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A B S T R A C T   

Prostate cancer (PCa) represents the second most frequently diagnosed malignancy among males in the United 
States and ranks fourth in terms of general cancer prevalence on a global scale. A critical assessment of existing 
literature indicates a notable deficiency in the identification of biomarkers that are uniquely associated with 
aggressive forms of PCa. The principal objective of this paper is to discover biomarkers at the genetic variant 
level by deploying statistical methodologies to determine associations between such variants and the aggressive 
and lethal form of the disease. Employing the multiple comparisons technique, we identified four variants that 
were statistically significant at the 5 % significance level. Furthermore, we utilized Over-representation analysis 
(ORA) to identify the biological pathways linked with these genetic variants. To validate our findings, we 
employed a decision tree algorithm on an independent dataset comparing the proposed biomarkers with random 
subsets of variants. Results have shown that the predictive accuracy of aggressive samples was 97 % for the 
proposed biomarkers, while this figure dropped to 67 % when randomly selected variants were considered.   

1. Introduction 

Prostate cancer (PCa) is the most prevalent malignancy in males and 
a prominent cause of cancer-related mortality. As of 2022, 1,414,259 
new cases and 375,304 deaths have been reported from PCa worldwide 
[1]. In the United States, PCa is the primary cause of cancer incidence 
and the second highest cause of cancer death in males. Recent data 
indicate a 3 % annual increase in PCa incidence from 2014 to 2019. PCa 
is frequently non-aggressive, and treatment is often curative. Due to the 
harmful effects of over- and under-treatment, PCa is the primary cause of 
cancer-associated disability worldwide. Therefore, different types of 
PCa require distinct treatment alternatives. The field of aggressive 
prostate cancer treatment is rapidly evolving. Although the 5-year sur
vival rate for indolent PCa is 99 %, aggressive PCa is typically considered 
incurable. This further underscores the crucial importance of early 
treatment for aggressive cases [2,3]. 

Biomarkers serve as essential indicators for the early detection of 
cancer. Through the identification of specific biomarkers associated 
with a particular disease, healthcare professionals can screen individuals 
who may be at risk or in the early stages of the disease. This enables 
early intervention and treatment, significantly improving patient sur
vival [4]. Genetic variants are among the various categories of bio
markers that play a crucial role in different aspects of healthcare, 

including disease diagnosis, prognosis, treatment selection, and moni
toring treatment response. Recent technological advancements in 
genome sequencing, particularly whole-genome sequencing (WGS), 
have provided valuable resources for comprehending cancer at the 
molecular level. These advancements have allowed for a focused 
investigation of genetic variants that contribute to the development and 
progression of pathogenic cancers [5]. 

A recent large-scale genetic study identified nine novel PCa risk 
variants (rs73923570, rs60985508, rs72960383, rs144842076, 
rs13172201, rs114053368, rs9895704, rs73991216, and rs150947563) 
contributing to our improved understanding of the disease. Further
more, a comprehensive multiancestry polygenic risk score analysis was 
conducted, revealing these variants as potential biomarkers for aggres
sive PCa. Importantly, this analysis effectively distinguished between 
the risks associated with aggressive and non-aggressive forms of the 
disease. However, it remains to be determined whether these variants 
exert any influence on the expression or functionality of genes specif
ically associated with aggressive PCa cases [6]. Despite the utilization of 
factors such as Gleason score and tumor stage for prognosis determi
nation, current treatment approaches do not differ for aggressive PCa 
patients. Consequently, a recent genome-wide association study aimed 
to explore genetic variants that may be associated with an increased risk 
of more aggressive PCa [7]. Within this investigation, a particular 
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variant located on 15q13, denoted as rs6497287, exhibited a robust 
association with a higher risk of developing aggressive disease (p-value 
= 0.004) compared to less aggressive forms (p-value = 0.14). However, 
the association was not stronger for more aggressive disease. This 
finding may be attributed to the limitation of a small sample size. 

