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Abstract

Social media messages, such as tweets, are frequently used 

by people during natural disasters to share real-time infor-

mation and to report incidents. Within these messages, geo-

graphic locations are often described. Accurate recognition 

and geolocation of these locations are critical for reaching 

those in need. This article focuses on the first part of this 

process, namely recognizing locations from social media 

messages. While general named entity recognition tools 

are often used to recognize locations, their performance is 

limited due to the various language irregularities associated 

with social media text, such as informal sentence structures, 

inconsistent letter cases, name abbreviations, and misspell-

ings. We present NeuroTPR, which is a Neuro-net ToPonym 

Recognition model designed specifically with these linguis-

tic irregularities in mind. Our approach extends a general 

bidirectional recurrent neural network model with a number 

of features designed to address the task of location recog-

nition in social media messages. We also propose an auto-

matic workflow for generating annotated data sets from 

Wikipedia articles for training toponym recognition models. 

We demonstrate NeuroTPR by applying it to three test data 

sets, including a Twitter data set from Hurricane Harvey, 

and comparing its performance with those of six baseline 

models.
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1  | INTRODUC TION

Social media messages, such as tweets, are frequently used by people during natural disasters or other emer-

gency situations (e.g., the Boston Marathon bombing) to share real-time information and report incidents (Imran, 

Castillo, Diaz, & Vieweg, 2015; Silverman, 2017; Yu, Huang, Qin, Scheele, & Yang, 2019). Geographic locations 

are often described in these messages. Consider, for example, the following two tweets posted during Hurricane 

Harvey in 2017 (where the text of the tweets is slightly revised for privacy protection; see Ayers, Caputi, Nebeker, 

& Dredze, 2018): “Anyone with a boat in the Meyerland area! A pregnant lady named Nisa is stranded near Airport 

blvd & station dr #harvey”; and “Rescue: two kids are on the roof at 1010 Bohannon Rd. Please RT #Harvey”. 

Accurately recognizing and geolocating locations from these social media messages are critical for reaching peo-

ple in need, potentially helping to save human lives.

It is worth differentiating the geographic locations tagged tosocial media messages (i.e., geotagging) and those 

mentioned withinthe message content. Many social media platforms, including Twitter, allow a message to be 

associated with the current location of the user. However, the current location of the user is not necessarily 

the location of the incident; for example, a person may first run to a safe place before sending out a tweet. In 

discussing the value of tweets for situation awareness, MacEachren et al. (2011) differentiated two types of loca-

tions, namely tweet-from locations (i.e., geotagged locations) and tweet-about locations (i.e., locations mentioned in 

tweet content). While tweet-from locations are usually in a structured format, tweet-about locations are embed-

ded in natural language text and can be difficult to extract, due to the informal sentence structures of social media 

content, the variations of a place’s name, noise in user-generated text, and other factors. Tweet-about locations 

have become even more critical, as in June 2019 Twitter announced the removal of its precise geotagging feature. 

Such a change is likely to lead to a further decrease in the number of geotagged tweets (i.e., tweet-from locations), 

and makes the task of recognizing and geolocating locations from the content of tweets even more important.

Geoparsing is the process of recognizing place names, or toponyms, from text and identifying their corre-

sponding spatial footprints (Freire, Borbinha, Calado, & Martins, 2011; Gelernter & Balaji, 2013; Gritta, Pilehvar, 

Limsopatham, & Collier, 2018). As a research topic, geoparsing has been frequently studied in the broader field 

of geographic information retrieval (GIR; Jones & Purves, 2008; Purves, Clough, Jones, Hall, & Murdock, 2018). A 

software tool developed for geoparsing is called a geoparser. There exist many important applications of geopars-

ing, one of which is extracting locations from social media messages for disaster response (Gelernter & Mushegian, 

2011; Gu, Qian, & Chen, 2016; Inkpen, Liu, Farzindar, Kazemi, & Ghazi, 2017; Wang, Mao, Wang, Rae, & Shaw, 

2018; Zhang & Gelernter, 2014).

A geoparser usually functions in two consecutive steps: toponym recognition and toponym resolution. The first 

step recognizes toponyms from text without identifying their geographic locations, and the second step resolves 

any possible place name ambiguity and assigns suitable geographic footprints. Figure 1 shows these two steps of 

geoparsing. This article focuses on the first step, namely toponym recognition.

F I G U R E  1 The two steps of geoparsing in the context of disaster response and our focus on toponym 

recognition
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Existing research typically uses a named entity recognition (NER) tool, such as the Stanford NER (Manning et al., 

2014), for toponym recognition. These off-the-shelf tools are designed to recognize locations, but also other kinds 

of named entities, such as people and organizations. While in theory these off-the-shelf NER tools thus solve the 

task of toponym recognition, both the literature (Gelernter & Mushegian, 2011; Wang et al., 2018) and our recent 

work (Hu, Mao, & McKenzie, 2019) have shown the limited performance of the Stanford NER in processing us-

er-generated text that has various language irregularities such as informal sentence structures, inconsistent upper 

and lower case (e.g., “there is a HUGE fire near camino and springbrook rd”), name abbreviations (e.g., “bsu” for 

“Boise State University”), and misspellings.

In this work, we propose NeuroTPR, a Neuro-net ToPonym Recognition model for extracting locations from 

social media messages. NeuroTPR extends a general recurrent neural network model for toponym recognition 

with a number of enhancements to address language irregularities in social media messages. The contributions of 

this article are as follows:

1. We propose and develop NeuroTPR as a new toponym recognition model for extracting locations from 

social media messages that outperforms existing approaches.

2. We propose an automatic workflow for generating data sets with place name annotations for training NeuroTPR 

and other toponym recognition models.

3. We share the source code of NeuroTPR, the workflow for generating training data, and the annotated test data 

at https://github.com/geoai -lab/NeuroTPR.

