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ABSTRACT 

Social media messages posted by people during natural disasters 
often contain important location descriptions, such as the loca-
tions of victims. Recent research has shown that many of these 
location descriptions go beyond simple place names, such as city 
names and street names, and are difficult to extract using typical 
named entity recognition (NER) tools. While advanced machine 
learning models could be trained, they require large labeled train-
ing datasets that can be time-consuming and labor-intensive to 
create. In this work, we propose a method that fuses geo-know-
ledge of location descriptions and a Generative Pre-trained 
Transformer (GPT) model, such as ChatGPT and GPT-4. The result 
is a geo-knowledge-guided GPT model that can accurately extract 
location descriptions from disaster-related social media messages. 
Also, only 22 training examples encoding geo-knowledge are 
used in our method. We conduct experiments to compare this 
method with nine alternative approaches on a dataset of tweets 
from Hurricane Harvey. Our method demonstrates an over 40% 
improvement over typically used NER approaches. The experiment 
results also show that geo-knowledge is indispensable for guiding 
the behavior of GPT models. The extracted location descriptions 
can help disaster responders reach victims more quickly and may 
even save lives.
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1. Introduction

Natural disasters, such as hurricanes, floods, and tornados, pose significant threats to 

people and society. Between 2017 and 2021 alone, 89 recorded natural disasters in 

the United States caused over 4500 deaths and more than $780 billion in damages 
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and losses (NOAA 2022). With climate change, natural disasters are likely to become 

even more frequent and more costly in the future unfortunately (Elsner et al. 2015; 

Knutson et al. 2010). Effective disaster response and management are critical for 

reducing the loss of life and property.

People have made increasing use of social media platforms, such as Twitter and 

Facebook, during natural disasters to share urgent information and request help 

(Devaraj et al. 2020; Wang et al. 2020a, 2020b; Suwaileh et al. 2022; Zhou et al. 2022). 

One prominent example is Hurricane Harvey in 2017. A news article published by the 

U.S. National Public Radio, titled ‘Facebook, Twitter Replace 911 Calls For Stranded In 

Houston’, reported how affected people used social media to request help and how 

volunteer responders used those requests to locate and reach the people in need 

(Silverman 2017). Similar stories were also reported by other news media, such as The 

Wall Street Journal (Seetharaman and Wells 2017) and Time Magazine (Rhodan 2017). 

While barriers exist in effectively using social media data for disaster response, a 

recent survey by Hiltz et al. (2020) showed that emergency managers considered a 

software system that can automatically process social media data to be ‘very useful’ 

for disaster management.

Social media messages sent out during natural disasters often contain location 

descriptions that provide critical geographic information such as the locations of vic-

tims and accidents. Figure 1 shows two example tweets posted during Hurricane 

Harvey (with content slightly modified to protect user privacy) that represent poten-

tially life-or-death scenarios. Accurately extracting these location descriptions and geo- 

locating them on maps can help disaster responders reach victims more quickly and 

potentially save lives. While it is possible to recruit many individuals to manually 

screen these social media messages by hand, a computational method that can auto-

matically and accurately extract these location descriptions can help save time, person 

power, and other precious resources during a disaster.

Previous studies have looked into the problem of extracting location descriptions 

from the content of social media messages (Gelernter and Balaji 2013; Wallgr€un et al. 

2018; Karimzadeh et al. 2019; Wang et al. 2020a, 2020b; Hu et al. 2022; Suwaileh et al. 

2022). Two technical steps are typically involved: recognition and geo-locating. The first 

step recognizes location descriptions from the textual content of social media mes-

sages, while the second step aims to find appropriate geographic coordinates and spa-

tial representations for the recognized location descriptions. We focus on the first step 

in this work since recognizing location descriptions is a prerequisite for the second 

step of geo-locating.

Figure 1. Two rescue-request tweets posted during Hurricane Harvey.
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There are two major limitations in previous studies. First, previous studies generally 

used a default named entity recognition (NER) approach which cannot recognize loca-

tion descriptions consisting of multiple entities. NER aims to recognize different types 

of named entities from text, such as Persons, Organizations, and Locations, and it is rea-

sonable to consider the problem of location description recognition as a subtask of 

NER by simply focusing on Locations only. However, recent research has shown that 

many location descriptions are not in the form of simple place names (e.g., city names 

or street names) but consist of multiple entities (Hu and Wang 2021; Fern�andez- 

Mart�ınez 2022; Chen et al. 2022). Examples of these more complex location 

descriptions include door number addresses, road intersections, highway exits, and road 

segments. Given that off-the-shelf NER tools are designed to recognize individual enti-

ties, they do not have the ability to recognize these multi-entity location descriptions. 

Figure 2 illustrates this limitation using the two example tweets in Figure 1. Typical 

NER approaches separately recognize individual entities, such as ‘Grant St.’, ‘Cypress’, 

and ‘Texas’, rather than the complete location description ‘1280 Grant St. in Cypress, 

Texas 77249’. This limitation is critical, because our ultimate goal is to properly geo- 

locate these location descriptions and help first responders reach the people in need; 

recognizing one complete location description as separate entities can lead to poten-

tially large errors in the geo-locating step, such as locating this location description to 

the middle of ‘Grant St.’ or even to the center of ‘Texas’. From a disaster response per-

spective, these errors can make first responders arrive at the wrong locations and 

waste rescue time.

A second limitation is that most previous studies have not sought to classify the 

recognized location descriptions into more detailed categories, such as door number 

addresses, road intersections, and road segments. In previous studies, the recognized 

location descriptions are generally all considered as locations and are represented as 

Figure 2. A limitation of typical NER approaches that recognize location descriptions as separate 
entities rather than complete location descriptions.
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points on a map (Gelernter and Balaji 2013; Karimzadeh et al. 2019; Wang et al. 2020a, 

2020b)). Knowing the category of a location description can substantially improve the 

accuracy of geo-locating, in two ways. First, knowing the categories of location 

descriptions allows us to choose more suitable geometric representations for them, 

such as a point for a road intersection and a line for a road segment. Second, knowing 

the categories allows us to utilize more suitable geo-locating techniques. For example, 

we should ideally use the technique of linear geocoding if the location description is in 

the form of door number addresses (Goldberg et al. 2007), while we may want to use 

another technique such as gazetteer matching if the location description is in the form 

of organization names (e.g., names of schools and churches). Without knowing the cat-

egories of location descriptions, we have to adopt a one-size-fit-all strategy for geo- 

locating, which inevitably sacrifices the geo-locating accuracy. We note that recogniz-

ing complete location descriptions and their categories does not mean we can directly 

geo-locate them using an existing tool; rather, they facilitate the development of suit-

able techniques for the second step of geolocating to process the recognized location 

descriptions in each category. In addition, uncertainty still exists in the identified loca-

tions even when we have used suitable geo-locating techniques and geometric repre-

sentations. It is impossible to measure locations perfectly on the surface of the Earth, 

and the associated uncertainty issues have long been recognized by researchers (J. 

Zhang and Goodchild 2002; Goodchild and Haining 2003). For disaster response pur-

poses, a location identified from a description could be considered good enough, if 

responders, upon arriving at this location, can find the described victims or accidents 

within a reasonable amount of effort.

The two limitations discussed, i.e., (1) not recognizing complete location descrip-

tions, and (2) not identifying location categories, could theoretically both be overcome 

by training a new machine-learning model on a newly labeled training dataset. This 

new dataset would require annotating complete location descriptions (rather than sep-

arate entities) and annotating the categories of the location descriptions. This training 

dataset would also need to be sufficiently large so that the trained machine learning 

model would achieve satisfactory performance. Creating such a dataset, however, can 

be time-consuming and labor-intensive.