In this paper, we initially gathered metastatic PCa data from the 
publicly accessible database cBioPortal. From the dataset, we specif
ically extracted genetic variant information, among various other data 
points. The genetic variant data were provided in the mutation anno
tation format (MAF), which primarily encompasses somatic mutations. 
It is worth noting that the variant call format (VCF) is more commonly 
utilized for the storage and exchange of genetic variant information. For 
this reason, we converted the dataset from MAF format to the VCF 
format. In order to identify aggressive and non-aggressive groups from 
the dataset, we filtered the 444 metastatic PCa samples according to 
their survival status. After filtering we found 19 patients whom we 
defined as aggressive PCa patients and 46 patients whom we termed as 
non-aggressive patients. Statistical analysis was then conducted to 
determine the probability of observing genetic variants exclusively in 
aggressive patients but not in non-aggressive patients. Based on the 
statistical analysis, we identified three significant variants: rs777215086 
(adjusted p-value = 0.0012), rs5759167 (adjusted p-value = 0.0045), 
and rs864309495 (adjusted p-value = 0.0072) in aggressive PCa pa
tients. Additionally, we discovered a novel variant (C/A) located on 
chromosome 15 at position 50904997, which also demonstrated statis
tical significance (adjusted p-value = 0.0034). Subsequently, we 
examined the impact of these variants on genes and biological pathways 
using over-representation analysis (ORA). Literature review along with 
Machine learning (ML) study confirmed that our findings are in accor
dance with the prognosis of aggressive PCa. 

2. Dataset information 

The dataset utilized in this study was obtained from cBioPortal 
(https://www.cbioportal.org/), a publicly available resource that pro
vides access to comprehensive cancer genomic datasets. This source 
includes data from prominent consortium initiatives such as Therapeu
tically Applicable Research to Generate Effective Treatments (TARGET), 
along with individual laboratory publications. The dataset comprised 
429 patients with metastatic castrate-resistant prostate cancer (mCRPC), 
encompassing 444 tumor/normal whole exome sequencing pairs (Name 
of the dataset: “Metastatic Prostate Adenocarcinoma (SU2C/PCF Dream 
Team, PNAS 2019”), Link: https://www.cbioportal.org/study/summ 
ary?id=prad_su2c_2019) The patients included in the dataset were 

undergoing a clinical trial involving the PARP inhibitor olaparib and the 
Aurora kinase A inhibitor alisertib, specifically targeted towards in
dividuals with neuroendocrine features. The dataset contained overall 
survival information for 128 patients, which we used to define the 
phenotypic groups for our study. Based on discussions with oncologists 
and subject matter experts, patients who died within the first year of 
diagnosis were categorized as the aggressive group (19 patients), while 
those who survived for more than two years were classified as the non- 
aggressive group (46 patients). For the purpose of this study, which was 
to focus specifically on two phenotypes, we excluded the remaining 
patients. We then extracted the genetic variant information pertaining to 
a total of 65 patients. A comprehensive summary of these genetic vari
ants is depicted in Fig. 1. It can be observed from the figure that the 
majority of the identified variants fall into the category of missense 
mutations. Furthermore, SNP (Single Nucleotide Polymorphism) is the 
predominant variant type in this dataset. Specifically, there is a higher 
prevalence of C-T SNPs compared to other types. For improved clarity, 
we have provided a detailed breakdown of the abbreviations used: T >
G: Thymine (T) replaced by Guanine (G), T > A: Thymine (T) replaced 
by Adenine (A), T > C: Thymine (T) replaced by Cytosine (C), C > T: 
Cytosine (C) replaced by Thymine (T), C > G: Cytosine (C) replaced by 
Guanine (G), C > A: Cytosine (C) replaced by Adenine (A). 

3. Results 

3.1. Effect of the filtered genetic variants on genes 

Given the limited sample size of this study, we have conducted an 
individualized examination of the genetic variants. Specifically, our 
analysis focused on the 19 samples with aggressive disease progression. 
We have specifically examined the impact of variants on genes that are 
found only in the aggressive samples. To accomplish this, we employed 
iVariantGuide (AdvaitaBio), which integrates SnpEff [8], enabling us to 
estimate the impact of each variant on the transcript. Fig. 2 presents the 
ratio of highly impacted genes for the 19 aggressive patients compared 
with non-aggressive subset of patients. Results show that the aggressive 
samples have overall higher percentages of impacted genes when 
compared with the non-aggressive group. 