The remainder of this article is organized as follows. Section 2 reviews related work on geoparsing and top-

onym recognition in the context of disaster response. Section 3 presents the methodological details of NeuroTPR 

and an automatic workflow for generating training data from Wikipedia articles. Section 4 presents the experi-

ments for training and testing NeuroTPR and discusses the experiment results. A real-world Twitter data set from 

Hurricane Harvey 2017 is used as one of the three test data sets for comparing NeuroTPR with other baselines. 

Finally, Section 5 summarizes this work and discusses future directions.

2  | REL ATED WORK

Social media messages, such as tweets, are frequently used by people in emergency situations. Crooks, Croitoru, 

Stefanidis, and Radzikowski (2013) examined the tweets sent after a 5.8 magnitude earthquake occurred on the 

east coast of the U.S. on August 23, 2011, and found that the first tweet arrived only 54 seconds after the 

event. Many studies have leveraged the real-time characteristics and rich content of tweets (e.g., texts, images, 

and geotagged locations) to support situational awareness and disaster response. One of the earliest exam-

ples was the work of Starbird and Stamberger (2010), who proposed a Twitter-based hashtag syntax to help 

people format their disaster-related tweets in a way that could be quickly processed by emergency response 

organizations. Other examples include studies on tweets from the flooding in Pakistan (Murthy & Longwell, 

2013), Hurricane Sandy (Huang & Xiao, 2015), the Boston Marathon bombing (Buntain, Golbeck, Liu, & LaFree, 

2016), and Hurricane Irma (Yu et al., 2019). While people in the U.S. can also call 911 for help during disasters, 

the phone calls of the victims may not get through due to the large volume of calls and failed emergency call 

centers (Seetharaman & Wells, 2017). During Hurricane Harvey, for example, National Public Radio published 

an article with the headline “Facebook, Twitter replace 911 calls for stranded in Houston” (Silverman, 2017), 

which described how these social media platforms were used by Houston residents in the flooding areas to call 

for help. Similarly, dedicated websites and efforts are also sometimes created and organized during disasters 

to help people share information. For example, after the 2010 Haiti earthquake, the Ushahidi platform was 

established which allowed people to send short text messages about their current locations and urgent needs 
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(Meier, 2010). However, such services rely on word-of-mouth knowledge for usage, compared to the already 

widespread use of social media.

Given the large number of social media messages posted during an emergency event, it is often necessary to 

perform automatic information extraction on them. Geoparsing is an effective approach for automatically ex-

tracting locations from text, and a number of geoparsers have been developed. GeoTxt, initially developed by 

Karimzadeh et al. (2013) and further enhanced in their recent work (Karimzadeh, Pezanowski, MacEachren, & 

Wallgrün, 2019), is a Web-based geoparser that leverages the Stanford NER and several other NER tools for 

toponym recognition and uses the GeoNames gazetteer and a set of heuristic rules for toponym resolution. 

TopoCluster is a geoparser developed by DeLozier, Baldridge, and London (2015) which uses the Stanford NER to 

recognize toponyms from text and then resolves toponyms based on the geographic profiles of the surrounding 

words (the geographic profile of a word quantifies how frequently this word is used in different geographic areas). 

Cartographic Location And Vicinity INdexer (CLAVIN) is an open-source geoparser that employs the Apache 

OpenNLP tool or the Stanford NER for toponym recognition and utilizes a gazetteer, fuzzy search, and heuris-

tics for toponym resolution. The Edinburgh Geoparser was developed by the Language Technology Group at 

Edinburgh University (Alex, Byrne, Grover, & Tobin, 2015). It uses their in-house natural language processing 

tool, called LT-TTT2, for toponym recognition, and the toponym resolution step is based on a gazetteer (e.g., 

GeoNames) and pre-defined heuristics. CamCoder is a toponym resolution method developed by Gritta, Pilehvar, 

and Collier (2018b) which uses an integration of convolutional neural networks, word embeddings, and geographic 

vector representations of place names for toponym resolution. Gritta et al. (2018b) further converted CamCoder 

into a geoparser by connecting it with the spaCy NER tool for toponym recognition. There also exist studies that 

focus on the step of toponym resolution only (Buscaldi & Rosso, 2008; Ju et al., 2016; Overell & Rüger, 2008; 

Speriosu & Baldridge, 2013).

For the toponym recognition step, existing geoparsing research has often used an off-the-shelf NER tool. 

The rationale in doing so is that toponym recognition is often a sub-task of NER. Thus, one can save time and 

effort by using an existing NER tool and keeping only locations, instead of developing a new model from scratch. 

However, it has been shown that off-the-shelf NER tools, such as the Stanford NER, have limited performance 

on informal text written by general Web users (Gelernter & Mushegian, 2011; Hu et al., 2019; Wang et al., 2018). 

Acknowledging these limitations, scholars have begun to seek improvements over these off-the-shelf models. 

Most recently (in June 2019), a geoparsing competition, Toponym Resolution in Scientific Papers, was held as one 

of the SemEval 2019 tasks in conjunction with the Annual Conference of the North American Chapter of the 

Association for Computational Linguistics (Weissenbacher, Magge, O’Connor, Scotch, & Gonzalez, 2019). The 

top three winning teams all leveraged deep neural network models, such as the bidirectional long short-term 

memory (BiLSTM) model, to design their geoparsers (Li, Wang, Baldwin, Tomko, & Vasardani, 2019; Wang et al., 

2019; Yadav, Laparra, Wang, Surdeanu, & Bethard, 2019). The model that won first place is DM_NLP, which was 

developed by Wang et al. (2019) and achieved an F-score of over 0.9 in the competition. While this competition 

demonstrated the power of deep learning models for geoparsing, a major limitation is that the models were tested 

on only a single data set with 45 research papers. The text in these 45 research papers is well formatted and con-

tains relatively simple toponyms such as the names of major cities.

