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Prostate cancer (PCa) represents the second most frequently diagnosed malignancy among males in the United
States and ranks fourth in terms of general cancer prevalence on a global scale. A critical assessment of existing
literature indicates a notable deficiency in the identification of biomarkers that are uniquely associated with
aggressive forms of PCa. The principal objective of this paper is to discover biomarkers at the genetic variant
level by deploying statistical methodologies to determine associations between such variants and the aggressive
and lethal form of the disease. Employing the multiple comparisons technique, we identified four variants that
were statistically significant at the 5 % significance level. Furthermore, we utilized Over-representation analysis
(ORA) to identify the biological pathways linked with these genetic variants. To validate our findings, we
employed a decision tree algorithm on an independent dataset comparing the proposed biomarkers with random
subsets of variants. Results have shown that the predictive accuracy of aggressive samples was 97 % for the

proposed biomarkers, while this figure dropped to 67 % when randomly selected variants were considered.

1. Introduction

Prostate cancer (PCa) is the most prevalent malignancy in males and
a prominent cause of cancer-related mortality. As of 2022, 1,414,259
new cases and 375,304 deaths have been reported from PCa worldwide
[1]. In the United States, PCa is the primary cause of cancer incidence
and the second highest cause of cancer death in males. Recent data
indicate a 3 % annual increase in PCa incidence from 2014 to 2019. PCa
is frequently non-aggressive, and treatment is often curative. Due to the
harmful effects of over- and under-treatment, PCa is the primary cause of
cancer-associated disability worldwide. Therefore, different types of
PCa require distinct treatment alternatives. The field of aggressive
prostate cancer treatment is rapidly evolving. Although the 5-year sur-
vival rate for indolent PCa is 99 %, aggressive PCa is typically considered
incurable. This further underscores the crucial importance of early
treatment for aggressive cases [2,3].

Biomarkers serve as essential indicators for the early detection of
cancer. Through the identification of specific biomarkers associated
with a particular disease, healthcare professionals can screen individuals
who may be at risk or in the early stages of the disease. This enables
early intervention and treatment, significantly improving patient sur-
vival [4]. Genetic variants are among the various categories of bio-
markers that play a crucial role in different aspects of healthcare,
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including disease diagnosis, prognosis, treatment selection, and moni-
toring treatment response. Recent technological advancements in
genome sequencing, particularly whole-genome sequencing (WGS),
have provided valuable resources for comprehending cancer at the
molecular level. These advancements have allowed for a focused
investigation of genetic variants that contribute to the development and
progression of pathogenic cancers [5].

A recent large-scale genetic study identified nine novel PCa risk
variants  (rs73923570, 1s60985508, 1572960383, 15144842076,
rs13172201, rs114053368, rs9895704, rs73991216, and rs150947563)
contributing to our improved understanding of the disease. Further-
more, a comprehensive multiancestry polygenic risk score analysis was
conducted, revealing these variants as potential biomarkers for aggres-
sive PCa. Importantly, this analysis effectively distinguished between
the risks associated with aggressive and non-aggressive forms of the
disease. However, it remains to be determined whether these variants
exert any influence on the expression or functionality of genes specif-
ically associated with aggressive PCa cases [6]. Despite the utilization of
factors such as Gleason score and tumor stage for prognosis determi-
nation, current treatment approaches do not differ for aggressive PCa
patients. Consequently, a recent genome-wide association study aimed
to explore genetic variants that may be associated with an increased risk
of more aggressive PCa [7]. Within this investigation, a particular
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variant located on 15q13, denoted as rs6497287, exhibited a robust
association with a higher risk of developing aggressive disease (p-value
= 0.004) compared to less aggressive forms (p-value = 0.14). However,
the association was not stronger for more aggressive disease. This
finding may be attributed to the limitation of a small sample size.

