example, phenols
and anilines are oxidized to carboxylic acids and eventually
carbon dioxide and water44 though semiquinone and quinone
intermediates generated in these pathways can cause adverse
effects (e.g., oxidative stress). Certain substitutions on
oxidizable cores can impede detoxification transformations
(most notably halogens), and the current models in PIP
consider these effects in the initial electron transfer (e.g.,
halogens destabilizing the electron hole in the pesticide cation
radical, resulting in less favorable thermodynamics).7 Finally,
the added benefit of abiotic (vs biotic) degradation models in
PIP is that reactive intermediates, though potentially toxic, are
less bioavailable than their parent molecules, which, paired
with their kinetic instability, limits their risk to living systems.
Accepting all the above, we must note the “crosstalk” between
underlying models for ecotoxicity and photodegradation,
which both rest on FMOT in PIP. To this end, we recommend
the users lean on the energies of pesticides’ LUMO for
guidance on relative safety (in place of ΔE), given that most
toxicants are electrophiles, while the HOMO energy plays a
pivotal role in the pesticide photodegradation (i.e., oxidation).
This approach allows one to “decouple” the two analyses in
cases where there is too much overlap.7

Alternative Assessment Case Studies. Our general
recommendations for alternative assessment follow the
guidance outlined above, that is, to (i) use prescribed cutoffs
(“in” vs “out”) for ecotoxicity/performance where possible and
(ii) use distribution percentiles (i.e., PIP color-coding) for
photodegradation metrics as well as for ecotoxicity/perform-
ance when the use of boundaries is ineffective (i.e., selected
compounds are all within the same chemical subspace). We
also recommend consulting the pharmacological properties
and their ranges to assess the biological activity with regard to
ADME.
To demonstrate PIP’s alternative assessment capabilities, we

selected 3 compounds that perform poorly in one of the
categories outlined in Figure 2: fails log D safety (2-ethylhexyl
diphenyl phosphate), fails ΔE safety (formetanate), and fails
overall safety (azafenidin). Azafenidin (herbicide aryl ether) is
a herbicide and a protoporphyrinogen oxidase inhibitor, used
to control weeds in fruit crops; 2-ethylhexyl diphenyl
phosphate is a cholinesterase-inhibiting pesticide ingredient
that is commonly used as a flame retardant and a plasticizer;
and formetanate is a carbamate pesticide, its primary MOA
being cholinesterase inhibition (Figure 3). The narrative below
describes three alternative assessment case studies, each
example selecting one of the chemicals in Figure 3 and then
assessing the top alternatives with the same pesticide class and
oxidizable core.
With computed log Do/w of 3.5 and a ΔE of 5.59 (56th

percentile for LUMO energy), azafenidin is of concern, which
is consistent with available safety data sheets (SDSs) that
consider azafenidin to be moderately toxic to birds and highly

Figure 2. Relative representation of pesticide type (defined by
oxidizable core) within each category of greater safety (overall safer =
log Do/w < 1.7 and ΔE > 6 eV; log D safer = log Do/w < 1.7; ΔE safer =
ΔE > 6 eV).
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toxic to aquatic organisms.41 In the consideration of
alternatives, it is crucial to maintain the herbicide functional
class and the aryl ether core type. Provided these parameters,
PIP outputs the top 5 aryl ether herbicides, which are (R)-
mecoprop, dicamba-dimethylammonium, dichlorprop, dicam-
ba, and sodium dicamba. All of these compounds have ΔE
above the 80th percentile and log Do/w below the 10th
percentile. The top compound, sodium dicamba, has an ΔE of
6.24 eV (88th percentile in ΔE and 60th percentile in LUMO
energy) and log Do/w of −0.83 (Figure 4). Both metrics are

within the safer region in terms of ecotoxicity, and, if one
accepts alternate vertebrates as a useful new approach
methodology (NAM) for higher species,4 also safe in terms
of acute mammalian toxicity. The trade-off is poor photo-
degradation�90th percentile in computed ΔG‡ and ΔGet

0

values, where higher values indicate a lower kinetic and
thermodynamic propensity to undergo oxidation, respectively.
To that end, (R)-mecoprop may be the better overall
alternative (38th percentile in photodegradation ΔG‡ and
ΔGet

0 values, ninth percentile in log Do/w, 73rd percentile in
ΔE, and 77th percentile in LUMO energy). Consistent with
our safety predictions, mecoprop is of low concern to aquatic
species.41