In our latest work (Wang & Hu, 2019a), we systematically tested these three winning deep learning based 

geoparsers on our benchmarking platform EUPEG (Wang & Hu, 2019b), using eight different corpora with both 

well-formatted (e.g., news articles) and ill-formatted texts (e.g., tweets and uncapitalized Web text). We compared 

the deep learning geoparsers (Li et al., 2019; Wang et al., 2019; Yadav et al., 2019) with the existing off-the-shelf 

geoparsers discussed previously on their performance on both toponym recognition and toponym resolution. Our 

experiment result suggested that: deep learning based models (such as the BiLSTM model adopted by all three 

winning teams) usually outperform traditional machine learning models in toponym recognition across different 

types of texts; but that while showing high performance on well-formatted text, these deep learning geoparsers 

performed poorly on user-generated text, in particular on data without capitalization, such as the Ju2016 data set 
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(Ju et al., 2016). Our NeuroTPRmodel aims to address these limitations and improve toponym recognition from 

social media messages.

3  | METHODS

3.1 | Model architecture

NeuroTPR is designed based on the basic BiLSTM–conditional random field (CRF) model proposed by Lample, 

Ballesteros, Subramanian, Kawakami, and Dyer (2016), which achieved state-of-the-art performance on a general 

NER benchmarking task. With this basic model, we add a number of improvements to develop NeuroTPR. Figure 2 

provides an overview of the model.

We present NeuroTPR from bottom to top, characterizing the layers of the neural network. Layer 0 contains the 

individual words of a tweet, which are used as the input to the model. The next four layers represent each word 

as vectors using four different approaches. Layer 1 and Layer 2 use character embeddings to model each word as 

a sequence of characters. The case-sensitive character embeddings in Layer 1 use different vectors to represent 

the upper and lower cases of the same character, while the caseless character embeddings in Layer 2 use the same 

vector to represent a character regardless of its case. Both case-sensitive and caseless character embeddings are 

modeled using the BiLSTM architecture in Figure 3. Character embeddings capture the morphological features of 

words which can be useful for toponym recognition; for example, words with certain prefixes or suffixes may have 

higher probabilities of representing locations. In addition, character embeddings are good at handling misspellings 

in user-generated text, since the semantics of a word is still largely captured when a user misspells or misses a 

character when typing a word (e.g., typing “t” rather than “y”, or skipping this letter completely).

Layer 3 uses pre-trained word embeddings to represent the words in a tweet. These embeddings are pre-

trained on a large set of unlabeled text, and can capture the semantics of a word based on the other words that 

F I G U R E  2 Overall architecture of NeuroTPR
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typically co-occur with it. Compared with character embeddings that focus on the morphological features of a 

word itself, word embeddings help determine whether a word represents a location based on the typical context 

within which the word is used. These pre-trained word embeddings are fixed during the training process. Layer 

4 provides linguistic features derived from the words of a tweet to help recognize toponyms. In particular, we 

include two types of linguistic features: part-of-speech (POS) tags and a type of deep contextualized word embed-

dings, embeddings from language models (ELMo) (Peters et al., 2018). POS tags inform the model about the type 

of a word (noun, verb, adjective, preposition, etc). These POS tags help NeuroTPR learn the usage patterns related 

to locations, (e.g. a location phrase is often used after a preposition). ELMo captures the different semantics of a 

word under varied contexts. Note that the pre-trained word embeddings in Layer 3 capture the semantics of words 

based on their typical usage contexts and therefore provide static representations of words; by contrast, ELMo 

provides a dynamic representation for a word by modeling the particular sentence within which the word is used.

These four layers capture four different aspects of a word, and their representation vectors are concatenated 

together into a large vector to represent each input word. These vectors are then used as the input to Layer 5, 

which is a BiLSTM layer consisting of two layers of LSTM cells: one forward layer capturing information before the 

target word and one backward layer capturing information after the target word. Layer 6 combines the outputs 

of the two LSTM layers and feeds the combined output into a fully connected layer. Layer 7 is a CRF layer which 

takes the output from the fully connected layer and performs sequence labeling. The CRF layer uses the standard 

IOB model from NER research to label each word but focuses on locations. Thus, a word is annotated as either 

“B-LOC” (the beginning of a location phrase), “I-LOC” (inside a location phrase), or “O” (outside a location phrase).

NeuroTPR has several design features that enhance its performance on the task of toponym recognition 

from social media messages. First, NeuroTPR integrates both case-sensitive and caseless character embeddings. 

Previous research often used case-sensitive character embeddings only. While using different representations for 

upper- and lower-case characters helps the model make use of case information (which can be especially helpful for 

processing well-formatted text, such as news articles), this design makes the model overly sensitive to the irregular 

capitalization in some user-generated text. An alternative is to use caseless character embeddings only. However, 

this alternative can miss the useful information passed by many correct uses of letter case. Thus, NeuroTPR in-

tegrates both case-sensitive and caseless character embeddings to overcome this issue. Second, NeuroTPR uses 

the pre-trained word embeddings that are specifically derived from tweets. We use the GloVe word embeddings 

that were trained on 2 billion tweets with 27 billion tokens and 1.2 million vocabulary items (Pennington, Socher, 

& Manning, 2014). These word embeddings, specifically trained on a large tweet corpus, include many vernacular 

words and abbreviations used by people in tweets. Previous geoparsing and NER models typically use word em-

beddings trained on well-formatted text, such as news articles, and many vernacular words are not be covered by 

those embeddings. When that happens, an embedding for a generic unknown token is usually used to represent 

F I G U R E  3 BiLSTM architecture modeling a word as a sequence of characters
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this vernacular word and, as a result, the actual semantics of the word are lost. Third, compared with the basic 

BiLSTM–CRF model from Lample et al. (2016), NeuroTPR adds ELMo and POS to capture the dynamic and contex-

tualized semantics of words and their POS types. Compared with the DM_NLP model of Wang et al. (2019) from the 

SemEval 2019 competition, NeuroTPR removes chunking and NER tags which tend to be erroneous when applied 

to text with informal sentence structures. Besides, NeuroTPR adds an extra layer of caseless character embedding 

and integrates tweet-based GloVe word embeddings, both of which were not used in the two previous models.