In this paper, we initially gathered metastatic PCa data from the
publicly accessible database cBioPortal. From the dataset, we specif-
ically extracted genetic variant information, among various other data
points. The genetic variant data were provided in the mutation anno-
tation format (MAF), which primarily encompasses somatic mutations.
It is worth noting that the variant call format (VCF) is more commonly
utilized for the storage and exchange of genetic variant information. For
this reason, we converted the dataset from MAF format to the VCF
format. In order to identify aggressive and non-aggressive groups from
the dataset, we filtered the 444 metastatic PCa samples according to
their survival status. After filtering we found 19 patients whom we
defined as aggressive PCa patients and 46 patients whom we termed as
non-aggressive patients. Statistical analysis was then conducted to
determine the probability of observing genetic variants exclusively in
aggressive patients but not in non-aggressive patients. Based on the
statistical analysis, we identified three significant variants: rs777215086
(adjusted p-value = 0.0012), rs5759167 (adjusted p-value = 0.0045),
and rs864309495 (adjusted p-value = 0.0072) in aggressive PCa pa-
tients. Additionally, we discovered a novel variant (C/A) located on
chromosome 15 at position 50904997, which also demonstrated statis-
tical significance (adjusted p-value = 0.0034). Subsequently, we
examined the impact of these variants on genes and biological pathways
using over-representation analysis (ORA). Literature review along with
Machine learning (ML) study confirmed that our findings are in accor-
dance with the prognosis of aggressive PCa.

2. Dataset information

The dataset utilized in this study was obtained from cBioPortal
(https://www.cbioportal.org/), a publicly available resource that pro-
vides access to comprehensive cancer genomic datasets. This source
includes data from prominent consortium initiatives such as Therapeu-
tically Applicable Research to Generate Effective Treatments (TARGET),
along with individual laboratory publications. The dataset comprised
429 patients with metastatic castrate-resistant prostate cancer (mCRPC),
encompassing 444 tumor/normal whole exome sequencing pairs (Name
of the dataset: “Metastatic Prostate Adenocarcinoma (SU2C/PCF Dream
Team, PNAS 2019”), Link: https://www.cbioportal.org/study/summ
ary?id=prad_su2c_2019) The patients included in the dataset were
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undergoing a clinical trial involving the PARP inhibitor olaparib and the
Aurora kinase A inhibitor alisertib, specifically targeted towards in-
dividuals with neuroendocrine features. The dataset contained overall
survival information for 128 patients, which we used to define the
phenotypic groups for our study. Based on discussions with oncologists
and subject matter experts, patients who died within the first year of
diagnosis were categorized as the aggressive group (19 patients), while
those who survived for more than two years were classified as the non-
aggressive group (46 patients). For the purpose of this study, which was
to focus specifically on two phenotypes, we excluded the remaining
patients. We then extracted the genetic variant information pertaining to
a total of 65 patients. A comprehensive summary of these genetic vari-
ants is depicted in Fig. 1. It can be observed from the figure that the
majority of the identified variants fall into the category of missense
mutations. Furthermore, SNP (Single Nucleotide Polymorphism) is the
predominant variant type in this dataset. Specifically, there is a higher
prevalence of C-T SNPs compared to other types. For improved clarity,
we have provided a detailed breakdown of the abbreviations used: T >
G: Thymine (T) replaced by Guanine (G), T > A: Thymine (T) replaced
by Adenine (A), T > C: Thymine (T) replaced by Cytosine (C), C > T:
Cytosine (C) replaced by Thymine (T), C > G: Cytosine (C) replaced by
Guanine (G), C > A: Cytosine (C) replaced by Adenine (A).

3. Results
3.1. Effect of the filtered genetic variants on genes

Given the limited sample size of this study, we have conducted an
individualized examination of the genetic variants. Specifically, our
analysis focused on the 19 samples with aggressive disease progression.
We have specifically examined the impact of variants on genes that are
found only in the aggressive samples. To accomplish this, we employed
iVariantGuide (AdvaitaBio), which integrates SnpEff [8], enabling us to
estimate the impact of each variant on the transcript. Fig. 2 presents the
ratio of highly impacted genes for the 19 aggressive patients compared
with non-aggressive subset of patients. Results show that the aggressive
samples have overall higher percentages of impacted genes when
compared with the non-aggressive group.