In recent years, large-scale language models (LLMs) have demonstrated impressive 

performance in the field of artificial intelligence (AI). LLMs, such as Bidirectional 

Encoder Representations from Transformers (BERT) (Devlin et al. 2019) and Generative 

Pre-trained Transformer (GPT) models (Brown et al. 2020; Ouyang et al. 2022), are pre- 

trained on large-scale textual data (e.g., all text on the Internet) in a task-agnostic 

manner, and can be adapted to domain-specific tasks via fine-tuning, few-shot learn-

ing, or sometimes even zero-shot learning. Given their foundational roles in complet-

ing various domain-specific tasks, LLMs and other large-scale pre-trained models are 

also called foundation models (Bommasani et al. 2021; Mai et al. 2022).

GPT models, such as GPT-3, ChatGPT, and GPT-4, are LLMs and foundation models 

that have received substantial attention recently (van Dis et al. 2023). Taking just a 

few examples as the instruction (called a prompt), a GPT model is able to generate 

text that reads as if it was written by humans. While they are powerful, the current 

applications of GPT models are largely limited to conversation and text generation, 
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and their social implications are controversial (Dale 2021; Eliot 2022). In this work, we 

aim to harness the power of GPT models for social good, i.e., to recognize location 

descriptions from disaster-related social media messages.

A key consideration for harnessing the power of GPT models is the construction of 

the prompt, which serves as the instruction for the model. Since the prompt can be 

written in a vast number of different ways, how can we create a prompt that makes a 

GPT model work more effectively for the task of recognizing location descriptions 

from social media messages? In this work, we propose a geo-knowledge-guided 

approach for prompt creation, in which the prompt is created based on the geo- 

knowledge about common forms of location descriptions. The geo-knowledge was 

obtained and extended from our previous study which systematically examined loca-

tion descriptions in tweets posted during Hurricane Harvey and identified a set of 

common forms of location descriptions (Hu and Wang 2021). In this study, we create 

the prompt based on such geo-knowledge, and feed the created prompt to GPT 

through a question-answering process. The result is a fusion of the GPT model and 

geo-knowledge that can overcome the two discussed limitations: it can recognize full 

location descriptions and also identify the categories of the recognized descriptions. In 

addition, only a small number of training examples (22 examples in this study) are 

needed in our method to guide the GPT model.

The remainder of this paper is organized as follows. Section 2 reviews related work 

on the use of social media for disaster response and location description extraction. 

Section 3 presents our method that fuses geo-knowledge and GPT models for extract-

ing location descriptions from disaster-related social media messages. Section 4

presents the experiment design for evaluating our method and comparing it with 

alternative approaches. Section 5 presents the experiment results, and Section 6 dis-

cusses the implications of this study on using AI for disaster response. Finally, Section 

7 concludes this work.

2. Related work

There exists a rich amount of literature on leveraging social media, especially Twitter, 

for supporting disaster response and situational awareness (Crooks et al. 2013; De 

Longueville et al. 2009; Feng et al. 2022; Imran et al. 2015; 2020; MacEachren et al. 

2011; Murthy and Longwell 2013; Starbird and Stamberger 2010). Social media pro-

vides near real-time information about the situation on the ground after a disaster (Hu 

and Wang 2020), which makes it a valuable alternative information source for emer-

gency managers. However, it has been difficult for emergency managers to use the 

information from social media, due to issues such as large data volume and data ver-

acity (Hiltz et al. 2020; Silverman 2017). Accordingly, much research was devoted to 

making the information from social media easier to use, including identifying relevant 

tweets and checking their veracity (Gupta et al. 2013; Imran et al. 2020; Joseph et al. 

2014; Vosoughi et al. 2018), classifying the purposes of social media posts (Imran et al. 

2014; Scheele et al. 2021; Yu et al. 2019), tracking the transition of different disaster 

phases (Huang and Xiao 2015; Wang et al. 2020a, 2020b), and monitoring and under-

standing public sentiments (Ragini et al. 2018; Zou et al. 2018). These are all important 
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research areas and studies on extracting location descriptions further complement this 

research landscape.

While geographic locations are considered highly important by emergency manag-

ers (Hiltz et al. 2020), previous studies mostly focused on geotagged locations, i.e., 

locations tagged to tweets (De Albuquerque et al. 2015; Wang et al. 2016; Mart�ın et al. 

2017), rather than locations described in the content of tweets. Recent years have wit-

nessed widespread adoption of social media during disasters to request help and 

share information (Mihunov et al. 2020; Suwaileh et al. 2022; Zhou et al. 2022). In 

these social media messages, people describe locations in the content of tweets and 

may not necessarily geotag their locations. Besides, people may request help for 

others (such as in the example tweet ‘#HurricaneHarvey family needs rescuing at 1280 

Grant St. in Cypress, Texas 77249, 2 elderly, one is 90 not steady in her feet’), and the 

current location of the Twitter user may not necessarily be the same as the location of 

the victim. Accordingly, it is critical to extract locations described in the content of 

social media messages as well.

Previous studies have looked into the problem of extracting locations from the con-

tent of social media messages. By considering locations as a special type of named 

entities, researchers have employed pre-trained NER tools, such as Stanford NER and 

SpaCy NER, to extract locations from the content of tweets (Dutt et al. 2018; Gelernter 

and Balaji 2013; Karimzadeh et al. 2019). With the fast advancements of deep learning, 

researchers have developed deep learning-based models for extracting locations. In a 

previous work, we developed a model called NeuroTPR which improves over a 

Bidirectional Long Short-Term Memory (BiLSTM) model architecture to extract locations 

from social media messages (Wang et al. 2020a, 2020b). Given the outstanding per-

formance of transformers more recently, especially BERT, researchers have developed 

newer methods by leveraging pre-trained or fine-tuned transformers and their variants 

(Hu et al. 2022; Suwaileh et al. 2022; Berragan et al. 2023). While making methodo-

logical advancements, previous studies, including our own work, largely considered 

the problem from a default NER perspective which has two limitations: (1) recognizing 

individual location entities rather than complete location descriptions; and (2) not clas-

sifying location descriptions into more detailed categories. While the NER perspective 

is good for methodological development, these two limitations constrain our ability to 

accurately geo-locate victims and accidents during a disaster. It is worth noting that 

NER tools and models can be retrained using data labeled with complete location 

descriptions and categories. However, creating such labeled training data requires 

time, labor, and other resources. There exists another thread of related research on 

detecting geospatial or, more generally, spatial descriptions from natural language 

text (Liu et al. 2014; Stock et al. 2022a, 2022b). While often studying spatial descrip-

tions under more general contexts (e.g., daily life), research in this thread, such as dis-

ambiguating geospatial prepositions (Radke et al. 2022), can be very useful for the 

step of geo-locating the recognized location descriptions.