The compound 2-ethylhexyl diphenyl phosphate (Figure 3)
is an aryl ether with computed log Do/w and ΔE values of 6.45
and 6.80 eV, respectively. While its reactivity is within the safe
cutoff value, it fails in predicted bioavailability (both based on
our Rule of Two, log Do/w < 1.7 and the Briggs Rule of Three,
log Do/w < 3). The top 5 outputs for the same pesticide class
and oxidizable core were 1-phenoxy-2-propanol, 2-(2-(2-(2-
phenoxyethoxy)ethoxy)ethoxy)ethanol, 3-hydroxycarbofuran,
4-chlorophenoxyacetic acid, and entsufon sodium. All of
these compounds had ΔE above the 80th percentile and log
Do/w below the 30th percentile. Depending on user
preferences, two top choices were identified: 4-chlorophenoxy-
acetic acid, which has a particularly low log Do/w (−1.56) and
an acceptable ΔE of 6.10 eV (79th percentile for LUMO
energy), and 1-phenoxy-2-propanol, which is the least reactive

alternative in the series (ΔE = 6.34 eV, 94th percentile in
LUMO energy), with a predicted log Do/w (1.54) just below
the prescribed cutoff (Figure 4). Both compounds perform
reasonably well for photodegradation (51st and 42nd
percentiles in computed ΔG‡ and ΔGet

0 values, respectively),
which compares favorably against 2-ethylhexyl diphenyl
phosphate (91st percentile). From available SDSs, 4-
chlorophenoxyacetic acid is moderately toxic to birds,
honeybees, and some aquatic organisms; however, it has a
relatively low toxicity to fish (our ecotoxicity model is
dominated by the highly curated U.S. EPA fathead minnow
data).41,45 In contrast, 1-phenoxy-2-propanol is of low acute
aquatic toxicity (LC50 = 280 mg/L in Fathead minnow, 370
mg/L in Daphnia magna, and >100 mg/L in algae);41 the
outcome difference between the two compounds being
consistent with predicted relative ΔE and LUMO energy
values.
The final example is a reverse scenario where an aryl ether

insecticide, formetanate, meets the safe-space requirement for
log Do/w (−0.25) but fails to meet the cutoff for ΔE (5.36 eV).
From available SDSs, formetanate is moderately to slightly
toxic to freshwater fish but highly (acutely) toxic to freshwater
invertebrates.41 Four alternatives for this core category and
functional class were identified in PIP: dioxacarb, fenamiphos
sulfone, fenamiphos sulfoxide, and bendiocarb, which all
scored in the 20th percentile for log Do/w and above the
80th percentile for ΔE. Since all four alternatives met the safety
guidelines, ranking by photodegradation is useful, where
bendiocarb was found to be the easiest to oxidize (22nd
percentile), followed by fenamiphos sulfoxide (67th percen-
tile), dioxacarb (91st percentile), and fenamiphos sulfone
(94th percentile). Here we should reiterate that our tools are
probabilistic (vs deterministic) as neither of these compounds
can be confidently identified to be of low concern to aquatic
organisms based on available data. For example, bendiocarb is
considered at least moderately toxic to several species of fish
and aquatic invertebrates, such as shrimp, crabs, and insects;41

dioxacarb was found moderately toxic to Oncorhynchus mykiss
(rainbow trout),41 which is an aquatic species not represented
in our model, and is more sensitive than fathead minnow for
certain chemical classes.46

Strengths, Limitations, and Future Improvements.
When reflecting on the value of PIP, it is hard not to see the
horizontal and democratic structure of our shared scientific
enterprise as a detriment that leads to staggering inefficien-
cies.30 In many ways, a “dictatorial” and hierarchical system in
scientific data sharing would better systematize and organize all
available information around a single standard, joining smaller-
scope efforts (such as PIP or PPDB, the Pesticide Properties
Database)41 with larger endeavors (e.g., the U.S. EPA’s
CompTox Chemicals Dashboard or The Integrated Chemical
Environment developed by NICEATM)47 into a single
platform. That is not to say there is no value in PIP as a
standalone tool, but its utility is mostly as part of a weight-of-
evidence scheme along with other sources of information.
While combining multiple pieces of evidence to make a
decision is standard practice in sciences, updating and
expanding data, which is necessary on a continuous basis, is
far more complicated with numerous data streams vs a single
platform developed around a unified standard of data-
management practices. To address this issue with PIP, we
built this platform as an open-access, standalone tool, which
can be readily revised and augmented by anyone familiar with

Figure 3. Compounds used in the 3 case studies. Left to right:
azafenidin, 2-ethylhexyl diphenyl phosphate, and formetanate.

