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The neurovascular unit (NVU) is composed of vascular cells, glia, and neurons

that form the basic component of the blood brain barrier. This intricate structure

rapidly adjusts cerebral blood flow to match the metabolic needs of brain

activity. However, the NVU is exquisitely sensitive to damage and displays

limited repair after a stroke. To effectively treat stroke, it is therefore considered

crucial to both protect and repair the NVU. Mitochondrial calcium (Ca2+) uptake

supports NVU function by buffering Ca2+ and stimulating energy production.

However, excessive mitochondrial Ca2+ uptake causes toxic mitochondrial

Ca2+ overloading that triggers numerous cell death pathways which destroy

the NVU. Mitochondrial damage is one of the earliest pathological events in

stroke. Drugs that preserve mitochondrial integrity and function should therefore

confer profound NVU protection by blocking the initiation of numerous injury

events. We have shown that mitochondrial Ca2+ uptake and efflux in the

brain are mediated by the mitochondrial Ca2+ uniporter complex (MCUcx)

and sodium/Ca2+/lithium exchanger (NCLX), respectively. Moreover, our recent

pharmacological studies have demonstrated that MCUcx inhibition and NCLX

activation suppress ischemic and excitotoxic neuronal cell death by blocking

mitochondrial Ca2+ overloading. These findings suggest that combining MCUcx

inhibition with NCLX activation should markedly protect the NVU. In terms

of promoting NVU repair, nuclear hormone receptor activation is a promising

approach. Retinoid X receptor (RXR) and thyroid hormone receptor (TR) agonists

activate complementary transcriptional programs that stimulate mitochondrial

biogenesis, suppress inflammation, and enhance the production of new vascular

cells, glia, and neurons. RXR and TR agonism should thus further improve the
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clinical benefits of MCUcx inhibition and NCLX activation by increasing NVU

repair. However, drugs that either inhibit the MCUcx, or stimulate the NCLX, or

activate the RXR or TR, suffer from adverse effects caused by undesired actions

on healthy tissues. To overcome this problem, we describe the use of nanoparticle

drug formulations that preferentially target metabolically compromised and

damaged NVUs after an ischemic or hemorrhagic stroke. These nanoparticle-

based approaches have the potential to improve clinical safety and efficacy by

maximizing drug delivery to diseased NVUs and minimizing drug exposure in

healthy brain and peripheral tissues.

KEYWORDS

stroke, mitochondrial calcium uniporter, sodium/calcium/lithium exchanger, retinoid X

receptor, thyroid hormone receptor, neurovascular unit

1. Introduction

Stroke is the third leading cause of death and the tenth major

contributor to disabilities requiring long-term care (Writing Group

et al., 2016). Most strokes (85%) are ischemic and typically caused

by a blood clot that blocks a major artery in the brain (Writing

Group et al., 2016). The remaining strokes (15%) are hemorrhagic

and result from the rupture of cerebral blood vessels (Writing

Group et al., 2016). For those afflicted, their reduced quality of life

and dependence on others also places a heavy burden on our society

and healthcare networks (Anderson et al., 2004; Feigin et al., 2014).

Based on data from a sample of high, middle- and low-income

countries around the world, the annual treatment, rehabilitation,

and indirect costs for stroke have been estimated to exceed $700

billion US dollars (USD) (Feigin et al., 2022). As the population

continues to age, these costs are expected to be over $1 trillion USD

by 2030 (Feigin et al., 2022). The development of drugs that protect

the brain from damage and improve neurological recovery after a

stroke would therefore mitigate a major burden on our society and

heath care systems. The cost of developing a new drug is typically

$10–15 billion USD (Wegener and Rujescu, 2013). Moreover, most

therapeutic candidates for stroke fail only after late-stage clinical

trials have been completed (Cheng et al., 2004; Choi et al., 2014).

This has resulted in the closure of many drug discovery programs

for stroke and a reluctance of pharmaceutical companies to invest

the considerable funds required for the development of stroke

therapeutics.

The NVU is the basic component of the blood brain barrier

(Iadecola, 2004). This intricate structure is comprised of vascular

cells, glia, and neurons that work in unison to rapidly adjust

cerebral blood flow (CBF) in support of the dynamic metabolic

demands imposed by neurotransmission (Muoio et al., 2014;

Longden et al., 2016). Endothelial cells of the NVU form tight

junctions and utilize a wide array of transporters that act as physical

and biochemical barriers to oppose the accumulation of injurious

metabolites and proteins in the brain (Loscher and Potschka,

2005; Iadecola, 2017). NVU to damage by a stroke therefore has

devastating consequences for the brain (Schaeffer and Iadecola,

2021). Furthermore, aging, a risk factor for poor stroke outcomes

(Shin et al., 2022), is known to suppress NVU repair (Cai et al.,

2017). These findings highlight the paramount importance of

preserving and repairing the NVU to effectively treat stroke.

The NVU responds to dynamic metabolic demands required

for increased brain activity depends by rapidly altering CBF. The

phenomenon, known as neurovascular coupling, depends heavily

on mitochondrial Ca2+ uptake to rapidly buffer cytosolic Ca2+

and stimulate energy production in multiple cellular components

of the NVU (Iadecola, 2017). However, this also renders the NVU

highly susceptible to lethal mitochondrial Ca2+ loading (Halestrap,

2006; Duchen, 2012). Understanding how Ca2+ is handled by

mitochondria thus has important therapeutic implications for the

treatment of ischemic and hemorrhagic stroke.

To this end, we have shown that mitochondrial Ca2+ uptake

and efflux in the brain are mediated by the mitochondrial Ca2+

uniporter complex (MCUcx) and sodium/Ca2+/lithium exchanger

(NCLX), respectively (Palty et al., 2010; Nichols et al., 2017).

These important findings led to our recent studies demonstrating

that MCUcx inhibition and NCLX activation potently protect

neurons from ischemic/reperfusion injury (Nichols et al., 2018;

Novorolsky et al., 2020) and excitotoxicity (Rozenfeld et al.,

2022) thought to drive stroke-related brain damage (Choi, 1992;

Eltzschig and Eckle, 2011). Based on these studies, we describe

the combined use of drugs that block the MCUcx and stimulate

the NCLX to protect the NVU after an ischemic or hemorrhagic

stroke. In terms of enhancing NVU repair, drugs that activate

the retinoic acid receptor (RXR) mobilize diverse vascular and

glial cell subtypes that suppress inflammation and rebuild the

NVU (Bi et al., 2010; Evans and Mangelsdorf, 2014; Pouso and

Cairrao, 2022). Remyelination failure that blocks the repair of

damaged white matter tracts is another major obstacle in the

treatment of stroke (Sozmen et al., 2019). In this regard, TR

agonists have been shown to increase functional recovery in animal

models of ischemic and hemorrhagic stroke by stimulating the

differentiation of oligodendrocyte progenitor cells into myelin-

producing oligodendrocytes (Vose et al., 2013; Talhada et al., 2019).

We explain how combining an MCUcx inhibitor and NCLX

activator with RXR and TR agonists should further improve

functional recovery. To maximize the safety and efficacy of this
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combinatory approach, we describe the use of novel nanoparticle

formulations designed to preferentially deliver drugs to brain

tissues that are metabolically compromised or have been recently

damaged by a stroke.

2. Structure and function of the
MCUcx

To appreciate how the MCUcx regulates mitochondrial Ca2+

uptake, it is necessary to understand the structure and function

of the various subunits that comprise the MCUcx. However, it is

not yet clear how these subunits interact to gate the MCUcx. This

problem is complicated by evidence that certain MCUcx subunits

appear to have broad actions on mitochondrial function. We will

therefore only provide a brief overview of this rapidly evolving

topic and recommend several excellent recent reviews that provide

a comprehensive discussion of the functional architecture of the

MCUcx (Boyman et al., 2021; Feno et al., 2021b; Garbincius and

Elrod, 2022).

2.1. Architecture of the MCUcx

Since discovery of the MCU subunit that creates the MCUcx

channel pore (Baughman et al., 2011; Stefani et al., 2011), six

accessory subunits have been identified. These include MCUb,

mitochondrial Ca2+ uptake 1, 2, and 3 (MICU1, MICU2, and

MICU3); essential MCUcx regulator (EMRE), and MCU regulator

1 (MCUR1) (Figure 1A). Three-dimensional structure analysis of

cryogenic microscopy (cryo-EM) images suggests that the MCU

creates the channel pore by forming a homo-oligomer of four

MCU subunits (Figure 1A; Baradaran et al., 2018; Fan et al., 2018;

Nguyen et al., 2018; Yoo et al., 2018). Each MCU subunit has two

coiled coil domains and two transmembrane domains separated by

a short hydrophilic acid linker composed of a DIME motif (D-X-

X-E, where X indicates hydrophobic residues) (Baughman et al.,

2011; Stefani et al., 2011; Cao et al., 2017). The carboxylate groups

of this DIMEmotif, strategically located on the pore entrance of the

second transmembrane domain of the MCU, appear to mediate the

highly selective gating of Ca2+ by the MCUcx (Oxenoid et al., 2016;

Cao et al., 2017; Yoo et al., 2018). MCUb acts an inhibitory subunit

that reduces Ca2+ conductance by displacing an MCU subunit

from the channel pore (Figure 1B; Raffaello et al., 2013; Lambert

et al., 2019). EMRE, found only in metazoans, is a protein with a

single transmembrane domain (Sancak et al., 2013; Kovacs-Bogdan

et al., 2014). In brain, the majority of MCU tetramers appear to

associate with two EMREs (Watanabe et al., 2022). Importantly,

EMRE is essential for in vivo MCUcx activity and MCU oligomers

alone are not sufficient for in vivo uniporter activity (Sancak et al.,

2013). MCUR1 acts as a scaffolding protein that facilitates assembly

and activity of the MCUcx (Tomar et al., 2016). Due to the absence

of structural studies, the stoichiometry of the MCUR1 in the

MCUcx is unknown (Garbincius and Elrod, 2022).

MICU1, MICU2, and MICU3 are similar in size and have a

mitochondrial targeting sequence at their amino terminus, and two

canonical Ca2+-binding EF hands (Csordas et al., 2013; Sancak

et al., 2013). MICU1 can form homodimers or heterodimers with

FIGURE 1

Functional architecture of the MCUcx based on structural studies.

(A) Electrostatic interactions between the channel pore and MICU1

(red arrow) block the MCU complex when Ca2+ levels are low.

(B) Elevated Ca2+ levels increase Ca2+ binding to MICU1/MICU2

heterodimers that exposes positively charged amino acids in

MICU1. This strengthens the association of MICU1 with negatively

charged amino acids in EMRE which displaces the MICU1/2 dimer

from the channel pore (white arrow) resulting in increased Ca2+

influx into the matrix (green arrow). Based on recent cryo-EM

studies and size on native gels (∼480 kD), it is likely that the MCUcx

holocomplex consists of two conjoined dimers of the MCU/EMRE

pore which are each associated with a single MICU1/MICU2

heterodimer. (See section “2.1. Architecture of the MCUcx” for

abbreviations and mechanistic details).

MICU2 or MICU3 (Sancak et al., 2013; Wang et al., 2014; Patron

et al., 2019). Based on cryo-EM structures of the MCUcx, it has

been theorized that under low Ca2+ conditions the MCUcx pore

is plugged by an MICU1/MICU1, or MICU1/MICU2 dimer (Fan

et al., 2020; Wu et al., 2020; Zhuo et al., 2021). Electrostatic

interactions between a polybasic sequence (KKKKR) in MICU1
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and an aspartate (D261) residue, present in each of the MCU

subunits, is considered to block the channel pore (Tsai M. F.

et al., 2016; Phillips et al., 2019; Figure 1A). MICU2 lacks these

basic residues and therefore requires dimerization with MICU1 to

associate with theMCUcx (Plovanich et al., 2013; Patron et al., 2014;

Payne et al., 2017). EMRE is thought to act as a bridge between

the MCU subunits and a homodimer of MICU1 or heterodimer of

MICU1 and MICU2 (Sancak et al., 2013; Tsai M. F. et al., 2016).

