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Abstract

Solar-induced chlorophyll fluorescence (SIF) is a remotely sensed optical signal emit-
ted during the light reactions of photosynthesis. The past two decades have witnessed
an explosion in availability of SIF data at increasingly higher spatial and temporal reso-
lutions, sparking applications in diverse research sectors (e.g., ecology, agriculture,
hydrology, climate, and socioeconomics). These applications must deal with com-
plexities caused by tremendous variations in scale and the impacts of interacting and
superimposing plant physiology and three-dimensional vegetation structure on the
emission and scattering of SIF. At present, these complexities have not been over-
come. To advance future research, the two companion reviews aim to (1) develop
an analytical framework for inferring terrestrial vegetation structures and function
that are tied to SIF emission, (2) synthesize progress and identify challenges in SIF
research via the lens of multi-sector applications, and (3) map out actionable solutions
to tackle these challenges and offer our vision for research priorities over the next
5-10years based on the proposed analytical framework. This paper is the first of the

two companion reviews, and theory oriented. It introduces a theoretically rigorous
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temporal scales.
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1 | INTRODUCTION

Land plants harvest light energy for photosynthesis with three
types of pigments: chlorophyll a, chlorophyll b, and carotenoids.
The light energy harvested by a free pigment is lost, partly radia-
tively as fluorescence and partly non-radiatively as heat; as a re-
sult, the wavelength of emitted fluorescence is longer than that of
the photons originally absorbed, a phenomenon known as Stokes
shift. Fluorescence is only emitted from the first excited state (S1)
as an electron boosted to a higher energy is immediately relaxed to
the S1 state by giving off some heat in a process known as inter-
nal conversion (Porcar-Castell et al., 2014). In addition to emitting
fluorescence, the S1 state can also relax to the ground state (SO)
via internal conversion, in which case heat is released, or transition
to a long-lasting excited triplet state of chlorophyll via intersystem
crossing. Chlorophyll a and b extracts in ether can emit up to 30%
and 15%, respectively, of the absorbed energy as fluorescence
(Barber et al., 1989; Latimer et al., 1956). Carotenoids also fluoresce
but their quantum vyield is several orders of magnitude lower than
those of chlorophyll a and b, and can effectively be considered as
non-fluorescent (Hashimoto et al., 2018). In vivo, the fluorescing
characteristics of chlorophyll a and b change drastically. Within
the light-harvesting complexes, the excitation energy transfer
from chlorophyll b to a is ultrafast (Bittner et al., 1994), leaving lit-
tle chance for chlorophyll b to fluoresce; as a result, all chlorophyll
fluorescence emission from plants can be considered as originating
from chlorophyll a (denoted as ChlaF emission hereafter). More im-
portantly, photochemical and non-photochemical processes con-
trolled by plant physiology compete with ChlaF emission, internal
conversion, and intersystem crossing for the excitation energy at
the S1 state, which can lead to an order of magnitude decrease in
the quantum yield of ChlaF emission, depending on environmental
conditions. Details about the physical mechanisms of ChlaF emission
can be found in Papageorgiou (2004) and Porcar-Castell et al. (2014).

yet practically applicable analytical framework. Guided by this framework, we offer
theoretical perspectives on three overarching questions: (1) The forward (mechanism)
question—How are the dynamics of SIF affected by terrestrial ecosystem structure
and function? (2) The inference question: What aspects of terrestrial ecosystem struc-
ture, function, and service can be reliably inferred from remotely sensed SIF and how?
(3) The innovation question: What innovations are needed to realize the full potential
of SIF remote sensing for real-world applications under climate change? The analyti-
cal framework elucidates that process complexity must be appreciated in inferring
ecosystem structure and function from the observed SIF; this framework can serve

as a diagnosis and inference tool for versatile applications across diverse spatial and

climate change, ecosystem structure, ecosystem function, NPQ, photosynthesis, redox state,
SIF, terrestrial carbon cycle

ChlaF emission has no known physiological or ecological use to
plants. It is not directly regulated by plants either. The energy lost
in ChlaF emission is minuscule and has little impact on the energy
budget of plants. However, owing to the principle of energy conser-
vation, the dynamics of ChlaF emission are always coupled to the
dynamics of photochemical and non-photochemical processes that
compete for the excitation energy of the S1 state (Gu et al., 2019;
Porcar-Castell et al., 2014). Because plants actively regulate photo-
chemical and non-photochemical processes, the dynamics of ChlaF
emission spontaneously reflect, but are not directly controlled by,
these regulations. Furthermore, because these processes have dif-
ferent time constants, it is possible to differentiate their dynamics
from the unique temporal patterns of ChlaF emission, as shown
in the Kautsky effect (Kautsky & Hirsch, 1931; Stirbet, 2011) and
Pulse-Amplitude Modulated fluorometry (PAM; Baker, 2008).

ChlaF emission can be excited by either artificial light, which leads
to active fluorescence, or sunlight, which leads to passive, sun- or
solar-induced chlorophyll fluorescence (SIF). Both active and passive
ChlaF emission have a long history of applications in plant science
(Papageorgiou, 2004), ecosystem science (Mohammed et al., 2019),
and marine biology (Suggett et al., 2010). Because ChlaF emission
is a spontaneous, unregulated byproduct of the light-harvesting
process, physiologically interpreting its dynamics is in general not
straightforward, even with active ChlaF emission at the leaf scale,
where the wavelength and intensity of the excitation light can be
carefully manipulated.

The past two decades have witnessed a rapid growth in SIF
research, spurred by advances in SIF observing capabilities from
various platforms. Applications of remotely sensed SIF range
from ecological sciences (e.g., Magney et al., 2019; Porcar-Castell
etal., 2021; Sun et al., 2017), to agricultural (e.g., Guan et al., 2016;
Guanter et al., 2014), hydrological (e.g., Gentine et al., 2019; Zhan
et al.,, 2022), climate feedback (e.g., Mueller et al., 2016), and
even socioeconomic studies (e.g., Browne et al., 2021; Figure 1).
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FIGURE 1 Harnessing theory and data to enable applications across sectors and scales. ESMs, earth system models; ETR, electron
transport rate; Gx Ex M, interactions of genetics, environment, and management; GPP, gross primary production; IAV, interannual
variability; UAV, unmanned aerial vehicles. Other symbols are defined in Table S1. Icon/images in this diagram come from https://www.flati

con.com/.

However, such applications face tremendous complexities aris-
ing not only from the variations in scale (in both time and space),
but also from interacting and superimposing plant physiology and
three-dimensional (3D) leaf and canopy structure (in both ver-
tical and horizontal dimensions). Intermingling physiology and
structure affect ChlaF emission and the subsequent scattering/
reabsorption at both leaf and canopy scales (Chang et al., 2021;
Magney et al., 2020; Porcar-Castell et al., 2021; Wittenberghe
et al., 2015; Zhao et al., 2016), as well as the anisotropy of at-
sensor SIF (depending on sun-canopy-sensor geometry, e.g.,
Joiner et al., 2020). At present, these complexities have not been
overcome. Consequently, the “six blind men and the elephant”
analogy, which was used to characterize the current understand-
ing of terrestrial carbon cycling by Fisher et al. (2014) is also ap-
propriate for SIF research. Previous studies may have touched
different aspects of the “elephant,” resulting in mixed conclusions,
for example, the linear versus nonlinear relationships between SIF
and gross primary production (GPP; e.g., Damm et al., 2015; Li,
Xiao, et al., 2018; Pierrat et al., 2022), the sign/strength of the
relationship between quantum yields of different energy dissipa-
tion pathways (e.g., Martini et al., 2022; Miao et al., 2018), and the
practical added value of SIF in inferring the functions of natural
and agricultural systems compared to the conventional vegetation
indices (e.g., Cai et al., 2019; Peng et al., 2020; Sloat et al., 2021;
Smith et al., 2018; Wang et al., 2019).

As SIF research progresses, more aspects of the “elephant”
should be touched and understood. There is a critical need to con-
nect these different aspects, and perhaps more importantly, to know
what key aspects have not been touched yet, before we can predict
what the whole “elephant” looks like. To advance, we must harness
advances/innovations in theory and data (Figure 1), in order to shift
from correlational analyses to causal quantification and reasoning.
Toward this end, we offer our perspectives on critical research prior-
ities moving forward, from the theoretical and observational aspects
in two companion reviews (i.e., this paper, and Sun et al., 2023, re-
spectively). Addressing these priorities will ultimately help improve
predictive understanding and management of natural and agricul-
tural ecosystems to enhance the services they offer to society (de-
tails in the companion review, Sun et al., 2023).

The objectives of the two companion reviews are to (1) develop
an analytical framework for inferring terrestrial vegetation structure
and function from remotely sensed SIF observations, (2) synthesize
progress and identify challenges in SIF research through the lens of
multi-sector applications, and (3) map out actionable solutions to
tackle these challenges and offer our vision for research priorities
over the next 5-10years based on the developed analytical frame-
work. There have been multiple recent reviews of SIF science and
applications. For example, Mohammed et al. (2019) provided a his-
torical view of the progress in SIF research since the first discovery
of ChlaF emission. The reviews of Pacheco-Labrador et al. (2019),
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Aasen et al. (2019), and Cendrero-Mateo et al. (2019) concentrated
on instrumental characteristics, measurement protocols, and re-
trieval methods for proximal sensing of SIF. The reviews of Porcar-
Castell et al. (2014, 2021) provide an introduction of mechanisms
that connect SIF to photosynthesis across scales, and present a brief
overview of present challenges and unfolding opportunities. They
were intended as a first primer on SIF for less advanced audiences
and purposefully more qualitative. Compared to these previous re-
views, the major contribution of these two companion reviews is to
offer a quantitative framework (i.e., the theoretical perspective) and
a data perspective that can (1) facilitate process interpretation, (2)
reconcile contradictory findings reported in literature, and (3) map
out concrete future steps (by guiding observational and applicational
innovations) to overcome the most pressing challenges toward real-
izing the full potential of SIF in the broad context of global change
biology applications (beyond photosynthesis). Nevertheless, the
presence of these reviews not only sets the basis for the present
two reviews, but also considerably reduces the scope and topics that
need to be covered here. Throughout the two companion reviews,
we emphasize that theory and observations should go hand-in-
hand to enable meaningful applications. Both reviews are organized

around three overarching questions:

1. The forward (mechanism) question: How are the dynamics of
SIF affected by terrestrial ecosystem structure and function?

2. The inference question: What aspects of terrestrial ecosystem
structure, function, and service can be reliably inferred from re-
motely sensed SIF and how?

3. The innovation question: What innovations are needed to realize
the full potential of SIF remote sensing for real-world applications

under climate change?