Note that, not all variants will have an equal contribution to the 
genes. The effects of genetic variants are divided into four categories by 
SnpEff: high, moderate, low, and modifier. Fig. 3 depicts top three pa
tients from each group who exhibit the highest percentage of genes 
highly impacted by the variants. The variants present in the three 
aggressive-case patients exert a more significant impact on genes 

Fig. 1. Summary of the genetic variants observed in our dataset. (A) Distribution of variant classifications is presented, with the x-axis representing the number of 
variants and the y-axis representing the categories of variant types. (B) The distribution of nucleotide substitutions, commonly known as SNPs, and Indels (insertions 
and deletions). (C) The SNV class plot illustrates the distribution of variants based on their Minor Allele Frequency (MAF) values. The x-axis represents specific MAF 
value ranges, while the y-axis displays the count or frequency of variants falling within each MAF range. 
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compared to their non-aggressive counterparts. The highly impacted 
gene percentages for patients 8, 13, and 9 in the aggressive group are 
16.3 %, 15.7 %, and 14.9 %, respectively, which is higher than those 
observed in the indolent patients. 

3.2. Statistical analysis results 

There are 6645 variants out of a total of 65 samples in the data set 
(aggressive = 19, non-aggressive = 46). Based on the frequency distri
bution of these variants, it is evident that all aggressive patients share 

Fig. 2. Patient-specific comparison between two groups, in-terms of highly impacted genes those are affected by the group of variants found in aggressive and non- 
aggressive samples. 

Fig. 3. Representation of three patients from each group exhibiting the highest percentage of highly impacted genes (colored in red) affected by the group of 
variants. The percentage of genes with varying impact levels is depicted using different colors: red for high impact, yellow for moderate impact, green for low impact, 
and grey for modifier impact. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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ten variants. In addition, 18 aggressive patients out of 19 aggressive 
patients possessed an additional five variants. In contrast, none of these 
variants were found in non-aggressive patients. The investigation of the 
variants’ genotype information reveals that each variant is a single 
nucleotide polymorphism (SNP). All pairings contain heterozygous ge
notypes, denoted by ‘0/1’. The frequency distribution and genotypic 
information of the variants that are more prevalent in the aggressive 
samples are shown in Table 1. 

Based on the results of hypothesis testing for multiple comparisons 
between aggressive and non-aggressive groups, we identified four var
iants as significant at a 5 % level of significance. Our hypothesis was to 
determine the probability of a variant that occurs frequently in aggres
sive cases but not in non-aggressive cases. The overall details of these 
variants are presented in Table 2. 

Primarily, Janus kinase 1 (JAK1) serves as the host gene for the 
rs777215086 variant, which is identified as a frameshift variant. Ac
cording to a recent study, recurrent frameshift mutations in JAK1 have 
been associated with increased mutation load and microsatellite insta
bility in cases of prostate cancer (PCa) [9]. Moreover, a recent investi
gation revealed that JAK1 is regulated epigenetically in PCa patients 
[10]. 

Importantly, a unique variant was identified from the list of variants, 
on chromosome 15 at position 50904997, and the position represents 
the genomic coordinate at which the mutation occurred. If a variant is 
missing an rsID (Reference SNP cluster ID), it indicates that the variant 
does not have a unique identifier in the dbSNP (Single Nucleotide 
Polymorphism Database (dbSNP:https://www.ncbi.nlm.nih.gov/snp/), 
which is a widely used and comprehensive public database of genetic 
variations. It is possible that a variant without an rsid has not been 
previously discovered or reported in public databases, rendering it 
novel. This variant may be uncommon and unique to a specific popu
lation or individual, but it has not been extensively studied or included 
in public databases. The host gene for this unique variant is identified as 
Transient Receptor Potential Cation Channel Subfamily M Member 7 
(TRPM7). Functioning as a Mg2+/Ca2+ permeable channel and a pro
tein kinase, TRPM7 is involved in the regulation of various cellular 
mechanisms, including cell adhesion, migration, and survival, particu
larly in the context of metastatic PCa [11,12]. 