Under high Ca2+ conditions, Ca2+ binding to MICU1/MICU1,

or MICU1/MICU2 dimers induces a confirmational change that

strengthens the interaction between a polybasic sequence in

MICU1 and the poly-aspartate tail of EMRE (Wang Y. et al., 2019;

Figure 1B). This confirmational change is thought to enhance Ca2+

entry into the matrix by releasing the dimer from the channel

pore (Patron et al., 2014; Payne et al., 2017; Wang Y. et al.,

2019; Figure 1B). The lower affinity of MICU2 than MICU1 for

Ca2+ is considered to enable fine-tuning of MCUcx activity by

MICU1/MICU2 dimers (Kamer et al., 2017).

The validity of this model has been challenged by direct patch

clamp recordings of macroscopic and single MCUcx currents in

mitoplasts (mitochondria stripped of their outer mitochondrial

membrane). In these studies, CRISPR-Cas9 was employed to

knockout MICU1 in mouse embryonic fibroblasts (Garg et al.,

2021). By comparison to wild-type cells, MICU1 knockout cells

showed a reduction in MCUcx activity suggesting that MICU1

potentiates rather than suppressing mitochondrial Ca2+ uptake

(Garg et al., 2021). At odds with this result are studies that indicate

familial mutations resulting in loss of MICU1 function (Logan

et al., 2014; Bhosale et al., 2017; Wilton et al., 2020; Kohlschmidt

et al., 2021) and MICU1 ablation (Mallilankaraman et al., 2012; Liu

H. et al., 2016; Singh et al., 2022) render cells more susceptible to

mitochondrial Ca2+ overloading.

One possibility that may account for these discrepant findings

is the reduction of EMRE levels seen in MICU1 knockout cells

(Garg et al., 2021; Tsai et al., 2023). Since EMRE depletion

inhibits MCUcx activity (Sancak et al., 2013; Liu J. C. et al., 2016),

suppressed mitochondrial Ca2+ uptake in MICU1 knockout cells

may reflect a loss of EMRE rather than MICU1. In support of

this hypothesis, EMRE rescue restores MCUcx activity in MICU1

knockout cells (Tsai et al., 2023). In further support for occlusion

of the MCUcx pore by MICU1, ion permeation through this

uniporter is suppressed by MICU1 under divalent-free conditions

(Rodríguez-Prados et al., 2023).

2.2. MICU1 regulates cristae junction
dynamics and spatially anchors the
MCUcx

The inner mitochondrial membrane (IMM) is composed of

two compartments known as cristae and the inner boundary

membrane (IBM) (Palade, 1953). Cristae are folds that protrude

into the matrix while the IBM extends parallel to the length

of the outer mitochondrial membrane (OMM) (Perkins et al.,

1997). Narrow tubular-like structures, called crista junctions (CJs),

connect cristae with the IBM (Perkins et al., 1997). Complexes

I-IV of the electron respiratory chain are positioned along the

lateral walls of cristae (Vogel et al., 2006; Wilkens et al., 2013)

while dimers of ATP synthase (Complex V) are arranged in

rows at the edge of cristae (Dudkina et al., 2005; Davies et al.,

2011; Figure 2A). CJs are kept in a closed state by oligomers of

the inner-membrane dynamin-like GTPase, OPA1 (Frezza et al.,

2006) and the mitochondrial contact site and cristae organizing

system (MICOS complex) (John et al., 2005; Rabl et al., 2009;

Barrera et al., 2016). This arrangement enables each crista to

function as an independent bioenergetic unit that prevents the

failure of one from propagating dysfunction to others (Wolf et al.,

2019).

Depolarization of neurons by the activation of ionotropic

glutamatergic receptors (N-methyl-D-aspartate, NMDA) on

the cell surface triggers Ca2+ influx into the cytosol (Hansen

et al., 2021; Figure 2A). Ca2+ then enters the mitochondrial

intramembrane space (IMS) via the voltage-dependent anion-

selective channel (VDAC) (Shoshan-Barmatz et al., 2010).

However, until recently, how MCU, EMRE, and MICU1 spatially

interact to regulate the subsequent rise in mitochondrial Ca2+

uptake and energy production has been unclear. In this respect,

the combined use of super-resolution structured illumination

microscopy, electron microscopy and sub-mitochondrial Ca2+

recordings have yielded important insights. These techniques have

permitted changes in the mitochondrial localization of MCU,

EMRE, and MICU1 to be monitored under basal and elevated

Ca2+ conditions in living cells. Studies that have employed

them indicate during resting conditions, MICU1 exists as a

hexamer which stabilizes the CJ by interactions with OPA1 and

MICOS (Gottschalk et al., 2019; Tomar et al., 2019; Figure 2A).

Under resting conditions, MCU and EMRE subunits, located

throughout the IMM, mediate Ca2+ entry into the matrix

(Gottschalk et al., 2019, 2022). With a physiological elevation of

cytosolic Ca2+ concentrations, the subsequent rise of IMS Ca2+

levels triggers dissociation of the MICU1 hexamer resulting in

opening of the CJ (Gottschalk et al., 2019, 2022; Figure 2B).

MICU1 then forms homodimers or heterodimers with MICU2

that recruit MCU and EMRE subunits from the cristae to the

IBM that regulate MCUcx activity (Gottschalk et al., 2019,

2022).

In Drosophila, a loss-of-function mutation in the MICU1

caused lethality that was not mitigated by a loss-of-function

mutation in the MCU which blocks mitochondrial Ca2+ uptake

(Tufi et al., 2019). Furthermore, like OPA1 deletion and mutations

that impair MICOS assembly (Olichon et al., 2003; Guarani

et al., 2015; Zhou et al., 2018), MICU1 knockdown alters cristae

morphology (Gottschalk et al., 2019, 2022). These findings,

indicating that MICU1 influences cell survival by a non-MCUcx

mechanism, led to the identification of MCUcx-independent

MICU1 interactors. Coimmunoprecipitation assays using wild-

type MICU1 and various MICU1 mutants demonstared that the

C terminal domain of MICU1 directly interacts with the MICOS

components MIC60 and CHCHD2 in an MCUcx-independent

manner (Tomar et al., 2023). Measurements of mitotchondrial

structure in MICU1 null cells revealed an increase in both the

inter-CJ distance and CJ width relative to wild-type cells (Tomar

et al., 2023). As a result, the regular spacing of the mitochondrial

membrane potential (9m) in peaks along the cristae was lost.

This suggests that disruption of the CJ in MICU1 knockout cells
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FIGURE 2

Dynamic regulation of mitochondrial Ca2+ handling and respiration

by MICU1 and OPA1 in cristae. (A) Glutamate (blue) activates the

NMDA receptor (NMDAR) resulting in Ca2+ influx. Ca2+ then

crosses the OMM via VDAC. Under basal conditions, MCU and EMRE

subunits confer MCUcx activity that transports Ca2+ into the matrix.

Ca2+ allosterically activates dehydrogenases in the tricarboxylic

acid cycle (TCA) that generate reducing equivalents which drive

proton (H+) pumping by Complexes I, III, and IV (large green arrow).

ATP synthase harvests this proton gradient to manufacture ATP.

MICOS, OPA1, and MICU1 hexamers located at the cristae junction

(CJ) oppose the movements of Ca2+ into and H+ out (small green

line) of the cristae lumen. (B) Increased glutamate release enhances

NMDAR activation resulting in elevated Ca2+ entry into the cytosol.

VDAC then transports greater amounts of Ca2+ across the OMM.

(Continued)

FIGURE 2 (Continued)

The resultant elevation of Ca2+ in the intramembrane space

triggers the dissociation of MICU1 subunits that recruit MCU and

EMRE subunits from the cristae. (C) Pathological depletion of MICU1

opens the CJ allowing Ca2+ to enter (red arrow) and cytochrome c

and H+ to escape (large green arrow) the cristae lumen. This

uncouples the electron transport chain resulting in reduced ATP

synthesis, increased ROS production and cytochrome c-induced

cell death. Adapted from Gottschalk et al., 2022. (See section “2.2.

MICU1 regulates cristae junction dynamics and spatially anchors the

MCUcx” for abbreviations and mechanistic details).

allows protons to escape resulting in depolarization of the 9m

(Figure 2C). Opening of the CJ was then shown to promote cell

death by enabling release of the pro-apoptotic factor cytochtome

c from the cristae (Tomar et al., 2023; Figure 2C). MCU deletion

in MICU1 knockout cells did not suppress cytochrome c release

triggered by the pro-apoptotic protein tBid (Tomar et al., 2023).

This suggests that MICU1 deletion does not promote cell death by

increasing mitochondrial Ca2+ uptake. Depolarization of the 9m

disrupts electron transport resulting in energy failure and excessive

ROS production suggesting that these mechanisms may contribute

to cell death by MICU1 loss (Murphy, 2009; Figure 2C). Assuming

that Ca2+ concentrations are lower in cristae than the IMS, CJ

opening in cells lacking MICU1 may raise Ca2+ levels in crisate

(Figure 2C; Gottschalk et al., 2019). However, to determine if this

is the case and whether Ca2+ concentrations in the IMS regulate

mitochondrial ultrastructure by modulating cristae organization

(Gottschalk et al., 2018, 2019), the development specific Ca2+

sensors for the MICOS complex or CJ are required (Tomar et al.,

2023).

2.3. The MICU3 subunit potently elevates
mitochondrial Ca2+ uptake

MICU3 is expressed predominantly in brain and skeletal

muscle (Kovacs-Bogdan et al., 2014; Oxenoid et al., 2016). MICU3

acts as a highly potent stimulator of MCUcx activity (Patron

et al., 2019). The greater affinity of MICU3 than MICU2 for

Ca2+ enables MICU1/3 dimers to become activated at lower

cytosolic Ca2+ concentrations than MICU1/MICU1, or MICU1/2

dimers (Patron et al., 2014, 2019; Kamer et al., 2017). This

supports the high metabolic needs of neurons by allowing small

and fast increases of cytosolic Ca2+ concentrations associated

with enhanced glutamatergic signaling to increase MCUcx activity

(Patron et al., 2019; Ashrafi et al., 2020). However, the ability of

MICU3 to lower the Ca2+ threshold for MCUcx activation comes

at a price by increasing the risk of mitochondrial Ca2+ overloading.

This is supported by evidence that MICU3 knockdown protects the

brain from damage in a rat model of hemorrhagic stroke (Wang

et al., 2023) and MICU3 deletion reduces ischemic/reperfusion

injury in the heart (Puente et al., 2020). Since MICU3 increases

mitochondrial Ca2+ uptake by dimerizing with MICU1 (Patron

et al., 2019), drugs that reversibly disrupt the formation of

MICU1/3 dimers may be a useful protective strategy for stroke.
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3. Impact of MCUcx subunit
mutations on the human brain

3.1. Loss-of-function MICU1 mutations
produce abnormal involuntary
movements indicative of manganese
neurotoxicity

Loss-of-function mutations in MICU1 have been linked to

a muscle and brain disorder characterized by muscle weakness,

cognitive deficits, and abnormal involuntary movements including

chorea, tremor, dystonic posturing, and orofacial dyskinesias

(Logan et al., 2014; Bhosale et al., 2017; Mojbafan et al., 2020;

Wilton et al., 2020; Kohlschmidt et al., 2021). Studies performed

using fibroblast and lymphoblasts derived from these patients

indicate that MICU1 deficiency causes a chronic activation of the

MCUcx, even in the presence of low cytosolic Ca2+ concentrations,

resulting in mitochondrial damage (Logan et al., 2014; Bhosale

et al., 2017;Wilton et al., 2020; Kohlschmidt et al., 2021). The recent

generation of neuronal MICU1 knockout mice has confirmed

that impaired MICU1 function causes neurodegeneration (Singh

et al., 2022). Primary cultures of cortical neurons derived from

these mice display greater susceptibility to mitochondrial Ca2+

overloading, mitochondrial permeability transition pore opening,

and excitotoxic cell death relative to wild-type neurons (Singh et al.,

2022). Like MICU1-deficient patients, neuronal MICU1 deficient

mice develop a progressive loss of motor and cognitive function

associated with the degeneration of motor neurons in the spinal

cord and cortex (Singh et al., 2022).