The forward question concerns mechanisms (i.e., ecosystem
structure and function) that control the emission, reabsorption,
and scattering of SIF. It lays the foundation for the next two over-
arching questions. The inference question presents the retrieval of
ecosystem structural and functional information from remotely
sensed SIF as an inversion problem, and discusses how such in-
ferred knowledge can inform diverse applications in ecological,
agricultural, hydrological, and socioeconomic sectors across scales
in time and space. Through the presentation of this inversion prob-
lem, we identify knowledge gaps and challenges. Collectively, the
answers to the forward and inference questions naturally lead to
the innovation question, where we propose strategies, solutions,
and priorities to fill the knowledge gaps and to overcome present
challenges toward maximizing the capability of remotely sensed
SIF to monitor/predict ecosystem structure, function, and service
under climate change.

The present paper is the first of the two companion reviews, and
theory oriented. In this paper, we introduce a theoretically rigorous
yet practically applicable analytical framework for SIF research.
This analytical framework is built upon the rapidly advancing un-
derstanding of diverse physiological/structural processes affecting

ChlaF emission and its subsequent scattering/reabsorption within a
canopy. Necessary assumptions/simplifications made in this concep-
tualization are explicitly stated for future studies to refine. Such an
analytical framework is arguably the most critical research priority
moving forward, as it enables explicitly elucidating the “causal” re-
lationships/connections among different aspects of the “elephant,”
and making the knowledge gaps/challenges identified for SIF re-
search tractable and quantifiable. Note that the present review fo-
cuses on mechanistic understanding and is rather theoretical and
quantitative, readers who are just starting SIF research are advised
to first read earlier reviews, particularly Porcar-Castell et al. (2014,
2021), and Mohammed et al. (2019).

2 | THE FORWARD QUESTION: HOW
ARE THE DYNAMICS OF SIF AFFECTED BY
TERRESTRIAL ECOSYSTEM STRUCTURE
AND FUNCTION?

The forward question concerns understanding and modeling the
absorption of photosynthetically active radiation (PAR; i.e., the
excitation photons), subsequent ChlaF emission, and its scatter-
ing and reabsorption along the path to the sensor in a complex
structure of leaf and canopy. Photosynthesis is typically separated
into the light and carbon reactions. Issues related to the ChlaF
emission can be more clearly discussed if we further separate the
light reactions into the photophysical and photochemical reactions
(Kamen, 1963). The photophysical reactions cover the light har-
vesting and partitioning between photosystems, excitation en-
ergy transfer and trapping, and partitioning of excitation energy
into different dissipation pathways. The photochemical reactions
include the water splitting by the oxygen evolving complex, the
electron transport from PSII to the cytochrome b6f complex (Cyt)
to PSI to the eventual acceptor NADP+ with plastoquinone, plas-
tocyanin, and ferredoxin as electron carriers, and the associated
proton transport from stroma to lumen and ATP synthesis. The
carbon reactions refer to the downstream processes in photosyn-
thesis, that is the Calvin-Benson cycle, and are typically modeled
by biochemical models, such as the Farquhar-von Caemmerer-
Berry (FvCB) model (Farquhar et al., 1980). The ChlaF emission
occurs during the light reactions, more specifically during the
photophysical reactions. The value of SIF as a photophysical vari-
able lies in its potential for providing information related to photo-

chemical and biochemical variables.

2.1 | Theoretical basis

Theoretically, the total irradiance of ChlaF emission at wavelength
Ag (nm, ranging from 640 to 850nm) by a homogeneous canopy with
total leaf area index (LA, m? leaf area m™2 ground area), denoted as
FeT(}»F) (pmol photons m2 ground area s ! nm™?), without considering
any scattering and reabsorption by the canopy, can be described as:
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Here F, denotes the ChlaF emission of an infinitely thin leaf layer
with a thickness of dL at the canopy depth L and emission wave-
length Ag, and is contributed by two components—ChlaF emission
from photosystem Il and | (denoted as PSII and PSI hereafter). The
need to include both PSIl and PSI contributions is discussed in detail
in Supporting Information 1. At the leaf level, the F, component aris-
ing from PSII can be represented as the product of the broadband
fluorescence quantum yield of PSII (@, unitless), the total concen-
tration (p, molm™ leaf area) of light-harvesting photosynthetic pig-
ments (i.e., chlorophyll a and b, and carotenoids) associated with PSII
(i.e., p - B, where g is the fraction of p associated with PSII), the flu-
orescence spectral shape function s;, (unitless), the overall effective
absorption cross section of photosynthetic pigment (o, m? mol™),

nm™),

and the excitation irradiance | (umol photons m2leaf area s
which is, in turn, integrated over the spectra of excitation irradiance
wavelength A, (nm) from A, (the minimum wavelength of excitation
irradiance) up to Ar. The excitation photons at A, greater than A,
cannot contribute to F, at A, as they do not have sufficient energy
for ChlaF emission at shorter wavelengths (phonon emission due

to elementary excitation is ignored as it is non-significant to ChlaF

ST v

respectively, and their interactions with macromolecular complexes;
they lead to unity once integrated over the full range of A, and for
simplicity, are assumed to vary only with Ag.

The leaf-level F,, once summed up with contributions from PSIl and
PSI, can be integrated over the full canopy, from the canopy top (i.e., can-
opy depth L = 0) to the bottom (L = LAI), to obtain the true canopy-level
total ChlaF emission F,; (i.e., prior to reabsorption or scattering within
a canopy). Here the leaf to canopy integration IOLA' is a highly conceptu-
alized notation, and can take different forms with varying complexity
in actual implementations, that is, 1D homogeneous (e.g., van der Tol
et al., 2009), or 3D heterogeneous canopies (e.g., Zhao et al., 2016), or
separated sunlit and shaded canopies (e.g., He et al., 2017).

In practice, however, F,; cannot be measured directly. Instead,
the canopy-leaving SIF irradiance that travels toward the sensor di-
rection is only a portion of F,; that escapes from the canopy (after
reabsorption and scattering). At the nadir view, F,(Ag) and F,(Ag)
(umol photons m™ ground area s nm™?), denoting the upward and
downward canopy-leaving SIF irradiance at A within a hemispheri-
cal 180° field of view (FOV) at the top and the bottom of a canopy

respectively, can be given as:

Canopy
Soil
LAI e (2a)
FT(XF)=JO p(L)eT(L,}»F)L L @5y (1) B(L 1) + @py(Lsy () [1= B(L )] o (L) I(L A )L + &, (LAL 2p)r. (3 )F, (3 ),
h PsSlI PSI
LAl A
Fl(}‘F)zL p(L)el(L,kF)L Oy (Lsy () B(LN) + PrLsi(Ae) [1 = A(LA)] o (L) (LA )drdL. (2b)
PSII PSI

emission). Note that | includes all sources—incoming solar photons
(i.e., the first-order interaction), scattered solar photons, and emit-
ted fluorescence photons, although contribution from the latter
two sources to F, is considerably smaller (Yang & van der Tol, 2018).
The F, component arising from PSI can be similarly modeled, except
that the relative contribution of pigments associated with PSI to the
overall effective absorption cross section is denoted as 1 — f (as-
suming there are no free energetically disconnected light-harvesting
complexes). The product of p and ¢ gives the more commonly used
absorption coefficient « at the leaf level (unitless, ~0.85 of PAR).
Here @, and @, are broadband quantities assumed to be indepen-
dent of Ar and A,. 5;;and s, depend on the electronic properties of the
chlorophyll a forms involved in the ChlaF emissions of PSIl and PSlI,

F; consists of a dominant component directly from vegetation
(i.e., For escaped from the canopy in the upward direction) and a
minor component due to reflection of F| by soil with a reflectance of
rs at Ap. The major differences of Fy and F| from F,; are the introduc-
tion of the upward and downward escape probabilities, denoted by
£,and g, (unitless), respectively, both of which vary with L and A¢. Any
SIF photon emitted by an infinitely thin layer at canopy depth L can
be either absorbed (1) by this thin layer, (2) by the part of the canopy
above this thin layer, (3) by the part of the canopy below this thin
layer, or escape to the (4) very top or (5) very bottom of the canopy.
The upward canopy escape probability ¢, is the probability of a SIF
photon emitted at a canopy depth L escaping to the very top of the
canopy (TOC), whereas the downward canopy escape probability ¢,
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is the probability of this SIF photon escaping to the very bottom
of the canopy. These two probabilities change in reverse directions
with L; for example, as L increases, £ decreases while € increases.
Note they are not the same as the probabilities of a SIF photon es-
caping from the interior to the surface of the same leaf atL. £;, £, and
the self-absorption probability by the whole canopy ¢, sum to unity.
As the SIF signal is usually acquired from instruments above the can-
opy, we further remove the explicit appearance of F in Equation (2a),

by inserting Equation (2b) and obtain:

A

Fy(h) = LLA' PL[e; (Lag) + &, (LAL A e, (LAg)r, ()] J

Imin

Here g, and q;, (unitless) denote the fraction of open PSII and
PSI reaction centers (characterizing their redox states, respectively)
under the lake model of photosynthetic unit connectivity, respec-
tively. g, is the oxidized fraction of PSI electron donor P700%, an
efficient non-photochemical quencher whose intrinsic thermal
dissipation capacity is denoted as NPQ; (unitless). ®pg), and @pg;,
(unitless) are the maximal photochemical quantum yields for PSll and
PSI, respectively, and assumed to be conserved across non-stressed
plants (Bjérkman & Demmig, 1987; Johnson et al., 1993). kg (unitless)

(2¢)

®p(Lysy () A (L) + @5 (0 [1 = A(L )] o (L)1 (L2 ) L.

Equationn (2) is also a conceptualized framework and includes
necessary simplifications. For example, it omits multiple scatter-
ing of SIF within the canopy and by soil (as &, and ¢, only rep-
resent the first interaction), as well as the backward scattering
of SIF from the sky; it also assumes that all photons (in the PAR
region) are equally efficient in exciting chlorophylls regardless of
wavelength (i.e., @, and @ are broadband quantities). For more
technical treatments of excitation and radiative transfer of SIF,
readers are referred to Pedrds et al. (2010) and Vilfan et al. (2016)
for leaf-level radiative transfer model (RTM), and van der Tol
et al. (2009), Verhoef (1984), van der Tol et al. (2019) for canopy-
level 1D RTM, as well as references synthesized in Table S2.
Toward achieving objectives of this review, Equation (2c) is suf-
ficiently detailed and serves as the base equation for describing
SIF dynamics at the canopy scale (and beyond) throughout the
rest of the paper. Note the commonly used terminology “SIF re-
motely sensed above the canopy” corresponds to F, (if the sensor
has an approximately hemispherical 180° FOV) or directional For
(if the sensor has a narrow FOV; here the sun-canopy-sensor
geometry is denoted as Q1 in the upward direction, e.g., for
spaceborne instruments). The complete formulation of Fy, is pro-
vided in Supporting Information 2. For simplicity, the following
equations and derivations are all based on F; unless otherwise
specified, but Fy, and F, are mutually convertible (Section 3.1);
plant structural and functional variations as well as environmen-
tal forcings that impact F, (Sections 2.2 and 2.3) also apply to F,.