The problem of extracting location descriptions from disaster-related social media 

messages is also related to but different from the problem of geoparsing in the field 

of geographic information retrieval (GIR) (Freire et al. 2011; Gritta et al. 2018; Jones 

and Purves 2008; Melo and Martins 2017; Purves et al. 2018). The goal of geoparsing is 
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to recognize and resolve toponyms from texts, such as news articles, Web pages, and 

social media messages. Geoparsing is typically completed in two steps: toponym rec-

ognition and toponym resolution. Existing research in geoparsing often focused on 

the second step, toponym resolution, to address place name ambiguity issues, while 

utilizing existing NER tools (e.g., Stanford NER) for the first step toponym recognition 

(Adelfio and Samet 2013; Hu et al. 2014; DeLozier et al. 2015; Gritta, Pilehvar, and 

Collier 2018; Karimzadeh et al. 2019; Cardoso et al. 2021). The focus on the second 

step is reasonable since general geoparsing research often studies ambiguous topo-

nyms that have worldwide coverage (e.g., ‘Paris’ can refer to not only ‘Paris, France’ 

but also ‘Paris, Texas’), while the forms of toponyms are often country names and city 

names (e.g, ‘Paris’) that can be recognized by a NER tool with relatively high accuracy 

(Wang and Hu 2019a, 2019b). In comparison, the problem of extracting location 

descriptions from disaster-related messages presents a different set of challenges, 

although it can also be completed in a similar two-step process. For the first recogni-

tion step, the challenges are in recognizing many of the complex location descriptions 

consisting of multiple entities (e.g., door number addresses) that cannot be directly 

recognized by typical NER tools designed for recognizing single entities. Also, it is 

necessary to further classify location descriptions into more detailed categories, so 

that suitable geo-locating techniques and geometric representations can be used. For 

the second step of geo-locating, place name ambiguity becomes less of a concern 

because we are focusing on a local region affected by the disaster rather than the 

entire world. However, new challenges for the second step exist in designing and 

choosing the most suitable geo-locating techniques (e.g., linear geocoding, gazetteer 

matching, road intersection identification, and highway exit identification) and geo-

metric representations based on the location descriptions and their categories identi-

fied in the first step. While different challenges are involved in the problem of location 

description extraction, the term ‘toponym’ can be defined broadly and the two steps 

could still be considered as toponym recognition and toponym resolution in a broad 

sense. In this research, we aim to address the challenges in the first step by exploring 

a new use of GPT models through the guidance of geo-knowledge.

3. Method

Our proposed method fuses geo-knowledge and a GPT model for recognizing com-

plete location descriptions and their categories. This method consists of three com-

ponents: (1) geo-knowledge about location descriptions, (2) a GPT model, and (3) a 

process to fuse the two. For (1), we use and extend the geo-knowledge about the 

common forms of location descriptions obtained from our previous study (Hu and 

Wang 2021) and encode such knowledge into the prompt. For (2), we employ a pre- 

trained GPT model. Multiple GPT models, such as GPT-3, ChatGPT, and GPT-4, are 

tested and studied in this work. For (3), we fuse geo-knowledge and GPT-3 through 

a question-answering process. Figure 3 provides an overview of our method, and we 

present methodological details of the three components in the following 

subsections.
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3.1. Geo-knowledge about location descriptions

We leverage and extend the geo-knowledge about common forms of location descrip-

tions obtained from our previous study (Hu and Wang 2021). In that work, we 

assembled a Twitter dataset by randomly selecting 1000 tweets from a set of 15,834 

tweets that are likely to contain location descriptions; the set of 15,834 tweets was 

selected from a dataset of over 7 million tweets posted during Hurricane Harvey using 

a regular expression containing location-related terms (e.g., ‘street’, ‘avenue’, ‘park’, 

‘square’, ‘bridge’, ‘rd’, and ‘ave’). We then manually examined each individual tweet 

and annotated their location descriptions. We also classified these location descrip-

tions into ten categories. Table 1 shows these ten categories (categories C1 to C10) 

and two example tweets are provided for each category. In this current study, we fur-

ther extend these categories of location descriptions by adding one more category 

(category C11 in Table 1) and will explain why we think such a new category is neces-

sary. We note that a tweet example in Table 1 may contain multiple location descrip-

tions, and we only underscore the location descriptions in a corresponding category 

in Table 1 for the purpose of clear presentation. All location descriptions in the tweet 

are annotated in the data.

The new category that we added is C11: Road segments and an example description 

in this category is ‘HELP! A pregnant lady is stuck in her car on I-45 between Cypress Hill 

& Huffmeister exits #harvey’. Location descriptions in C11 were initially put under either 

category C4: Exits of highways or C5: Intersections of roads (rivers) in our previous study. 

While the original classifications are also reasonable (since these location descriptions 

often involve highway exits and road intersections), we believe that this type of loca-

tion description may be better represented geometrically as a line in the geo-locating 

step since they refer to a segment of a road. By contrast, the location descriptions in 

C4 and C5 are better to be represented as points, since they refer to road intersections 

or highway exits. With this consideration, we added category C11. The geo-knowledge 

in this study is therefore the 11 categories of location descriptions and their typical 

forms represented via examples.

While Table 1 provides one approach for categorizing location descriptions, there 

exist other approaches and schemes in linguistics and GIScience for organizing 

Figure 3. An overview of fusing geo-knowledge and GPT for recognizing location descriptions and 
their categories from social media messages.
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locations and more generally spatial information in texts. From a linguistic perspective, 

Gritta et al. (2020) differentiated literal toponyms (e.g., ‘Paris’) and associative toponyms 

(e.g., ‘Spanish sausages’); Mani et al. (2010) examined both absolute spatial references 

(e.g., ‘Rome’) and relative spatial references (e.g., ‘to the left of the room’); and 

Pustejovsky et al. (2012) considered the motion of individuals that may be involved in 

spatial references (e.g, ‘John biked to Agua Azul’). From a GIScience perspective, one 

way to classify locations and geographic features is based on their geometric repre-

sentations, such as points, lines, and polygons (Hill 2000; Longley et al. 2005). The cat-

egorization of location descriptions in Table 1 shares some similarities with existing 

approaches, such as its coverage of absolute spatial references and the use of different 

geometric representations. Meanwhile, it also adds considerations from a disaster 

response perspective. First, the categorization in Table 1 is oriented toward location 

Table 1. Eleven categories of location descriptions commonly used in Hurricane Harvey extended 
from (Y. Hu and Wang 2021).

Category Location description examples

C1: Door number addresses � ‘#HurricaneHarvey family needs rescuing at 1280 Grant St. in Cypress, Texas 
77249, 2 elderly, one is 90 not steady in her feet’ 

� ‘Papa stranded in home. Water rising above waist. HELP 812 Wood Ln, 77828 
#houstonflood’ 

C2: Street names � ‘#Harvey LIVE from San Antonio, TX. Fatal car accident at Ingram Rd., Strong 
winds.’ 

� ‘Allen Parkway, Memorial, Waugh overpass, Spotts park and Buffalo Bayou 
park completely under water’ 

C3: Highways � ‘9:00AM update video from Hogan St over White Oak Bayou, I-10, I-45: water 
down about 4’ since last night. . . ‘ ‘ 

� ‘Left Corpus bout to be in San Angelo #HurricaneHarvey Y’all be safe Avoided 
highway 37 Took the back road’ 

C4: Exits of highways � ‘Need trailers/trucks to move dogs from Park Location: Whites Park Pavillion off 
I-10 exit 61 Anahuac TX’ 

� ‘Townsend exit, Sorters road and Hamblen road is flooded coming from 59 
southbound #HurricaneHarvery #Harvey2017’ 

C5: Intersections of roads (rivers) � ‘Guys, this is I-45 @ Main Street in Houston. Crazy. #hurricane #harvey. . .’ 
� ‘Major flooding at Clay Rd & Queenston in west Houston. Lots of rescues going 

on for ppl trapped … ’ 
C6: Natural features � ‘Frontage Rd at the river #hurricaneHarvey #hurricaneharvey @ San Jacinto 

River’ 
� ‘Buffalo Bayou holding steady at 1000 cfs at the gage near Terry Hershey Park’ 

C7: Other human-made features � ‘ If you need a place to escape #HurricaneHarvey, The Willie De Leon Civic 
Center: 300 E. Main St in Uvalde is open as a shelter’ 

� ‘Houston’s Buffalo Bayou Park - always among the first to flood. #Harvey’ 
C8: Local organizations � ‘Cleaning supply drive is underway. 9-11 am today at Preston Hollow 

Presbyterian Church’ 
� ‘#Harvey does anyone know about the flooding conditions around Cypress 

Ridge High School?! #HurricaneHarvey’ 
C9: Administrative units � ‘#HurricaneHarvey INTENSE eye wall of category 4 Hurricane Harvey from 

Rockport, TX’ 
� ‘Pictures of downed trees and damaged apartment building on Airline Road in 

Corpus Christi’ 
C10: Multiple areas � ‘Anyone doing high water rescues in the Pasadena/Deer Park area? My 

daughter has been stranded in a parking lot all night’ 
� ‘FYI to any of you in NW Houston/Lakewood Forest, Projections are showing 

Cypress Creek overflowing at Grant Rd’ 
C11: Road segments � ‘HELP! A pregnant lady is stuck in her car on I-45 between Cypress Hill & 

Huffmeister exits #harvey’ 
� ‘Streets Flooded: Almeda Genoa Rd. from Windmill Lakes Blvd. to Rowlett Rd. 