Note that, not all variants will have an equal contribution to the
genes. The effects of genetic variants are divided into four categories by
SnpEff: high, moderate, low, and modifier. Fig. 3 depicts top three pa-
tients from each group who exhibit the highest percentage of genes
highly impacted by the variants. The variants present in the three
aggressive-case patients exert a more significant impact on genes

B C

Variant Type SNV Class
missense_Mutation |GGG
Nonsense_Mutation . SNP ™6 S0
Frame_shift_Del i T>A I 2134
Frame_Shift_Ins I
Splice_Site INS T>C oS
In_Frame_Del T nsmu
In_Frame_Ins
Translation_Start_Site DEL C>G I 2570
Nonstop_Mutation
r T T T 1 r T T T 1 C>A - .
8§ § 8 8 8§ § 8 S —
A IR § § ¢ § &8

Fig. 1. Summary of the genetic variants observed in our dataset. (A) Distribution of variant classifications is presented, with the x-axis representing the number of
variants and the y-axis representing the categories of variant types. (B) The distribution of nucleotide substitutions, commonly known as SNPs, and Indels (insertions
and deletions). (C) The SNV class plot illustrates the distribution of variants based on their Minor Allele Frequency (MAF) values. The x-axis represents specific MAF
value ranges, while the y-axis displays the count or frequency of variants falling within each MAF range.
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Fig. 2. Patient-specific comparison between two groups, in-terms of highly impacted genes those are affected by the group of variants found in aggressive and non-
aggressive samples.
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Fig. 3. Representation of three patients from each group exhibiting the highest percentage of highly impacted genes (colored in red) affected by the group of
variants. The percentage of genes with varying impact levels is depicted using different colors: red for high impact, yellow for moderate impact, green for low impact,
and grey for modifier impact. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

compared to their non-aggressive counterparts. The highly impacted 3.2. Statistical analysis results

gene percentages for patients 8, 13, and 9 in the aggressive group are

16.3 %, 15.7 %, and 14.9 %, respectively, which is higher than those There are 6645 variants out of a total of 65 samples in the data set

observed in the indolent patients. (aggressive = 19, non-aggressive = 46). Based on the frequency distri-
bution of these variants, it is evident that all aggressive patients share
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ten variants. In addition, 18 aggressive patients out of 19 aggressive
patients possessed an additional five variants. In contrast, none of these
variants were found in non-aggressive patients. The investigation of the
variants’ genotype information reveals that each variant is a single
nucleotide polymorphism (SNP). All pairings contain heterozygous ge-
notypes, denoted by ‘0/1’. The frequency distribution and genotypic
information of the variants that are more prevalent in the aggressive
samples are shown in Table 1.

Based on the results of hypothesis testing for multiple comparisons
between aggressive and non-aggressive groups, we identified four var-
iants as significant at a 5 % level of significance. Our hypothesis was to
determine the probability of a variant that occurs frequently in aggres-
sive cases but not in non-aggressive cases. The overall details of these
variants are presented in Table 2.

Primarily, Janus kinase 1 (JAK1) serves as the host gene for the
rs777215086 variant, which is identified as a frameshift variant. Ac-
cording to a recent study, recurrent frameshift mutations in JAK1 have
been associated with increased mutation load and microsatellite insta-
bility in cases of prostate cancer (PCa) [9]. Moreover, a recent investi-
gation revealed that JAK1 is regulated epigenetically in PCa patients
[10].