The abnormal involuntary movements produced by familial

MICU1 mutations are remarkably similar to those observed in

individuals suffering from manganese (Mn2+) toxicity (Parmalee

and Aschner, 2016). The globus pallidus is particularly sensitive

to the neurotoxic effects of Mn2+ (Pal et al., 1999). Magnetic

resonance imaging (MRI) has revealed signs of damage in

the globus pallidus of individuals with loss-of-function MICU1

mutations (Logan et al., 2014). In keeping with these observations,

MICU1 ablation sensitizes human cells toMn2+-induced cell death

by increasing mitochondria uptake of this heavy metal (Kamer

et al., 2018; Wettmarshausen et al., 2018). These findings suggest

that mitochondrial overloading with Mn2+, rather than Ca2+, is

responsible for the clinical manifestations of MICU1 mutations.

Interestingly, Mn2+ accumulation in the brain has also been

implicated in Parkinson’s disease, stroke, and Alzheimer’s disease

(Li and Zhang, 2012; Martins et al., 2019) suggesting that MCUcx

inhibitors maybe useful in the treatment of a broad range of

neurodegenerative disorders.

3.2. Mutation of MICU2 causes cognitive
deficits and disrupts mitochondrial
function

A homozygous mutation that truncates MICU2 has been

reported to fully segregate with a neurodevelopmental disorder

in a multiplex consanguineous family (Shamseldin et al., 2017).

Unlike MICU1 deficiency, MICU2 truncation produces cognitive

deficits without motor involvement (Shamseldin et al., 2017).

MRI has revealed bilateral gliosis in parietal periventricular

regions and multiple T2 hyperintensity foci scattered within both

cerebral hemispheres with a subcortical distribution (Shamseldin

et al., 2017). Consistent with intact motor function, no signs

of basal ganglia damaged were reported (Shamseldin et al.,

2017). Skin fibroblasts derived from MICU1- or MICU2-deficient

patients display cytoplasmic Ca2+ overloading during resting

states. However, unlike MICU1 deficiency, MICU2 loss slows

mitochondrial Ca2+ influx (Shamseldin et al., 2017). This

difference may reflect a compensatory increase in NCLX activity

that enhances extrusion of Ca2+ from the mitochondrial matrix

of MICU2 deficient cells (Palty et al., 2010; Bhosale et al., 2017).

In further contrast to the effects of MICU1 deficiency, MICU2

ablation elevates the 19m (Shamseldin et al., 2017). This maybe

due to NCLX activation that increases mitochondrial sodium

(Na+) concentrations. The subsequent induction of Na+/hydrogen

exchange by elevated Na+ concentrations in matrix would thus

increase the 19m by enhancing proton pumping into the IMS

(Bhosale et al., 2017). The reason(s) for these differences between

the effects of MICU1- and MICU2-deficiency are unclear but may

reflect the impact of variations in the tissue distributions of these

subunits (Plovanich et al., 2013).

3.3. Mitochondrial-AAA protease
mutations activate the MCUcx by
blocking the proteolytic degradation of
EMRE

Mutations in subunits of mitochondrial ATPases associated

with diverse cellular activities (mitochondrial-AAA) proteases

cause neurodegeneration in spinocerebellar ataxia type 28,

hereditary spastic paraplegia 7, and spastic ataxia 5 (Casari et al.,

1998; Di et al., 2010; Pierson et al., 2011). Heterozygous deletion

of the Afg3l2 subunit of the mitochondrial-AAA protease in mice

produces a progressive loss of motor coordination accompanied

by the death of Purkinje neurons in the cerebellar cortex. In

these neurons, mitochondria appear swollen and display disrupted

cristae suggestive of mitochondrial Ca2+ overloading (Maltecca

et al., 2009, 2015). Loss of the mitochondrial-AAA protease elevates

mitochondrial Ca2+ uptake that partially mimics the disruption

of MCUcx gatekeeping caused by downregulation of the MICU1

(Konig et al., 2016). This occurs because in the absence of the

mitochondrial-AAA protease, non-assembled EMRE subunits are

no longer degraded resulting in the formation of constitutively

active EMRE-MCU channels (Konig et al., 2016). These findings

account for the similar clinical features produced by MICU1 and

mitochondrial-AAA protease deficiencies.

3.4. Transmembrane BAX Inhibitor Motif
containing protein 5 (TMBIM5) is a
mitochondrial Ca2+/H+ exchanger and
inhibitor of the mitochondrial-AAA
protease

TMBIM5 is a mitochondrial Ca2+/H+ uniporter that utilizes

the high proton gradient generated by the 9m to power
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Ca2+/H+ exchange (Austin et al., 2022; Patron et al., 2022). This

mitochondrial Ca2+/H+ exchanger maintains cell survival and

respiration by stimulating mitochondrial Ca2+ efflux and limiting

hyperpolarization of the 9m (Patron et al., 2022). Under normal

conditions, TMBIM5 blocks mitochondrial-AAA protease activity

(Patron et al., 2022). This maintains respiration by preventing the

premature degradation of unassembled or damaged respiratory

chain subunits. However, persistent hyperpolarization of the 9m

renders TMBIM5 susceptible to proteolysis by mitochondrial-AAA

protease. The subsequent enhancement of mitochondrial-AAA

protease activity results in the degradation of multiple Complex I

subunits to limit injurious ROS over-production in hyperpolarized

mitochondria (Patron et al., 2022). The physiological importance

of TMBIM5 has been demonstrated by increased embryonic

or perinatal mortality and skeletal myopathy in mice lacking

a region critical for the activity of this Ca2+/H+ exchange

(Zhang et al., 2022).

4. Contrasting effects of global and
conditional MCU ablation on
resistance to ischemic/reperfusion
injury

4.1. Global MCU ablation fails to protect
the heart from ischemic/reperfusion
injury

Identification of the MCU has made it possible to study

the effects of MCU ablation in mice. In keeping with a critical

physiological role of the MCU, global deletion of the MCU is

lethal in C57/BL6 mice at E11.5-13.5, possibly because of cardiac

failure (Pan et al., 2013; Murphy et al., 2014). By crossing different

strains of mice to obtain offspring with a mixed genetic background

it has been possible to generate MCU nulls (Pan et al., 2013).

As expected, mitochondrial Ca2+ uptake is markedly suppressed

in skeletal muscle derived from MCU nulls (Pan et al., 2013).

However, global MCU ablation does not protect the heart from

ischemic/reperfusion injury considered to be mediated by excessive

mitochondrial Ca2+ uptake (Pan et al., 2013).

4.2. Global MCU ablation causes a switch
from oxidative phosphorylation to
glycolysis that lowers resistance to
ischemic/reperfusion brain injury

We have also shown that mitochondrial Ca2+ uptake is

suppressed in mitochondria isolated from the brains of MCU

nulls (Nichols et al., 2017). However, global MCU ablation failed

to preserve mitochondrial function in cortical neuron cultures

subjected to a lethal period of oxygen glucose deprivation (OGD),

an in vitro model of ischemic/reperfusion brain damage (Nichols

et al., 2017). In the case of hypoxic/ischemic brain damage,

we also found that wild-type littermates and MCU null mice

displayed comparable sensorimotor deficits, mitochondrial injury

in CA1 hippocampal neurons and neuronal damage in the striatum,

hippocampus, and cortex (Nichols et al., 2017). Interestingly,

global MCU ablation blocked the protective effects of hypoxic

preconditioning. Unlike wild-type mice, hypoxic preconditioning

failed to reduce sensorimotor deficits and neuronal damage in

MCU nulls subjected to hypoxic/ischemic brain injury (Nichols

et al., 2017). Examination of mitochondrial function and glycolysis

in respiring cortical neuron cultures derived from wild-type and

MCU null mice revealed a switch from oxidative phosphorylation

to glycolysis for energy production in MCU nulls (Nichols et al.,

2017). Relative to wild-type cortical neurons, energetic stress

enhanced glycolysis and depressed Complex I activity in MCU null

cortical neurons. Following transient hypoxia/ischemia, forebrain

levels of the reduced form of nicotinamide adenine dinucleotide

(NADH) were decreased more in MCU nulls than wild-type

mice suggesting that increased glycolytic consumption of NADH

suppressed Complex I activity. Compared to wild-type cortical

neurons, pyruvate dehydrogenase was hyper-phosphorylated in

MCU null neurons at several sites that lower the supply of

substrates for the tricarboxylic acid cycle. However, the elevation

of cytosolic Ca2+ with glutamate or ionomycin decreased pyruvate

dehydrogenase phosphorylation in MCU null neurons suggesting

the use of alternative mitochondrial Ca2+ transport. Relative to

wild-type mice subjected to hypoxic preconditioning, untreated

MCU nulls showed similar increases of Ca2+ handling genes

in the hippocampus. Alternative Ca2+ handling mechanisms

that compensate for lost mitochondrial Ca2+ uptake may thus

compromise resistance to hypoxic/ischemic brain injury and

disrupt hypoxic preconditioning in MCU nulls (Nichols et al.,

2017).

4.3. Conditional MCU ablation at
adulthood reduces ischemic/reperfusion
damage in the heart and brain

Unlike constitutive (global) MCU ablation, inducible MCU

deletion in cardiac myocytes at maturity protected the heart

from ischemic/reperfusion injury (Kwong et al., 2015; Luongo

et al., 2015). These differences may be explained by upregulation

of the receptor-interacting protein 3 kinase death pathway in

global MCU nulls (Parks et al., 2019). To examine if the

MCU is also involved in hypoxic/ischemic brain injury, we

generated conditional knockouts in which the MCU was selectively

deleted in Thy1-expressing neurons at maturity. Relative to Thy1

genetic controls, hypoxic/ischemic-induced sensorimotor deficits,

forebrain neuron loss and mitochondrial damage were decreased

in these Thy1-MCU deficient mice (Nichols et al., 2018). MCU

knockdown by siRNA-induced silencing in cortical neuron cultures

also reduced cell death and mitochondrial respiratory deficits

by a lethal period of OGD (Nichols et al., 2018). Importantly,

MCU silencing did not produce metabolic abnormalities observed

previously in cortical neuron cultures derived from global MCU

nulls (Nichols et al., 2017, 2018). These findings indicate that

metabolic adaptations that occur during neurodevelopment render

global MCU nulls susceptible to hypoxic/ischemic brain injury.

Furthermore, they suggest that MCU inhibitors are most likely

Frontiers in Cellular Neuroscience 07 frontiersin.org



Novorolsky et al. 10.3389/fncel.2023.1226630

to have greatest therapeutic benefit for the acute management of

ischemic/reperfusion brain injury.

5. Structure and function of the
sodium/Ca2+/lithium exchanger
(NCLX)

We have shown that the NCLX mediates the extrusion of Ca2+

from mitochondria (Palty et al., 2010) and identified drugs that

oppose injurious mitochondrial Ca2+ overloading in neurons by

increasing NCLX activity (Rozenfeld et al., 2022). To appreciate

how the NCLX can be targeted to enhance mitochondrial Ca2+

efflux, it is necessary to describe the structural and functional

features of this Na+/Ca2+ exchanger.