#HurricaneHarvey #Houston’ 
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descriptions used under a disaster context. Based on our empirical analysis of tweets 

from Hurricane Harvey, it seems that people tend to use absolute references (e.g., 

door number addresses and road intersections) rather than relative or vague referen-

ces (e.g., to the left of that area) in rescue-request tweets to be found by first respond-

ers. Second, our categorization considers not only geometric representations but also 

the different geo-locating techniques necessary to locate these descriptions. For 

example, door number addresses, road intersections, and highway exits may all be 

represented as points; however, they require largely different techniques for identify-

ing their locations. Third, our categorization also follows some practices used in previ-

ous geoparsing and toponym recognition research in which a NER tool typically 

differentiates organizations (e.g., schools and churches) from other types of locations 

and differentiates natural features from human-made features (Gelernter and 

Mushegian 2011; Karimzadeh et al. 2019).

Nevertheless, the categorization of location descriptions in Table 1 has its limita-

tions. There could be less common location descriptions that are not covered in the 

current set of categories, which might be uncovered as we analyze more data. In add-

ition, the current categorization is only one version of the geo-knowledge capturing 

our current understanding of disaster-related location descriptions. As further research 

is conducted in this area, we will improve our understanding of location descriptions 

and may refine or even revise the current categorization. One advantage of the pro-

posed method is its flexibility in adjusting the geo-knowledge used to guide the 

model. When less common location descriptions are identified or when the categoriza-

tion is improved, we can adjust the geo-knowledge accordingly by changing the 

examples while still using the same methodological framework.

3.2. GPT models

GPT models, such as ChatGPT and GPT 4, have attracted a lot of attention recently 

from the public media (Eliot 2022; van Dis et al. 2023). GPT models are pre-trained on 

large-scale textual data and can generate answers when given a prompt, an instruction 

to the model. Despite their impressive performance in generating human-like text, 

GPT models have triggered various societal concerns, e.g., they make it easier for stu-

dents to cheat in homework assignments and may replace certain human jobs that 

typically require intellectual creativity such as fiction writers (Dale 2021; Kasneci et al. 

2023; Mhlanga 2023). In this study, we aim to harness the power of GPT for support-

ing disaster response by recognizing location descriptions from social media 

messages.

The behavior of a GPT model is influenced by the prompt it receives. We hypothe-

size that the best prompt should be created based on systematic knowledge about 

the target problem, and in this case, it is geo-knowledge about the common forms of 

location descriptions used by people during natural disasters. To test our hypothesis, 

we experiment with four different versions of GPT models, which are GPT-2, GPT-3, 

ChatGPT, and GPT-4. These are all transformer-based generative models, and detailed 

model architecture information is provided in the papers and blog articles by research-

ers from OpenAI, the company that developed these GPT models (Brown et al. 2020; 
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OpenAI 2022; 2023; Ouyang et al. 2022; Radford et al. 2018; 2019). For newer models 

such as GPT-3, ChatGPT, and GPT-4, OpenAI provides Application Programming 

Interfaces (APIs) for directly accessing the pre-trained models. For older models such 

as GPT-2 and GPT, OpenAI does not provide an API but pre-trained models are avail-

able from open-source libraries such as the Transformers library from the AI company 

Hugging Face. We note that while ChatGPT and GPT-4 are very recent models as of 

April 2023, we started this research back in early 2022 based on GPT-2 and GPT-3; 

however, given the recent public attention to ChatGPT and GPT-4, we further include 

them in our experiments. By adding the two latest GPT models, we also demonstrate 

that our proposed method for fusing geo-knowledge and GPT models is generalizable 

to newer GPT models which will likely come in the following years.

3.3. Fusing geo-knowledge and GPT

We fuse geo-knowledge and GPT by encoding the geo-knowledge of location descrip-

tions into a prompt and feeding it to a GPT model to guide its behavior. Learning 

from previous research on geographic question-answering (Mai et al. 2021), we create 

the prompt in the form of a series of question-answering statements based on the 

geo-knowledge of location description categories and their examples shown in 

Table 1. A snippet of the prompt is provided in Table 2, and we also include the full 

prompt in the supplementary Table S1 which contains 22 tweet examples in 11 cate-

gories (i.e., two examples per category). The prompt first describes the task of location 

description recognition and the expected output. Then, a series of question-answering 

examples are provided. Each example is organized as ‘Sentence’, ‘Q’, and ‘A’. The 

‘Sentence’ provides a tweet example, ‘Q’ provides a question about the task, and ‘A’ 

provides the ideal answer that we expect, i.e., complete location descriptions and their 

categories. In each question-answering example, we ‘teach’ GPT to first predict the cat-

egory of a location description (e.g., ‘C1’) and then output the full text of the recog-

nized location description. The category and location description are separated by ‘:’. 

When multiple location descriptions exist in one tweet, we ask the model to separate 

them by ‘;’. At the end of the prompt, we add a new tweet whose location descrip-

tions are unknown, and we ask the GPT model to infer its location descriptions and 

their categories based on the previous examples. The final output of GPT is then 

recorded.

4. Evaluation experiments

In this section, we describe the evaluation experiments designed to assess the per-

formance of the proposed method. We compare different implementations of our 

method using different GPT models. We also compare our method with nine alterna-

tive approaches, including typically used NER approaches, the traditional fine-tuning 

approach using BERT, and the default GPT models without the guidance of geo-know-

ledge. In the following, we present details about the experiment setting.
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4.1. Experiment dataset

The dataset used for experiments is the 1000 annotated Hurricane Harvey tweets ini-

tially created in our previous work (Hu and Wang 2021) and further extended in this 

current work. To the best of our knowledge, this is the only dataset available that was 

annotated with both complete location descriptions and location categories. Since 22 

tweets from this dataset have already been used to create the prompt (i.e., those 

tweet examples in Table 1), we exclude them from testing and use only the remaining 

978 tweets to assess the performance of the models. An example of the annotated 

tweets is shown in Figure 4. The tweets were annotated using the Inside–Outside– 

Beginning (IOB) tagging scheme (Tjong Kim Sang and De Meulder 2003). The location 

description category (e.g., ‘C1’ in the figure) was appended to the end of the corre-

sponding ‘B’ and ‘I’ tags. The ‘O’ tag is not explicitly labeled, and all tokens without 

the ‘B’ or ‘I’ tag are considered as having the ‘O’ tag. The complete dataset is provided 

in the repository at the end of the article.

4.2. Experiment models

We study our method by experimenting with the following GPT models:

� Fusing geo-knowledge and GPT-4 (Geo-GPT-4): In this implementation, we fuse geo- 

knowledge and the GPT-4 model using the prompt created based on 22 tweet 

examples (see Table 2). These tweet examples inform GPT-4 of the forms of 

Table 2. A snippet of the prompt with question-answering statements created based on the geo- 
knowledge of the 11 categories of location descriptions and two examples per category. The full 
prompt is provided in Supplementary Table S1.