Importantly, a unique variant was identified from the list of variants,
on chromosome 15 at position 50904997, and the position represents
the genomic coordinate at which the mutation occurred. If a variant is
missing an rsID (Reference SNP cluster ID), it indicates that the variant
does not have a unique identifier in the dbSNP (Single Nucleotide
Polymorphism Database (dbSNP:https://www.ncbi.nlm.nih.gov/snp/),
which is a widely used and comprehensive public database of genetic
variations. It is possible that a variant without an rsid has not been
previously discovered or reported in public databases, rendering it
novel. This variant may be uncommon and unique to a specific popu-
lation or individual, but it has not been extensively studied or included
in public databases. The host gene for this unique variant is identified as
Transient Receptor Potential Cation Channel Subfamily M Member 7
(TRPM?7). Functioning as a Mg2+/Ca2+ permeable channel and a pro-
tein kinase, TRPM7 is involved in the regulation of various cellular
mechanisms, including cell adhesion, migration, and survival, particu-
larly in the context of metastatic PCa [11,12].

In addition, the variant rs5759167 was considered significant among
the list of 6645 variants. A recent review that primarily focuses on
genome-wide association studies which was conducted in metastatic
PCa patients to identify genetic markers associated with PCa risk. This
study identified rs5759167 (p-value = 3.29E-02) as significant among
the PCa risk-associated SNPs [13,14]. The final significant variant
associated with PCa in the list is rs864309495, which is hosted by the
tumor protein 53 gene (TP53). Existing research indicates that structural
variants within TP53 are primarily responsible for the aggressive

Table 1
Frequency distribution of variants that existed in the aggressive samples and not
found in the non-aggressive samples.

Chromosome Position Genotype (GT:AD: DP) Frequency (%)
chrl 65325832 0/1:54,0:54 100
chr3 10146353 0/1:356,5:361 100
chr5 39126099 0/1:24,20:44 100
chré 24556933 0/1:217,44:261 100
chr9 79002398 0/1:66,46:112 100
chrll 1.14E+08 0/1:268,27:295 100
chr15 50904997 0/1:15,0:15 100
chr17 7578212 0/1:181,0:181 100
chr21 47421171 0/1:249,5:254 100
chr22 43500212 0/1:29,132:161 100
chr7 47463715 0/1:334,5:339 94.74
chrll 33566639 0/1:285,196:481 94.74
chr18 14851528 0/1:36,13:49 94.74
chr18 25589727 0/1:51,39:90 94.74
chr19 50755932 0/1:75,51:126 94.74
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Table 2

Variants that are found significant from the statistical analysis.
Chromosome Position ID adj. p-value
chrl 65325832 15777215086 0.0012
chrl5 50904997 Novel variant 0.0034
chr22 43104206 1s5759167 0.0045
chrl7 7578212 15864309495 0.0072

manifestations of PCa [15].

3.3. Pathway analysis results

Originally designed for the analysis of gene expression data, pathway
analysis has evolved into a robust analytical method for the compre-
hensive extraction of genome-wide genetic variants data. Furthermore,
it facilitates the interpretation of genetic variants within the context of
the biological processes involving the implicated genes and proteins.

In this research, our objective was to address the issue of single-SNP
analysis in genetic association studies through the utilization of pathway
analysis. Single-SNP analysis in genetic association studies involves
investigating the correlation between individual single nucleotide
polymorphisms (SNPs) and a specific trait or disease. To minimize false
positives, these analyses typically apply rigorous statistical criteria,
consequently identifying only those SNPs with highly significant asso-
ciations as potentially relevant. In contrast, pathway analysis offers a
more macroscopic perspective, classifying SNPs into biologically perti-
nent pathways for a broader and more comprehensive interpretation of
the genetic findings across two phenotypes. Fig. 4 illustrates the sig-
nificant pathways (KEGG) determined by impact analysis for the two
categories under consideration. The p-values, as indicated on the x-axis,
represent a combination of enrichment and perturbation p-values that
have been subsequently adjusted using the false discovery rate (FDR)
method. All experiments were performed using the iVariantGuide
(AdvaitaBio).