3.2 | Training data sets

We train NeuroTPR using two data sets. The first is an existing and human-annotated Twitter data set that we 

obtained from the WNUT 2017 Shared Task on Novel and Emerging Entity Recognition (Derczynski, Nichols, van Erp, 

& Limsopatham, 2017). This is a real Twitter data set which contains toponyms, along with other types of entities, 

annotated by human annotators. We select 599 tweets from this data set which contain toponyms and we keep 

only toponyms in the annotations. However, the WNUT data set is small, and training a deep learning model usu-

ally requires a large amount of annotated training data. Manually generating such training data is a labor-intensive 

and time-consuming process.

Within this context, we propose a workflow to automatically generate annotated data which will be used 

as the second data set for training NeuroTPR. This automatic workflow makes use of the first paragraphs of 

Wikipedia articles that often contain rich annotations of the mentioned entities in the form of hyperlinks. We 

generate an annotated training data set by extracting these first paragraphs from a Wikipedia dump and retain-

ing only the phrases whose hyperlinks point to articles about geographic location. In our pilot experiments, we 

determined whether a hyperlink pointed to a location or not by examining whether the corresponding Wikipedia 

article was geotagged with a pair of latitude and longitude coordinates (Hecht & Moxley, 2009). However, we soon 

discovered that Wikipedia articles tagged with coordinates were not necessarily about locations. For example, the 

Wikipedia article about Normandy landings (https://en.wikip edia.org/wiki/Norma ndy_landings) is tagged with a 

pair of coordinates which indicates the location of this important military event; we would typically not consider 

Normandy landings as a toponym. Eventually, we found that Infobox templates from Wikipedia on geography and 

place (https://en.wikip edia.org/wiki/Wikip edia:List_of_infob oxes/Geogr aphy_and_place) are the ideal tool for de-

termining whether or not a hyperlink points to a location.

We therefore developed a method to check each hyperlink to determine whether or not it was a location using 

this information. Specifically, if the Infobox of the pointed Wikipedia article was consistent with one of the geog-

raphy templates, the hyperlink was kept as a toponym annotation; otherwise, the hyperlink was removed. Since 

the data are generated for training NeuroTPR on the task of processing tweets, we make the data more similar to 

tweets by splitting the Wikipedia paragraphs into sentences and keeping only those within 140 characters (140 

characters are used because one of the test data sets in the later experiments contains tweets from Hurricane 

Harvey which were collected before Twitter expanded its length limitation to 280 characters in November 2017). 

One can change this setting to 280 characters in the workflow depending on the application need. We also con-

sidered an additional strategy for creating training data of random flipping in order to make the generated training 

data even more similar to tweets. We develop a program that goes into each word of the generated training data 

and randomly changes or removes one character of the word with a probability of 2%, thus simulating misspelling 

errors often contained in user-generated text. As will be shown in the experiments below, this random flipping 

strategy failed to improve model performance. However, we gained valuable insight into model performance 

through the experiments to test this strategy, and thus will discuss it further below.

In sum, we use two data sets to train NeuroTPR. The first, WNUT2017, is a small but real Twitter data set 

annotated by humans, and the second is a larger data set automatically generated from Wikipedia articles using 

a proposed workflow. It is worth noting that the second data set can be of arbitrary size since it is automatically 
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generated. In addition, the data generated from Wikipedia articles are only used for training and are not used for 

any testing experiments. We share the source code of the developed automatic workflow at https://github.com/

geoai -lab/NeuroTPR.

4  | E XPERIMENTS

4.1 | Test data sets, evaluation metrics, and baseline models

In a previous work we developed a benchmarking platform called EUPEG, which is an Extensible and Unified 

Platform for Evaluating Geoparsers (Wang & Hu, 2019b). EUPEG was developed for evaluating geoparsers as 

complete pipelines, that is, for both toponym recognition and toponym resolution. In this work we will leverage 

some resources from EUPEG but will focus on the toponym recognition step. While EUPEG provides eight anno-

tated corpora collected from the literature, only one corpus, GeoCorpora (developed by Wallgrün, Karimzadeh, 

MacEachren, & Pezanowski, 2018), contains social media messages (tweets). Many toponyms in GeoCorpora refer 

to large-scale geographic features, such as continents (e.g., Africa), countries (e.g., U.S. and Ukraine), states (e.g., 

California and Alabama), and major cities (e.g., New York City and London). Fine-grained toponyms (e.g., street 

names) have only limited coverage in GeoCorpora but are often seen in tweets sent out during a disaster. We will 

still use GeoCorpora as one of our test data sets, but will create another test data set, called Harvey2017, with 

1,000 human annotated tweets derived from a large Twitter data set collected during a major disaster, Hurricane 

Harvey. Finally, we also use Ju2016 (Ju et al., 2016) as a test data set. Ju2016 is not a social media message data 

set; it contains sentences automatically extracted from Web pages. One special feature of Ju2016, however, is 

that all characters are in lower case; it has no capitalization. Our previous experiments showed that many geopars-

ers completely failed on such a data set without capitalization (Wang & Hu, 2019a). Therefore, although Ju2016 

is not a social media data set, it is still interesting to see the performance of different models on it. GeoCorpora 

can be downloaded from the GitHub site of its authors (https://github.com/geovi sta/GeoCo rpora), and Ju2016 

can be downloaded from our GitHub site (https://github.com/geoai -lab/EUPEG). In what follows, we describe the 

process of creating the Harvey2017 data set.

The original Hurricane Harvey Twitter data set is available from the library repository of North Texas 

University (https://digit al.libra ry.unt.edu/ark:/67531 /metad c9939 40/). It was collected between August 18 and 

September 22, 2017. It contains 7,041,866 tweets retrieved based on a set of hashtags and keywords, such as 

#HurricaneHarvey, #Harvey2017, and #HoustonFlood. A manual examination of this data set shows that many 

tweets contain disaster-related information (e.g., floods) and often describe detailed locations such as street 

names, road intersections, and door number addresses. The content of these tweets and the fact that they were 

posted during a major disaster make this data set especially suitable for testing NeuroTPR.