This is a set of location description recognition problems. 
The 0Sentence0 is a sentence containing location descriptions. 
The goal is to infer which parts of the sentence represent location descriptions and the categories of the location 
descriptions. Split different location descriptions with 0 ;0. 
– 
– 
Sentence: Papa stranded in home. Water rising above waist. HELP 812 Wood Ln, 77828 #houstonflood 
Q: Which parts of this sentence represent location descriptions? 
A: C1: 812 Wood Ln, 77828 
– 
– 
Sentence: Anyone doing high water rescues in the Pasadena/Deer Park area? My daughter has been stranded in a 
parking lot all night 
Q: Which parts of this sentence represent location descriptions? 
A: C10: Pasadena/Deer Park 
– 
– 
Sentence: Allen Parkway, Memorial, Waugh overpass, Spotts park and Buffalo Bayou park completely under water 
Q: Which parts of this sentence represent location descriptions? 
A: C2: Allen Parkway; C2: Memorial; C2: Waugh overpass; C7: Spotts park; C7: Buffalo Bayou park 
– 
… 
– 
Sentence: fTEXTg
Q: Which parts of this sentence represent location descriptions? 
A:
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location descriptions and the 11 categories of location descriptions with two exam-

ples per category.

� Fusing geo-knowledge and ChatGPT (Geo-ChatGPT): This implementation uses the 

same prompt based on 22 tweet examples as used for Geo-GPT-4. Instead of GPT-4, 

we use ChatGPT for this implementation.

� Fusing geo-knowledge and GPT-3 (Geo-GPT-3): This implementation uses the same 

prompt but uses the GPT-3 model.

� Fusing geo-knowledge and GPT-2 (Geo-GPT-2): This implementation uses an older 

GPT model, GPT-2. Because the prompt of this older GPT model cannot be longer 

than 1024 tokens, we use 11 examples to create the prompt for GPT-2, with one 

tweet example for each of the 11 categories.

The fusion of geo-knowledge and GPT-3, ChatGPT, and GPT-4 is done through our 

created prompts and the pre-trained models via the APIs provided by OpenAI. The 

fusion of geo-knowledge and GPT-2 is done through our created prompt and the pre- 

trained model from the open-source library from Hugging Face. All source code, such 

as loading pre-trained models and adapting them through prompts encoding geo- 

knowledge, is shared in the repository in the Data Availability Statement at the end of 

the article. In addition to the above four models, we also include nine alternative 

approaches to serve as baselines:

� Default GPT-4, ChatGPT, GPT-3, and GPT-2 models: These default GPT models are 

included as four baselines to examine the role of geo-knowledge in guiding the 

behavior of the models. The default GPT models are powerful and were pre-trained 

with vast amounts of data that could include the same or similar tweets as used in 

this study. Thus, including these default models can help us understand whether 

the strong performance of our approach (if any) comes directly from the default 

GPT models or from the geo-knowledge-guided process. In the prompt to these 

default models, we ask the same question: ‘Which parts of this sentence represent 

location descriptions?’ but do not provide any further geo-knowledge. It is worth 

noting that the default GPT models do not have the ability to identify location cat-

egories, as these categories are part of the geo-knowledge not given to the default 

models. However, these default models can detect location descriptions based on 

the large amount of text they have seen during the pre-training process.

� Fine-tuned BERT (Fine-tuned-BERT): Fine-tuning a BERT model is an approach that 

has been used in recent studies for analyzing disaster-related tweets and has dem-

onstrated good performance (Suwaileh et al. 2022; Zhou et al. 2022). In this 

Figure 4. An example of the annotated tweets with location descriptions and their categories 
labeled using the IOB scheme.
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baseline, we fine-tune a BERT model using the same 22 tweet examples used to 

create the prompt for the GPT models. The pre-trained BERT model from Hugging 

Face is used for implementing this approach.

� Stanford NER (narrow): The Stanford NER tool has been commonly used in the lit-

erature for recognizing place names from text (Gelernter and Balaji 2013; 

Karimzadeh et al. 2019; Liu et al. 2014). Here, we use the off-the-shelf Stanford NER 

tool (Manning et al. 2014) which can recognize Person, Organization, and Location 

entities from text. In this narrow version of Stanford NER, we keep only Locations in 

the output.

� Stanford NER (broad): We use the same off-the-shelf Stanford NER tool but keep 

both Locations and Organizations in the output for this broad version. The 

Locations output by Stanford NER do not include schools and churches which are 

considered as Organizations by the tool; yet, schools and churches are often used 

as shelters and their locations are often described during disasters Wang et al. 

2020a, 2020b). Including Organizations in the output therefore can help capture 

those schools and churches. However, this broad approach may also include false 

positives, i.e., organizations that are not used as locations.

� SpaCy NER (narrow): SpaCy NER is another tool often used in the literature for rec-

ognizing place names from text (Fernandes et al. 2021; Gritta, Pilehvar, and Collier 

2018; Hu et al. 2019). For this narrow version, we use the off-the-shelf SpaCy NER 

tool and keep only GPE (Geopolitical Entities) in the output, which contains cities, 

counties, states, and countries.

� SpaCy NER (broad): We use the same off-the-shelf SpaCy NER tool here but keep 

both GPE (geopolitical entities) and ORG (organizations) in the output for this broad 

version. We keep organizations in the output based on the same rationale for the 

broad version of Stanford NER.

4.3. Evaluation metrics

We adopt three evaluation metrics, i.e., precision, recall, and F-score, to assess the per-

formance of the experiment models. These three metrics have been widely used for 

measuring the performance of computational models in recognizing locations from 

texts (Gritta et al. 2018; Purves et al. 2018; Wang and Hu 2019a, 2019b). They are cal-

culated using Equations (1–3):

Precision ¼
jCorrectly recognizedj

jAll recognizedj
(1) 

Recall ¼
jCorrectly recognizedj

jAll correctj
(2) 

F − score ¼ 2 �
Precision � Recall

Precision þ Recall
(3) 

Precision measures the percentage of correctly recognized location descriptions among 

all location descriptions recognized by a model. Recall measures the percentage of 

correctly recognized location descriptions among all annotated location descriptions. 

F-score is the harmonic mean of precision and recall, and F-score will be high if both 
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precision and recall are high and F-score will be low if one of the two is low. It is worth 

noting that the correctly recognized location description in Equations (1–2) is measured 

based on a full-span matching between the model-recognized description and the 

human-annotated location description. If a recognized location description only par-

tially matches the annotated description, it is considered incorrect. We believe that 

using full-span matching, rather than allowing partial matching, is important for this 

research oriented toward disaster response because a model that recognizes only a 

part of a location description can lead to limited geo-locating accuracy and even large 

errors (e.g., erroneously geo-locating a road intersection ‘Road A & Road B’ to the cen-

ter of ‘Road A’, if only ‘Road A’ is recognized). All experiment models are assessed on 

the same dataset of 978 tweets (i.e., the 1000 tweets minus the 22 tweets used for 

creating the prompt) using full-span matching.

5. Results

Two sets of experiments have been conducted to evaluate the performance of the 

experiment models. In the first set of experiments, we focus on evaluating the recog-

nized location descriptions only, since some of the experiment models (e.g., the 

default GPT models and the NER models) do not have the ability to recognize the cat-

egories of location descriptions. In the second set of experiments, we focus on those 

models that can recognize both location descriptions and their categories, and evalu-

ate their ability to extract these two types of important information. In the following, 

we report the results from the two sets of experiments.