Moreover, two variants from our statistically significant list -
1s777215086 and a novel variant (chromosome - 15, position -
50904997, Reference allele - C, Alternate allele - CT) - exert a consid-
erable impact on these two pathways. The rs777215086 variant has a
substantial influence on the JAK1 gene, which serves as its host. This
variant notably affects the JAK1 gene’s interaction with the PI3K-Akt
signaling pathway [41-43], as depicted in Fig. 5. Furthermore, several
other genes, including PTEN, TSC2, and GYS, also demonstrate a high
impact within this pathway. The pathway representation uses nodes to
illustrate genes. If a gene within a particular node is affected or
"impacted" by a set of variants, that node will be colored to indicate the
level of impact. The coloring system is designed to highlight the severity
of the impact of the variants on the genes within a node. The color red, in
particular, is used to indicate nodes (and, by extension, the genes within
them) that are impacted by variants with a high predicted effect. In
other words, if there’s at least one gene in a node that has a variant with
a predicted "high impact" (based on predictions from a tool named
SnpEff [8]), that node is colored red. This visual cue allows for a quick
and easy identification of nodes with genes that might be of significant
concern or interest due to the presence of these high impact variants. We
also performed this experiment in iVariantGuide (AdvaitaBio).

3.4. Validation of significant variants

In order to validate the significance of the identified variants in our
research, we employed a Decision Tree algorithm on an independent
dataset obtained from The Cancer Genome Atlas (TCGA). The primary
objective was to assess the algorithm’s ability to differentiate between
aggressive and non-aggressive cases. This independent dataset
comprised 494 patients, among whom 30 were identified as aggressive
(deceased within one year) and 67 were identified as non-aggressive
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Fig. 4. Comparison of significantly impacted pathways by variants in aggressive cases (A) and non-aggressive samples (B). The X-axis represents the contribution
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(surviving past two years).

From the list of four significant variants, we found that three of them
were present in the independent dataset. To evaluate their predictive
capabilities in distinguishing aggressiveness from indolence, we utilized
the genotype information of these three variants as input for the decision
tree model. The obtained classification report, as provided in Table 3,
demonstrates that the model performed effectively in distinguishing
between the aggressive and non-aggressive classes.

To further investigate and clarify the matter, we randomly selected
three variants from the dataset and repeated this process 50 times. Each
time, we trained and tested the model using these randomly chosen
subset of variants. The results were compared with the performance of
the model using the three proposed significant variants (i.e., bio-
markers). Based on the findings of our study, the accuracy of the model
employing the three significant variants was 97 % outperforming the
median accuracy obtained from the randomly selected three variants at
65 %. These findings strongly suggest that the model trained on the
important variants exhibits superior predictive capabilities regarding
the association with aggressive samples, in contrast to the model trained
on randomly selected variants. In the course of conducting the experi-
ment 50 times, we observed varying accuracies for each iteration. Fig. 6
visualizes the comparison of accuracies using two subsets of variants - a
random subset selection of variants vs. the three proposed biomarkers.
The variant employing the proposed biomarkers exhibits no variance,
indicative of the outcome being based on a single run.

4. Methodology
4.1. Data preprocessing

As the initial stage in data preprocessing, the MAF file format was
converted to the VCF file format. While both VCF and MAF have their
applications in genomic data analysis, the preference between them
depends on the specific research goal, objectives, and requirements of
the study [16-18]. In this study, we converted MAF files to VCF files
using vef2maf tools [19] specifically employing the maf2vcf.pl script.
While the MAF format contains extensive annotations for each variant,
including information on biological significance, effects, known
phenotype associations, and more, the conversion to VCF by maf2vcf.pl
generally retains essential variant information, such as genomic posi-
tion, reference allele, and alternate allele. However, it may not preserve
all the rich annotations found in the MAF due to differences in the
purposes and structures of the two formats. From an initial set of 64,566
variants, we refined the data by applying a minimum read depth of 10
and a minimum genotype quality of 90. This filtration process ultimately
yielded a final count of 6645 variants.

4.2. Statistical analysis

The aim of this statistical analysis is to identify variants that are
present in aggressive samples and absent in non-aggressive ones.
Accordingly, our null hypothesis posits that no such variant exists solely
in aggressive cases and is absent in non-aggressive samples. Given that
we have two distinct groups (Aggressive and Non-aggressive), hypoth-
esis testing will be conducted between multiple groups. When per-
forming multiple tests (each variant is individually subjected to the null
hypothesis test), each test carries the potential to yield a false positive.