In addition, the variant rs5759167 was considered significant among 
the list of 6645 variants. A recent review that primarily focuses on 
genome-wide association studies which was conducted in metastatic 
PCa patients to identify genetic markers associated with PCa risk. This 
study identified rs5759167 (p-value = 3.29E-02) as significant among 
the PCa risk-associated SNPs [13,14]. The final significant variant 
associated with PCa in the list is rs864309495, which is hosted by the 
tumor protein 53 gene (TP53). Existing research indicates that structural 
variants within TP53 are primarily responsible for the aggressive 

manifestations of PCa [15]. 

3.3. Pathway analysis results 

Originally designed for the analysis of gene expression data, pathway 
analysis has evolved into a robust analytical method for the compre
hensive extraction of genome-wide genetic variants data. Furthermore, 
it facilitates the interpretation of genetic variants within the context of 
the biological processes involving the implicated genes and proteins. 

In this research, our objective was to address the issue of single-SNP 
analysis in genetic association studies through the utilization of pathway 
analysis. Single-SNP analysis in genetic association studies involves 
investigating the correlation between individual single nucleotide 
polymorphisms (SNPs) and a specific trait or disease. To minimize false 
positives, these analyses typically apply rigorous statistical criteria, 
consequently identifying only those SNPs with highly significant asso
ciations as potentially relevant. In contrast, pathway analysis offers a 
more macroscopic perspective, classifying SNPs into biologically perti
nent pathways for a broader and more comprehensive interpretation of 
the genetic findings across two phenotypes. Fig. 4 illustrates the sig
nificant pathways (KEGG) determined by impact analysis for the two 
categories under consideration. The p-values, as indicated on the x-axis, 
represent a combination of enrichment and perturbation p-values that 
have been subsequently adjusted using the false discovery rate (FDR) 
method. All experiments were performed using the iVariantGuide 
(AdvaitaBio). 

Moreover, two variants from our statistically significant list - 
rs777215086 and a novel variant (chromosome - 15, position - 
50904997, Reference allele - C, Alternate allele - CT) - exert a consid
erable impact on these two pathways. The rs777215086 variant has a 
substantial influence on the JAK1 gene, which serves as its host. This 
variant notably affects the JAK1 gene’s interaction with the PI3K-Akt 
signaling pathway [41–43], as depicted in Fig. 5. Furthermore, several 
other genes, including PTEN, TSC2, and GYS, also demonstrate a high 
impact within this pathway. The pathway representation uses nodes to 
illustrate genes. If a gene within a particular node is affected or 
"impacted" by a set of variants, that node will be colored to indicate the 
level of impact. The coloring system is designed to highlight the severity 
of the impact of the variants on the genes within a node. The color red, in 
particular, is used to indicate nodes (and, by extension, the genes within 
them) that are impacted by variants with a high predicted effect. In 
other words, if there’s at least one gene in a node that has a variant with 
a predicted "high impact" (based on predictions from a tool named 
SnpEff [8]), that node is colored red. This visual cue allows for a quick 
and easy identification of nodes with genes that might be of significant 
concern or interest due to the presence of these high impact variants. We 
also performed this experiment in iVariantGuide (AdvaitaBio). 

3.4. Validation of significant variants 

In order to validate the significance of the identified variants in our 
research, we employed a Decision Tree algorithm on an independent 
dataset obtained from The Cancer Genome Atlas (TCGA). The primary 
objective was to assess the algorithm’s ability to differentiate between 
aggressive and non-aggressive cases. This independent dataset 
comprised 494 patients, among whom 30 were identified as aggressive 
(deceased within one year) and 67 were identified as non-aggressive 

Table 1 
Frequency distribution of variants that existed in the aggressive samples and not 
found in the non-aggressive samples.  