We further expand @, and @, in Equation (2c) as functions of
non-photochemical quenching (NPQ) and redox states of PSIl and

PSI (full derivation in Supporting Information 3):

PS|

is the ratio of kp (the rate constant of the constitutive or unregulated
heat dissipation) to k. (the rate constant of the ChlaF emission). A
complete list of variable definitions and units is provided in Table S1.

Equation (3) maps the complex dynamics of the emission and ra-
diative transfer of SIF into a quantitative framework to infer ecosys-
tem structure and functions (Figure 2). Here ®pg),, @psim kprs NPQy,
and s, and s, can be treated as parameter constants (i.e., invariants in
time and possibly across species, detailed discussion in Supporting
Information 4). The remaining quantities are dynamic variables (i.e.,
changing over time and across species) and are affected by a myriad
of interactive processes encompassing leaf and canopy structure
and functions, all of which are driven by ambient environmental
forcings (Figure 2). Although Equation (3) and Figure 2 show the
complexity and challenges of interpreting remotely sensed SIF, they
reveal why SIF is useful and how to conduct ecologically meaningful

applications of SIF across scales in time and space.

2.2 | How do leaf and canopy functions influence
SIF?

Figure 2 reveals that NPQ, q,;, 4, 47, and g are the direct linkages
between plant functions and SIF (the right column), and known to be
closely regulated by physiology in response to ambient environmen-
tal conditions. Note when italicized, NPQ denotes the regulated heat
dissipation processes, following Porcar-Castell et al. (2014). NPQ
consists of multiple complex mechanisms (e.g., energy-dependent
and energy-independent/sustained NPQ) that operate at different

timescales, ranging from seconds to weeks or even longer durations
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(Ruban, 2016; Verhoeven, 2014). The energy-dependent NPQ is
controlled by changes in lumen acidity, which, in turn, is determined
by protons from water splitting by the oxygen evolving complex and
translocation from stroma to lumen as a result of photosynthetic
electron transport. The energy-independent/sustained NPQ is
caused by photoinhibition or photodamage of PSIl and/or compo-
sition changes in photosynthetic and non-photosynthetic pigment
contents for photoprotection (Malno&, 2018). These mechanisms
play key roles in protecting the photosynthetic machinery by dis-
sipating excess energy into harmless heat when the carbon reac-
tions cannot consume all the energy supplied by the light reactions.
The consequence of NPQ is to reduce (quench) ChlaF emission.
Note throughout the paper, NPQ refers to only PSIl unless other-
wise specified as in the example of NPQ, (detailed discussion in
Supporting Information 3).

quy and g, indicate the redox status of PSIlI and PSI acceptors,
respectively. g; indicates the redox state of the donor of PSI, and is
relevant because the oxidized donor of PSl is an efficient quencher.
These variables affect and also are affected by the electron transport
rates (ETR) via these two photosystems (Han, Chang, et al., 2022;
Laisk et al., 2014). Changes in q;;,, q;, and g are considered instan-
taneous (i.e., faster than the energy-dependent NPQ). However,
photoinhibition may also affect g;;, leading to long-term (weekly to
seasonal) changes (Porcar-Castell, 2011).

B is controlled by PSII/PSI stoichiometry and varies with state
transition (which may vary across plant species), which refers to
the adjustment of PSII and PSI relative absorption cross sections
in response to excitation imbalance between PSIl and PSI (Stirbet
et al.,, 2020). Photosystem excitation imbalance can occur when
environmental conditions such as light intensity, temperature, and
CO, concentration vary, causing a need to adjust the relative pro-
portion of cyclic to linear electron transport and the ratio of ATP to
NADPH to satisfy different stromal metabolisms and deliver elec-
trons to alternative sinks (Kramer & Evans, 2011). Linear electron
transport results in the production of NADPH and accumulation of
protons in the lumen and therefore ATP synthesis. In contrast, cyclic
electron transport contributes to proton accumulation in the lumen
and ATP synthesis but not NADPH. Thus adjusting the ratio of cy-
clic to linear electron transport results in a different ratio of ATP
to NADPH. The photosystem excitation imbalance can also occur
when the two photosystems encounter different levels of pho-
todamage or photoinhibition (Caffarri et al., 2014). Note that the
excitation balance between PSII and PSl is related to, but different
from, the energy supply and demand balance between the light and
carbon reactions. The former is concerned about the coordination
between PSIl and PSI for the production of NADPH and ATP, while
the latter is concerned about whether the production of NADPH
and ATP is at rates that meet their demand by metabolic processes.
Both balances can affect ChlaF emission. A detailed discussion on
these issues is beyond the scope of this review but can be found in
the literature of plant physiology (e.g., Kramer & Evans, 2011).

Here it suffices to state that any environmental factors that
affect photosynthesis and photorespiration are expected to affect

oo, MM

NPQ, g, a1 47, and g and therefore SIF dynamics as Equation (3) and
Figure 2 show. For example, the ratio of g;;,to 1 + NPQ s directly re-
lated to carbon reactions (Equations $14, S17, and S21, mathematical
derivation in Supporting Information 5). This indicates that any envi-
ronmental factor that affects carboxylation, oxygenation, stomatal
conductance, mesophyll conductance, and leaf energy balance has
a potential to affect NPQ and g, and thus F, (Han, Gu, et al., 2022).

While the above description shows that a wide range of plant
functional factors can affect FT, all is not lost in complexities.
Photochemical and NPQ have a compensating effect on ChlaF emis-
sion and may facilitate the interpretation of SIF dynamics (but may
complicate the interpretation of SIF-GPP relationships, detailed dis-
cussion Sun et al., 2023). Under steady state in natural conditions,
NPQ and q;,, tend to vary in opposite directions because more re-
duced PSII acceptors tend to be associated with higher proton gra-
dients across the thylakoid membrane and therefore higher NPQ.
This means that @, is more stable than either NPQ or g;,, alone (Gu
et al., 2019). Similarly, g;; and g, should also tend to change in oppo-
site directions (i.e., more open PSI reaction centers mean less oxi-
dized PSl donors), which may have implications for quantifying ChlaF
emissions from PSI (detailed discussion in Supporting Information 1).

The aforementioned leaf-level plant functions can vary consider-
ably across the canopy, driven by gradients in micro-environmental
conditions (e.g., light, temperature) and canopy structure (i.e., het-
erogeneity of foliar traits such as vertical distributions of nutrients,
pigments, morphology, age, etc., details in Section 2.3) within a
canopy. For example, it is well known that foliar nutrient contents
and morphological characteristics (e.g., specific leaf area) vary sys-
tematically across the depth of the canopy. These vertical gradients
in foliar traits are long-term adaptations to the background gradi-
ents in environmental conditions such as light intensity, spectral
composition, and temperature that exist inside the canopy (Coble
et al., 2017). The vertical gradients in the light intensity and its spec-
tral composition can impact relative contributions of PSIl and PSI
to ChlaF emission. Plant canopies not only attenuate light intensity,
but also alter light spectrum because leaves absorb strongly in blue
and red wavelengths but scatter strongly in the green and far-red
regions. As a result, the within-canopy light environment is depleted
in blue and red photons but enriched in green and far-red lights as
compared to that in open environments (Hertel et al., 2011). PSl is
more sensitive to far-red light than PSll is. Therefore as the canopy
gets deeper, the light environment increasingly favors PSI (Anderson
et al., 2008), which may lead to increasing contribution of PSI to F;.
Collectively, canopy structure and spatial gradients in environmen-
tal conditions together determine the vertical variations in leaf pho-
tosynthetic rates, NPQ, q;, 4, 47, # and hence F,.

A particularly interesting but often overlooked issue is how sun-
flecks affect ChlaF emission. Sunflecks are bursts of light intensity
inside canopies where the light environment is normally shaded.
These bursts are caused by canopy gaps and swinging upper can-
opies by winds and can affect canopy photosynthesis significantly
(Way & Pearcy, 2012). Because sunflecks are short-lived and NPQ
is not instantaneous (Kromdijk et al., 2016), NPQ might not be able
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Variables p: total concentration of light-harvesting photosynthetic pigments associated with both PSII and PSI per unit leaf area at depth L; o: overall
effective absorption cross section of photosynthetic pigment; £, and &, downward and upward escape probability of ChlaF emission respectively; B:
relative contribution of pigments associated with PSII to the overall absorption cross section; q| jj and qy;: fraction of open PSII and PSI reaction centers
respectively under the lake model; g;: oxidized fraction of PSI electron donor (P700+); NPQ: non-photochemical quenching; I: excitation irradiance at the
wavelength A; LA leaf area index; rg: soil reflectance at fluorescence wavelength

Constant kpg: ratio of rate constant for constitutive (unregulated) heat dissipation to that for ChlaF emission; ®pgy,, and ®pg;p,: maximal
photochemical quantum yield of PSIlI and PSI respectively; s, ands: The spectral shape function of ChlaF emission of PSIl and PSI respectively; NPQ;:

NPQ capacity of P700+

FIGURE 2 Diagram mapping key leaf/canopy structure/function to the full solar-induced chlorophyll fluorescence (SIF) equation
(Equation 3). For visualization clarity, only direct effects, which act via first-order processes, are displayed (as linkages between processes
and mathematical terms). Boxes marked with * or # highlight processes that can potentially be inferred from hyperspectral or Lidar

measurements, respectively. VPD, vapor pressure deficit.

to rise fast enough to quench fluorescence when a sunfleck hits a
leaf. As a result, sunflecks may contribute disproportionately to F;
via a short term (a few seconds) increase (i.e., the Kautsky effect),
an issue particularly important for plant breeding toward enhancing

crop productivity (Kromdijk et al., 2016).

2.3 | How do leaf and canopy structure influence
SIF?

The internal structure and morphology of a leaf is as complex as that

of a plant canopy. Although leaves typically consist of three main

tissues (epidermis, mesophyll, and vascular), how these tissues are
internally arranged and by what amount are determined by plant
phylogenesis, locations in the canopy, foliar age before full devel-
opment, and environmental conditions, with consequences on the
scattering and absorption of both excitation light and ChlaF emis-
sion (the left column in Figure 2).

At the sub-daily timescale, the variation in p amount is likely
minor (Wickliff & Aronoff, 1962), and dominated by changes in leaf
carotenoid composition, which is involved not only in light harvest-
ing and excitation to chlorophylls, but also in the xanthophyll cycle
that protects plants against photodamage under high light (Adams
& Demmig-Adams, 1992). Although leaf chlorophyll content p is
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not expected to vary diurnally, chloroplast movement occurs at
this timescale, leading to changes in excitation irradiance. At sea-
sonal timescales, leaf chlorophyll a and b and carotenoid contents
(bulk xanthophylls and zeaxanthin retention) can be highly dynamic
in response to the environment or plant phenology, especially for
non-evergreen species. For example, chlorophyll a and b are lower
in young leaves, peaks in mature leaves, and then decreases again as
leaves senesce. This leaf age-related pattern closely matches that of
leaf nitrogen content and coordinates with photosynthetic capacity
(Croft et al., 2017), ensuring that light harvesting and carboxylation
are in balance throughout the lifetime of a leaf. Leaf chlorophyll
content also varies markedly across species (e.g., evergreen vs. non-
evergreen), even at the same geographical/climatic regimes (Li, He,
et al., 2018).