Table 3
Classification performance metrics of the Decision tree model for distinguishing
aggressive and non-Aggressive cases.

Precision Recall F1-score
Aggressive 1 0.9 0.95
Non-aggressive 0.95 1 0.98
Accuracy 0.97
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This increases the probability of encountering at least one false positive.
In fact, the likelihood of obtaining at least one false positive escalates
with the increase in the number of tests performed. To correct for
multiple comparisons, we employed the permutation correction
approach. This is a widely used method for adjusting p-values, taking
into account potential correlations.

Fig. 7 visually represents the permutation correction approach
through a demo example. Here, we have five variants and eight samples,
and we have the true label for all the samples. If mutation exists in any
sample for any variant, we have labeled it as 1, otherwise 0. The pro-
cedure of permutation correction starts by changing the measurements
randomly between the aggressive and non-aggressive groups. Alterna-
tively, the same result can be achieved by randomly assigning the
“aggressive” and “non-aggressive” labels to the various measurements.
Fig. 8, represents the first round of such permutation. For such permu-
tation, we calculated the p-value for each variant. For example, from
Fig. 7, we can see that for samples 1 and 3, the first variant is present in
aggressive samples and for samples 5 and 8, this variant is not present in
non-aggressive samples totaling a sum of 1 + 1 = 2. We have permuted
the labels 10000 times and for each permutation we have performed the
hypothesis testing. The p-value for each variant at each permutation is
corrected using the Holm’s step-down method [20]. In this study, this
method orders the variants in increasing order based on their p-value
and make successive smaller adjustments.

Suppose we have a set of m variants. Each variant is classified into
one of two categories: aggressive and non-aggressive. The null hypoth-
esis (Hp) for a given variant is that there is no variant that exists in
aggressive or in non-aggressive cases. The subsequent procedure for
Holm’s step-wise correction is as follows:

1. Compute the p-values, P, ..
Hop.
2. Order the m number of p-values, so that

.., Py for the m null hypotheses Hy;, ...,

Pi<P,<...< Py,

3. Compare the p-values of each variant with a threshold based on the
variant’s position in the ordered list of values.

a
L=py Sm 1)

4 Reject all null hypotheses Hy; for which
PG <P

Once the calculation of first permutation is completed, a new per-
mutation is formed and new p-values resulting from this permutation is
calculated. This entire procedure (random labeling and testing) is
repeated tens of thousands of times. The p-value for variant (i) is the
proportion of times that the value of t calculated for the real labels t; is
less than or equal to the value of t calculated for random permutations.

_ Number of permutations for whichu,-(") >t

pi= 2

Total number of permutations
where u;® are the values corrected as in Holm’s step-down method for
permutation b.

4.3. Pathway analysis

The primary objective of Pathway analysis is to identify pathways
that experience significant impacts from genetic variants. This process
involves assigning scores to pathways based on the enrichment of genes
affected by at least one preset variant. The scoring method used is
known as Over Representation Analysis (ORA), which generates a
unique p-value, denoted as pORA, for each pathway and set of variants.
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Fig. 6. Comparative analysis of model accuracies. The box plot presents the distribution of accuracies for two distinct models: a random subset of variants (50 runs)

and a proposed biomarker set.
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mutation is present, and 0 if not. These labels serve as the true labels for all the samples.
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Fig. 8. Illustration of the initial iteration of permutation testing, serving as a demonstration of the first phase in a series of 10,000 label permutations.

To obtain the pathway composition, encompassing all genes associated
with a specific pathway, we referred to the KEGG database [21]. The
PORA value represents the probability of observing an equal or greater
number of impacted genes in a given pathway, purely by chance [22,
23].