We use the following steps to create a manually annotated data set with 1,000 tweets. First, we create a reg-

ular expression with about 70 terms related to location descriptions, such as “street”, “avenue”, “park”, “square”, 

“bridge”, “rd”, and “ave”. We run it against the entire data set and obtain a subset of 15,834 tweets that are more 

likely to contain specific locations. We randomly select 1,000 tweets from this subset and manually annotate the 

locations contained in them. Since some tweets from the first batch of 1,000 do not contain specific locations 

(e.g., a tweet may say, “My side street is now a rushing tributary.”), we replace those tweets with others randomly 

selected from the remainder of the subset during the manual annotation process, so that each of the 1,000 tweets 

in this data set contains at least one specific location. These location descriptions densely contained in the 1,000 

tweets provide abundant opportunities for testing the performance of a toponym recognition model. It is worth 

noting, however, that a model needs not only to determine whether a location exists in a tweet but also to find out 

how many locations exist (many tweets contain two or more locations) and the positions (i.e., character indices) of 

these locations. Nevertheless, one could design a model that might achieve a fair performance on this particular 
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data set by assuming that each tweet has at least one location. NeuroTPR does not make such an assumption. 

Future work could add tweets that do not contain locations to expand this data set and test performance along 

these lines.

Annotating locations from text, however, is not a straightforward task. As previously discussed by other re-

searchers (Gritta, Pilehvar, & Collier, 2018a; Wallgrün et al., 2018; Zhang & Gelernter, 2014), the concept of “lo-

cation” can be elusive and the same phrase can be annotated as a location or not depending on the definition 

adopted by a particular data set. For example, in the LGL data set, Lieberman, Samet, and Sankaranarayanan (2010)

considered demonyms, such as “Canadian” and “Australian”, as toponyms, and geolocated them to the centers of 

the corresponding countries. While these demonyms have some geographic meaning, broadly speaking, they 

are unlikely to be considered as toponyms in some domains, including geography. For this data set of Hurricane 

Harvey tweets, we annotate the following as locations:

1. administrative place names, such as neighborhoods, towns, cities, states, and countries;

2. names of natural features, such as rivers, mountains, and bayous;

3. names of facilities and landmarks, such as roads, bus stops, buildings, and airports;

4. organizations that have fewer than three instances in the target region, such as “Heritage Park Baptist Church” 

and “Cypress Ridge High School”.

Here, the target region refers to the geographic area affected by the disaster. The following are not considered 

as valid locations and therefore are not annotated:

1. demonyms, such as American and Texan;

2. metonymies, such as in “Washington made a decision that …”;

3. general location references, such as “this building” and “that road”;

4. organizations that have many instances in the target region, such as in “I’m stuck at Walmart”.

The last point is probably debatable since “Walmart” or other chain stores mentioned in such a sentence could 

be considered as a location. From a disaster response perspective, however, we argue that annotating “Walmart” 

in this case will probably add more noise than signal to the extracted locations, since all Walmarts in the target 

region may show up on a map if this location is to be geolocated in a next step. This debatable issue illustrates 

part of the difficulty in annotating locations from text. When using a corpus for testing experiments, we need to 

consider its location definition which can directly affect the annotated ground truth. With the above guideline for 

location annotation, we create a data set with 1,000 annotated tweets. We will primarily use this Harvey2017 data 

set for our evaluation experiments and discussion, since it better fits our disaster response application. However, 

GeoCorpora and Ju2016 are used as well to provide a more comprehensive evaluation of NeuroTPR on multiple 

data sets.

The evaluation metrics used in the experiments are precision, recall, and F-score: 

(1)Precision=
TP

TP+FP
,

(2)Recall=
TP

TP+FN
,

(3)F- score=2 ⋅
Precision×Recall

Precision+Recall
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Precision measures the percentage of correctly identified toponyms (true positives, TP) among all the toponyms rec-

ognized by a model, which include both true positives and false positives (FP). Recall measures the percentage of cor-

rectly identified toponyms among all the toponyms that are annotated as ground truth, which include true positives 

and false negatives (FN). The F-score is the harmonic mean of precision and recall. It is high when both precision and 

recall are fairly high, and is low if either of the two is low. These metrics have been widely used in previous studies, 

such as Inkpen et al. (2017), Karimzadeh (2016), Leidner (2008), and Lieberman et al. (2010).

We compare NeuroTPR to three off-the-shelf tools and two deep learning based models. For the off-the-shelf 

NER tools, we use the Stanford NER, the caseless Stanford NER, and the spaCy NER, which are frequently used in 

geoparsing research for the step of toponym recognition. Applying these off-the-shelf NER tools to a data set also 

involves some design choices. With the typically used three-class Stanford NER and its caseless version, the output 

contains three classes (i.e., PERSON, ORGANIZATION, LOCATION). One can choose to keep only LOCATION in 

the output, or keep both LOCATION and ORGANIZATION for a wider coverage to include schools, churches, and 

other similar entities in the output as well. At first glance, it seems to be a wise decision to include ORGANIZATION 

in the output, since organizations such as schools and churches are also annotated as locations in the Harvey2017 

data set. However, including ORGANIZATION does not necessarily increase the performance of the model com-

pared with using LOCATION alone, since there are also organizations that should not be annotated as locations. 