Chromosome Position Genotype (GT:AD: DP) Frequency (%) 

chr1 65325832 0/1:54,0:54 100 
chr3 10146353 0/1:356,5:361 100 
chr5 39126099 0/1:24,20:44 100 
chr6 24556933 0/1:217,44:261 100 
chr9 79002398 0/1:66,46:112 100 
chr11 1.14E+08 0/1:268,27:295 100 
chr15 50904997 0/1:15,0:15 100 
chr17 7578212 0/1:181,0:181 100 
chr21 47421171 0/1:249,5:254 100 
chr22 43500212 0/1:29,132:161 100 
chr7 47463715 0/1:334,5:339 94.74 
chr11 33566639 0/1:285,196:481 94.74 
chr18 14851528 0/1:36,13:49 94.74 
chr18 25589727 0/1:51,39:90 94.74 
chr19 50755932 0/1:75,51:126 94.74  

Table 2 
Variants that are found significant from the statistical analysis.  

Chromosome Position ID adj. p-value 

chr1 65325832 rs777215086 0.0012 
chr15 50904997 Novel variant 0.0034 
chr22 43104206 rs5759167 0.0045 
chr17 7578212 rs864309495 0.0072  
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Fig. 4. Comparison of significantly impacted pathways by variants in aggressive cases (A) and non-aggressive samples (B). The X-axis represents the contribution 
score, while the Y-axis displays the list of pathways. 

Fig. 5. Representation of the PI3K-Akt signaling pathway. Red nodes indicate genes within the pathway that are highly impacted by the rs77721508 variant. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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(surviving past two years). 
From the list of four significant variants, we found that three of them 

were present in the independent dataset. To evaluate their predictive 
capabilities in distinguishing aggressiveness from indolence, we utilized 
the genotype information of these three variants as input for the decision 
tree model. The obtained classification report, as provided in Table 3, 
demonstrates that the model performed effectively in distinguishing 
between the aggressive and non-aggressive classes. 

To further investigate and clarify the matter, we randomly selected 
three variants from the dataset and repeated this process 50 times. Each 
time, we trained and tested the model using these randomly chosen 
subset of variants. The results were compared with the performance of 
the model using the three proposed significant variants (i.e., bio
markers). Based on the findings of our study, the accuracy of the model 
employing the three significant variants was 97 % outperforming the 
median accuracy obtained from the randomly selected three variants at 
65 %. These findings strongly suggest that the model trained on the 
important variants exhibits superior predictive capabilities regarding 
the association with aggressive samples, in contrast to the model trained 
on randomly selected variants. In the course of conducting the experi
ment 50 times, we observed varying accuracies for each iteration. Fig. 6 
visualizes the comparison of accuracies using two subsets of variants - a 
random subset selection of variants vs. the three proposed biomarkers. 
The variant employing the proposed biomarkers exhibits no variance, 
indicative of the outcome being based on a single run. 

4. Methodology 

4.1. Data preprocessing 

As the initial stage in data preprocessing, the MAF file format was 
converted to the VCF file format. While both VCF and MAF have their 
applications in genomic data analysis, the preference between them 
depends on the specific research goal, objectives, and requirements of 
the study [16–18]. In this study, we converted MAF files to VCF files 
using vcf2maf tools [19] specifically employing the maf2vcf.pl script. 
While the MAF format contains extensive annotations for each variant, 
including information on biological significance, effects, known 
phenotype associations, and more, the conversion to VCF by maf2vcf.pl 
generally retains essential variant information, such as genomic posi
tion, reference allele, and alternate allele. However, it may not preserve 
all the rich annotations found in the MAF due to differences in the 
purposes and structures of the two formats. From an initial set of 64,566 
variants, we refined the data by applying a minimum read depth of 10 
and a minimum genotype quality of 90. This filtration process ultimately 
yielded a final count of 6645 variants. 

4.2. Statistical analysis 

The aim of this statistical analysis is to identify variants that are 
present in aggressive samples and absent in non-aggressive ones. 
Accordingly, our null hypothesis posits that no such variant exists solely 
in aggressive cases and is absent in non-aggressive samples. Given that 
we have two distinct groups (Aggressive and Non-aggressive), hypoth
esis testing will be conducted between multiple groups. When per
forming multiple tests (each variant is individually subjected to the null 
hypothesis test), each test carries the potential to yield a false positive. 