Suppose we have N genes measured in the experiment, and out of
these, M genes are associated with the specific pathway under investi-
gation. Through a priori selection of impacted genes using Preset Vari-
ants, K out of the M pathway-associated genes were identified as
impacted. The significance of the pathway is determined based on an
assessment of whether the number of impacted genes observed is

unexpectedly high. To evaluate the improbability of observing K or a
greater number of impacted genes on the pathway, we calculate the
probability of randomly selecting K or more out of the M genes measured
within the pathway.

For any number x, the probability of observing exactly x impacted
genes on the given pathway is computed based on the hypergeometric
distribution:

P(X=x|N,M,K)= w

(%)

3
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Since the hypergeometric distribution is a discrete probability dis-
tribution, we can calculate the probabilty of observing fewer than x
genes affected on a specific pathway just by chance. This can be ach-
ieved by summing the probabilities of randomly observing 1, 2, ..., up to

x-1 impacted genes on that pathway:
M N-M
i K—i

O

Then we calculated the probability of randomly observing a number
of impacted genes on the given pathway that is greater than or equal to
the number of impacted genes obtained from data, by computing the
over-representation p-value: pORA = p_o(x) = 1-p_u(x-1):

(1) () o
(%)

pu(x—1)=P(X=1)+P(X=2)+...+ P(X=x—1)= 2

1
i=0

x—

pa(x): 1- Z

1
i=0

5. Discussion

In this study, our objective was to identify genetic variants as po-
tential biomarkers for aggressive PCa patients at the genetic variant
level. To establish these variants as biomarkers, we employed a rigorous
statistical analysis process to identify variants that were present in
aggressive PCa samples but absent in non-aggressive PCa samples.
However, it is important to note that while these variants may be sta-
tistically significant, not all of them may have an effect on the differ-
ential expression of genes. Therefore, to investigate this further, we
examined the genes that were highly impacted by the identified set of
significant variants as determined by our statistical analysis. Addition-
ally, we explored the pathways associated with these highly impacted
genes, as they carry the variants of interest.

For our analysis, we converted the MAF formatted dataset to VCF
files. This conversion was necessary because VCF files provide infor-
mation on all transcripts affected by a mutation, whereas MAF files only
report on the most significantly impacted ones [24,25]. At the initiation
of the study, the dataset consisted of 64,566 variants. We proceeded to
extract genotype information for each variant, applying specific filters
[26,27].

Following the completion of the statistical analysis, we identified
four significant variants out of the initial pool of 6645 variants. These
four variants exhibited statistical significance at a 5 % significance level.
Notably, within this set of significant variants, we discovered one
particular variant that has been previously reported in the literature to
be associated with an increased risk of aggressive prostate cancer (PCa).
The association of rs5759167 with an increased risk of prostate cancer
(PCa) has been consistently revealed through genome-wide association
studies [28,29]. This variant has been identified in numerous studies
involving key genes such as BRCA1l, BRCA2, MMR, HOXB13, CHEK2,
and NBS1. The collective findings from these studies indicate that
155759167 is associated with moderate risks of PCa development and
may contribute to a more aggressive disease phenotype.

The most noteworthy variant identified in our study, rs777215086
(p-value = 0.0012), exhibits a potential impact on the JAK1 gene. In a
recent investigation, researchers explored JAK1 expression in prostate
cancer (PCa) using RNA-sequencing data from The Cancer Genome Atlas
(TCGA). Their findings revealed a significant decrease in JAK1 expres-
sion in PCa compared to adjacent normal tissues [30,31]. In our study,
we have identified a novel variant in the TRPM7 gene associated with
prostate cancer. We thoroughly examined publicly available databases,
but found no previous mention of this specific variant. To determine the
potential impact of this novel variant, we employed the
Over-representation Analysis (ORA) method using iVariantGuide [32].
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ORA is a method for objectively assessing whether a set of biologically
relevant variables, such as a gene set or pathway, occurs more frequently
in a set of variables of interest than expected by chance [33]. Our
analysis revealed that the novel variant exerts a substantial influence on
the TRPM7 gene Interestingly, recent research has explored the
expression levels of TRPM7 in various types of PCa tumors [34]. The
final variant that demonstrated significance is rs864309495. Through
the application of the ORA analysis method, we have determined that
this variant exerts a notable impact on the TP53 gene. A study conducted
by Yong et al. [35] revealed that TP53 loss-of-function is associated with
elevated levels of autophagy-related proteins in aggressive PCa. In a
separate investigation by Thorsten et al. [36], the clinical significance of
p53 alterations in surgically treated PCa patients was explored.