For example, in the sentence “Donations to the Red Cross have provided help for people impacted by Hurricane 

Harvey”, “Red Cross” will be mistakenly included in the model output. A similar situation happens to the spaCy 

NER whose output contains multiple classes related to geography including FACILITY (e.g., buildings, airports, and 

highways), ORG (e.g., companies, agencies, and institutions), GPE (e.g., countries, cities, and states), and LOC (e.g., 

non-GPE locations, mountain ranges, and bodies of water). Keeping only LOC in the output will exclude other 

valid location mentions (e.g., cities), while keeping all related classes will include more phrases that should not be 

considered as locations. This difficult design choice highlights another problem in directly using a general NER tool 

for toponym recognition. In our experiments, we test two versions for each of the three off-the-shelf NER tools: 

one version has a narrow definition of location using LOCATION or LOC only, while the other version has a broad 

definition of location by including multiple classes that can be related to locations. Since the Stanford NER offers 

the option to be retrained, we also test a retrained version of the Stanford NER using the same training data as 

used by NeuroTPR. In addition, we test two deep learning based toponym recognition models: the basic BiLSTM–

CRF model by Lample et al. (2016) based on which our NeuroTPR is developed, and the DM_NLP model (using its 

toponym recognition part only) by Wang et al. (2019) which achieved the best performance in the 2019 SemEval 

geoparsing competition. These two models are trained using the same training data as used by NeuroTPR.

4.2 | Experimental procedure and results

As we have two data sets to train NeuroTPR, we begin our experiments by evaluating the effectiveness of dif-

ferent training strategies. Specifically, we experiment with eight different strategies to train NeuroTPR, and their 

performance based on the Harvey2017 data set is reported in Table 1.

The first strategy (S1) uses the WNUT2017 data set only to train NeuroTPR. While this is a small data set, it can 

already help NeuroTPR achieve a fair performance, reaching a F-score of 0.656. The effectiveness of WNUT2017 

can be attributed to its ability to help NeuroTPR learn the informal language structure used in tweets. In strategies 

S2 to S4, we test the performance of NeuroTPR when it is trained on automatically generated Wikipedia data sets. 

While our proposed workflow can generate a training data set of arbitrary size, generating a larger data set and 

training the model on such a data set are more time-consuming. We test the performance of NeuroTPR when it 

is trained on the data sets generated from 1,000, 3,000, and 5,000 Wikipedia articles randomly selected from 

a Wikipedia dump. Strategies S5 to S7 use a similar idea but add random flipping to the training data set (i.e., a 

character of a word is randomly changed or removed with a probability of 2%).
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Two observations are obtained from these six experiments (S2 to S7). First, the performance of the model does 

not necessarily increase with more training data. In fact, the result of S4 is worse than that of S3 which uses fewer 

Wikipedia articles. The automatically generated training data are not perfect, since some Wikipedia articles do 

not annotate all the toponyms mentioned in the text. As a result, using more Wikipedia articles may also introduce 

more noise into the training data. Second, adding random flipping does not improve the performance of the model. 

This result is surprising, as we expected that adding random flipping would make the training data more similar to 

user-generated text and therefore improve the performance of the trained model.

To understand why random flipping fails, we carefully examine the training process. We find that when 

simulated misspellings are present in the training data, they will all be represented with the embedding for the  

unknown token, since such misspelled words do not exist in the vocabulary of the pre-trained word embeddings. 

Consequently, those randomly flipped words confuse, rather than help, the model during the training process. 

Meanwhile, when misspellings do exist in the test data, they can be partially handled by the character embeddings 

included in our model design. Thus, a misspelled word, such as “Californa” in the sentence of “Leaving Texas and 

heading to Californa”, can still be recognized by NeuroTPR even when it is not trained on a data set with simu-

lated misspellings. In the last strategy, we use a combination of 3,000 Wikipedia articles without random flipping 

and the WNUT2017 data set for training, and obtain the best precision, recall, and F-score among all the tested 

strategies.

With the most effective training strategy identified, we continue our experiments by comparing NeuroTPR 

with the three off-the-shelf NER tools (each has two versions), the retrained Stanford NER, and two deep learning 

based models. The performance of these models on the Harvey2017 data set is reported in Table 2. Note that nar-

row location means we only keep LOCATION or LOC in the output of the model, whereas broad location means we 

keep all the entity types that are likely to contain locations (i.e., LOCATION and ORGANIZATION for the Stanford 

NER, both default and caseless, and LOC, ORG, FACILITY, and GPE for the spaCy NER).

As can be seen, the performance of the four off-the-shelf Stanford NER models and the retrained Stanford 

NER dominates that of the spaCy NER. In particular, the default Stanford NER with LOCATION only (i.e., narrow 

location) achieves the highest precision among all the models. This performance is impressive and demonstrates 

the effectiveness of this classic NER tool. However, this Stanford NER also has a low recall of 0.399, which sug-

gests many correct locations are not recognized. If we put this low recall in the context of disaster response, 

this result suggests that applying an off-the-shelf Stanford NER to the posted tweets will miss over 60% of valid 

location mentions. A closer examination of the results of this Stanford NER shows that most of the correctly 

recognized toponyms are city and state names, such as Houston and Texas, while many fine-grained toponyms, 

such as street names, school names, and church names, are missed. However, these fine-grained toponyms are 

critical for locating the people who may need help during and after disasters. Including both LOCATION and 

TA B L E  1 Performance of NeuroTPR on Harvey2017 using different training strategies

Training strategy Precision Recall F-score

S1: WNUT2017 only .687 .633 .656

S2: 1,000 Wikipedia articles .551 .392 .458

S3: 3,000 Wikipedia articles .573 .468 .516

S4: 5,000 Wikipedia articles .547 .481 .512

S5: 1,000 Wikipedia articles + random flipping .558 .324 .410

S6: 3,000 Wikipedia articles + random flipping .566 .359 .439

S7: 5,000 Wikipedia articles + random flipping .520 .410 .459

S8: 3,000 Wikipedia articles + WNUT2017 .787 .678 .728

Note: The bold values stand for the highest value of precision, recall, and F-score achieved among the eight strategies.
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ORGANIZATION in the output of the Stanford NER (i.e., broad location) increases the recall score but decreases 

the precision. Interestingly, the retrained Stanford NER performs worse than the default Stanford NER (note that 

the retrained Stanford NER is still case sensitive). The default Stanford NER was trained on a variety of annotated 

corpora including the CoNLL 2003 training set, MUC 6 and MUC 7 training data sets, ACE 2002, and their in-

house data. This training data difference may have contributed to the better performance of the default Stanford 

NER. The two versions of the caseless Stanford NER achieve lower performance than the default versions as well. 