The effective absorption cross-sections of photosynthetic
pigment ¢ are influenced by multiple leaf/canopy structural fac-
tors. For example, photosynthetic pigments are not distributed
uniformly on a plane that parallels the leaf surface, because
pigments in chloroplast thylakoid membranes form concen-
trated interconnected complexes (i.e., pigment packaging, which
refers to the spatial arrangement of pigment molecules, much
like leaf clumping in a canopy) and chloroplasts themselves are
not uniformly distributed laterally (i.e., chloroplast positioning),
leading to the so-called sieve effect. The sieve effect reduces
o, which is in contrast to the detour effect, which increases
photon absorption due to multiple scattering inside leaf tissues
(Vogelmann, 1993). Furthermore, leaf anatomy can greatly affect
the sieve and detour effects. For example, leaves of most spe-
cies are dorsiventral with chloroplast-rich palisade parenchyma
cells densely packed near the upper surface (the adaxial side)
and the spongy mesophyll loosely placed near the lower surface
(the abaxial side). The dorsiventral leaves tend to orient more or
less randomly around horizontal directions. Leaves that orient
more vertically tend to have more symmetrical tissue distribu-
tions (e.g., grasses, eucalyptus). Ustin and Jacquemoud (2020)
provided an excellent discussion on leaf anatomy in the context
of leaf-level radiative transfer. Moreover, ¢ can vary vertically
along the canopy due to changes in leaf inclination, pigment dis-
tribution, and leaf age.

The escape probabilities £, and ¢, for a single leaf depend not
only on leaf pigment content and composition, but also on leaf
anatomy, incident light direction relative to the leaf surface, and
fraction of diffuse light, and is best estimated by a leaf/canopy
RTM that treats a leaf as a 1D or 3D structure. It is important to
note that, although the morphological architecture of leaves tends
to remain stable once the leaf is fully developed, the arrange-
ment and disposition of photosynthetic elements within a canopy
therein can be highly dynamic, even at sub-daily scale. Chloroplast
positions in mesophyll cells are controlled by chloroplast actin fil-
aments, which are extremely sensitive to the intensity of light. At
low light, these filaments can guide chloroplasts to periclinal walls
to maximize exposure to light while at high light they can relo-
cate the chloroplasts to anticlinal walls to reduce light exposure

ST i v

to avoid photodamage (Wada, 2013). Similarly, the arrangement
of thylakoids within the chloroplast, with dynamic grana stacking/
unstacking will also influence & and £}, and also 6.

Overall, the presence of these factors means the leaf internal
light intensity and spectral composition is heterogeneous and dy-
namic. Also, leaves with the same chlorophyll content may have
different ;, £, and ¢ if their anatomy and chlorophyll packaging pat-
terns (both at the scale of chloroplasts and thylakoids) differ.

The effects of canopy structure on SIF are twofold. On the one
hand, the internal distribution of PAR over branches, needles, and
leaves, which controls the excitation of ChlaF emission, is deter-
mined by the penetration and scattering of light in the stand. On the
other hand, the probability that the ChlaF emission, which is pro-
duced in the stand and exits the canopy in the viewing direction,
is also determined by the vegetation structure and incident light
direction (van der Tol et al., 2009). Thus, the optical properties of
soil, wood, and leaves in both the excitation and the emission spec-
tral ranges affect canopy-leaving SIF. Fortunately, there is no new
physics involved in the theory of SIF radiative transfer. Our under-
standing regarding how canopy structure affects radiative transfer
of incoming solar radiation (Ross, 1981) can be equally applied to
radiative transfer of SIF, although the objectives of applying this
theory differ greatly between them. For solar radiative transfer, the
source comes down from the top and we are typically interested in
how much solar radiation is absorbed and how much is reflected.
For fluorescence radiative transfer, the source is every leaf inside
the canopy and much weaker, and we are typically interested in how
much ChlaF emission escapes to the TOC and what it can tell us
about photochemical and biochemical processes inside the canopy.
Because of these differences, it is likely that fluorescence radiative
transfer issues will require more accurate considerations of canopy
structural factors (leaf inclination/heliotropism, spatial variations in
pigment and nutrient contents, phenological stages/leaf age, leaf
clumping, crown shape, crop row orientation, canopy rugosity, po-
rosity, roughness, etc., Figure 2) than modeling solar radiative trans-
fer inside plant canopies. The spatial arrangement of fluorescing and
non-fluorescing foliage elements within a canopy may have a large
influence on F,. For example, forests may appear “darker” in terms
of FT than croplands (Colombo et al., 2018), not necessarily because
they emit less fluorescence, but because a portion of the ChlaF
emission remains “trapped” in the vegetation and is reabsorbed, and
thus cannot be observed by the sensor. Progress in SIF RTM of dif-

ferent complexity is summarized in Section 2.4.

2.4 | Forward model parameterization of
SIF and the associated processes in leaf/canopy
function/structure

Existing models that have SIF-simulating capability, and progress
made so far are summarized in Table S2. Future theoretical innova-
tions needed are discussed in Section 4. Considering the complexity
of interacting processes (i.e., the left and right columns in Figure 2),

QSUADIT SUOWIO)) dATEAI) d[qedrjdde oy £q auIoA0S dIe SO[AIIE () $aSN JO SA[NI J0§ AIBIqIT SUIUQ) AS[IA UO (SUOHIPUOI-PUE-SULID)/WI0d" K[IM " ATRIqI[ouI[u0,//:sd)) SUOnIpUO)) pue SULd I, oy 39S “[£707/+0/20] U0 Areiqr durjuQ Ad[IM “YeIn JO ANSIATUN AqQ $£991°q95/1 1 [1°01/10p/wodAoim: A1eiqriaurjuoy/:sdny woiy papeojumod ‘0 ‘98+7S9¢ [



SUN ET AL.

=L e S

model parameterization can be distilled into a few key variables (i.e.,
the middle column in Figure 2). Among these variables, p and LAl
are either input or state variables of a dynamic vegetation growth
model; ¢ of a leaf and r, can be simulated by leaf/canopy and soil
RTM, respectively, or prescribed as input spectra; g is often treated
as a constant, that is, ~0.5. The remaining quantities have to be ex-
plicitly formulated, which can be categorized into two groups: vari-
ables related to leaf-level physiological functions including NPQ, q;,,
g, and g, and variables determined by leaf/canopy radiative trans-
fer, including I, &, ). All models with SIF-simulating capability have
to incorporate both leaf-level physiology of ChlaF emission and leaf/
canopy RTM of solar radiation and SIF, but they have varying de-
grees of parameterization complexity, computational efficiency, and

applicable scales (Table S2).

241 | Leaf-level modeling of ChlaF emission

Forward estimation of F, requires the dynamic responses of NPQ,
Aur i 97 and p to be known at each canopy depth, according to
Equation (3). To the best of our knowledge, no models have been
developed for q;;, g5, and g; therefore, we here focus on NPQ and qy,.
NPQ and q;), are routinely measured with PAM fluorometry and can
be easily parameterized as an empirical function of environmental
conditions (e.g., Han, Chang, et al., 2022; Raczka et al., 2019; Serddio
& Lavaud, 2011; van der Tol et al., 2014). An advantage of such sim-
ple models is that they can be coupled directly with Equation (3) to
forward-calculate F;. Kinetic models of NPQ based on its regula-
tion by lumen pH have also been developed (e.g., Zaks et al., 2012).
However, the latter models are probably too complex for large-scale
applications of SIF, as they involve many parameters that cannot be
estimated directly at the leaf level. Recently, there have been ef-
forts in developing mechanistic closure solutions for NPQ and qy
by modeling redox reactions along the electron transport chain (Gu
et al., 2022). These closure solutions will allow NPQ and g, to be
resolved in a coupled system of photophysics, photochemistry, and

biochemistry of photosynthesis, as defined above.

2.4.2 | Leaf/canopy-level RTM of SIF

The widely employed leaf-level RTM includes FluoMODIleaf and
Fluspect (Pedrés et al., 2010; Vilfan et al., 2016, 2018). Dorsiventral
(Stuckens et al., 2009) or 3D leaf RTM (Govaerts et al., 1996) exist,
but these do not include physiological parameterization of ChlaF
emission. At the canopy scale, FluorSAIL (Miller et al., 2005) and Soil-
Canopy Observation of Photochemistry and Energy (SCOPE; van der
Tol et al., 2009) were the first models to parameterize the absorption
of PAR, as well as the ChlaF emission, reabsorption, and scattering.
These models employ the concept of the Scattering of Arbitrarily
Inclined Leaves (SAIL) model (Verhoef, 1984, 1985), a relatively sim-
ple stochastic model for inclined leaves in stacked layers, which fur-
ther extended to SIF radiative transfer. This type of model treats the

vegetation canopy as 1D horizontally homogeneous canopy, which
is unable to realistically characterize heterogeneous canopies that
have complex architecture and species composition. To address this
issue, ray-tracing based models were developed to simulate radiative
transfer of SIF within 3D canopies. Such types of models, including
DART, FluorWPS, FluorFLIGHT, and FLIiES (Table S2), are computa-
tionally more expensive; however, with Monte-Carlo approaches,
their applicability for satellite measurements is foreseeable in the
near future (Wang et al., 2022). The recently developed FluorRTER
model (Zeng et al., 2020), based on spectral invariant theory, could
be suitable for 3D heterogeneous canopies and is computationally
less demanding.