5.1. Functional architecture of the NCLX

The mitochondrion is not only the energy center but also

the Ca2+ signaling hub of the cell. As described in the previous

sections, Ca2+ flows into the mitochondria via the MCUcx. Ca
2+

is then pumped out mostly by a Na+/Ca2+ exchanger (Stefani

et al., 2016). The activity of themitochondrial Na+/Ca2+ exchanger

was discovered in 1974 (Carafoli et al., 1974), but its molecular

identity was not resolved until 2010 and found to be linked to

the NCLX gene, a member of the Na+/Ca2+ exchanger (NCX)

superfamily (Palty et al., 2010). Phylogenetic analysis shows that

NCLX is a single member of a distinct and early branch in the

NCX superfamily (Lytton, 2007). The 3-D structure of NCLX is

unresolved. However molecular modeling of the NCLX fitted to

the structure of the bacterial NCX homologue (NCX-MJ) shows

striking conservation of the catalytic site and overlap of the Na+

and Ca2+ transport sites in the α1 and α2 domains (Figure 3A).

Nevertheless, there are important functional differences between

these domains for the NCLX and the rest of the NCX family.

Most notably, NCXmembers effectively discriminate between Na+

and Li+ but NCLX transports Li+ and Na+ in exchange for Ca2+

(Khananshvili, 2017). The latter property was essential for the

molecular identification of NCLX. Moreover, recent studies have

mapped the residues of NCLX that facilitates Li+ transport (Roy

et al., 2017).

Another uncertainty regarding the NCLX is the stoichiometry

of Na+ and Ca2+ transported by this exchanger. NCX members

mediate the electrogenic exchange of 3–4 Na+ for 1 Ca2+ and

electrophysiological as well as kinetic studies have suggested that

NCLX shares the same cation stoichiometry (Islam et al., 2020;

Figure 3A). However, recent studies based on NCLX NCX-MJ

chimeras suggest an electroneutral 2 Na+/Ca2+ exchange ratio

(Giladi et al., 2022). This difference in stoichiometry has important

physiological implications because it determines the mitochondrial

Na+ and Ca2+ gradient driven by NCLX. Further studies are

required to resolve this issue.

Another important difference between NCX and NCLX is

the structure and function of the regulatory loop joining the

α1 and α2 catalytic domains. The regulatory loop of NCX,

particularly NCX1 harbors an allosteric Ca2+ binding site

FIGURE 3

Representative model of the NCLX showing the regulatory domains

and sites. (A) The NCLX regulatory loop is located between the two

catalytic α1 and α2 domains. NCLX has a 9m sensing allosteric site

as well as a PKA-dependent phosphorylation site Ser258. (B) The

9m provides the driving force for the electrogenic transport of

three Na+ ions for one Ca2+ ion. Phosphorylation of Ser258 by PKA

increases NCLX activity. (See section “5.1. Functional architecture of

the NCLX” for abbreviations and mechanistic details).

(Khananshvili, 2017). Instead, the NCLX regulatory loop contains

several phosphorylation sites notably protein kinase A (PKA) and

Ca2+/calmodulin-dependent kinase 2 sites that control NCLX

activity (Katoshevski et al., 2022). The PKA site is also controlled

by other players most notably the mitochondrial phosphodiesterase

2 (PDE2) that by controlling mitochondrial cyclic adenosine

monophosphate (cAMP) levels regulates NCLX activity through its

PKA site (Rozenfeld et al., 2022; Figure 3B). In addition, NCLX

regulatory domain contains a cluster of positively charged residues

that may form a membrane crossing helix which might enter the

membrane and looks strikingly like a channel voltage sensor (Kostic

et al., 2018). Studies monitoring NCLX activity under varying
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mitochondrial membrane potentials suggest that this site senses the

9m and accordingly tunes NCLX activity.

6. Pharmacological strategies to
protect and repair the NVU

The NVU is an intricate structure comprised of vascular

cells (smooth muscle cells, endothelial cells, and pericytes), glia

(astrocytes, oligodendrocytes, and microglia), and neurons that

communicate with each other to regulate CBF (Iadecola, 2004;

Kugler et al., 2021). As cerebral blood vessels plunge deeper into

the brain to become capillaries, smooth muscle cells are lost

while pericytes are gained (Armulik et al., 2010; Sweeney et al.,

2016; Figure 4). Computational analysis of cerebral perfusion

and oxygen supply suggests that the capillary bed is the largest

contributor to hydraulic resistance in the brain (Gould et al.,

2017). The fine tuning of capillary diameter therefore enables

precise local control of CBF (Hartmann et al., 2021). The bulk

of metabolite and gas exchange between brain cells and the

blood also occurs in the capillary bed (Jespersen and Østergaard,

2012). Furthermore, capillaries are a major source of neurotrophic

signals that maintain neuronal health (Nikolakopoulou et al., 2019).

Lastly, capillaries sense elevated extracellular potassium levels

associated with increased neuronal activity and respond by sending

a retrograde signal that dilates arterioles resulting in enhanced

CBF (Longden et al., 2017). However, the delicate cytoarchitecture

of capillaries is easily damaged by a stroke but not so easily

repaired, especially in the elderly (Chen et al., 2010; Iadecola, 2013;

Mastorakos et al., 2021). For these reasons, we will focus on the

structure and function of capillary NVUs and the importance of

mitochondrial fidelity for NVU function and integrity.Wewill then

discuss the potential advantages of targeting the MCUcx and NCLX

to protect the NVU, and RXR activation to repair the NVU after a

hemorrhagic or ischemic stroke. For a comprehensive description

of the structure and function of the NVU in the healthy brain and

the deleterious effects of a stroke on NVU integrity and function,

we recommend several outstanding reviews of these complex topics

(Iadecola, 2017; McConnell et al., 2017; Kaplan et al., 2020).

6.1. Structure and function of the NVU

Endothelial cells form the wall of cerebral blood vessels

(Iadecola, 2004). Tight junctions between endothelial cells create

a physical barrier that impedes the paracellular diffusion of ions,

macromolecules, and other polar solutes (Stamatovic et al., 2008).

Endothelial cells also act as a biochemical barrier by selectively

transporting nutrients into the brain from the blood and exporting

solutes and metabolite waste products from the brain into the

blood. This is achieved by transporters, metabolite-degrading

enzymes, receptors, ion channels, and ion transporters situated

on the luminal and/or abluminal membranes of endothelial cells

(Loscher and Potschka, 2005; Iadecola, 2017). Endothelial cells

also secrete a rich repertoire of trophic factors that sustain and

repair the NVU (Shen et al., 2004; Goldman and Chen, 2011).

These dynamic cells play a key role in neurovascular coupling, a

phenomenon in which increased neuronal activity enhances CBF

(Iadecola, 2017). Increased neuronal activity elevates extracellular

potassium concentrations that are sensed by endothelial cells.

The increased entry of potassium via capillary endothelial cell

inward-rectifier potassium (KIR2.1) channels produces a rapidly

propagating retrograde hyperpolarization that causes upstream

arteriolar dilation thus increasing blood flow into the capillary bed

(Longden et al., 2017).

Pericytes are located within the endothelial basement

membrane that surrounds blood vessels (Winkler et al., 2011).

This positions pericytes between endothelial cells, astrocytes, and

neurons thus allowing them to receive signals from these adjacent

cells and mount responses essential for proper NVU function

(Sweeney et al., 2016). Pericytes have diverse roles that include

vessel maintenance and permeability, angiogenesis, clearance of

cellular debris, immune cell entry, and CBF regulation (Daneman

et al., 2010b; Attwell et al., 2016; Sweeney et al., 2016). These mural

cells are also critical for formation of the NVU by inducing the

polarization of astroglial endfeet around cerebral blood vessels

(Armulik et al., 2010). Pericytes have also been reported to adopt a

stem cell-like phenotype that may enable them to differentiate into

vascular and neural cells which might reconstruct NVUs damaged

by a stroke (Nakagomi et al., 2015; Nakata et al., 2017; Sun et al.,

2020).

Astrocytes are situated between endothelial cells and neurons

(Abbott et al., 2006). This strategic location allows them to rapidly

adjust CBF in response to changes in synaptic activity and neuronal

metabolism (Gordon et al., 2007; Petzold and Murthy, 2011;

Muoio et al., 2014). Astrocytes extend endfoot processes that cover

the entire abluminal surface of cerebral blood vessels (Mathiisen

et al., 2010). These processes display high levels of aquaporin-

4, a water channel that is thought to enable waste clearance by

the glymphatic system (Díaz-Castro et al., 2023). During brain

development, astrocyte endfeet release growth factors that induce

the formation of tight junctions and increase the production of

transporter proteins in endothelial cells (Alvarez et al., 2013). This

establishes bidirectional signaling between astrocyte endfeet and

endothelial cells necessary for the regulation of cerebral vascular

function and maintenance of NVU integrity (Gordon et al., 2007;

Petzold and Murthy, 2011; Muoio et al., 2014).

Nerve terminals in the cerebral cortex, derived from locus

coeruleus axons, are positioned very close to (about 1.3 µm)

capillaries (Paspalas and Papadopoulos, 1996; Cohen et al.,

1997). Norepinephrine release from these axons produces a tonic

increase in vascular resistance by stimulating the contraction of

pericytes (Giorgi et al., 2020; Korte et al., 2023). This allows

elevated neuronal activity to increase CBF by relaxing pericytes

(Giorgi et al., 2020; Korte et al., 2023). Interneurons play a

key role in neurovascular coupling. They extend processes that

terminate beside astrocytes and release vasoactive substances such

as vasoactive intestinal peptide and nitric oxide that increase

vascular diameter and somatostatin that reduces vascular diameter

(Cauli et al., 2004). Optogenetic studies have shown that activation

of these interneurons increases local CBF (Anenberg et al., 2015;

Krogsgaard et al., 2023).Within the hippocampus, pericyte-covered

capillaries are situated near pyramidal neurons (about 8 µm)

(Lovick et al., 1999) and are therefore close enough to readily

receive signals directly from these neurons (Lecrux and Hamel,

2011). Indeed, optogenetic studies have demonstrated excitatory

neuron activation increases local blood flow (Lee et al., 2010;
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FIGURE 4

Major structural and cellular components of the capillary NVU. Endothelial cells that line the capillary lumen form tight junctions which oppose the

movement metabolites and proteins into the brain. Pericytes located in the endothelial basement membrane control capillary diameter. Astrocyte

endfeet that surround the parenchymal basement sense increases in neuronal activity and respond by releasing vasoactive factors. Nerve terminals,

found in proximity with astrocyte endfeet, release neurotransmitters that influence capillary diameter. Oligodendrocyte progenitor cells interact with

cellular components of the NVU to regulate the formation and function of capillaries. Microglia send processes into the NVU that allow them to

communicate with pericytes and endothelial cells. (See section “6.1. Structure and function of the NVU” for details).

Mester et al., 2019). Pyramidal neurons promote neurovascular

coupling by releasing prostaglandins that relax capillaries by

activating prostaglandin EP2 and EP4 receptors located on

pericytes (Lacroix et al., 2015). However, it is also possible that

glutamate release from excitatory neurons may contribute to

neurovascular coupling by activating ionotropic and metabotropic

glutamate receptors located on astrocytes. In this case, the

resultant elevation of intracellular Ca2+ concentrations are thought

to activate Ca2+-sensitive phospholipase A2 resulting in the

increased production and release of prostaglandins that dilate the

cerebrovasculature by acting on vascular smooth muscle cells and

pericytes (Haydon and Carmignoto, 2006; MacVicar and Newman,

2015; Mishra et al., 2016). Neurovascular coupling is therefore

mediated by a complex interplay between different neuronal

subtypes with endothelial cells, pericytes, and astrocytes (Iadecola,

2017).