This increases the probability of encountering at least one false positive. 
In fact, the likelihood of obtaining at least one false positive escalates 
with the increase in the number of tests performed. To correct for 
multiple comparisons, we employed the permutation correction 
approach. This is a widely used method for adjusting p-values, taking 
into account potential correlations. 

Fig. 7 visually represents the permutation correction approach 
through a demo example. Here, we have five variants and eight samples, 
and we have the true label for all the samples. If mutation exists in any 
sample for any variant, we have labeled it as 1, otherwise 0. The pro
cedure of permutation correction starts by changing the measurements 
randomly between the aggressive and non-aggressive groups. Alterna
tively, the same result can be achieved by randomly assigning the 
“aggressive” and “non-aggressive” labels to the various measurements. 
Fig. 8, represents the first round of such permutation. For such permu
tation, we calculated the p-value for each variant. For example, from 
Fig. 7, we can see that for samples 1 and 3, the first variant is present in 
aggressive samples and for samples 5 and 8, this variant is not present in 
non-aggressive samples totaling a sum of 1 + 1 = 2. We have permuted 
the labels 10000 times and for each permutation we have performed the 
hypothesis testing. The p-value for each variant at each permutation is 
corrected using the Holm’s step-down method [20]. In this study, this 
method orders the variants in increasing order based on their p-value 
and make successive smaller adjustments. 

Suppose we have a set of m variants. Each variant is classified into 
one of two categories: aggressive and non-aggressive. The null hypoth
esis (H0) for a given variant is that there is no variant that exists in 
aggressive or in non-aggressive cases. The subsequent procedure for 
Holm’s step-wise correction is as follows:  

1. Compute the p-values, P1, …., Pm for the m null hypotheses H01, …., 
H0m.  

2. Order the m number of p-values, so that 

P1 ≤ P2 ≤ .... ≤ Pm    

3. Compare the p-values of each variant with a threshold based on the 
variant’s position in the ordered list of values. 

L = p(j) ≤
α

m+1− j
(1)    

4 Reject all null hypotheses H0j for which 

p(j) < p(L)

Once the calculation of first permutation is completed, a new per
mutation is formed and new p-values resulting from this permutation is 
calculated. This entire procedure (random labeling and testing) is 
repeated tens of thousands of times. The p-value for variant (i) is the 
proportion of times that the value of t calculated for the real labels ti is 
less than or equal to the value of t calculated for random permutations. 

pi =
Number of permutations for whichuj

(b) ≥ ti

Total number of permutations
(2)  

where uj
(b) are the values corrected as in Holm’s step-down method for 

permutation b. 

4.3. Pathway analysis 

The primary objective of Pathway analysis is to identify pathways 
that experience significant impacts from genetic variants. This process 
involves assigning scores to pathways based on the enrichment of genes 
affected by at least one preset variant. The scoring method used is 
known as Over Representation Analysis (ORA), which generates a 
unique p-value, denoted as pORA, for each pathway and set of variants. 

Table 3 
Classification performance metrics of the Decision tree model for distinguishing 
aggressive and non-Aggressive cases.   

Precision Recall F1-score 

Aggressive 1 0.9 0.95 
Non-aggressive 0.95 1 0.98 
Accuracy   0.97  
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To obtain the pathway composition, encompassing all genes associated 
with a specific pathway, we referred to the KEGG database [21]. The 
pORA value represents the probability of observing an equal or greater 
number of impacted genes in a given pathway, purely by chance [22, 
23]. 

Suppose we have N genes measured in the experiment, and out of 
these, M genes are associated with the specific pathway under investi
gation. Through a priori selection of impacted genes using Preset Vari
ants, K out of the M pathway-associated genes were identified as 
impacted. The significance of the pathway is determined based on an 
assessment of whether the number of impacted genes observed is 

unexpectedly high. To evaluate the improbability of observing K or a 
greater number of impacted genes on the pathway, we calculate the 
probability of randomly selecting K or more out of the M genes measured 
within the pathway. 

For any number x, the probability of observing exactly x impacted 
genes on the given pathway is computed based on the hypergeometric 
distribution: 

P(X = x|N,M,K) =

(
M
x

)(
N − M
K − x

)

(
N
K

) (3) 

Fig. 6. Comparative analysis of model accuracies. The box plot presents the distribution of accuracies for two distinct models: a random subset of variants (50 runs) 
and a proposed biomarker set. 

