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ABSTRACT: The use of quantum mechanics (QM) has long been the norm to study covalent-binding phenomena
in chemistry and biochemistry. The pharmaceutical industry leverages QM models explicitly in covalent drug
discovery and implicitly to characterize short-range interactions in noncovalent binding. Predictive toxicology has
resisted widespread adoption of QM, including in the pharmaceutical industry, despite its obvious relevance to the
metabolic processes in the upstream of adverse outcome pathways and advances in both QM methods and
computational resources, which support fit-for-purpose applications in reasonable timeframes. Here, we make the
case for embracing QM as an indispensable part of a toxicologist’s toolkit. We argue that QM provides the necessary
orthogonality to alert-based expert systems and traditional QSARs, consistent with calls for animal-free integrated
testing strategies for safety assessments of commercial chemicals. We outline existing roadblocks to this transition,
including the need to train model developers in QM and the shift toward service-based toxicity models that utilize
high-performance computing clusters. Lastly, we describe recent examples of successful implementations of QM in
hazard assessments and propose how in silico toxicology can be further advanced by integrating QM with artificial
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B INTRODUCTION

In three-year’s time (the year 2026), we will mark the 100th
anniversary of the Schrodinger equation, a formalism that allows
us to derive the energy of a chemical system from its electronic
structure (i.e., from the subatomic motion of electrons). This is
significant because electronic energy, corrected for thermal
effects (to capture molecular motions in the real world), and
entropy (to account for the many states molecules can occupy)
can be used to estimate how likely and how fast any chemical
process is going to be. The totality of the natural world around
us, its evolution, and its instantaneous representation at any
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given moment are a direct reflection of these two guiding
principles. This should feel familiar and likely revive old fears in
any former chemistry student who had to make the leap from the
visually friendly building blocks of organic chemistry to the
calculus-heavy quantum mechanics in their junior year in
college.

In recent years, toxicology has initiated the sensible pivot from
whole organism testing to mechanistic studies of toxicity to
reduce the ethical and economic burden of animal models.'~*
Case in point, as of late 2022, new pharmaceuticals do not need
to be tested in animals to receive U.S. Food and Drug
Administration (FDA) approval.’ This transformation is both
knowledge-driven (we have developed sound methods that
enable a closer look at the underlying biochemistry in toxicity
pathways) and knowledge-inducing (we can better understand
organism-level effects by quantifying the key events triggering
animal or human response). In that light, it is fair and true to
state that all modern toxicology is fundamentally chemistry (of
these key events), and because all chemistry is guided by the
subatomic motion of electrons, we require quantum mechanics
(QM) to capture toxicological phenomena (Figure 1). From
Figure 1, what we will demonstrate below is that this conceptual
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Figure 1. Links between toxicological phenomena and quantum
mechanics (QM) based on fundamentals of underlying processes
(nested circles) and practical implementations in predictive-toxicology
solutions (blue arrow).

link between QM and toxicity can be exploited in practice by
computing reactivity indices, derived from electronic structure,
in support of risk and hazard assessment.

In computational modeling, the relationship between QM
theory and solutions to chemistry problems in the real world has
been explored for some time and successfully leveraged across
many different fields, from calculating energetics of organic and
enzymatic reactions to computer-aided drug discovery
(CADD).*” The progression of CADD is particularly
interesting, as the field started with relatively simple
structure—activity relationships (SARs) over 50 years ago,8
eventually evolving into a complex modern toolbox based on
explicit models of host—guest interactions (featuring techniques
such as Monte Carlo or molecular dynamics simulations) and
statistics-driven approaches (e.g., quantitative SARs (QSARs),
and artificial intelligence (AI) in the more recent years),
employed at different stages of the drug discovery process.””""
QM is projected to play an increasingly important role in CADD
as the efficiency/accuracy of real-world implementations has
improved considerably (see, for example, mixed quantum and
classical, QM/MM, methods used to determine free-energy
landscapes of enzymatic reactions or applied in virtual screening
for covalent drug discovery).'” Furthermore, available computa-
tional power continues to rise exponentially at diminishing costs
(viz. Moore’s law about transistor density on a microchip),
supporting the use of more expensive (ie., accurate) QM
methods.”"?

Surprisingly, this transformation of in silico modeling in
CADD was not mirrored in predictive toxicology, which has
largely relied on (Q)SARs based on structural features and/or
physicochemical properties (not unlike CADD in the 1960s) for
much of its existence.'* This is true even for end points
characterized by covalent reactivity in key initiating events. >~
The lack of technology transfer in practical applications
compelled us to outline the self-evident benefits of QM and
the modeling of molecular interactions for the purposes of
predictive toxicology in 2018."” We were not the first to point at
this unrealized opportunity,””*" but a quick survey of the topic
and citations of the few key publications to date suggest QM has
never truly arrived in toxicology.