Oligodendrocyte progenitor cells (OPCs) differentiate into

myelin-producing oligodendrocytes essential for functional

recovery after a demyelinating injury (Franklin and Ffrench-

Constant, 2008). However, it is now clear that OPCs share close

physical and signaling interactions with brain capillaries that

strongly influence myelination and angiogenesis (Kisler et al.,

2021). As the brain matures, OPCs use the immature vasculature

as a platform, allowing them to move along and jump between

blood vessels. Genetic ablation of the G-coupled adhesion receptor

ADGRA2/Gpr124, necessary for vascular sprouting, blocks OPC

migration resulting in a buildup of OPCs within the ventral

spinal cord and brain (Tsai H. H. et al., 2016). OPC migration is

mediated by the chemokine receptor CXCR4 on OPCs and the

ligand for this receptor CxCl12 is secreted by endothelial cells

(Tsai H. H. et al., 2016). The movement of OPCs along blood

vessels is also supported by the release of vascular endothelial

growth factor from endothelial cells (Hayakawa et al., 2011). The

development of astrocyte endfeet promotes the detachment OPCs

from the cerebrovasculature resulting in their differentiation into

oligodendrocytes (Su et al., 2023). Hypoxia in OPCs blocks their

differentiation thus providing amechanism to ensure that sufficient

vascularization occurs to meet the high metabolic demands of

myelination (Yuen et al., 2014). Finally, OPCs also support

development of the cerebrovasculature. Genetic depletion of OPCs

severely reduces vascular ramifications and connections in the

cortex (Minocha et al., 2015). These findings elegantly demonstrate

the importance of reciprocal interactions between OPCs and the

cerebrovasculature for the development and integrity of the NVU.

Microglia are resident macrophages in the brain (Ransohoff

and Perry, 2009). Approximately one third of all microglial are

capillary-associated microglia in the adult mouse brain (Bisht

et al., 2021). During development in the mouse and human brain,

microglia migrate along the vasculature and become stationary

at adulthood in the areas of large capillaries lacking astrocyte

endfeet (Mondo et al., 2020). Unlike perivascular microglia that are

situated within the parenchymal basement membrane, capillary-

associated microglia are located outside of the parenchymal

basement membrane (Haruwaka et al., 2019; Mondo et al., 2020;

Bisht et al., 2021). However, microglia also extend processes that

contact capillary pericytes, endothelial cells, and nerve terminals

(Császár et al., 2022). This close association with endothelial cells is

thought to allow microglia to maintain BBB integrity by supplying

tight-junction proteins (Halder and Milner, 2019; Haruwaka et al.,

2019). The purinergic P2Y12 receptor on the cell surface of

microglia enables them to participate in neurovascular coupling.

Enhanced neuronal activity triggers the release of ATP from nerve
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terminals that activates microglial P2Y12 receptors (Eyo et al., 2014;

Milior et al., 2020). Microglia then respond by releasing vasoactive

substances and inflammatory mediators, potentially nitric oxide,

prostaglandins, IL-1β, TNF-α, or ROS (Ransohoff and Perry, 2009),

that influence the activity of pericytes and endothelial cells (Császár

et al., 2022). In keeping with an important role for microglia in

neurovascular coupling, genetic ablation of the P2Y12 receptor or

microglial depletion impairs vasodilative responses to increased

brain activity (Bisht et al., 2021; Császár et al., 2022). Microglial

activation after a stroke damages the NVU by their excessive release

of pro-inflammatory mediators (Ronaldson and Davis, 2020).

Conversely, the polarization of microglia from a pro-inflammatory

M1 to an anti-inflammatory M2 phenotype resolves inflammation,

protects the NVU, and promotes the differentiation of progenitor

cells into new neural and vascular cells which reconstruct the NVU

(Ronaldson and Davis, 2020).

6.2. Mitochondrial fidelity is crucial for
NVU function and integrity

Mitochondria play a critical role in supporting NVU function

and integrity by buffering cytosolic Ca2+, producing ATP, and

synthesizing lipids in vast amounts (Reichard and Asosingh, 2019;

An et al., 2021). Myelin synthesis is one of the most energetically

expensive processes in the brain that requires mitochondrial

biogenesis to produce massive amounts of energy and fatty acids

(Harris and Attwell, 2012). Inhibition of Complex I activity

with a very low concentration of rotenone (1 nM) that does

not reduce OPC viability completely blocks OPC differentiation

(Schoenfeld et al., 2010). Genetic ablation of the Complex I

subunit NDUFS2 (Cabello-Rivera et al., 2019) and mitochondrial

transcription factor A (Beckervordersandforth et al., 2017) also

inhibit OPC differentiation. Indeed, myelination deficits and

oligodendrocyte loss are common features of mutations that cause

mitochondrial dysfunction in humans (Ohara et al., 1988; Zuchner

et al., 2004; Kovacs et al., 2005; Lax et al., 2012). In addition to

impairing myelination, mitochondrial dysfunction, resulting from

an excessive rise in intracellular Ca2+ concentrations caused by

the over-activation of NMDA receptors, is thought to precipitate

white matter damage in hemorrhagic and ischemic stroke (Wang

Y. et al., 2016). Indeed, MCU knockdown reduces NMDA-induced

excitotoxicity (Qiu et al., 2013).

The astrocyte endfoot is laden with mitochondria that rapidly

buffer the large cytosolic Ca2+ waves and increase ATP synthesis in

support of the massive metabolic requirements for neurovascular

coupling (Mulligan and MacVicar, 2004; Grubb et al., 2021; Aten

et al., 2022). The importance of mitochondrial function in the

astrocyte endfoot is further indicated by a recent study that

examined the distribution of glycolytic enzymes and mitochondrial

proteins in the cell bodies and endfeet of astrocytes (Stokum et al.,

2021). Unlike the cell body that is enriched with glycolytic enzymes,

numerous respiratory proteins and at least four subunits of the

MCUcx (MCUR1, MCU, MICU1, and MICU2) are preferentially

located in the astrocyte endfoot (Stokum et al., 2021). The astrocyte

endfoot therefore appears to employ the MCUcx for neurovascular

coupling.

Capillary constriction starts about 1 h after an episode of

transient cerebral ischemia (Yemisci et al., 2009; Gursoy-Ozdemir

et al., 2012). This increases the risk of brain injury by reducing

CBF (Engedal et al., 2018). Ablation of pericytes prevents capillary

constriction suggesting that these mural cells mediate reduced CBF

after an ischemic stroke (Hartmann et al., 2021). Mitochondrial

Ca2+ uptake constricts capillaries by increasing ROS production

(Hartmann et al., 2021). These findings suggest that the MCUcx

mediates ischemia-induced capillary constriction by pericytes.

Endothelial cell damage is a prominent feature of ischemic

and hemorrhagic brain injury that may also impair CBF by

compromising capillary integrity (Zille et al., 2019; Solár et al.,

2022). The activation of inducible-nitric oxide synthase in

endothelial cells, astrocytes, and microglia by cerebral ischemia

produces a massive increase in nitric oxide (Chen Z. Q. et al.,

2017). This causes the excessive nitrosylation of mitochondrial

proteins and DNA that damages the NVU (Chen Z. Q. et al.,

2017). Mitochondrial Ca2+ uptake increases the production of

nitric oxide by endothelial cells (Dedkova and Blatter, 2005).

This finding coupled with evidence of reduced mitochondrial

Ca2+ uptake and energy production in endothelial cell-specific

MCUR1 nulls (Tomar et al., 2016) and vascular dysfunction in

mice lacking MICU1 or MICU2 (Hoffman et al., 2013; Bick

et al., 2017) suggests that excessive MCUcx activity in endothelial

cells may contribute to impaired CBF and NVU damage in

stroke.

The importance of mitochondria and Ca2+ signaling in

regulating microglial function is well appreciated (Orihuela et al.,

2016; Umpierre and Wu, 2021). The NLRP3 inflammasome is an

inflammatory complex that increases production of the injurious

pro-inflammatory cytokine IL-1β by microglia and macrophages

after an experimental ischemic stroke (Hoffman and Broderick,

2016; Franke et al., 2021). Increased MCUcx activity drives

activation of the NLRP3 inflammasome (Triantafilou et al., 2013;

Dong et al., 2022). Conversely, MCUcx inhibition by increased

MCUb expression promotes the polarization of macrophages from

a pro-inflammatory M1 to an anti-inflammatory M2 phenotype

(Feno et al., 2021a). Lastly, MCU ablation restores the phagocytic

activity of macrophages with impaired mitochondrial fission

(Wang et al., 2017). MCUcx inhibition may thus reduce injurious

brain inflammation after a stroke by supressing M1 activity and

increasing M2 polarization.

6.3. MCUcx inhibition blocks multiple cell
death pathways implicated in ischemic
and hemorrhagic damage of the NVU

The ability of mitochondria to rapidly sequester large amounts

of Ca2+ renders them highly susceptible to injurious mitochondrial

Ca2+ overloading (Duchen, 2012). In addition to overloading

neurons with toxic amounts of Ca2+ and Mn2+, ischemia also

damages neurons by allowing lethal amounts of zinc (Zn2+)

to enter them by way of Ca2+-permeable ionotropic glutamate

receptors (Weiss and Sensi, 2000; Figure 5 and Box 1). Like Ca2+

and Mn2+, the MCUcx transports excessive amounts of Zn2+ into

mitochondria (Giacomello et al., 2007;Medvedeva andWeiss, 2014;

Ji et al., 2020; Box 2). This induces excessive ROS production
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and the release of cytochrome C (CytoC), second mitochondria-

derived activator of caspases (SMAC), apoptosis-inducing factor

(AIF) and mitochondrial damage-associated molecular patterns

(DAMPs) that activate multiple cell death pathways (Green

et al., 2014; Feno et al., 2019; Tang and Wu, 2019; Box 3). In

hemorrhagic stroke, cerebral blood vessels are ruptured resulting

in the release of toxic amounts of ferrous iron (Fe2+) from

hemoglobin (Xi et al., 2006; Box 4). This triggers excessive

Fe2+ uptake by the MCUcx (Box 5) that induces further ROS

over-production and mitochondrial injury (Sripetchwandee et al.,

2013, 2014; Box 6). The resultant loss of Ca2+ buffering and

ATP synthesis (Box 7) exacerbate the death of vascular cells,

glia, and neurons that comprise the NVU (Duchen, 2012;

Chamorro et al., 2021; Box 8). Since mitochondrial damage is

an early pathological event that triggers these diverse cell death

pathways (Barsoum et al., 2006; Green et al., 2014), preserving

mitochondrial function is an attractive therapeutic approach for

stroke.

6.4. Protection of the NVU by the
inhibition of mitochondrial Ca2+

overloading

Ru265 is a ruthenium complex (Figure 6 and Box 1) that

potently inhibits high-capacity mitochondrial Ca2+ uptake by

blocking the MCUcx (Woods et al., 2019). We have recently

shown that Ru265 is highly effective at protecting cortical neuron

cultures from damage by a lethal period of OGD (Novorolsky

et al., 2020). Although Ru265 reduced sensorimotor deficits and

infarct volumes in a mouse model of hypoxic/ischemic brain

damage, therapeutic use of Ru265 is limited by poor BBB

permeability and seizure induction at high doses (Novorolsky et al.,

2020).

Alternatively, mitochondrial Ca2+ overloading can be

suppressed by increasing the removal of Ca2+ from mitochondria.

In this regard, we have demonstrated that NCLX mediates

mitochondrial Ca2+ efflux (Palty et al., 2010). Bay 60-7550 is

a neuroprotective compound that potently blocks PDE2 which

converts cAMP to AMP (Soares et al., 2017; Figure 6 and Box 2).

The resultant elevation of cAMP activates PKA (Box 3). We have

demonstrated that PKA activation increases the phosphorylation

of serine residue (S258) of the NCLX (Box 4) that markedly

enhances mitochondrial Ca2+ extrusion (Palty et al., 2010; Kostic

et al., 2018; Box 5). By these convergent mechanisms, Ru265 and

Bay 60-7550 should synergistically suppress mitochondrial Ca2+

overloading, ROS production and the release pro-death factors

(Box 6) resulting in profound neural cell protection (Rozenfeld

et al., 2022; Box 7). Although this combinatory strategy should

allow the use of lower and thus safer doses to protect the NVU,

combining Ru265 with Bay 60-7550 may still produce unfavorable

drug interactions. Ru265 and PDE2 inhibitors also suffer from

adverse side effects cause by unwanted actions on healthy tissues

(Baillie et al., 2019). We describe how these limitations can

potentially be overcome by encapsulating Ru265 in nanoparticles

that readily enter the brain and preferentially target metabolically

compromised NVUs.