Among all these models, the 1D SCOPE model is the most widely
used model in the SIF research community, a it also includes full
modules for calculating photosynthesis and energy budget. It cou-
ples the leaf-level physiological module of ChlaF emission (van der
Tol et al., 2014), the leaf-level RTM Fluspect (Vilfan et al., 2016,
2018), and the canopy-level RTM SAIL (Verhoef, 1984, 1985), with
subsequent updates to incorporate canopy vertical heterogeneity
and to improve computation efficiency (Yang, Prikaziuk, et al., 2021).
SCOPE has emerged as a standard tool (or a synthetic “virtual truth”)
for process interpretation (e.g., Verrelst et al., 2015; Yang, Prikaziuk,
et al, 2021) and for benchmarking other models, including both
large-scale terrestrial biosphere models (TBMs)/land surface models
(LSMs; e.g., Li et al., 2022) and small-scale complex 3D models (e.g.,
Zeng et al., 2020; Zhao et al., 2016). Furthermore, SCOPE has been
taken as the standard paradigm for parameterizing leaf-level ChlaF
emission and predominantly adopted (with varying actual implemen-
tations) by researchers into TBMs/LSMs (Parazoo et al., 2019). The
basic strategy of SCOPE's leaf-level ChlaF emission parameteriza-
tion (Figure S1) is to (1) compute ky (the rate constant of NPQ) as
an empirical function of the degree of light saturation (derived from
the actual and potential ETR), which, in turn, (2) closes the system of
equations (i.e., having the number of equations equal the number of
unknowns) for calculating photochemistry, non-photochemical heat
dissipation, and PSII ChlaF emission according to the principle of en-
ergy conservation. Specifically, @, g;;, NPQ form a closed equation
for PSII, and knowing any two of them is sufficient to resolving the
third, assuming ®pg,,, and kpp are constants. This strategy, denoted
as FvCB+ ky, has to compute photosynthesis and actual ETR from
FvCB first, prior to derivation of ky, NPQ, and SIF. It is subject to
uncertainties propagated from parameter uncertainties present in
FvCB (Rogers et al., 2017; Walker et al., 2021) and the empirical NPQ
model for computing ky. Indeed, the wide discrepancy of simulated
SIF across TBMs/LSMs and deviations from observed SIF have been
reported, which may result at least partly from these uncertainties
(Parazoo et al., 2020; Yang, Tol, et al., 2021), since each individual
model has different actual implementation of FvCB and ky formula-
tions. Moreover, this approach essentially conflicts with the original
intention of using SIF in a forward mode to curb uncertainties in cur-
rent photosynthesis estimates from FvCB.

The level of detail of the canopy radiative transfer representa-
tion in RTM essentially determines the computational demand and
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applicable scales (Table S2). For regional to global applications, the
1D SCOPE model with multi-layer treatment is practically unman-
ageable due to computational demand. Currently, global TBMs/
LSMs usually employ the “big-leaf” strategy to simplify the canopy
RTM. In these models, the SIF anisotropy cannot be explicitly mod-
eled (Li et al., 2022), but most often treated as an empirical scaling
factor derived from SCOPE ensemble simulations. Both SCOPE
and the 3D family of models are capable of simulating the anisot-
ropy impact on Fq, by explicitly specifying the sun-canopy-sensor
geometry. The major limitations of 3D models are the significant
computational demands that prevent them from global simula-
tions, as well as required input of leaf/canopy structure/functional
information that are often challenging to obtain. Detailed descrip-
tion of the strengths and weaknesses of each model is summarized
in Table S2.

3 | THE INFERENCE QUESTION: WHAT
ASPECTS OF TERRESTRIAL ECOSYSTEM
STRUCTURE, FUNCTION, AND SERVICE
CAN BE RELIABLY INFERRED FROM
REMOTELY SENSED SIF AND HOW?

The relevance of SIF for inferring photosynthesis and the related
ecosystem structural and functional information rests on the fact
that ChlaF emission is directly coupled to the actual linear ETR
from PSII to PSI (Gu et al., 2019). However, the canopy-leaving
F, (%) (or more broadly Fg, (Af)) needs to be converted to F.r(Ag),
prior to any meaningful inference of ecosystem structure or func-
tion. In the following, we first summarize current approaches that
infer For(Ag) from F, (Ag) or Fg, (A) (Section 3.1), and then present

Incident Light (7))

At-sensor 7'

FQT RQT.IO/T[

oo, NSRS

the full equations to estimate the actual ETR and GPP utilizing
ChlaF emission as input (Section 3.2). Finally, we develop a “toy”
model as an analytical framework (Section 3.3), which not only
offers direct mechanistic insights on interpreting the relationship
betweenF, (}»F) and GPP at varying spatiotemporal scales or under
different environmental conditions, but also enables a practi-
cal solution to compute regional/global GPP by taking remotely
sensed F,(Af) as input. Note in this paper, F,(Af) and Fg, denote
canopy-leaving SIF at TOC, which are assumed to be identical to
the at-sensor SIF signal, that is, negligible atmospheric absorp-
tion/scattering from the atmospheric column between TOC and
the observing instrument, which is a reasonable assumption for
solar Fraunhofer-line-based SIF retrievals (Chang et al., 2020;
Frankenberg et al., 2012).

3.1 | Inferring For(Ag) from F (Ag) or Foq (Ae)

There are two common approaches to infer F,r (¢ ). The first attempts
to estimate the fluorescence escape probability fesc(kF) = % es-
caping out of TOC (viewed from nadir), from the measured TOC re-
flectance R(XF). More commonly for spaceborne measurements, the
directional TOC SIF radiance (and also the directional TOC reflec-
tance) at sun-canopy-sensor geometry Q 1 is acquired, that is, Fo,;

therefore, the fluorescence escape probability is Q 1-dependent,

that is, f;STC(XF) = ‘;j((;:)) The term “escape probability” originated
from recollision theory (Knyazikhin et al., 2011; Stenberg, 2007),
and appears to exhibit a red edge pattern very similar to reflec-
tance (Figure 3). Therefore, this approach takes advantage of the
similarity of photon interception and scattering behaviors between

ChlaF emission and excitation irradiance (i.e., for paths after first

wavelength (nm)
600 650 700 750 800 850
| | | |

04 7
R

)
esc

Q7

0.2

0| (b)

FIGURE 3 Similarity between top of the canopy fluorescence escape probability and reflectance. (a) A diagram illustrating the radiative
transfer paths of incident solar radiation and solar-induced chlorophyll fluorescence (SIF) within a canopy, adopted from Yang and van der
Tol (2018). Definition of symbols is in Table S1. Orange, black, and red arrows represent incoming solar radiation, reflected/transmitted solar
radiation, reflected/transmitted fluorescence, respectively. p and = denote leaf reflectance and transmittance, respectively; p; and z; denote
the relative partitioning of ChlaF emission in the backward and forward direction, respectively; iy is the canopy interceptance. (b) ffff and
reflectance Ry, as a function of wavelength simulated with SCOPE2.1 for a homogeneous C3 crop canopy viewed from nadir (detailed model

parameter setup in Table S3).
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interaction with leaves and inducing ChlaF emission) within a canopy
(Figure 3; Yang & van der Tol, 2018). As directional TOC reflectance
is widely available, facilitating this type of approach is a practical
way to approximate e or fgﬁc.

Yang and van der Tol (2018) demonstrated that irrespective
of the complexity of radiative transfer, the relationship between
fox (M) and Rqq (Ar) of a canopy over a black soil (i.e., r; = 0) can be

expressed as:

Foi(d)  Ro (%)

- : @
Fer(Ae) o -o(e)

far () =

Here iy is the canopy interceptance (depending on canopy gap
fraction, unitless), and w is leaf scattering coefficients (i.e., the sum
of leaf reflectance p and transmittance z, unitless). Equation (4)
indicates that canopy reflectance Rm(kF) can serve as a practical
solution to “correct” Fg, (Ag) for structure related effects that may
otherwise overshadow those of quenching mechanisms of ChlaF
emission. Equation (4) is the theoretical foundation for following
derivations and implementations of varying forms, that is, Equation
(5a-h) summarized in Table 1. However, there are two caveats in
Equation (4). First, iy and @ may not be accurately known as a priori;
second, r, is assumed as zero, which in reality may not be the case
and can contribute to R, (Af) but not to ChlaF emission.

To address the first caveat, Yang et al. (2020) developed the
Fluorescence Correction Vegetation Index (FCVI; Equation 5b), the
product of the fraction of absorbed PAR (fPAR) and fé’f(}\F), based
on the radiative transfer theory. Here Ry, (vis) is the broadband visi-
ble directional reflectance over the PAR spectral range, and Ry, (NIR)
is directional reflectance over the range of the NIR plateau (~750-
900nm). FVCI quantifies the combined effect of PAR absorption and
SIF scattering, therefore accounting for the aggregated effect of
leaf/canopy structure on SIF.

To address the second caveat, Zeng et al. (2019) proposed to use
NDVI to differentiate Ry, (NIR) of pure vegetation from soil, which
does not contribute to ChlaF emission but impacts Rq,(NIR), that is,
Equation (5f).

LAl @ 14k LAl
Jar = [ Jo(LydL = w J
0 — *PSlim 0

)‘Fmin

Note Equations (4 and 5) are only valid when the sun-canopy-
sensor geometries Q 1 are identical between far-red SIF and re-
flectance (i.e., measured at the same time from the same platform
in practice). Furthermore, Equation (4 and therefore Equations 5a-d.f,g)
is valid only for far-red SIF but not for red SIF, likely due to the
asymmetry in the relative partitioning of scattering over two sides
of a leaf between incident solar radiation and ChlaF emission in
the red region (Yang & van der Tol, 2018) and the significantly
more re-absorption of ChlaF emission at red within a canopy. To
remedy this issue, Liu et al. (2020) extend the fSSTC formulation
to red SIF (Equation 5e) using empirical approximation of NDVI? to
mitigate soil contamination. Strictly speaking, Ry, and Fo, should

}‘Fmax
pL)ay, (L) J

be at the same wavelength A, which in practice, are unfortunately
not available if they are from different spaceborne instruments.
Therefore, there is often a spectral mismatch between the far-red
SIF and reflectance at NIR (e.g., Zeng et al., 2019). Other variants
of fgSTC (AF) formulations and their corresponding caveats are sum-
marized in Table 1.

The second type of approach relies on RTMs (Table S2) to numer-
ically solve F,; (e.g., Celesti et al., 2018; Yang et al., 2019), often with
reflectance spectra as input to anchor the leaf/canopy structural pa-
rameters/variables that are required to invert RTMs. This approach
may be feasible at the field or landscape scale but can be compu-
tationally formidable at regional and global scales. The FluorRTER
RTM, with promising computational efficiency, offers potential to
correct ff;f of 3D canopies for airborne and satellite retrievals.

Other approaches to estimate f;STC include data-driven (Liu &
Liu, 2018) and kernel-driven approaches, which can effectively nor-
malize Fg, into hotspot or nadir viewing directions if multi-angular
SIF measurements are available (Hao et al., 2022; Hao, Asrar,
etal, 2021; Hao, Zeng, et al., 2021).

3.2 | The full equation: Deriving the canopy-level
ETR and GPP

The total ChlaF emission consists of contributions from both PSll and
PSI. Since the PSIl emission dominates, and it can be easily probed
with PAM fluorometry, Gu et al. (2019) related linear ETR and GPP
to the PSII component of the total ChlaF emission. Furthermore,
as photochemistry, non-photochemical heat dissipation, and PSII
ChlaF emission form a closed system according to the principle of
energy conservation, the relationship between the actual linear ETR
(0 pmolm’2 leaf area s™%) and the PSIl ChlaF emission can be ex-
pressed in terms of either redox states of PSII (g,,) or NPQ. Note
J,refers to the actual ETR instead of the potential ETR (J,) commonly
used in the FYCB photosynthesis model (Farquhar et al., 1980). We
derive the canopy-level total actual ETR (denoted as J,r, pmolm'2

ground area s™!) based on ;) (Gu et al., 2019, equation 21 therein).