5.1. Ability to recognize complete location descriptions regardless of categories

The first set of experiments focuses on only the text of the recognized location 

descriptions and does not consider the categories. The results are summarized in 

Table 3.

We first look at the performance of the NER models in Table 3. The four NER mod-

els achieve precisions between 0.352 and 0.643, recalls between 0.224 and 0.440, and 

F-scores between 0.332 and 0.495. While these results are not disappointing, a closer 

examination shows that the recognized location descriptions are all in the form of sim-

ple place names, such as city names, state names, and river names. In fact, they com-

pletely miss those more complex location descriptions, such as door number 

addresses, road segments, and road intersections, which consist of multiple entities. 

This result is unsurprising, as we know that these NER models are designed to recog-

nize individual named entities and cannot recognize location descriptions consisting 

of multiple entities. Meanwhile, these multi-entity location descriptions provide highly 

detailed location information that can help rescue teams to reach victims. Models that 

fail to recognize these detailed location descriptions can provide only limited support 

for disaster response efforts.

Next, we look at the performance of the default GPT models and the Geo-GPT 

models. As shown in Table 3, there is an increase in performance from GPT-2 to GPT- 

4, demonstrating that these GPT models are indeed becoming more intelligent over 
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the years. While GPT-2 mostly fails in the experiment, GPT-3, ChatGPT, and GPT-4 are 

able to recognize about 25%-40% of the location descriptions, including some more 

complex multi-entity location descriptions, such as door number addresses and road 

intersections. However, the performance of these default GPT models is still quite lim-

ited, with the highest F-score 0.394 achieved by GPT-4. These default GPT models also 

do not have the ability to identify the categories of location descriptions. In compari-

son, the Geo-GPT models substantially improve over their corresponding default GPT 

models in all metrics. This improvement can be seen across all four GPT models from 

GPT-2 to GPT-4, demonstrating that the effectiveness of geo-knowledge in improving 

performance is not limited to one particular model but applicable to all GPT models. 

Geo-knowledge plays an important role by informing the GPT models about the com-

mon forms of location descriptions and the categories of these descriptions. Without 

geo-knowledge, the default GPT models can rely on only the information of location 

descriptions that they obtained during the pre-training process, which likely leads to 

lower performance. While geo-knowledge is important, the advancement in GPT mod-

els is also necessary for achieving the obtained good results. As can be seen in 

Table 3, the model performance also increases from Geo-GPT-2 to Geo-GPT-4 in gen-

eral. Interestingly, Geo-ChatGPT shows a slightly lower performance than that of Geo- 

GPT-3, even though ChatGPT is a newer model than GPT-3. Finally, the fine-tuned 

BERT model achieves a precision 0.150, a recall 0.242, and an F-score 0.185. These low 

performance scores are likely due to the small number of training examples not suffi-

cient for adapting a complex model like BERT.

The highest F-score of 0.695 is achieved by Geo-GPT-4, and a similar score of 0.693 

is achieved by Geo-GPT-3. These F-scores are close to the threshold of 0.70 considered 

as acceptable in location recognition tasks for disaster response (Suwaileh et al. 2022). 

While these scores are probably not outstanding, they show an over 40% improve-

ment compared with off-the-shelf NER models, such as the Stanford NER used in the 

experiments. NER models can be re-trained to achieve a similar performance using a 

sufficiently large dataset labeled with complete location descriptions and categories; 

however, creating such a dataset requires time, labor, and other precious resources. 

The geo-knowledge-guided GPT models therefore present an efficient approach for 

Table 3. Precision, recall, and F-score of the experiment models in recognizing complete location 
descriptions. Metrics are measured based on full-span matching.

Models Precision Recall F-score

Models that cannot identify location categories
Stanford NER (narrow) 0.621 0.402 0.488
Stanford NER (broad) 0.564 0.440 0.495
SpaCy NER (narrow) 0.643 0.224 0.332
SpaCy NER (broad) 0.352 0.340 0.346
GPT-2 0.012 0.004 0.005
GPT-3 0.255 0.256 0.255
ChatGPT 0.416 0.370 0.392
GPT-4 0.404 0.385 0.394

Models that can identify location categories
Geo-GPT-2 0.380 0.404 0.391
Geo-GPT-3 0.693 0.694 0.693
Geo-ChatGPT 0.633 0.673 0.653
Geo-GPT-4 0.687 0.704 0.695
Fine-tuned-BERT 0.150 0.242 0.185
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extracting location descriptions when we have only a small number of training data 

examples encoding geo-knowledge. To further examine the sensitivity of Geo-GPT-4 to 

different examples included in the prompt, we test two additional prompts, one with 

a different set of 22 tweets and the other with a set of 22 tweets synthesized based 

on the geo-knowledge. The performance of Geo-GPT-4 based on these two prompts 

slightly increases (an increase of 0.023 and 0.008 in terms of F-score), but does not 

substantially change. These two prompts and the test results are included in 

Supplementary Tables S2-S4.

5.2. Ability to recognize both complete location descriptions and location 

categories

In the second set of experiments, we evaluate the ability of the models to recognize 

both complete location descriptions and location categories. We focus on the models 

that have the ability to recognize location categories in addition to the description 

text, which are Geo-GPT-2, Geo-GPT-3, Geo-ChatGPT, Geo-GPT-4, and fine-tuned BERT. 

A recognized location description is considered correct only when it has both the 

complete location description and the correct location category. We compute the pre-

cision, recall, and F-score of the five models for each of the 11 categories and their 

overall scores across all categories, and the results are summarized in Figure 5.

As shown in the figure, Geo-GPT-3, Geo-ChatGPT, and Geo-GPT-4 achieve higher 

performance scores than the other two models in each of the eleven location descrip-

tion categories and also across all categories. The fine-tuned BERT model fails to iden-

tify the correct category of a location description most of the time, even in cases 

when it recognizes the full location description. This result again is likely due to the 

fact that the small number of training examples are not sufficient to adapt the BERT 

model, especially for this relatively complex problem with eleven categories to be 

identified. While Geo-GPT-2 improves over the fine-tuned BERT model, its performance 

is still quite limited and its precisions, recalls, and F-scores in most location categories 

are lower than 0.2. Substantial performance improvements are observed in Geo-GPT-3, 

Geo-ChatGPT, and Geo-GPT-4. Consistent with the first set of experiments, Geo-GPT-3 

and Geo-GPT-4 perform better than Geo-ChatGPT in most categories and overall, 

although Geo-ChatGPT does perform better than Geo-GPT-3 in some categories, such 

as C2: Street names and C6: Natural features. It is probably less surprising that Geo- 

GPT-4 shows a better performance than Geo-ChatGPT, given that GPT-4 is a newer 

model than ChatGPT and OpenAI has shown that GPT-4 outperformed ChatGPT in 

multiple tests, such as bar exams (OpenAI 2023). It does surprise us that Geo-GPT-3 

performs better than Geo-ChatGPT. According to OpenAI, ChatGPT has been further 

fine-tuned using a new dialogue dataset to optimize its performance toward chat- 

related tasks (OpenAI 2022). Such chat-related optimization might have affected the 

performance of ChatGPT on this current location description recognition task. Both 

Geo-GPT-3 and Geo-GPT-4 achieve good performance in category C1: Door number 

addresses, with precisions, recalls, and F-scores all about 0.75. Also, both models 

extract whole door number addresses including the prepositions (e.g., ‘in’) sometimes 

used by people but not typically part of formal addresses. These extracted whole 
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addresses allow us to analyze and geo-locate them in the next step by building on 

previous research, such as research on geospatial preposition analysis (Radke et al. 