6.5. Activation of nuclear hormone
receptors to mobilize diverse cell
subtypes necessary for NVU repair

To enhance NVU repair, drug targets must be found that

mobilize diverse immune, vascular, and neural cell subtypes

necessary to restore the intricate architecture and function of this

fragile structure (Franklin and Ffrench-Constant, 2017). In this

regard, nuclear hormone receptors are particularly promising drug

targets (Simandi et al., 2018). Nuclear hormone receptors form

dimers that activate a wide array of genes implicated in NVU

repair. The RXR plays a central role in these regenerative processes

by forming homodimers, and heterodimers with the farnesoid

X receptor (FXR), thyroid receptor (TR), vitamin D receptor

(VDR), retinoic acid receptor (RAR), pregnane X receptor (PXR),

nuclear receptor related 1 and 77 proteins (Nurr1, 77), peroxisome

proliferator activated receptor (PPAR), and liver X receptor (LXR)

(Simandi et al., 2018; Figure 7A). These RXR dimers bind to the

amino acid sequence 5′-RGKTCA-3′ organized as direct repeats

with a variable length spacer of 1–5 base pairs (DR1-DR5) that

confers DNA binding site specificity (Umesono et al., 1991;

Perlmann et al., 1993). RXRs heterodimers have been classified

into two categories according to their activation mode. Permissive

heterodimers which include RXR/PPAR, RXR/LXR, and RXR/FXR

are activated by ligands for either RXR or the binding partner

for RXR (Forman et al., 1995). Non-permissive heterodimers such

as RXR/RAR, RXR/VDR, and RXR/TR are usually activated only

by ligands specific for the RXR partner (Kurokawa et al., 1993).

In this case, RXR usually acts as an essential but silent partner

(Evans and Mangelsdorf, 2014). By permissive and non-permissive

interactions with other nuclear hormone receptors, RXR dimers

regulate the complex genomic events that orchestrate NVU repair

(Daneman et al., 2010a; Mounier et al., 2015; Simandi et al., 2018;

Baldassarro et al., 2019). These events lead to the proliferation

of vascular and neural progenitor cells, and the polarization of

macrophages, microglia and T cells to pro-repair phenotypes that

resolve inflammation, clear cellular debris, and create a fertile

environment essential for the differentiation and integration of

vascular cells, glia, and neurons into new NVUs that restore brain

function (Bi et al., 2010; Chang et al., 2020; Pouso and Cairrao,

2022; Figure 7B).

A key aspect of permissive heterodimers is the cooperative

actions of agonists for the RXR and its partner that produce

a synergistic response compared to the effects of just a single

receptor ligand (Leblanc and Stunnenberg, 1995). Among the so-

called non-permissible RXR heterodimers, RXR/TR heterodimers

display this cooperative mechanism (Li et al., 2002, 2004; Castillo

et al., 2004). This cooperativity allows RXR/TR dimers to increase

mitochondrial biogenesis (Weitzel and Iwen, 2011) that enables

production of the massive amounts of energy and lipids required

for OPC differentiation (Lee and Petratos, 2016; Davies et al.,

2021; Figure 7B). In the absence of triiodothyronine (T3), the

biologically active form of thyroid hormone, or retinoid acid,

mitogen-stimulated rat primary OPC cultures fail to differentiate

into oligodendrocytes (Barres et al., 1994). Upon addition of

either T3 or retinoic acid to culture medium, OPCs exit the cell

cycle and differentiate into oligodendrocytes (Barres et al., 1994).

Furthermore, our unpublished findings, described in an expert
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FIGURE 5

Ca2+, Mn2+, Zn2+, and Fe2+ uptake by the MCUcx triggers mitochondrial collapse and multiple cell death pathways. Boxes 1–3, Ischemia causes

excessive mitochondrial Ca2+, Mn2+, and Zn2+ uptake by the MCUcx resulting in injurious ROS overproduction and the release of multiple

pro-death factors (SMAC, AIF, CytoC, and DAMPs). Boxes 4–6, Bleeding triggers excessive mitochondrial Fe2+ uptake by the MCUcx that results in

ROS overproduction and the release of pro-death factors (SMAC, AIF, CytoC, and DAMPs). Boxes 7, 8, Mitochondrial collapse impairs Ca2+ buffering

and ATP synthesis that exacerbates the injurious effects of ROS overproduction and pro-death factor release. (See section “6.3. MCUcx inhibition

blocks multiple cell death pathways implicated in ischemic and hemorrhagic damage of the NVU” for abbreviations and mechanistic details).

opinion on therapeutic patents for RXR ligands (Schierle andMerk,

2019), have shown that combining the preferential RXR agonist

IRX4204 with T3 synergistically increases the differentiation of

OPCs into oligodendrocytes.

6.6. RXR agonists: bexarotene and
IRX4204

Bexarotene is a clinically approved RXR agonist used to

treat cutaneous T cell lymphoma (Duvic et al., 2001). This drug

suppresses inflammation, promotes NVU repair, and enhances

functional recovery in animal models of ischemic and hemorrhagic

stroke (Certo et al., 2015; Xu et al., 2015; Chang et al., 2020;

Ting et al., 2020). Several lines of evidence clearly suggest that

bexarotene produces these beneficial effects by increasing the

production of new mitochondria termed mitochondrial biogenesis

(Dickey et al., 2017). The resultant elevation of mitochondrial mass

and quality increases maximal respiratory capacity that protects

numerous brain cell subtypes (progenitor cells, endothelial cells,

pericytes, astrocytes, neurons, and oligodendrocytes) from injury

by opposing injurious ROS production (Wu et al., 1999; Scarpulla

et al., 2012). A second major benefit of elevated mitochondrial

biogenesis is the enhanced production of ATP and lipids essential

for neurogenesis, oligodendrogenesis and synaptic plasticity that

mediate neurological recovery (Schoenfeld et al., 2010; Schneider

et al., 2011; Lees et al., 2019). In support of these restorative

actions, bexarotene enhances the dendritic complexity of cultured

neurons characterized by increased branching, intersections, and

bifurcations (Mounier et al., 2015). The elevation of mitochondrial

mass by bexarotene also improves central nervous system (CNS)

repair by increasing ATP levels that fuel myelin debris phagocytosis

critical for remyelination (Natrajan et al., 2015). Unfortunately,
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FIGURE 6

Synergistic protection by combining MCUcx inhibition with Ru265 and NCLX activation with Bay 60-7550. Box 1, Ru265 inhibits Ca2+, Mn2+, Zn2+,

and Fe2+ uptake by the MCUcx. Box 2, Bay 60-7550 inhibits PDE2. Box 3, The resultant elevation of cAMP levels activates PKA. Box 4, PKA

phosphorylates serine residue (S258) of the NCLX. Box 5, This increases NCLX activity resulting in elevated mitochondrial Ca2+ efflux. Box 6, MCUcx

inhibition further reduces mitochondrial Ca2+ levels. Box 7, Ru265 and Bay 60-7550 synergistically block ROS overproduction and pro-death factor

release that confers profound protection. (See section “6.4. Protection of the NVU by the inhibition of mitochondrial Ca2+ overloading” for

abbreviations and mechanistic details).

bexarotene may produce adverse cardiovascular side effects that

appear to result from the activation of RXR heterodimers with FXR,

LXRα, LXRβ, or PPARγ (de Vries-van derWeij et al., 2009; Lalloyer

et al., 2009; Paredes et al., 2021) and RARs (Kizaki et al., 1996).

The ability of RXR activation to mobilize diverse brain repair

mechanisms resulted in development of the preferential RXR

agonist IRX4204 (Figure 7B). IRX4204 is 1000 timesmore potent at

RXRs than RARs and does not activate nuclear hormone receptors

implicated in the adverse cardiovascular side effects of bexarotene

(Wang J. et al., 2016). IRX4204 reduces paralysis and inflammation

in a mouse model of multiple sclerosis called experimental

autoimmune encephalomyelitis (Chandraratna et al., 2016). Like

bexarotene, IRX4204 also promotes the differentiation of OPCs

into myelin-producing oligodendrocytes (Sanders et al., 2014).

Based on the efficacy of IRX4204 in several models of Parkinson’s

disease (Wang J. et al., 2016), a small clinical trial was conducted

to assess the preliminary efficacy and safety of this preferential

RXR agonist in individuals afflicted with Parkinson’s disease. This

study showed that oral dosing with IRX4204 at 5 mg/day for

14 days was safe and reduced neurological deficits but higher

doses (10–20 mg/day) produced hypothyroidism, elevated plasma

triglycerides and increased the risk of liver dysfunction (Sanders

et al., 2016). These therapeutic limitations can potentially be

overcome using nanoparticles that preferentially deliver IRX4204

to damaged NVUs.

6.7. TR agonists: triiodothyronine (T3)
and thyroxine

In the seminal study by Barres et al. (1994), these investigators

showed that injected newborn rats with thyroid hormone increased

the number of oligodendrocytes in the optic nerve by over five-fold.

Since then, numerous publications have described the ability of T3

or thyroid hormone to promote remyelination after autoimmune-

mediated demyelination in the spinal cord (Fernandez et al., 2004;

D’Intino et al., 2011), cuprizone-induced demyelination in the

corpus collosum (Zhang et al., 2015; Bai et al., 2016; Hartley et al.,

2019) and lysolecithin-induced demyelination in the optic chiasm

(Payghani et al., 2018). These encouraging findings have led to
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FIGURE 7

Permissive and non-permissive RXR dimers. In addition to forming homodimers, RXR acts as a universal heterodimerization partner with other

nuclear hormone receptors. (A) Permissive heterodimers act in a cooperative or synergistic fashion while non-permissive heterodimers generally

require ligand binding to the non-RXR monomer to induce transcriptional activity. (B) RXRs are ubiquitously expressed and regulate the proliferation,

differentiation, function, and survival of numerous cell subtypes in the brain. Box 1, This enables the preferential RXR agonist IRX4204 to reduce

inflammation and stimulate the production of new vascular, glial, and neuronal cells necessary for NVU repair. Box 2, The TR agonist T3 enhances

the therapeutic benefits of IRX4204 by synergistically inducing the differentiation of oligodendrocyte progenitor cells into myelin producing

oligodendrocytes. (See section “6.5. Activation of nuclear hormone receptors to mobilize diverse cell subtypes necessary for NVU repair” for

abbreviations and mechanistic details).
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a Phase I clinical trial that demonstrated liothyronine, a short-

acting thyroid hormone, was safe in people with clinically stable

MS (Wooliscroft et al., 2020). This encouraging result will hopefully

lead to a Phase II clinical trial to further assess the safety and

examine the efficacy of liothyronine in MS.

Demyelination of large white matters tracts in the brain is also

major pathological feature of ischemic and hemorrhagic stroke

(Wang Y. et al., 2016; Tao et al., 2017). Human studies have

demonstrated that after cerebral ischemia a reduction of serum T3

is a strong predictor of increased stroke severity and poor clinical

outcomes (Alevizaki et al., 2007; Zhang and Meyer, 2010; Jiang

et al., 2017). Similarly, low levels of T3 are associated with increased

mortality and poor neurological outcomes after a hemorrhagic

stroke (Pande et al., 2016). Animal experimentation supports

the ability of T3 to promote functional recovery by enhancing

remyelination after a hemorrhagic stroke (Vose et al., 2013) as well

as neurogenesis, dendritic spine density, and synaptic transmission

after an ischemic stroke (Talhada et al., 2019). Only one clinical

study to date has examined the effects of boosting T3 levels on

neurological outcomes after a stroke (Skvortsova et al., 2006). In

this small clinical trial, the administration of thyroid stimulating

hormone (thyroliberin), beginning within the first 24 h after an

ischemic stroke (n = 21), improved functional recovery 21 days later

compared to the control group (n = 25).