Fig. 7. Visual representation of the permutation correction approach employed to analyze multiple groups. Each variant in the samples is assigned a label of 1 if a 
mutation is present, and 0 if not. These labels serve as the true labels for all the samples. 

Fig. 8. Illustration of the initial iteration of permutation testing, serving as a demonstration of the first phase in a series of 10,000 label permutations.  
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Since the hypergeometric distribution is a discrete probability dis
tribution, we can calculate the probabilty of observing fewer than x 
genes affected on a specific pathway just by chance. This can be ach
ieved by summing the probabilities of randomly observing 1, 2, …, up to 
x-1 impacted genes on that pathway: 

pu(x− 1) = P(X= 1) + P(X= 2) + … + P(X = x− 1) =
∑x− 1

i=0

(
M
i

)(
N − M
K − i

)

(
N
K

)

(4) 

Then we calculated the probability of randomly observing a number 
of impacted genes on the given pathway that is greater than or equal to 
the number of impacted genes obtained from data, by computing the 
over-representation p-value: pORA = p_o(x) = 1-p_u(x-1): 

po(x)= 1−
∑x− 1

i=0

(
M
i

)(
N − M
K − i

)

(
N
K

) (5)  

5. Discussion 

In this study, our objective was to identify genetic variants as po
tential biomarkers for aggressive PCa patients at the genetic variant 
level. To establish these variants as biomarkers, we employed a rigorous 
statistical analysis process to identify variants that were present in 
aggressive PCa samples but absent in non-aggressive PCa samples. 
However, it is important to note that while these variants may be sta
tistically significant, not all of them may have an effect on the differ
ential expression of genes. Therefore, to investigate this further, we 
examined the genes that were highly impacted by the identified set of 
significant variants as determined by our statistical analysis. Addition
ally, we explored the pathways associated with these highly impacted 
genes, as they carry the variants of interest. 

For our analysis, we converted the MAF formatted dataset to VCF 
files. This conversion was necessary because VCF files provide infor
mation on all transcripts affected by a mutation, whereas MAF files only 
report on the most significantly impacted ones [24,25]. At the initiation 
of the study, the dataset consisted of 64,566 variants. We proceeded to 
extract genotype information for each variant, applying specific filters 
[26,27]. 

Following the completion of the statistical analysis, we identified 
four significant variants out of the initial pool of 6645 variants. These 
four variants exhibited statistical significance at a 5 % significance level. 
Notably, within this set of significant variants, we discovered one 
particular variant that has been previously reported in the literature to 
be associated with an increased risk of aggressive prostate cancer (PCa). 
The association of rs5759167 with an increased risk of prostate cancer 
(PCa) has been consistently revealed through genome-wide association 
studies [28,29]. This variant has been identified in numerous studies 
involving key genes such as BRCA1, BRCA2, MMR, HOXB13, CHEK2, 
and NBS1. The collective findings from these studies indicate that 
rs5759167 is associated with moderate risks of PCa development and 
may contribute to a more aggressive disease phenotype. 

The most noteworthy variant identified in our study, rs777215086 
(p-value = 0.0012), exhibits a potential impact on the JAK1 gene. In a 
recent investigation, researchers explored JAK1 expression in prostate 
cancer (PCa) using RNA-sequencing data from The Cancer Genome Atlas 
(TCGA). Their findings revealed a significant decrease in JAK1 expres
sion in PCa compared to adjacent normal tissues [30,31]. In our study, 
we have identified a novel variant in the TRPM7 gene associated with 
prostate cancer. We thoroughly examined publicly available databases, 
but found no previous mention of this specific variant. To determine the 
potential impact of this novel variant, we employed the 
Over-representation Analysis (ORA) method using iVariantGuide [32]. 