D (Lsit (he) B(L 2o (L, 2) (L, 2y) dydnedL. (6)

Imin

Here Arin and Agpax denote the minimum and maximum wave-
lengths of ChlaF emission.

Furthermore, GPP can be calculated by assuming: (1) all electrons
from PSll are consumed either in carboxylation (CO, assimilation) or
oxygenation (photorespiration), and alternative electron sinks such
as nitrate reduction and Mehler reaction are negligibly small (Alric
& Johnson, 2017); and (2) the light-carbon reactions are in perfect
balance (Gu et al., 2019; Han, Chang, et al., 2022). These two as-
sumptions are fairly accurate under normal conditions but may be
violated when plants are under stress (Tcherkez & Limami, 2019). For
example, if drought and heat stresses force stomatal closure when
sunlight intensity is still high, a proportion of the liner electrons
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may flow to oxygen to form reactive oxygen species, rather than
to NADP+ for carbon assimilation, which may break these two as-
sumptions. To calculate GPP, one must further decide whether the
carboxylation is limited by the supply of reduced power NADPH or
energy currency ATP. In typical applications of FvCB, NADPH is as-
sumed to be limiting, which is adopted here to calculate the GPP of a
canopy (denoted as GPPy, pmol Co, m>2 ground area sY:

_ (WA -
—Jo 4CC(L)+8F*(L)J"(L)dL

1=Dpgyiy 0 acL+8r(L) Fmin

GPP;4
=[N %JG(L)dL

— Pesim (1kpr) 1-x (LAl
1-Ppgim 3’0

}‘Fm\'n )Wmin

Here C_ (Pa) is the CO, partial pressure in the stroma of chloro-
plast, I'* (Pa) is the CO, compensation point in the absence of day
respiration, and x (unitless) is the fraction of total electron trans-
port of mesophyll and bundle sheath allocated to mesophyll (for
C4 plants only). Equations (6 and 7) are the full equations to derive

an [ [ @gyLysy () B(L Ay ) o (L) (L, 2y )dhydigdL

S e L

determined by variations in canopy structure/function (Figure 2).
Therefore, it is not conducive to directly employ Equations (6 and 7)
to compute J,; or GPP; analytically. To enable an analytical solu-
tion, we develop a toy model by simplifying Equation (3). Note here
we utilize F; (AF) for demonstration; a corresponding formulation
based on Fg,(Ag) can be similarly derived (or converting Fg, (Ag)

to F, ()»,_—) as a prior step). The major assumption to facilitate this

_ esim (Ltkor) (LAl _C()-T*() au (L) H\me m;n @y (L)syy (A ) B(L Ay ) o (LA)I(L A ) dhdhgdL  (C3)(a)

(CH(b)

simplification is that attenuation of emitted SIF and incoming PAR
inside a canopy can be characterized with Beer's law (a commonly
used strategy in global TBMs/LSMs). The toy model reads below
(detailed derivation and other assumptions involved are provided

in Supporting Information 6-8):

(kean+tho JLAL - 10 (Ae)re(2e) e 2 A —ef(kPARJrk;‘F)LAI PigmAent
1 — ¢ \kearthiy s — - = — — _
Fi(Ag) = €50(N X DS (M) B+ D5 (M) (1= B)| X pLAlI X oPAR,,
1 () 10(*e) (kPAR+khF)LAI (kPAR_kAF)LAI \[ Fusi (A) Fisi (M) )]J N 0 (8)
Mean ChlaF yield Light harvesting
Structure
Redox state
—
('LF + 1) [1— e-G+DkelAl] aPAR;
) e Nk Ppsiim (1 + Kor) b+1 < F, ()
o —(k,A +kPAR)LAI 1 - Dpgypy su () + 25 (A )u e ©)
ero(he)|1—e \ ilAe 1) =5
—— —
S 4 Constant ChlaF weighting factor
Structure
Redox state
—
b
g o= (b+DkppglAl aPAR, C.-T~
GPP; = (k ! 1)[1 T Gesim(L+ kor) b+l o F () x 4CZ+8F* @ (10)
£10(2) [1 - e_(k'“F+k"““)LA'] 1= Pesiim si(Ae) +Csi(Ae) % % (C4) (b)
Constant —_—

N

Structure

canopy-level ETR and GPP from ChlaF emission. Here g, (or NPQ)
must be modeled independently to close the system, which remains

as a major theoretical gap in current literature (Sections 2.4 and 4.1).

3.3 | Atoy model: Analytical solutions of canopy-
level ETR and GPP from F, (A¢)

Comparison of Equations (6 and 7) with 1-3 reveals that it is not
straightforward to directly apply either F,(Ag) or Fg, (Af) or even
F

«7(2) to estimate J,; or GPPy, as Equations (6 and 7) require in-

formation on vertical distribution of ChlaF emission that are

ChlaF weighting factor

Here g,9and € o denote the upward/downward escape probabil-
ity of ChlaF emission for an infinitesimally thin leaf layer at TOC/
BOC, respectively; a and b are empirical parameters for calculating
quy s a function of PAR; @, and @, denote the canopy-level fluores-
cence quantum yield of PSII and PSI, respectively, under steady
state; p denotes the mean photosynthetic pigment content of the
canopy; g and  are the canopy-mean broadband g and & (i.e., inte-
grated over the PAR spectral range 400-700nm) respectively.

Equation (8) represents a minimalistic model at the canopy level,
which reveals that F; (}\F) is affected by three groups of factors: leaf/
canopy structure, the quantum yield of ChlaF emission (averaged be-
tween PSII and PSI), and light harvesting. The light harvested is the
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product of p, &, LAl and incident light intensity at TOC, that is, PAR,.
The impact of leaf/canopy functions on ChlaF emission is repre-
sented by their impact on the mean quantum yield of ChlaF emission
of a canopy. The canopy structure factor accounts for variations in
the spatial display of photosynthetic pigments (e.g., leaf orientation,
vertical layering, pigment packaging, canopy rugosity, or porosity;
Figure 2) that affects the light extinction coefficients of both ChlaF
emission (denoted as er) and intercepted irradiance for excitation
(denoted as kppg). This toy model illustrates the joint control of leaf/
canopy structure and functions as well as light harvesting on FT(xF).
For example, two canopies with the same p can differinF, (XF) if they
differ in canopy/leaf structure or the mean quantum yield of ChlaF
emission. This toy model is applicable for guiding process diagnosis
and interpretation or knowledge inference on what structural and
functional information can be inferred from FT(kF) (Sun et al., 2023).
We note that Equation (8) can be applied to a leaf by setting LAl = 1
and r, = 0 (derivation in Supporting Information é). Equation (8) and
Equation (525) show that, even with considerable simplifications,
additional inputs or constraints are always needed to reduce the
degree of freedom to infer any structural or functional information
from the observed F; (xF) at the canopy or even the leaf level. What
additional inputs are available determine how FT(XF) should be used
and the level of complexity of such usage.

Equations (9 and 10) present the analytical solution of canopy-
level ETR and GPP utilizing at-sensor F; (XF) as input, facilitating a
forward calculation of these quantities that are not subject to exist-
ing uncertainties in the full FvCB model and/or ky formulations (i.e.,
the NPQ-based strategy). Parameters in these equations can be esti-
mated from vertically distributed measurements of light attenuation,
leaf PAM fluorometry, and gas exchange. Moreover, Equations (9 and
10) break J,; and GPP; into components of structure, a ChlaF weight-
ing factor, and CO, diffusion (e” use efficiency, for C3 only). Note that
the toy model explicitly models ¢, assuming it complies with Beer's
law, and therefore does not have to separately correct ¢ before-
hand, such as in Section 3.1. The system of Equations (8-10) directly
reveals what variables/parameters impact SIF and its relationship
with GPP, in a more explicit fashion than the conventional light use
efficiency (LUE) model. These analytical equations (along with those
in Supporting Information) can be used to guide interpretation of
SIF-GPP relationships, applications of SIF to different sectors under
climate change, and innovations in observational instrumentation/
setup (details in the companion paper, Sun et al., 2023).

On the other hand, Equation (10) also suggests modeling GPP
from at-sensor SIF is complex. Although the community shares the
hope of utilizing remotely sensed SIF to radically reduce the long-
standing uncertainty in GPP estimates, we must acknowledge (from
Equation 10): (1) SIF is not GPP and (2) SIF is not a panacea to fix
all issues that remain major contributors to the uncertainty in GPP
estimation (e.g., LA, V..., First, the whole SIF dynamics is nonlinear
(Equations 3, 6, and 7) which includes convoluted multiplications and
integration, hence integrated information in SIF (the direct observ-
able) does not equal the integrated information in GPP (our target
variable). Second, SIF is influenced by many factors that are shared

with GPP (i.e., LAI, leaf angle, V,.,, environmental forcings), so it
can to some extent integrate over the dynamic physiological com-
plexities of photosynthesis, and may offer a shortcut to model GPP
bypassing some of the uncertainties in individual factors (e.g., V pax
disappearing in Equation 10; Han, Chang, et al., 2022). However, LAl
and clumping effect are still required in modeling GPP even though
their impact is already (partly) incorporated by F; (AF).

4 | INNOVATIONS: WHAT INNOVATIONS
ARE NEEDED TO REALIZE THE FULL
POTENTIAL OF SIF REMOTE SENSING

FOR REAL-WORLD APPLICATIONS UNDER
CLIMATE CHANGE?

Moving forward, to jigsaw individual “puzzle” pieces (i.e., the six
blind men and the elephant) into holistic and insightful mosaics (via
synthesis and synergy) toward the ultimate goal of depicting a full
picture of the elephant, innovations are required in both theory de-
velopment and observing technology (Sun et al., 2023). Innovations
in these aspects should fill existing theoretical and data gaps that
currently challenge applications (summarized in Figure 4). Below we
summarize existing theoretical gaps (Section 4.1; Figure 4), followed
with our insights on potential innovative solutions to address them
(Sections 4.2-4.3) guided by the analytical framework developed
above. Data gaps and corresponding innovative solutions are dis-

cussed in the companion data-perspective paper (Sun et al., 2023).

4.1 | Theoretical gaps

Our derivations of the equations governing SIF dynamics (Equation 3)
and relationships with key ecophysiological variables (Equations 6-10;
e.g., photosynthetic pigment, ETR, and GPP) point to where theo-
retical gaps exist and provide guidance on connecting individual dots
into a complete picture across scales (Figure 4). These gaps are not
independent and filling them requires advances in broader areas of

photosynthesis and ecological research.