However, T3 has not always been found to promote

remyelination. Deletion of myelin regulatory factor results in

pervasive CNS demyelination over a 10- to 12-week period

followed by gradual but incomplete myelin repair (Hartley et al.,

2019). In this genetic model, chronic T3 administration was

not tolerated and inhibited OPC proliferation (Hartley et al.,

2019). These finding are in keeping with evidence that transient

hypothyroidism prior to the differentiation phase enhances

remyelination by increasing OPC production (Remaud et al., 2017).

Thyroid hormone produces a variety of adverse side effects such

as changes in body weight, sweating, diarrhea, cold intolerance,

tachycardia, irregular heart beats, menstrual changes, joint pain,

skin rash, and bone loss (He et al., 2020). As a result, individuals

taking thyroid medications often experience a reduce quality of life

(Peterson et al., 2018). We therefore describe how nanoparticle-

based delivery of T3 to the brain can be employed to mitigate the

risk of these adverse side effects.

7. Nanoparticle-based drug delivery
to the brain

Most putative neuroprotective and restorative drugs fail in

the clinic because of lack of efficacy (Cheng et al., 2004; Miller,

2010; Choi et al., 2014). Adverse side effects caused by actions

on cells outside of the CNS are also a major problem (Cheng

et al., 2004; Miller, 2010; Choi et al., 2014). We describe how

these problems can potentially be overcome using nanoparticles

(NPs) to safely deliver small molecules that protect and repair the

NVU. NPs, typically 100 nanometers or less in diameter, loaded

with a drug, have been approved as therapeutics by the FDA for

over 15 years for various indications (Bobo et al., 2016). NP-

based drug delivery for the brain holds tremendous promise as a

strategy to improve drug safety by minimizing exposure in healthy

parts of the body and maximizing drug concentrations in disease

brain tissues (Cheng et al., 2015; Tietjen et al., 2018). However,

clinical proof-of-concept for NP-based brain drug delivery remain

elusive. Some of the major hurdles include finding themost suitable

biocompatible NP building blocks with “intelligent” functionalities

such as targeting and ROS sensitive moieties, and tailorable

physicochemical properties to optimize NPs for different routes of

administration such as intravenous (IV) or intranasal (IN).

7.1. Drug delivery to the brain by
systemic administration of NPs

Delivery of drugs to the brain after intravascular administration

is difficult due to the BBB, which poses both a structural and

a metabolic restriction on drug transport and uptake into the

brain. In the normal BBB, permeation is highly controlled through

transcellular transport mechanisms such as passive diffusion,

carrier-mediated transport and various efflux transporters, or

transcytosis (receptor-mediated or adsorptive transcytosis (Parrasia

et al., 2022). Whereas in diseased states BBB function becomes

compromised with temporal as well as regional changes influencing

the degree of elevated permeability which, in turn, alter drug

delivery.

7.2. Implications of compromised BBB
integrity for NP-based drug delivery in
stroke

Magnetic resonance imaging studies have shown that BBB

permeability increases within the first 3 h of onset of an ischemic

stroke, continually rises from 6 to 48 h, and remains elevated in the

majority of patients 2 months later (Giraud et al., 2015; Merali et al.,

2017; Müller et al., 2021). In rodent models of ischemic stroke, BBB

permeability increases as early as 25 min after reperfusion and may

remain elevated for up to 5 weeks (Strbian et al., 2008; Durukan

et al., 2009). In the case of hemorrhagic stroke, computerized

tomography imaging studies have shown that BBB permeability is

elevated around the hematoma from 24 to 48 h (Lampl et al., 2005;

Xu et al., 2017). The time course for BBB disruption in hemorrhagic

stroke have been refined by animal studies that indicate the BBB

remains largely intact for the first few hours (Yang et al., 1994) but

displays integrity loss around the hematoma 6–8 h later (Wagner

et al., 1996) that is still evident 5 days later (Jia et al., 2021). For

both ischemic and hemorrhagic stroke, increased BBB permeability

is associated with unfavorable clinical outcomes (Ivanidze et al.,

2018; Nadareishvili et al., 2019). Opening of the BBB likely accounts

for the ability of an intracarotid injection of unmodified PLGA-

NPs loaded with the antioxidant enzyme superoxide dismutase

to reduce brain injury in rats subjected to an ischemic stroke

(Reddy and Labhasetwar, 2009). The induction of cell adhesion

and signaling molecules on the surface of brain endothelial cells

provides a further avenue to enhance the preferential uptake of

NPs by compromised NVUs in ischemic and hemorrhagic stroke.

In this regard, targeting vascular cell adhesion protein 1 (VCAM-

1) and the receptor for advanced glycation end-products (RAGE),

overexpressed by endothelial cells subjected to high oxidative stress,
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has proven to be an effective strategy to increase brain drug delivery

in a rat model of ischemic stroke (Liu H. et al., 2016; Kim et al.,

2021).

7.3. Construction of NPs for systemic
drug delivery to the brain: building
blocks and functional components

Nanoparticles with prerequisite physicochemical properties

(size<200 nm and positive zeta potential) are typically constructed

using polymers of different molecular weights (MW; 0.5–20K)

such as poly (lactic acid) (PLA), poly (glycolic acid) (PGA), poly

(lactic-co-glycolic acid) (PLGA), and polyethylene glycol (PEG)

and lipid-PEGs, or PEG alternatives with reduced immunogenicity

(Figure 8A; Pagels and Prud’homme, 2015; Kamaly et al., 2016;

Hoang Thi et al., 2020). These polymers have tunable drug

release properties, high drug-loading capacity, and excellent safety

profiles (Hrkach et al., 2012; Kamaly et al., 2016). Furthermore,

conjugated PEG enables the minimal use of formulation stabilizers

and decreases the formation of a protein corona on the NP

surface that extends systemic circulation of the NP (Gref et al.,

2000; Suk et al., 2016). High drug loading can be achieved due

to hydrophobic interactions between the neutral drugs (IRX4204

and Bay-607550) and the NP core. By contrast, cationic drugs

(Ru265) can be loaded into the NP core by blending with PLA

conjugated to anionic moieties (AM; PLA5-20K-AM0.5-5K). To

promote preferential and rapid drug release in brain tissues exposed

to injurious levels of ROS caused by mitochondrial dysfunction,

ROS-sensitive linkers have been incorporated into the PLA and

PLGA polymers (PLA/PLGA-ROS) to generate PLA/PLGA5-20K-

ROS polymers that selectively degrade when exposed to elevated

ROS levels (Figure 8B; Lv et al., 2018; Deng and Liu, 2021).

Despite the strong therapeutic potential of NP drug delivery

for stroke, a viable clinical approach has yet to be developed.

One strategy that has received considerable attention is the use

of cell-penetrating peptides (CPPs) to promote NP uptake and

cellular targeting in the brain (Parrasia et al., 2022). Perhaps the

best-known member of this family is the TAT protein originally

identified in the HIV virus (Frankel and Pabo, 1988; Green and

Loewenstein, 1988). A basic region of the TAT protein, termed the

protein transduction domain (PTD) that comprises residues 47–57

(YGRKKRRQRRR), is responsible for the ability of TAT to enter

cells (Lindsay, 2002; Wadia and Dowdy, 2003). Intraperitoneal

injection of mice with TAT-PTD fused to a fluorescence (FITC)

or enzyme (β-galactosidase) reporter revealed that all regions of

the brain displayed strong labeling at 20 min or 4 h, respectively

(Schwarze et al., 1999). NPs coated with the TAT-PTD also show

increased brain uptake relative to unmodified NPs (Rao et al.,

2008).

Transferrin receptors are attractive targets because these

receptors are present on NVU endothelial cells but not endothelial

cells in other parts of the body (Jefferies et al., 1984). The GYR

peptide (GYRPVHNIRGHWAPG) binds the transferrin receptor

(van Rooy et al., 2010). In healthy mice, NPs coated with the

GYR peptide are detected in the CNS within 15 min of an IV

injection (Wu et al., 2019). Moreover, transferrin receptors on

endothelial cells, astrocytes and neurons are upregulated by low

FIGURE 8

Design strategies for the intravenous (IV) nanoparticle formulation

(IV-NPF) and intranasal nanoparticle formulation (IN-NPF) of Ru265

and IRX4204, respectively. (A) The IV-NPF shell is comprised of

DPLC and DSPE-PEG. The IV-NPF is decorated with GYR, TAT, and

CLE by attaching these targeting peptides to DSPE-PEG. (B) The

IV-NPF core is constructed using polymers of PLA and PLGA.

ROS-sensitive linkers such as thioketal, ethyl methacrylate and

phenyl boronic ester are incorporated into the PLA/PLGA polymer

backbone. (C) The IN-NPF shell is also comprised of DPLC and

DSPE-PEG-GYR, DSPE-PEG-TAT, and DSPE-PEG-CLE.

ROS-sensitive linkers such as thioketal, ethyl methacrylate and

phenyl boronic ester are incorporated into the PLA/PLGA polymer

backbone. (D) The IN-NPF is also coated with low molecular weight

(Continued)
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FIGURE 8 (Continued)

PSACC such as dextrin, carboxymethylcellulose, and chitosan to

have a long retention time at the nasal mucosal surface and high

absorption by nasal epithelia thus minimizing drug exposure in the

respiratory system. (See sections “7.3. Construction of NPs for

systemic drug delivery to the brain: Building blocks and functional

components” and “7.4. Drug delivery to the brain by intranasal

administration of NPs” for abbreviations and formulation details).

oxygen and pro-inflammatory conditions (Dore-Duffy et al., 1993;

Du et al., 2012; Wang et al., 2013). In terms of targeting neural

cells damaged by an experimental stroke, the CLE peptide

(CLEVSRKNC; CLE) preferentially binds to neural cells in

damaged brain tissues after an IV injection (Hong et al., 2008; Zhao

et al., 2016; Lv et al., 2018).

These CPPs can be attached to the end of 1,2-distearoyl-sn-

glycero-3-phosphoethanolamine-N-maleimide PEG (DSPE-PEG2-

5K) using maleimide chemistry to produce DSPE-PEG2-5K-TAT,

DSPE-PEG2-5K-GYR, and DSPE-PEG2-5K-CLE (Kamaly et al.,

2013; Figure 8A). Combining these targeting approaches markedly

improves the brain drug delivery and therapeutic efficacy of IV

injected NPs in mouse stroke models (Wang et al., 2015; Zhao

et al., 2016; Lv et al., 2018). By blending different concentrations

of Ru265 and Bay-607550 with varying ratios of PLA/PLGA5-20K-

ROS, PLA5-20K-AM0.5-5K, PLGA5-20K, DSPE-PEG2-5K, DSPE-

PEG2-5K-TAT, DSPE-PEG2-5K-GYR, and DSPE-PEG2-5K-CLE it

is possible to generate NP formulations with different properties

such as size, shape, surface charge, kinetics, transport, and toxicity

(Hrkach et al., 2012; Mares et al., 2021; Figure 8B).

7.4. Drug delivery to the brain by
intranasal administration of NPs

Compared to the IV route, the IN route is more convenient

and reduces systemic drug exposure (Wang Z. et al., 2019).

More importantly, NP formulations customized for nose-to-

brain delivery that target the olfactory epithelium (as opposed

to the respiratory epithelium) can reach the brain directly,

bypassing the BBB, via the olfactory and trigeminal nerves (Gänger

and Schindowski, 2018; Wang Z. et al., 2019). Nose-to-brain

delivery is a complex process and the exact mechanism is still

not well understood (Djupesland et al., 2014). Many different

formulation types have been evaluated for IN administration,

including liposomes, lipid NPs, hydrogels, dendrimers, and

nanoemulsions (Ahmad et al., 2017; Battaglia et al., 2018; Rajput

et al., 2022). All these formulations typically contain nano-sized

particles made with different biomaterials offering options for

the efficient encapsulation of different therapeutic molecules. In

addition, unique functionalities such as the use of bioadhesive

polysaccharides for the nasal mucosa to increase residence time,

permeation enhancers, and thermosensitive gel forming polymeric

ingredients have been explored to increase brain delivery.