While there is some irregular capitalization in tweets, many of them do use standard upper and lower case. Since 

the caseless Stanford NER models do not use letter case as an input feature, they miss the useful information 

contained in much correct capitalization.

The two deep learning models are more challenging baselines, and DM_NLP achieves the best score for recall. 

However, NeuroTPR shows the best performance overall as demonstrated by its highest F-score. Compared with 

the basic BiLSTM–CRF model, NeuroTPR performs better in all three metrics which demonstrate the value of our 

improved designs, including the double layers of character embeddings, tweet-based GloVe, and ELMo. Compared 

with DM_NLP, NeuroTPR shows higher precision and F-score and similar recall.

We look further into the output of NeuroTPR to understand the errors. We find three major types of errors. 

First, NeuroTPR seems to often miss interstate highway names, such as “I-45” in a tweet like “Traffic is fluid on I-45.” 

Interestingly, the Stanford NER seems to make the same mistakes as well. Interstate highway names are an import-

ant type of place name in the U.S.A, and are likely to be used by people in future disasters to describe locations.

Second, in many cases, NeuroTPR recognizes part of a complete street name. For example, it can recognize 

“18th Rd” in “E 18th Rd” while missing the “E”. Such a result is considered as both a false positive and a false nega-

tive in the scores reported in Table 2, since we require exact matching between the extracted road names and the 

annotation. If we allow inexact matching, this example could be considered as correct.

Third, NeuroTPR fails to recognize some toponyms when they show up at positions very different from their 

typical positions in a regular sentence. For example, some tweets simply append one or multiple city names (e.g, 

“Port Arthur”) at the end of the text body, probably for the purpose of textually tagging the affected geographic 

regions. These toponyms are sometimes missed.

One simple way to address the first issue might be to use an extra regular expression, such as “I-/d+”, to identify 

interstate highway names and include them in the model output. A similar strategy could be applied to the second 

issue. For example, NeuroTPR can be first used to identify street names, and then a regular expression is used to 

check whether an indication of cardinal directions is used as a prefix or suffix to the street names. However, those 

strategies could also introduce false positives or new errors, and need to be empirically tested via experiments.

TA B L E  2 Performance of different tools and models on the Harvey2017 data set

Model Precision Recall F-score

Stanford NER (narrow location) .828 .399 .539

Stanford NER (broad location) .729 .440 .548

Retrained Stanford NER .604 .410 .489

Caseless Stanford NER (narrow location) .803 .320 .458

Caseless Stanford NER (broad location) .721 .336 .460

spaCy NER (narrow location) .575 .024 .046

spaCy NER (broad location) .461 .304 .366

Basic BiLSTM–CRF (Lample et al., 2016) .703 .600 .649

DM_NLP (toponym recognition) (Wang et al., 2019) .729 .680 .703

NeuroTPR .787 .678 .728

Note: The bold values stand for the highest value of precision, recall, and F-score achieved among the eight strategies.

 1
4

6
7

9
6

7
1

, 2
0

2
0

, 3
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

1
1

1
/tg

is.1
2

6
2

7
 b

y
 U

n
iv

ersity
 A

t B
u
ffalo

 (S
u
n
y
), W

iley
 O

n
lin

e L
ib

rary
 o

n
 [1

9
/1

2
/2

0
2
3
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n
s L

icen
se



     |  731WANG et Al.

It is also worth noting that NeuroTPR is not trained using any of the Hurricane Harvey tweets. While 

WNUT2017 is also a tweet-based data set, its content is very different from the Harvey2017 data set that focuses 

on seeking help or sharing location-based disaster information. Training NeuroTPR using some tweets from the 

large Hurricane Harvey data set is likely to increase the performance of the model on the Harvey2017 data set. 

We test the possibility of further training NeuroTPR using 50 tweets from the Hurricane Harvey data set (in ad-

dition to the existing training data) but outside of the 1,000 test tweets, and obtain 0.832 precision, 0.843 recall, 

and 0.837 F-score. Training the model using the tweets from a specific event, however, could lead to overfitting. 

Besides, we do not always have the necessary data to retrain a model. Imran, Mitra, and Castillo (2016) discussed a 

strategy of employing the Standby Task Force volunteers to annotate the purposes of social media messages (e.g., 

donation needs and caution and advice) during a crisis event in real time and then using the annotated data to train 

machine learning models rapidly. A similar idea could be adopted to obtain annotated data for training a toponym 

recognition model for a particular disaster.

We also test the performance of the baseline models and NeuroTPR on GeoCorpora, and the results are re-

ported in Table 3. GeoCorpora considers administrative places, natural features, facilities, and organizations (such 

as schools and churches) as locations, and does not include demonyms or metonymies. We see a performance 

increase for most tested models. As discussed previously, a majority of the toponyms in GeoCorpora are names 

of countries, states, and cities. Thus, GeoCorpora can be considered as an easier test data set than Harvey2017. 

However, a similar pattern of model performance is observed, with the default Stanford NER achieving the top 

precision and NeuroTPR achieving the best performance overall.