ORA is a method for objectively assessing whether a set of biologically 
relevant variables, such as a gene set or pathway, occurs more frequently 
in a set of variables of interest than expected by chance [33]. Our 
analysis revealed that the novel variant exerts a substantial influence on 
the TRPM7 gene Interestingly, recent research has explored the 
expression levels of TRPM7 in various types of PCa tumors [34]. The 
final variant that demonstrated significance is rs864309495. Through 
the application of the ORA analysis method, we have determined that 
this variant exerts a notable impact on the TP53 gene. A study conducted 
by Yong et al. [35] revealed that TP53 loss-of-function is associated with 
elevated levels of autophagy-related proteins in aggressive PCa. In a 
separate investigation by Thorsten et al. [36], the clinical significance of 
p53 alterations in surgically treated PCa patients was explored. 

By utilizing the iVariantGuide tool, which incorporates the Over- 
representation Analysis (ORA), we have not only investigated the 
genes profoundly influenced by our variants of interest but also exam
ined the pathways that exhibited substantial significance between 
aggressive and non-aggressive groups. Our findings indicate that the 
significant variants identified in our study exerted a significant influence 
on the most prominent pathways associated with aggressive PCa. The 
most significant pathway in aggressive PCa group was PI3K-Akt 
signaling pathway. Paul et al. [37] expressed their anticipation, in a 
comprehensive review, that gaining a deeper understanding of the 
biology of the PI3K/Akt pathway in PCa would facilitate the identifi
cation of relevant biomarkers and enable the development of rational 
combination therapies. Moreover, the activation of the PI3K/Akt 
pathway is a common characteristic observed in many cases of aggres
sive PCa. As PCa progresses towards a resistant and metastatic state, the 
activation of this pathway becomes even more prevalent. Signaling 
cascades emanating from the PI3K/Akt pathway stimulate a multitude 
of survival, growth, metabolic, and metastatic functions, all of which are 
hallmarks of aggressive cancer [38,39]. In a study conducted by Taylor 
et al. [40], an integrative genomic profiling of human prostate cancer 
(PCa) was performed. The research demonstrates a compelling interest 
in utilizing the PI3K/Akt pathway as a biomarker to distinguish highly 
significant, aggressive prostate cancer cases from less aggressive forms 
of the disease. However, it is crucial to acknowledge that the utilization 
of this pathway as a biomarker faces significant challenges, primarily 
due to the intricate nature of the biology in advanced PCa and the 
presence of tumor heterogeneity. 

The overall discussion illustrates the effect of significant variants on 
genes and biological pathways in order to comprehend how our list of 
significant variants can affect the expression or function of genes and 
biological pathways or processes that have a remarkable effect on 
aggressive PCa. Based on the findings from our comprehensive study, it 
is evident that the variants identified in our research, along with the 
genes and pathways they impact, play a significant role in driving the 
progression of aggressive PCa. However, our research was conducted 
with a relatively limited dataset, primarily due to the inherent challenge 
in acquiring datasets for aggressive Prostate Cancer patients. Given that 
our approach is data-driven, expanding the study population would 
indeed be instrumental for future endeavors. The methodology 
employed in our study is based on a hypothesis testing paradigm, 
facilitating the identification of significant variants. However, each 
variant has a comprehensive suite of attributes (e.g., location, conser
vation, epigenetics) which can provide crucial insights regarding its 
association with a phenotype. Thus, integrating these features alongside 
the hypothesis can offer a more robust prediction on the relevance of 
specific variants to particular traits. These results align with the current 
state of the art and further emphasize the importance of understanding 
the genetic factors and biological mechanisms contributing to the 
development and advancement of aggressive PCa. 

6. Conclusion 

The primary objective of this research was to identify genetic 
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variants that could serve as biomarkers in prostate cancer. To achieve 
this goal, we employed a statistical approach aimed at identifying var
iants present in aggressive PCa samples but absent in non-aggressive PCa 
samples. Based on this hypothesis, we successfully identified four vari
ants that exhibited statistical significance at a 5 % level. Furthermore, 
through the utilization of Over-representation Analysis (ORA), we 
investigated the specific genes and biological pathways influenced by 
these significant variants. The ORA analysis shed light on the impact of 
these variants at the molecular level. Lastly, a comprehensive literature 
review corroborated the significance of our identified outcomes, high
lighting their pivotal role in driving the progression of aggressive PCa. 
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