For example, to increase the retention time at the nasal mucosal

surface and enhance absorption by nasal epithelia, NPs have

been coated with low MW polysaccharides (PSACC), chitosan,

carboxymethylcellulose, and dextrin (Figure 8C). This can be

achieved by conjugating the functionalized DSPE head group of

DSPE-PSACC2-5K with different MW PSACCs via click chemistry

(Figure 8C). Since IN administered NPs also enter the extracellular

space in the brain (Gänger and Schindowski, 2018; Wang Z.

et al., 2019), NPs designed for IN administration may also be

coated with the GYR and TAT peptides to promote endothelial

cell uptake and the CLE peptide to target damaged brain tissues

(Figure 8C). ROS-sensitive linkers may also be incorporated intro

the polymer backbone to promote the selective release of the

drug cargo in brain tissues subjected to high oxidative stress. Like

the development of NPs for IV administration, blending different

concentrations of IRX4204 with varying ratios of PLGA5-20K,

DSPE-PSACC2-5K, DSPE-PEG2-5K-GYR, DSPE-PEG2-5K-TAT,

and DSPE-PEG2-5K-CLE permits the generation of NPs with

distinct properties that can be screened to identify the optimal NP

formulation (Figure 8D).

8. Overcoming major hurdles in
NP-based brain drug delivery

A variety of obstacles for NP-based drug delivery have been

elegantly described in several recent reviews (Terstappen et al.,

2021; Joseph and Nance, 2022; Nance et al., 2022). Among the

most problematic of these include immunogenicity, formation

of a protein corona on the NP surface, engulfment of NPs

by macrophages in the periphery and microglia in the brain,

limited endosomal escape, and toxicity (Saraiva et al., 2016). We

describe each of these limitations below and how they may be

overcome by creating NP formulations with the optimal size,

shape, charge, and surface properties for safely and effectively

delivering drugs to the brain. These approaches are designed to

maximize NP bioavailability, brain uptake, and safety by producing

immune stealth, enhancing cellular transcytosis across the BBB, and

maximizing biocompatibility.

8.1. PEG alternatives with reduced
immunogenic properties

Systemic NPs are often designed with a stealth component

using PEG or PEG-conjugated lipids to enhance the circulation

time and access to the target site. However, the use of PEG is

limited by the immunogenic potential of this polymer resulting

in adverse allergic reactions (Kozma et al., 2020). Antibodies

(IgG and IgM) against PEG have been detected in about 40% of

healthy individuals with no history of treatment with PEGylated

therapeutics (Yang and Lai, 2015). This has been attributed to

the frequent use of PEG-coupled products in personal care,

beauty, and household cleaning products such as soap, sunblock,

cosmetics, as well as processed foods (Mohamed et al., 2019).

This problem can be overcome by modifying the NP surface

to promote immune stealth. Another approach is the use of

PEG alternatives with lower immunogenic potential. One such

example is poly(β-l-malic acid) (PMLA), a naturally occurring

biopolymer with high biocompatibility, biodegradability, and

water solubility, as well as low non-immunogenicity (Chi et al.,

2016). A further advantage of PMLA is that this polymer

has abundant carboxyl groups that can be conjugated with
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multiple targeting and therapeutic moieties (Chi et al., 2016).

This has enabled the creation of PMLA NPs conjugated with

peptides that safely and effectively promote transport across the

BBB and distribution over multiple brain regions (Israel et al.,

2019).

8.2. Formation of the protein corona
compromises the therapeutic properties
of NPs

After exposure to biological fluids, a protein corona rapidly

forms on the surface of NPs (Cedervall et al., 2007). Over 300

proteins have been shown to coat NPs (Tenzer et al., 2013;

Hacene et al., 2021) that influence their biodistribution, and

pharmacokinetic, pharmacodynamic, and toxicological properties

(Bertrand et al., 2017; Wang H. et al., 2019). The protein corona

also shields targeting peptides on the NP surface and thus prevents

them from binding to the intended receptor (Salvati et al., 2013).

The protein corona generally can also reduce release of the drug

cargo but in some cases may have the opposite effect (Sharifi et al.,

2020). The protein corona is also composed of compliment proteins

that trigger the removal of NPs bymacrophages andmay contribute

to adverse effects such as allergic responses (Chen F. et al., 2017;

Cai et al., 2020). Understanding how the protein corona influences

these processes is therefore considered crucial to the development

of NPs that safely and effectively enhance drug delivery to the

brain.

8.3. Modification of the NP protein
corona to promote immune stealth and
brain uptake

Addition of PEG to the NP surface has been reported

to markedly reduce formation of the protein corona by 79%

(Schöttler et al., 2016). However, the uptake of PEG-NPs by

macrophages was only blocked if PEG-NPs were first incubated

with serum proteins (Schöttler et al., 2016). Subsequent analysis

revealed that the binding of clusterin to the surface of PEG-

NPs was largely responsible for the inhibition of macrophage

uptake (Schöttler et al., 2016). PEG therefore appears to confer

immune stealth by altering the composition of the protein

corona rather than by simply suppressing formation of the

protein corona. Moreover, it is possible to direct NPs to the

brain by enriching their surface with plasma proteins such as

apolipoproteins (ApoA, E, and J). Using liposomes, this was

achieved by modifying their surface with a short non-toxic peptide

derived from Amyloid β1−45 (Amyloid β25−35) that specifically

interacts with the lipid-binding domain of apolipoproteins (Zhang

et al., 2019). This strategy which increases the surface content

of apolipoproteins has been shown to enhance the brain delivery

and anticancer effectiveness of doxorubicin compared to non-

modified liposomes in mice bearing U87 cells (Zhang et al., 2019).

Incorporation of Amyloid β25−35 has also been reported to have

similar benefits for PLGA NPs (Zhang et al., 2019). These finds

suggest that modification of the NP surface to encourage the

binding of plasma proteins that cross the BBB may be a useful

approach to harness the protein corona for targeting drugs to the

brain.

9. Strategies for overcoming
intracellular barriers

9.1. Promotion of NP endosomal escape

Depending on the cell type and the composition of the

cell surface, NPs can be internalized by clathrin-dependent and

clathrin-independent endocytosis (Zhao and Stenzel, 2018). Once

inside the cell, NPs either fuse with lysosomes or are recycled

back to the cell surface, making endosomal escape a key barrier

to delivery of the therapeutic payload (Pichon et al., 2010). One

strategy to promote endosomal escape is to incorporate pH-

sensitive membrane-disrupting lipids into NPs with amine groups

that are ionized in the low pH (5.0–6.5) environment of endosomes.

A highly successful example of this approach is the use of ionizable

lipids to enhance the endosomal escape of NP-encapsulated mRNA

vaccines for COVID-19 (Allen and Cullis, 2013; Cheng et al.,

2022). This tactic has also been used to increase the transcytosis

of brain-targeting NPs across the BBB. For instance, incorporation

of the trileucine endosome escape unit, known to improve the

cytoplasmic delivery of NPs (Ding et al., 2011), is an effective

method to enhance the brain uptake of CPP-modified NPs (Israel

et al., 2019).

9.2. Direct translocation of CPPs across
the plasma membrane

Recent evidence indicates direct translocation rather than

endocytosis mediates the transport of CPPs into the cytosol

(Trofimenko et al., 2021; Serulla et al., 2023). The membrane

potential provides the driving force for the direct translocation

of CPPs (Trofimenko et al., 2021; Serulla et al., 2023). This has

been demonstrated by showing that lowering the transmembrane

potential boosted the cellular internalization of CPPs (Trofimenko

et al., 2021). By contrast, depolarization of the plasma membrane

reduces the direct translocation of several CPPs but does not alter

their uptake into endosomes (Serulla et al., 2023). Interaction

between positively charged CPPs and the negatively charged plasma

membrane is thought to lower the membrane potential resulting in

a locally megapolarized membrane. This increases the likelihood of

water pore formation enabling CPPs to enter cells. The movement

of the positive charges carried by the CPPs into the cell, as well

as the transport of extracellular cations, dissipates the membrane

potential, resulting in the collapse of the water pores and sealing

of the plasma membrane. CPP-mediated formation of water pores

is thus transient and does not reduce cell viability. This model

provides an explanation for how TAT-modified NPs are able to gain

direct access to the cytosol (Lin and Alexander-Katz, 2013). Water

pores are estimated to be approximately 2 nm in diameter and

thus unable to mediate the direct translocation of CPP conjugated

proteins or NPs larger than 5 nm (Trofimenko et al., 2021).

Nevertheless, harnessing direct translocation offers an approach to

avoid the endosomal entrapment of NPs.
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10. Future perspectives

As described in several recent and comprehensive reviews

(Charabati et al., 2020; Joseph and Nance, 2022; Parrasia et al.,

2022), many different types of NP formulations have been reported

to increase brain drug delivery. Despite these claims, a viable

clinical approach has yet to emerge. Several obstacles may account

for this failure.

First, there is a demand for therapeutic agents with novel

mechanisms of action. More specifically, there is an urgent need

for promising drug candidates to treat ischemic and hemorrhagic

stroke. To tackle this problem, we have outlined the various neural

protective benefits of preventing mitochondria Ca2+ overloading

by combining MCU inhibition with NCLX stimulation using

Ru265 and Bay-607550, respectively. We have also discussed how

functional outcomes after a stroke should be further increased by

stimulating brain repair through RXR activation with drugs such

as bexarotene or IRX4204 and TR agonism with T3. To improve

the safety and efficacy of these approved (bexarotene and T3)

and investigational (IRX4204) drugs for the treatment of ischemic

and hemorrhagic stroke, we have described the use of NP-based

drug delivery strategies. For example, NPs can be designed to

preferentially deliver their payload to metabolically compromised

(vulnerable) or damaged NVUs. Furthermore, we have discussed

how combining the rapid IV administration of NPs containing

Ru265 and Bay-607550 with the repeated IN delivery of NPs loaded

with IRX4204 and T3, should achieve positive clinical outcomes in

the treatment of ischemic and hemorrhagic stroke by protecting

vulnerable and repairing damaged NVUs.

Second, the development of NP-based drug products has

its own challenges and complexity. However, the remarkable

success of NP-based vaccines in combating the recent COVID-

19 pandemic has demonstrated that the large-scale production

of NPs is an achievable goal. During the development of

neuroprotective and restorative treatments for stroke, it will

be crucial to employ rigorous preclinical testing guidelines for

effective translational research in stroke (Lapchak et al., 2013).

Furthermore, systematic studies comparing and correlating the

physiochemical properties, safety, and efficacy of the various NP-

based approaches are necessary to understand the mechanism of

enhancement of brain drug delivery and select NP compositions

with the best performance. Such benchmarking studies are essential

for identification of the most promising candidates for clinical

testing but are unlikely to be performed by academic laboratories

that have limited resources. Resolution of these problems will

therefore require rigorous standardization procedures, diverse

technical skills, extensive manufacturing capabilities, and large

testing facilities.

Third, drug development for neurodegenerative disorders

still suffers from an exceptional high failure rate. Hence, major

biotechnology companies and pharmaceutical firms are reluctant

to commit the considerable resources required for such risky

drug discovery efforts. Nevertheless, we have described how

recent innovations in targeting mitochondrial Ca2+ handling and

nuclear hormone receptors with small molecules and preferentially

delivering them to where they are required in the brain may very

well tip the risk-benefit balance toward renewed investment in

therapeutic development for ischemic and hemorrhagic stroke.
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