4.1.1 | Redox states and heat dissipations

The redox states of photosystems (i.e., q,;» 4,4 d7), as well as regulated
and unregulated heat dissipations (i.e., NPQ and NPQY7), play central
roles in the dynamics of SIF and its relationships with pigment content,
ETR, and GPP. It is difficult to utilize the full potential of SIF for eco-
physiological applications without thoroughly understanding and mod-
eling how redox state and NPQ processes affect the ChlaF emission
(Equation 3). Either the redox states or NPQ must be known in order
to utilize SIF to predict electron transport or GPP (Gu et al., 2019). The
redox states and magnitudes of various heat dissipation pathways are
an outcome of complex feedforward and feedback processes of pho-
tophysics, photochemistry, and biochemistry of photosynthesis. NPQ,
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FIGURE 4 Existing theoretical and data gaps through the lens of applications (Sun et al., 2023), and potential solutions moving forward.
This paper focuses on the theoretical side (the right columns highlighted in dark color) of this diagram. BRDF, Bidirectional Reflectance
Distribution Function; ET, evapotranspiration; Gx E x M, interactions of genetics, environment, and management; GPP, gross primary
production; IAV, interannual variability; NEE, net ecosystem exchange; NPQ, non-photochemical quenching; PS, photosystem; RTM,
radiative transfer model; SIF, solar-induced chlorophyll fluorescence; WUE, water use efficiency.

au» 91 @nd g5 are sensitive to environmental stress and affected by pho-
todamage and photoinhibition, and change with phenology. The varia-
tions of NPQ and q;, have often been studied by decomposing them
into a sustainable (photo-inhibited) component and a reversible com-
ponent (Porcar-Castell, 2011; Raczka et al., 2019; Tietz et al., 2017).
The presence of photo-inhibited components increases NPQ, and de-
creases g, and ®pg; Although the redox state and NPQ of PSII are
routinely measured by PAM fluorometry and studied extensively, we
currently still lack broadly applicable and mechanistically sound models
to represent their dynamics in natural environments. In particular, com-
pared with our knowledge about the control of PSII redox states and
NPQ, we currently know little about the control of PSI redox states and

heat dissipation processes due to lack of measurements.

4.1.2 | Nutrient content

Typically, the impact of nutrient contents on photosynthesis is in-
vestigated in terms of their relationship with photosynthetic capac-
ity parameters such as the maximal carboxylation rate V..., and
maximal potential ETR J,,,. For the applications of SIF, it is impor-
tant to understand the mechanistic basis of the impact of nutrient
availability on these photosynthetic capacity parameters. This is

particularly important for J,., because electron transport (photo-
chemistry) directly competes with SIF emission for energy partition-
ing. While the mechanism for the dependence of V., on nutrient
content is fairly well understood (e.g., Rubisco abundance depends
on leaf nitrogen content LNC), how nutrient content mechanistically
affects J.,,, is not clear, even though J,,., and V.., exhibits empirical
linear relationships (Kattge & Knorr, 2007; Waullschleger, 1993). The
“coordination theory” hypothesizes that plants can optimize LNC to
balance Rubisco- and RuBP regeneration-limited carboxylation rates
(Chen et al., 1993; Wang et al., 2017), alluding the linkage between
LNC and J,,,. From the light reaction side, It has been reported that
under the same environmental conditions, leaves with different
nutrient contents may have different NPQ (Cheng, 2003) and q,,.
Also, foliar chlorophyll content depends on nutrient contents (Croft
et al., 2017). It is likely that the foliar abundances of PSIl and PSl and
the stoichiometry between them also depend on nutrient availabil-
ity; however, studies addressing this are rare.

4.1.3 | State transition

State transition refers to the migration of mobile light-harvesting
complexes Il (LHCIIs) and thus the redistribution/rebalancing of
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energy absorption and excitation between PSIl and PSI (for a re-
view, see Minagawa, 2011). This process results in a dynamic ad-
justment of 5. The energy balance between PSIl and PSl is essential
for the photosynthetic machinery to operate safely in fluctuating
environments because these two types of photosystems are con-
nected in series and the energy level of electrons transferred from
PSIl to PSI needs to be elevated by photons absorbed by the light-
harvesting complex of PSI. Thus, any imbalance between them can
disrupt electron flow from PSII to PSI and to the eventual electron
acceptor NADP+. When light regimes favor PSI, mobile LHClIs in
their de-phosphorylated form are attached to PSII, thus boost-
ing its light harvesting and excitation. This condition is known
as State 1. When light regimes change such that PSIl is favored,
mobile LHClIIs are phosphorylated and move to PSI to increase its
absorption cross-section, leading to State 2 of the photosystems.
The energy imbalance between PSIl and PSI and thus the need for
state transition are sensed by the redox state of the pool of free
plastoquinone (PQ) molecules which transport electrons within the
thylakoid membranes from PSII to Cyt. Currently, we lack a quan-
titative model to predict state transition, and g is often assumed
to be 0.5. But a change in the value of g will lead to a proportional
change in ChlaF emission from PSII (Equations 3 and 8), other con-
ditions being equal. As a result, a dynamic g significantly impacts
the response of ChlaF emission to variations in environmental con-
ditions because of the change in energy allocation between PSII
and PSI. ChlaF emission is believed to be dominated by PSIl be-
cause PSl is photochemically more efficient than PSII (Hogewoning
etal., 2012; Lazar, 2013). Thus, a change in PSIl ChlaF emission can-
not be compensated for by change in PSI ChlaF emission when g
varies. Although state transition is often studied at short timescales
(seconds to hours, Minagawa, 2011), conceivably g could vary with
canopy depth, phenology, species, and prevailing climate condi-
tions (e.g., Porcar-Castell et al., 2014) which could affect the ratio
of cyclic to linear electron transport required to support the Calvin-
Benson Cycle, resulting in the need to rebalance the energy har-
vesting by the two photosystems. However, this remains uncharted
and would deserve future attention.

Although it is a reasonable assumption that PSI plays a
minor role in ChlaF emission when the overall energy level is
considered, it is not clear whether this assumption is also valid
over wavelengths at which SIF is retrieved from existing in-
struments. This issue is equivalent to asking whether any dif-
ference in the PSIl and PSI spectral shape functions (s, and s)
is sufficiently small such that PSII ChlaF emission dominates
at every wavelength. SIF cannot be observed in broadbands
and has to be observed at Fraunhofer lines, O,-A or -B bands.
There is no a priori knowledge or observations to indicate how
similar or different s, and s, are. Further studies on this issue
either with theoretical analyses or observations are needed.
If it turns out that PSI contribution cannot be ignored, then
measurements and better understanding in the dynamics of q;,

and g, will be needed.

41.4 | Thylakoids

The ultrastructure of thylakoids is not static and has been observed
to swell in the light and shrink in the dark (Li et al., 2020). The ultra-
structural dynamics of thylakoids can regulate a number of processes
that control photosynthetic ETR, including macromolecular blocking/
collision probability, direct diffusional pathlength, Cyt duty division
(Johnson & Berry, 2021), luminal pH via osmotic water fluxes, and sepa-
ration of pH dynamics between granal and lamellar lumens in response
to environmental variations. Gu et al. (2022) discussed these impacts
in detail. As photosynthetic ETR is directly coupled to ChlaF emission,
the thylakoid ultrastructural dynamics induced by changes in environ-
mental conditions can feedback to SIF dynamics (Equations 6 and 9).
Furthermore, pigments are located in the thylakoid membranes. As the
thylakoid swells and shrinks, the pigment packing on the membranes will
shift, affecting ¢ and thus photon interception and absorption and exci-
tation energy transfer. Currently, there is little knowledge regarding po-
tential impacts of thylakoid ultrastructural dynamics on ChlaF emission.

4.1.5 | Alternative electron sinks

ETR from PSII to PSI, which can be inferred from the ChlaF emis-
sion, supports not only photosynthesis but also other stromal me-
tabolisms such as nitrate reduction, photoreduction of oxygen, and
emission of volatile organic compounds (VOC). As a result, ETR that
supports photosynthesis is smaller than the rate that can be inferred
from ChlaF emission and SIF measurements (von Caemmerer, 2000).
Alternative electron sinks serve as photoprotective mechanisms
when plants are under stress and the energy harvested by photosys-
tems exceeds the need of carboxylation and oxygenation. Thus, al-
ternative electron sinks can be strong under stressful environmental
conditions (Alric & Johnson, 2017). The presence of alternative elec-
tron sinks is likely a key physiological mechanism affecting the SIF
dynamics and the decoupling of SIF and GPP (Figure 2; Equations 3
and 6-10), which remains uncharted and warrants future research.

4.1.6 | Mechanisms and model parameterization of
water and heat stress

One major knowledge gap is to pin down the exact mechanisms
(e.g., leaf expansion/fall, heat dissipation, stomatal closure, hydraulic
failure, carbon starvation) that plants use to respond and/or adapt
to stress at different timescales, and how these stresses influence
ChlaF emission and the observed SIF signal F, (A). Filling this knowl-
edge gap is crucial to enable SIF applications for inferring plant
traits, selecting stress-tolerant crop genotypes/phenotypes, preci-
sion agriculture management, as well as regional-scale monitoring
and early warning capacity for stress and food insecurity, etc. (Sun
et al., 2023). A barrier is that SIF itself and its coupling with GPP
is affected by a myriad of interactive processes and environmental
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variations (the forward issue, Equation 3), and thus the observed SIF
F, (%) reflects their collective and interactive effects (the inference
issue, Equations 9 and 10). Additional complexity would arise if mul-
tiple stresses co-occur, for example, heatwave and drought, insect
outbreak accompanied with water/heat stress, or flooding followed
with nitrogen leaching, etc. Under such scenarios, SIF may reveal
their amplified or compensating effect, but SIF alone is insufficient
to tease out individual contributions. Observational and modeling

innovations are needed to tackle these challenges (Sun et al., 2023).

4.1.7 | Connection of SIF to stomatal
conductance and transpiration

The apparent correlation between SIF and transpiration obtained
so far, although promising, is sensitive to three assumptions: (a) the
ratio of transpiration (T) to total evapotranspiration (ET) approaches
to unity (during the peak growing season without rain events; Lu
et al., 2018; Shan et al., 2019), (b) stomata optimize their openness
to balance carbon uptake and water loss (Shan et al., 2019; Zhou
etal., 2022), and (c) SIF is linearly related to GPP. However, the first as-
sumption holds only for certain ecosystems with high LAl (e.g., crops,
deciduous forests) but not others (e.g., Mediterranean ecosystems);
the second could be a reasonable assumption but the exact conditions
under which it holds require future investigations (Stoy et al., 2019).
The third assumption can be violated at shorter timescales and/or

under stress (thorough discussion in Section 3.3 and Sun et al., 2023).

4.1.8 | Estimation of SIF escape probability

The majority of SIF applications across all sectors so far (Sunetal., 2023)
do not effectively correct the escape probability SIF although a variety
of practical approaches have recently emerged (Table 1), confounding
the validity of their findings and mechanistic understanding. Strictly
speaking, fé€ or fgSTC can only be explicitly estimated with RTMs of SIF,
ideally with the ray tracing approach that specifies the 3D structure
of plant canopy. From RTM theory, we can explain the magnitude and
directionality of the variations in SIF and f;ff induced by vegetation
structure (Joiner et al., 2020). However, the computational demand
prevents its practical applications especially at the ecosystem scale
and beyond. The recent theoretical development of reflectance-based
approaches appears promising to approximate f(ech; however, attempts
to correct it across biomes and different scales are often inconclusive
due to both noisy SIF data (Sun et al., 2023) and various assumptions/
limitations in the fS?C formulations (P1-S8 in Table 1).