Figure 4. Alternative compounds identified for each case study in
Figure 3 are based on the highest-predicted safety criteria. The
compound on the left, sodium dicamba, is an alternative to azafenidin;
the two compounds in the middle, 4-chlorophenoxyacetic acid and 1-
phenoxy-2-propanol, are alternatives to 2-ethylhexyl diphenyl
phosphate; and the compound on the right, dioxacarb, is an
alternative to formetanate.
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the data types and MS Excel, and then disseminated to the rest
of the scientific community. Undoubtedly, such “crowdsourc-
ing” can be chaotic, but our hope is that “natural selection” in
the hands of the scientific community ensures “survival of the
fittest”, i.e., helps PIP evolve to better serve the needs of the
pesticides industry and its regulators.
In commenting on the limitations of PIP’s structure and its

underlying models, one must recognize both deficiencies of the
in silico component and the underlying (experimental) data.
We laid bare the assumptions and approximations used to
assess indirect photodegradation and ecotoxicity in PIP, here
and elsewhere,7,27,28 and the end-user should exercise judg-
ment in their use scenarios. By the same token, we should be
cognizant of the experimental data variability, uncertainty, and
reproducibility. Due to persisting negative bias toward in silico
models, experimental outcomes (i.e., acute LC50 or chronic
NOEC/LOEC values) are favored; however, that may be
misleading if these data points are of low reliability (and have
thus been excluded from model training). To that end, it is not
uncommon to see several orders of magnitude variations in
reported acute and chronic aquatic toxicity thresholds.48 Data
variability can occur because the chemicals are highly toxic or
volatile or were tested close to their limit of solubility, in
addition to reasons related to inter- and intraspecies differ-
ences, evolving test standards, experimental conditions, etc.
The totality of these concerns generates significant uncertainty
in any single data point.49,50 Since high data quality is critical
for robust model development,51 one will inevitably sacrifice
the breadth of the chemical space used for training, particularly
across nonstandard test species, potentially putting model
predictions at odds with those experimental outcomes.
Finally, any model ages and new data need to be

interrogated on a continuous basis to test and correct existing
trends and relationships. However, computational models are
not always updated in such a way, particularly if they were
funded by academic grants and are not used commercially. The
current rule-based ecotoxicity model in PIP was developed in
2015 using the highly curated fathead minnow data (555
chemicals)52 and was externally validated on a different aquatic
species, a cladoceran (Daphnia magna).27 Importantly,
analogous definitions of safety in terms of log Do/w and ΔE
cutoffs were noted for Japanese medaka and green algae, and
held true in both acute and chronic toxicity testing, suggesting
broad applicability of these mechanistic guidelines.35,36 In
2016, the rule-based model became a foundation for the
commercial computer-aided discovery and redesign (CADRE)
tool, which predicts the U.S. EPA’s categories of concern as
well acute LC50’s and chronic NOECs for fish, crustaceans, and
algae using linear models based on physicochemical and
electronic properties. CADRE is a reliable performer and is
regularly updated to support testing needs of various
industries.53 In partnership with Oekotoxzentrum-center
ecotox (https://www.ecotoxcentre.ch/),54 the program pre-
dicted potency categories of 30 pesticides external to its
training set with over 82% accuracy, suggesting the model can
be used to resolve confounding cases encountered in PIP’s
alternative assessments. Alternatively, PIP’s ecotoxicity pre-
dictions can be supplemented with open-access tools such as
ECOSAR (included in the EPA EPISuite program and the
OECD Toolbox) or TEST, which are provided by the U.S.
EPA.55,56 An overview of the robustness of these models is
available elsewhere.53

Looking onward, the current structure of PIP can be
amended to provide support beyond alternative assessment to
help guide design of novel pesticides. This line of thinking is
supported by our recent report, which illustrates how the
substructural tier of our photodegradation model can be
leveraged to control for depletion via rational modification of
the oxidizable core substituents.7 Since these HPA and NBO
analyses are quantitative, they can be integrated into PIP on
the backend to provide group (i.e., substituent) contributions
to photodegradation ΔG‡ and ΔGet

0 values per position on a
given oxidizable core. In turn, the user can leverage this
information to iteratively identify the most favorable
perturbations of the basic molecular scaffold.

■ CONCLUSIONS

Understanding the factors that control safety, depletion, and
performance of agrochemicals is vital in assessing alternatives
that optimize the underlying trade-offs. Such an approach
aligns with the recent emphasis on systems-thinking in green
chemistry when designing safer and efficacious chemicals.
Here, we describe the development of an open-access PIP
database, which implements our previously validated models
for indirect photodegradation and ecotoxicity. PIP is based on
compiled experimental and computational data for 785
pesticides obtained from the U.S. EPA’s registry (all pesticides
with oxidizable cores) and is structured to provide support for
alternative assessments of agrochemicals in the upstream of
new product development.
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