By utilizing the iVariantGuide tool, which incorporates the Over-
representation Analysis (ORA), we have not only investigated the
genes profoundly influenced by our variants of interest but also exam-
ined the pathways that exhibited substantial significance between
aggressive and non-aggressive groups. Our findings indicate that the
significant variants identified in our study exerted a significant influence
on the most prominent pathways associated with aggressive PCa. The
most significant pathway in aggressive PCa group was PI3K-Akt
signaling pathway. Paul et al. [37] expressed their anticipation, in a
comprehensive review, that gaining a deeper understanding of the
biology of the PI3K/Akt pathway in PCa would facilitate the identifi-
cation of relevant biomarkers and enable the development of rational
combination therapies. Moreover, the activation of the PI3K/Akt
pathway is a common characteristic observed in many cases of aggres-
sive PCa. As PCa progresses towards a resistant and metastatic state, the
activation of this pathway becomes even more prevalent. Signaling
cascades emanating from the PI3K/Akt pathway stimulate a multitude
of survival, growth, metabolic, and metastatic functions, all of which are
hallmarks of aggressive cancer [38,39]. In a study conducted by Taylor
et al. [40], an integrative genomic profiling of human prostate cancer
(PCa) was performed. The research demonstrates a compelling interest
in utilizing the PI3K/Akt pathway as a biomarker to distinguish highly
significant, aggressive prostate cancer cases from less aggressive forms
of the disease. However, it is crucial to acknowledge that the utilization
of this pathway as a biomarker faces significant challenges, primarily
due to the intricate nature of the biology in advanced PCa and the
presence of tumor heterogeneity.

The overall discussion illustrates the effect of significant variants on
genes and biological pathways in order to comprehend how our list of
significant variants can affect the expression or function of genes and
biological pathways or processes that have a remarkable effect on
aggressive PCa. Based on the findings from our comprehensive study, it
is evident that the variants identified in our research, along with the
genes and pathways they impact, play a significant role in driving the
progression of aggressive PCa. However, our research was conducted
with a relatively limited dataset, primarily due to the inherent challenge
in acquiring datasets for aggressive Prostate Cancer patients. Given that
our approach is data-driven, expanding the study population would
indeed be instrumental for future endeavors. The methodology
employed in our study is based on a hypothesis testing paradigm,
facilitating the identification of significant variants. However, each
variant has a comprehensive suite of attributes (e.g., location, conser-
vation, epigenetics) which can provide crucial insights regarding its
association with a phenotype. Thus, integrating these features alongside
the hypothesis can offer a more robust prediction on the relevance of
specific variants to particular traits. These results align with the current
state of the art and further emphasize the importance of understanding
the genetic factors and biological mechanisms contributing to the
development and advancement of aggressive PCa.

6. Conclusion

The primary objective of this research was to identify genetic
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variants that could serve as biomarkers in prostate cancer. To achieve
this goal, we employed a statistical approach aimed at identifying var-
iants present in aggressive PCa samples but absent in non-aggressive PCa
samples. Based on this hypothesis, we successfully identified four vari-
ants that exhibited statistical significance at a 5 % level. Furthermore,
through the utilization of Over-representation Analysis (ORA), we
investigated the specific genes and biological pathways influenced by
these significant variants. The ORA analysis shed light on the impact of
these variants at the molecular level. Lastly, a comprehensive literature
review corroborated the significance of our identified outcomes, high-
lighting their pivotal role in driving the progression of aggressive PCa.
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