Finally, we test the performance of the models on the Ju2016 data set. The text records are from Web pages 

and do not have capitalization. Due to the data generation process, Ju2016 does not annotate all toponyms con-

tained in the text. Therefore, the performance of the models can only be measured using the metric of accuracy 

which is calculated as:

where Annotated represents the set of toponyms in the ground truth, and Recognized represents the set of toponyms 

recognized by a model from the text. Note that accuracy is a typical metric for evaluating geoparsing models when 

the test corpus does not have complete annotation of all the toponyms. It has been used in previous research (i.e., 

Gelernter & Mushegian, 2011; Gritta et al., 2018; Karimzadeh, 2016). The performance of the models on Ju2016 is 

reported in Table 4. As can be seen, some off-the-shelf NER tools that rely on proper letter case, such as the default 

(4)Accuracy=
|Annotated∩Recognized|

|Annotated|
,

TA B L E  3 Performance of different tools and models on the GeoCorpora data set

Model Precision Recall F-score

Stanford NER (narrow location) .899 .526 .664

Stanford NER (broad location) .751 .553 .637

Retrained Stanford NER .590 .364 .450

Caseless Stanford NER (narrow location) .898 .487 .631

Caseless Stanford NER (broad location) .774 .503 .610

spaCy NER (narrow location) .503 .037 .069

spaCy NER (broad location) .579 .453 .508

Basic BiLSTM–CRF (Lample et al., 2016) .631 .527 .574

DM_NLP (toponym recognition) (Wang et al., 2019) .797 .650 .715

NeuroTPR .800 .761 .780

Note: The bold values stand for the highest value of precision, recall, and F-score achieved among the eight strategies.
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Stanford NER and the spaCy NER, fail on this data set without capitalization. This result is consistent with our pre-

vious research (Wang & Hu, 2019a) and echos the point made by Gritta, Pilehvar, Limsopatham, et al. (2018), that 

some geoparsers do not work on text without capitalization. Interestingly, DM_NLP, which almost failed on Ju2016 

in our previous study (Wang & Hu, 2019a), achieves a fair performance in this experiment. To understand the reason, 

we examine the experimental design in this and our previous studies. The DM_NLP in our previous experiment was 

trained on the CoNLL 2003 data set whose annotations contain only well-formatted texts with proper capitalization 

from news articles. The DM_NLP in this experiment is trained on WNUT2017 and 3,000 Wikipedia articles, and 

WNUT2017 data contain some training instances without proper capitalization. With components such as character 

embeddings and contextualized word embeddings, a deep learning model like DM_NLP seems to quickly adapt to the 

training data used. However, the Stanford NER retrained using the same data is still case sensitive and largely fails on 

Ju2016. This result suggests that deep learning models may be better able to adapt to training data than traditional 

machine learning models with handcrafted input features.

5  | CONCLUSIONS AND FUTURE WORK

Social media messages, such as tweets, have frequently been used by people during disasters to share information 

and seek help. The locations described in these messages are critical for first responders to reach the people in 

need. This article has presented NeuroTPR, a neuro-net toponym recognition model for extracting locations from 

social media messages. A major advantage of NeuroTPR is its ability to recognize many (fine-grained) toponyms 

that are otherwise missed by off-the-shelf NER tools commonly used for toponym recognition. For example, com-

pared with the default Stanford NER with only LOCATION in the output, NeuroTPR can correctly recognize about 

70% more toponyms according to our experimental results. NeuroTPR is designed based on a general BiLSTM–

CRF architecture, and includes a number of improved designs, such as caseless and case-sensitive character em-

beddings, tweet-based word embeddings, and contextualized word embeddings, to enhance its performance on 

toponym recognition from social media messages. We train NeuroTPR using an existing human-annotated Twitter 

data set and a Wikipedia-based data set automatically generated using a developed workflow. We test differ-

ent training strategies and find that a combination of the human-annotated tweets and automatically generated 

data yields the best performance. Evaluation experiments based on three test data sets, namely Harvey2017, 

GeoCorpora, and Ju2016, demonstrate the improved performance of NeuroTPR in comparison with three off-

the-shelf NER tools, one retrained NER tool, and two deep learning models. We have shared the source code of 

TA B L E  4 Performance of different tools and models on the Ju2016 data set

Model Accuracy

Stanford NER (narrow location) .010

Stanford NER (broad location) .012

Retrained Stanford NER .078

Caseless Stanford NER (narrow location) .460

Caseless Stanford NER (broad location) .514

spaCy NER (narrow location) .000

spaCy NER (broad location) .006

Basic BiLSTM–CRF (Lample et al., 2016) .595

DM_NLP (toponym recognition) (Wang et al., 2019) .723

NeuroTPR .821

Note: The bold values stand for the highest value of precision, recall, and F-score achieved among the eight strategies.
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NeuroTPR, the automatic workflow for generating training data, and the Harvey2017 data set to support future 

research.

Several directions could be pursued to expand this research. First, toponym recognition is only the first step 

of geoparsing, and we see great promise in integrating NeuroTPR with a toponym resolution model to develop a 

complete geoparser. A number of toponym resolution models already exist and are discussed in this article (i.e., 

DeLozier et al., 2015; Gritta et al., 2018b; Ju et al., 2016; Overell & Rüger, 2008). However, these toponym res-

olution models mainly focus on cities, states, countries, or other large-scale toponyms rather than fine-grained 

locations such as street names. Further, some street names are highly ambiguous (e.g., there are thousands of 

Main Streets in the U.S.), and this high ambiguity can make the problem of toponym resolution more complex. 

For applications to disaster response, the complexity of this problem can be largely reduced by focusing on the 

disaster-affected area and using a local gazetteer. Thus, instead of performing place name disambiguation on a 

street name with thousands of instances throughout the world, the model may only need to differentiate among 

two or three streets for a name in the local area, and may not even need to perform disambiguation at all. Second, 

we can further enhance the performance of NeuroTPR by testing other similar model architectures. Given the 

flexibility of deep neural networks, we can add more layers, change the number of neurons, try new activation 

functions, and test other hyperparameter combinations. Evolutionary algorithms could be employed in this area to 

help identify a better model architecture. Third, existing geoparsers often geolocate a toponym to a single point 

while more detailed spatial footprints, such as lines and polygons, are needed for applications such as disaster 

response. For a sentence like “major flooding along Clay Rd”, a line of the road is probably a better representation 

than a point at the middle of the street. One factor causing this limited spatial representation is the use of the 

GeoNames gazetteer in most geoparsers, which contains only point-based locations. Other geographic data sets 

and methods could be explored to provide more detailed spatial footprints for the toponyms recognized from 

social media messages.
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