2022). Given that door number addresses provide precise location information, 

correctly recognizing location descriptions in this category can be highly helpful in 

identifying the locations of victims. Geo-GPT-4 demonstrates better performance than 

Geo-GPT-3 over the majority of the categories and also across all categories, with an 

overall F-score of 0.644 achieved by Geo-GPT-4 and an overall F-score of 0.573 

achieved by Geo-GPT-3. This result helps us further understand the performance differ-

ence between Geo-GPT-3 and Geo-GPT-4: while the two show similar performance in 

the first set of experiments focusing on location descriptions only, Geo-GPT-4 demon-

strates a substantially better performance in correctly identifying both location 

descriptions and their categories.

To understand the errors made by Geo-GPT-4, we create a confusion matrix in 

Figure 6. In this figure, each row represents location descriptions in a category in the 

test data (i.e., ground truth), and each column represents location descriptions recog-

nized by Geo-GPT-4 in that category (i.e., model predictions). The integer number in a 

cell represents the number of location descriptions correctly recognized by the model. 

For example, the number ‘200’ at row C1 and column C1 indicates that 200 of the 

door number addresses in the ground truth were correctly recognized by Geo-GPT-4; 

meanwhile, the number ‘2’ at row C1 and column C9 indicates that one door number 

Figure 5. Precision, recall, and F-score of the tested models in recognizing both complete location 
descriptions and their categories.
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address was correctly recognized by Geo-GPT-4 but was mistakenly classified as cat-

egory C9. The percentage value in each cell is calculated based on the row sum. For 

example, the value ‘76.05%’ at row C1 and column C1 indicates that the 200 corrected 

recognized location descriptions represent 76.05% of all labeled location descriptions 

in category C1. There are also situations in which labeled location descriptions are not 

correctly recognized or completely missed by the model, which are represented in the 

‘Missed’ column; there also exist recognized location descriptions that are not in the 

ground truth (i.e., false positives), which are represented in the ‘Not in ground 

truth’ row.

The confusion matrix helps us further understand the performance of Geo-GPT-4 

across different categories of location descriptions. It is worth noting that some cate-

gories of location descriptions, such as C1, C2, C7 and C9, show up more frequently 

than some others in the data. However, we cannot focus on only those more frequent 

location descriptions, for two reasons. First, some categories of location descriptions 

that show up more frequently are probably less informative from the perspective of 

disaster response. One example is C9: Administrative units: while city and state names, 

such as ‘Houston’ and ‘Texas’, show up frequently in the data, they are less useful for 

first responders to locate and reach the victims. Second, location descriptions that 

show up less frequently are still used in multiple tweets describing life-threatening 

Figure 6. Confusion matrix based on the output of Geo-GPT-4 and the annotated location 
descriptions.
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situations. Recognizing these relatively less frequent location descriptions can be crit-

ical for reaching the people in need. Overall, Geo-GPT-4 is effective in correctly recog-

nizing both complete location descriptions and the categories of the descriptions, as 

can be seen in the diagonal of the confusion matrix. Across different categories, Geo- 

GPT-4 makes a small number of errors in which a correctly recognized location 

description is mistakenly classified into another category. Geo-GPT-4 does make more 

mistakes in category C11: Road segments by misclassifying them to C2: Street names 

and C5: Intersections. A description of a road segment, such as ‘Almeda Genoa Rd. from 

Windmill Lakes Blvd. to Rowlett Rd.’, does often involve street names and road intersec-

tions, which could be a reason for the confusion made by Geo-GPT-4.

The majority of the errors fall into either the column of ‘Missed’ or the row of ‘Not 

in ground truth’. By examining these errors based on the output of Geo-GPT-4, we 

find that quite some location descriptions are in fact reasonably recognized by the 

model; however, they do not completely match the annotated location description 

given our requirement of strict full-span matching in the evaluation experiments. For 

example, in the tweet ‘#Houston #HoustonFlood This is the intersection of I-45 & N. Main 

Street’, the recognized location description of Geo-GPT-4 is ‘the intersection of I-45 & N. 

Main Street’, while the annotated description is ‘I-45 & N. Main Street’. We note that a 

clean string of ‘I-45 & N. Main Street’ is easier for the next step of geo-locating, but the 

recognized description ‘the intersection of I-45 & N. Main Street’ may not be considered 

completely wrong either. However, in this example, the ground truth annotation ‘I-45 

& N. Main Street’ is counted as ‘Missed’, while the recognized description ‘the intersec-

tion of I-45 & N. Main Street’ is counted as ‘Not in ground truth’. There exist other simi-

lar cases, e.g., the output of the model is ‘Sugarland area’ while the annotation is 

‘Sugarland’. Sometimes, there is a larger difference between the recognized location 

description and the annotated description. For example, in the tweet ‘Spokeswoman 

for Houston Mayor Sylvester Turner says the convention center at NRG Park is opening, 

serving 10,000 additional Harvey evacuee’, the annotated location description is ‘NRG 

Park’ while the description recognized by the model is ‘convention center at NRG Park’. 

Again, the model output may not be considered completely wrong, although it is dif-

ferent from the annotated location description. These and other similar cases have 

contributed to the relatively larger errors observed in the ‘Missed’ column and the 

‘Not in ground truth’ row in the confusion matrix. If we consider those reasonable 

location descriptions as correct using a relaxed matching method (Li et al. 2022), the 

performance of Geo-GPT-4 could be higher than the obtained scores. In 

Supplementary Figure S1, we show another confusion matrix which is based on the 

same result of Geo-GPT-4 but uses a relaxed matching method that allows the recog-

nized location descriptions that have over 75% overlapping with the annotated 

descriptions to be considered as correct. This relaxed confusion matrix shows a 29.8% 

decrease in the errors in the ‘Missed’ column and a 28.3% decrease in the errors in 

the ‘Not in ground truth’ row, compared with the confusion matrix in Figure 6. Most 

of these partially matched descriptions, initially considered as errors, are also classified 

under the right location description categories, although some of them are still mis-

classified. While this result is encouraging, we need to be careful about using partially 
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matched location descriptions as they could lead to potentially large errors in the 

geo-locating step.

6. Discussion

6.1. The importance of both geo-knowledge and GPT models for the proposed 

method

In this work, we have proposed a method that fuses geo-knowledge and a GPT model 

for extracting location descriptions and their categories from disaster-related social 

media messages. Both geo-knowledge and GPT models are important for the pro-

posed method. Without geo-knowledge, the default GPT models do not know the typ-

ical forms of location descriptions used by people during disasters and how to 

categorize these location descriptions. As a result, GPT models have to rely on the 

information of location descriptions that they obtained during the pre-training stage. 

As demonstrated in our experiment result, adding geo-knowledge to the GPT models 

increases their performance by over 76%, and enables the GPT models to identify the 

categories of location descriptions. Meanwhile, advancements in GPT models are 

important for our proposed method as well. Without the invention of the GPT models, 

we cannot effectively integrate the geo-knowledge represented by a small number of 

examples into a typical machine-learning model. In addition, we also observe an 

increased performance overall when a more advanced GPT model is used. In sum, 

both geo-knowledge and GPT models are indispensable for the proposed method, 

and fusing the two enables us to effectively recognize location descriptions and their 

categories from disaster-related social media messages.