4.2 | Theoretical innovations at the leaf level: Coupling
photophysics, photochemistry, and biochemistry

The key theoretical gaps identified above call for corresponding
theoretical innovations in solutions (Figure 5). These gaps are not

S e L

independent, and filling them requires system thinking at the level of
molecular mechanisms. To better understand how innovative solu-
tions may be developed, we adopt the three stages of reactions of
photosynthesis: photophysical reactions, photochemical reactions,
and biochemical reactions. The necessity of dividing the light reac-
tions into the photophysical and photochemical reactions is due to
the fact that these two groups of reactions occur at different places
with vastly different time-scales and follow different laws.

Because the three stages are coupled, any equations that de-
scribe only one or two of the three reactions cannot be closed. For
example, Equations (1-3 and 6) are photophysical equations and can
be applied only when additional information on variables such as
NPQ and g, is supplied. Equation (7) attempts to couple photophys-
ics and photochemistry to model GPP, which also requires additional
modeling of NPQ and q;;. The widely used FvCB model mechanisti-
cally describes the biochemical reactions, and depends on an empir-
ical equation relating potential ETR, that is, J,, to light intensity to
provide a closure for modeling photosynthesis.

The weakest link in our efforts to relate SIF to GPP is photo-
chemical reactions along the electron transport chain. The photo-
chemical reactions are the bridge between the photophysical and
biochemical reactions. While the models of photophysical and bio-
chemical reactions have been sufficiently developed for SIF appli-
cations (Farquhar et al., 1980; Gu et al., 2019; Equations 1-3 and 6),
the same cannot be said for the photochemical reactions. Gu
et al. (2023) derived analytical steady-state equations governing the
states and redox reactions of complexes and electron carriers along
the photosynthetic electron transport chain between PSIl and Cyt.
The impact of thylakoid ultrastructural dynamics on electron trans-
port is represented by a light-induced thylakoid swelling/shrinking
function that is applied to the fraction of Cyt available for linear
electron transport. These equations are universal to oxygenic pho-
tosynthetic pathways, and allow the redox conditions of the mobile
plastoquinone pool and Cyt to be inferred with typical fluorometry.
There are three critical next steps that need to be taken. One is to
apply a similar approach and derive governing equations for elec-
tron transport from Cyt to PSI to NADP+ (linear transport) or to the
PQ pool (cyclic transport around PSI; Johnson & Berry, 2021). The
second is to develop a model that links the redox state of mobile
plastoquinone (PQ) with state transition. The redox state of PQ,
which is already modeled in Gu et al. (2023), triggers state transition
(Minagawa, 2011), and therefore could serve as a reliable predictor
of state transition. The third is to develop a mechanistic model that
could predict the alternative electron sinks, particularly VOC emis-
sions, based on environmental conditions. Once these critical steps
have been accomplished, a complete photochemical model will be
established, allowing a full coupling of photophysical, photochem-
ical, and biochemical reactions to mechanistically study SIF-GPP
relationships.

Nevertheless, these steps are not easy and completing them
will require substantial research efforts at timescales ranging from
seconds to seasonal. In particular, the coupling of photophysics,
photochemistry, and biochemistry will need to be tested for a
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FIGURE 5 Outlook for future solar-
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wide range of environmental conditions including water and heat
stresses. Both redox reactions and diffusion of electron carriers
in photochemistry and enzymatic reactions in biochemistry are
sensitive to temperature. Although temperature response func-
tions are available, these functions have been rarely tested under
extreme conditions. Water stress affects g, and CO, supply to
Rubisco, which will lead to feedback effects on the photophysi-
cal and photochemical reactions. At the present, these feedbacks
have not been understood. Furthermore, stresses may damage or-
gans and tissues such as photosystems and thylakoid membranes
which would cause state change in the photosynthetic machinery,
which is hard to model.

In the interim, empirical models of key photophysical and pho-
tochemical variables based on intensive and extensive PAM fluo-
rometry measurements can be applied as temporary solutions to
satisfy the need for process-based guidance for analyzing the rapidly
increasing amount of SIF data. For example, simple light response

Model development

functions of NPQ (Serddio & Lavaud, 2011) and g, (Han, Chang,
et al., 2022) can be used to satisfy modeling needs at diurnal times-
cales. The empirical relationship between the photochemical yield
of PSIl and NPQ as developed in van der Tol et al. (2014) may also
serve as a partial closure solution at conditions when variations in
q,; are small. Alternatively, one could potentially use estimated NPQ
as inputs. NPQ can be estimated by monitoring the photochemical
reflectance index over short timescales (Garbulsky et al., 2011).
Nevertheless, it must be emphasized these temporary solutions do
not have general applicability and their validity must be evaluated on
a case by case basis.

4.3 | Theoretical innovations at the canopy scale

Future research innovations at the canopy scale should focus on the
following aspects.
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4.3.1 | Benchmarking RTM

Numerous leaf/canopy-level RTM with SIF capability have been
developed at different levels of complexity, but their performance
and applicability across biomes (with different leaf/canopy struc-
tures), landscape heterogeneities (with different composition/
abundance of land covers), and biotic/abiotic stresses (with differ-
ent symptomatic and asymptomatic spectral signatures) remains
to be comprehensively evaluated. The RAdiation transfer Model
Intercomparison (RAMI) protocol (Widlowski et al., 2015) well es-
tablished for surface reflectance can be adopted to benchmark SIF
simulations. In particular, model validation with in situ measure-
ments of SIF (Parazoo et al., 2019; Yang et al., 2020), along with
surface reflectance, for example, SpecNet (Gamon et al., 2006),
across diverse biomes and climate regimes is critical to ensure the
realism of RTMs, despite the difficulty in concurrently obtaining
latent quantities such as Fr(Ag), and the actual leaf/soil optical
properties. Moreover, the leaf/canopy RTM can be further inte-
grated with atmospheric RTM to facilitate direct integration of
at-sensor spectral signal (acquired by diverse platforms; e.g., Yang
et al., 2020). This can help address how the varying O,-A depth
between the direct and diffuse solar radiation impacts SIF retrieval
from reflectance spectra, which remains one major challenge to
disentangle solely from measurements.

4.3.2 | Improving computational efficiency of RTM

The formidable computational demand of current RTMs (espe-
cially 3D) may be overcome with parsimonious surrogate models.
For example, the FluorRTER RTM (Zeng et al., 2020) has similar
performance to the full 3D ray-tracing FluorWPS, but is compu-
tationally much more affordable. Machine learning represents a
promising pathway to effectively emulate complex physical pro-
cesses with computational efficiency. Both approaches have the
potential to make RTM inversions more accessible to users and
more applicable at large spatial scales. For applications at global
scales and/or spanning decades (e.g., constraining carbon budg-
ets), a two-stream treatment of SIF RTM would be computation-
ally more tangible (Li et al., 2022; Thum et al., 2017). In this case,
an integrated solar radiation and SIF RTM should be developed
based on the first principles of radiative transfer. From a physical
point of view, the only difference between solar and SIF radia-
tive transfer is that the source of solar radiation comes from the
sun above the canopy top while the source of SIF is distributed
within the canopy. Other than that, they follow the same phys-
ics. Furthermore, SIF radiative transfer is analogous to the long-
wave radiative transfer in plant canopies without the need to
consider thermal emissions from sky; just like SIF, longwave radia-
tion also has sources in plant canopies. Therefore, the highly ef-
ficient matrix approach for modeling longwave radiative transfer
(Gu et al., 1999) can be modified to model SIF radiative transfer in
plant canopies. Either a two-stream or matrix-based SIF radiative
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transfer modeling approach, built upon basic physical principles,

can be applied at regional to global scales.

4.3.3 | Refinement of the toy model

The analytical framework developed here can be employed as
an exploratory tool to facilitate process interpretation and diag-
nosis (Sun et al., 2023), as it explicitly reveals the core and com-
plex interacting mechanisms that are hidden in the LUE models
(Equations 3 and 8-10). Moreover, built upon theoretical under-
standing, the analytical solution has the potential to be applied
universally across spatial and temporal scales toward various ap-
plications (Sun et al., 2023). Nevertheless, in developing the toy
model here, we have deliberately removed many details so that
we can focus on core mechanisms; therefore, it should be subject
to rigorous test and refinement in the future due to various as-
sumptions (detailed in Sl). For example, the current form of leaf
to canopy integration jOLAI is a highly conceptualized notation,
and can take different forms with varying complexity in actual
implementations. In the future, Equations (8 and 10) can be ex-
panded to separately model the sunlit and shaded components
by explicitly accounting for the direct and diffuse solar radiation.
This will inevitably introduce more complexities to model formula-
tions. Moreover, Equations (8-10) require additional information
(beyond the integrated canopy functional/structural information
carried in SIF), that is, variables/parameters that are impacted by
canopy structure (e.g., affecting solar and fluorescence attenu-
ation), vertical distribution/variation of leaf functions (i.e., the
redox states and/or NPQ) and pigment content/nutrient content
(Figure 5). Observational innovations are concurrently needed to
facilitate model improvement in these aspects. On the other hand,
Equation (10) can be used to diagnose the degree of linearity of SIF
and GPP and contributing processes/parameters from the physi-
ological and structural perspectives.

5 | CONCLUSIONS

This review synthesizes theoretical understandings of photon har-
vesting, energy dissipation pathways, and SIF radiative transfer in
leaves and canopy to develop an analytical framework that (1) high-
lights the complex impacts of key leaf/canopy structure/function
and their interactions on ChlaF emission and (2) guides the trans-
formation of at-sensor SIF into meaningful information regarding
photosynthetic electron transport and GPP. This framework enables
identifying actionable solutions to tackle existing theoretical chal-
lenges and research priorities over the next 5-10years. Key points
this review aims to deliver are as follows:

e Harnessing theory and data: Theories and data advancements
should go hand-in-hand, in order to shift from correlational analy-
ses to causal quantification and reasoning.
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e Appreciating the process complexity: SIF is a single signal reg-
ulated by a myriad of complex biophysical, biochemical, and
physiological processes in response to environmental variations
and anthropogenic perturbations. Inferring specific processes
requires careful control of remaining interacting processes,
with the aid of observation technology that can offer comple-
mentary information.

e Versatile application potential of the toy model: The toy model de-
veloped should be treated as an exploratory tool subject to rigor-
ous test and refinement in the future due to various assumptions.
Nevertheless, it conceptually represents a substantial improve-
ment over LUE models and can be employed at different spatial
and temporal scales for process interpretation/diagnosis toward

various applications (Sun et al., 2023).
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