6.2. Implications for research in other geographic regions and data from other 

platforms

While this study has used tweets from Hurricane Harvey in the Houston area in Texas, 

the proposed method has flexibility and we expect that it could be applied to other 

geographic regions. For research within the United States, our method could be used 

directly since the geo-knowledge is still applicable. The location descriptions and their 

categories, such as door number address, road intersections, and highways, are com-

monly used in other geographic regions in the U.S. and are likely to be used by peo-

ple in future disasters within the country. For research in other countries, the 

proposed method could be used by replacing the geo-knowledge of U.S. location 

descriptions with the geo-knowledge of the specific local region. In cases when the 

geo-knowledge of a local region is not available, research may need to be conducted 

to identify the local location descriptions, organize them into examples, and use the 

examples to guide GPT models in the same way as done in this research. In addition, 

since GPT models can handle multilingual texts, the proposed method could be used 

to analyze text messages in other languages beyond English. Nevertheless, future 

investigations are necessary to empirically test the applicability of the proposed 

method in other geographic regions and languages.
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Our method may also be used to analyze text messages from other platforms, not 

limited to Twitter. There exists uncertainty related to the recent ownership change of 

Twitter and the announced changes in Twitter data API. While the future of this social 

media company may be unclear, it seems that people do need a digital platform dur-

ing a disaster to post information and learn about current situations (Pourebrahim 

et al. 2019; Mihunov et al. 2020; Zhang et al. 2021). If Twitter engagement were to 

drop significantly, people may switch to other social media platforms, or a new digital 

platform for disaster response may be developed such as the Ushahidi platform used 

in the Haiti Earthquake in 2010 (Meier 2010). Our proposed method uses only the text-

ual content of tweets and does not rely on other data or features that are specific to 

Twitter. Therefore, it could also be used for extracting location descriptions and their 

categories from text messages from other platforms.

6.3. A potential paradigm shift for using AI models for disaster response?

AI models have been increasingly adopted in disaster response (Kuglitsch et al. 2022). 

A typical approach in most recent studies is to fine-tune a pre-trained AI model, such 

as BERT, using newly labeled data (Wang et al. 2020a, 2020b; Suwaileh et al. 2022; 

Zhou et al. 2022). While such an approach avoids training an AI model completely 

from scratch, it still requires hundreds or thousands of annotated examples depending 

on the complexity of the specific task. In addition to training data, configuring the 

deep learning computing environment and fine-tuning AI models put additional 

requirements on disaster response organizations in terms of their technical expertise 

and computing resources. As shown in this study, fusing geo-knowledge and GPT 

models has the potential to substantially simplify the adoption of an AI model to a 

disaster response task.

On the one hand, disaster response organizations do not need to fine-tune their 

own AI models and configure their own deep learning environments locally. Instead, 

they can leverage the online AI models, such as the GPT models used in this study, 

and formalize their knowledge and other information about the task into prompts for 

adopting the AI model. It seems that such an approach can largely reduce the require-

ments of training data, technical expertise, computing resources (both hardware and 

software), and time put on disaster response organizations. In addition, this approach 

may also facilitate the collaboration between disaster response experts and AI model 

developers by allowing them to focus on what they are mostly good at: disaster 

response experts can focus on obtaining and formalizing knowledge by analyzing dis-

aster-related data, while model developers can focus on developing and improving AI 

models. The knowledge obtained by disaster response experts can then be fused with 

the AI model hosted on the cloud computing environment through an API using 

prompts, similar to what we did in this study. Through such a collaboration, we may 

be able to empower disaster response organizations to utilize AI models more easily 

and more efficiently and let them focus on reaching and helping the people in need 

during a disaster.

On the other hand, there also exist important ethical issues that deserve our careful 

consideration. In the proposed approach, the social media messages of the disaster 
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victims need to be submitted to an online GPT model, and malicious actors could take 

advantage of those submitted messages. While one could argue that those messages 

were shared as public tweets and could still be used by bad actors in their original 

form, further submitting them to an online model can increase their exposure. At the 

time of writing, a prompt of ‘What were the addresses of the people who needed help 

during Hurricane Harvey?’ tested on ChatGPT was not replied with any address, and 

ChatGPT included a statement in its reply that ‘sharing personal addresses or identifying 

information would violate privacy and confidentiality guidelines.’ Also, according to the 

Terms of Use from OpenAI, the content submitted via their API is not used to develop 

or improve their models. While it is good to see these efforts, further policies and tech-

nical measures are necessary to safeguard the content submitted to AI models. In add-

ition, similar to other online platforms, who owns the data that are submitted to an 

online AI model? If law enforcement requests to use such data as evidence, do they 

have the right to do so? Should we apply stricter data protection policies for the con-

tent submitted under urgent situations such as natural disasters than that submitted 

during normal times? These are some of the important questions that we need to 

answer in order to use large AI models for disaster response in an ethical manner.

Could there be a paradigm shift in using AI models for disaster response, i.e., from 

locally trained and deployed AI models to online AI models guided by knowledge? 

While our work has shown promising results, more studies are necessary to understand 

the pros, cons, and ethical issues of using large online AI models for disaster response.

6.4. Limitations

This research is not without limitations. First, the performance of the Geo-GPT-4 model 

is still low on some location description categories, such as C11: Road segments. Based 

on our analysis of the experiment results, it seems that the model often confuses C11 

with C2: Street names and C5: Intersections. While C11 indeed shares some similarities 

with the other two categories, we may need to think of better ways to inform GPT 

models about the differences among these categories. Second, our current study has 

focused on a dataset from the Houston area from Hurricane Harvey. While our method 

has potential to be applied to data from other geographic regions and other types of 

disasters, more empirical research is necessary to test the wider applicability of this 

method. Third, the overall performance of the Geo-GPT-4 model is still limited and could 

be improved through new methodological development in the near future. For 

example, we have used a question-answering approach in this study to encode geo- 

knowledge for informing GPT models, and future research could explore other ways to 

encode geo-knowledge, not limited to a series of questions and answers. Finally, this 

current study has focused on the step of recognizing location descriptions only, and it 

is important to explore the second step of geo-locating these descriptions as well. With 

the recognized location descriptions and their categories, we can further analyze and 

geo-locate them using suitable techniques and geometric representations. As mentioned 

earlier, uncertainty still exists even when suitable geo-locating techniques and geometric 

representations are used. A Bayesian approach could be adopted to quantify such 

uncertainty based on the location information contained in a message. For example, 
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city name alone may be associated with a higher location uncertainty, while additional 

information, such as street name and door number, helps reduce such uncertainty.

7. Conclusions

Social media platforms are increasingly being used by people to share information 

and request help during natural disasters. Messages posted on these platforms often 

contain important descriptions of the locations of victims and accidents. In this study, 

we proposed a method that fuses geo-knowledge and GPT models for recognizing 

location descriptions and their categories. We presented the methodological details 

and conducted systematic experiments to compare the proposed method with other 

alternative approaches, including the typically used NER approaches and default GPT 

models. We found that geo-knowledge-guided GPT models achieve an over 40% 

improvement in recognizing location descriptions compared with off-the-shelf NER 

approaches, and this method uses only a small number of training examples encoding 

geo-knowledge. We also found that both geo-knowledge and GPT models are critical 

for the proposed method. Adding geo-knowledge to a GPT model results in an over 

76% improvement compared with the same default GPT model; meanwhile, there is a 

general increase in performance when a more advanced GPT model is used. The high-

est performance was achieved by Geo-GPT-4 which demonstrated an F-score of 0.695 

for recognizing location descriptions regardless of categories and an overall F-score of 

0.644 for recognizing both location descriptions and their categories. In addition, Geo- 

GPT-4 achieved an F-score of 0.755 for the category of door number address which 

provides highly detailed information for locating victims. This method has been tested 

with different versions of GPT models, including GPT-2, GPT-3, ChatGPT, and GPT-4, 

and is likely to apply to more advanced GPT models in the coming years. By fusing 

geo-knowledge and GPT models, we may facilitate collaborations between disaster 

response experts and AI developers, reduce the technical burdens on disaster 

response organizations, and ultimately help save lives.
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