B SELF-IMPOSED LIMITATIONS OF “QM BY PROXY”
IN TRADITIONAL PREDICTIVE TOOLS

Let me preface this section by stating that existing approaches
used in predictive toxicology (i.e., atomistic QSARs, expert
systems, or read-across) incorporate some QM implicitly (and
perhaps mindlessly). For example, many physicochemical
properties used in QSARs (such as polarizability, molecular
volume, or the various partition coefficients like log K, ,,) are a
manifestation of the electronic structure and its interactions with
the environment. Similarly, expert rules for chemical inter-
actions rest on observations that fundamentally stem from (or
align with) QM theory.”” These approximate methods are
valuable in virtual screening of large data sets, when seeking to
prioritize a subset of promising compounds for further
experimental follow-up. However, in deterministic tools that
need to provide absolute metrics, one must be concerned about
the relevance of these “proxy variables” to the specific
transformations at hand (i.e,, the key events in the adverse
outcome pathway) and about the quality of their estimation. For
example, polarizability, ie., the ability to distort a molecule’s
electron cloud, can reflect permeation through lipid membranes
or binding of biological targets driven by induced-dipole
interactions.” It is commonly predicted from the number of
valence electrons rather than computed directly from electron
density.”® The former is instantaneous, but stacking a model on
top of another model propa%ates error; compounds uncertainty;
and obscures applicability.”” The latter is much more involved
and may require advanced, computationally costly methods
(though faster solutions, such as quantum theory of atoms in
molecules, QTAIM, have now been developed to deliver robust
and physically insightful QSAR models).”* Critically, a
principle-based approach is not limited by the chemicals in a
training set of a statistical model. The same can be said about
other properties frequently invoked in toxicokinetics and
dynamics (e.g, dipole moment, surface area, volume, electro-
static potential, electron affinity. etc.).”* Derivation of these
properties from electron density, such as outlined by Matta,** is
the better approach if there is limited data to train a model and/
or the chemicals used in training are different from those the
model will be eventually applied to. Here we arrive at the crux of
the matter—in practical terms, it is difficult to externally
evaluate these two conditions (training-set limitations and
chemical-space applicability), as the makeup of predictive
models may be proprietary (or inscrutable for the nonexpert
user) and because molecular behavior varies dramatically across
the chemical landscape (e.g., in comparing commodity
chemicals vs pharmaceuticals).””> As these concerns are
challenging to fully alleviate with applicability domain
definitions, direct application of QM is nearly always the more
reliable option.'”*®

Aside from how the calculation is carried out, which impacts
both computational cost and accuracy, the relevance of the
computed properties matters too. Physicochemical properties
used in QSARs are usually poor proxies for the biochemical
phenomena and systems they try to approximate (e.%., ligand
polarizability used to capture protein binding affinity”® or the
octanol—water partition coefficient used to gauge skin
permeability).”” This is because molecular processes in real
systems are different from and far more complex than the
standard “roster” of physicochemical properties available to
model developers, inevitably leading to the same outcomes as
noted in the previous paragraph—a dubious (and likely severely
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limited) applicability domain.”> For example, log K, is a
popular descriptor of passive diffusion across a lipid matrix used
in many existing tools (e.g., OECD QSAR Toolbox). However,
the properties of octanol are not identical with the components
of lipid membranes, such as free fatty acids, ceramides, or
cholesterol. Thus, a more accurate approach is to replace log
K, ,,, with interaction energies between the xenobiotic and these
media, which can be obtained from molecular simulations used
in conjunction with mixed quantum and classical calculations.”®

“QM by proxy” in (the most competent) expert systems and
read-across can best be understood through the lens of organic
chemistry coursework. Even before being introduced to the
postulates of QM in physical chemistry, students learn to
recognize molecular patterns, i.e., functional groups, each linked
to a specific chemical behavior and reactivity. While they might
not yet understand QM, they nonetheless, albeit unwittingly and
in a superficial manner, adhere to the principles of QM in
drawing reaction mechanisms and moving electrons across
Lewis structures. This “pattern recognition” propagates into
expert systems and read-across and can be encoded in an
autonomous computer program to enable predictions. Un-
fortunately, the limitations outlined for physicochemical proxies
above apply to (2D) structure-based expert systems and read-
across as well, in that neither can robustly propagate beyond
existing knowledge into a new chemical space (without prior
understanding of the outcomes that define that space) or
quantitatively distinguish nuanced effects of molecular structure
on biological activity (e.g., the subtle and often confoundin§
effects of molecular substitution around a functional group).”
The latter explains why these approaches cannot reliably predict
potency of xenobiotics,” regardless of the toxic end point, a
feature that is key to hazard and risk assessment.’’ Recent
studies on the skin sensitization of peptide couplers’’ and
carcinogenicity of N-nitrosamines®” exemplify these limitations.

B TOWARD EXPLICIT QM IN PREDICTIVE TOOLS

Nowadays, there is no reason to be overly reductionist in our
model development, representing complex biochemical pro-
cesses with simple rules or generic properties. Instead, we can
focus on modeling molecular interactions, which, provided that
all metabolic processes involve covalent interactions (i.e., the
breaking and making of bonds) and even noncovalent
interactions with biological targets rely on the polarization of
electronic density, calls for a QM approach of some kind. We can
subsequently use expert knowledge to perform a “sanity check”
on the predictions of our models in simple systems. Historically,
we shied away from such techniques due to limited compute, but
that is no longer the case; we are now able to parallelize complex
tasks across multiple CPUs and take advantage of the immense
computational resources of high-performance computing
clusters (HPCC). In doing so, we can better extrapolate beyond
current knowledge; capture nuanced effects of chemical
microenvironments; expand our understanding of biochemical
phenomena; and alleviate the Achilles heel of (Q)SAR
predictive tools, the oft ill-defined and limited applicability
domain.**"*® We have shown in our recent reports that
judicious use of QM can effectively “soften” applicability-
domain constraints.’"*”

What is then the hesitancy behind incorporating explicit QM
modeling into predictive toxicology? Scientific communities are
humanlike in that they resist change, which is both a feature and
a “bug” of our collective research enterprise.”® Aptly, Herman
von Helmbholtz, who is known for the Helmoltz equation of basic

wave propagation (that gave rise to the Schrodinger equation
and QM), wrote that “new ideas need more time for gaining
general assent the more original they are”.*” Ironically, Helmoltz
subsequently rejected ideas proposed by Max Planck, who is
recognized as the originator of the quantum theory, because he
did not understand them.*” While these historical digressions
may appear superfluous here, they indicate that our reluctance to
accept new paradigms has often little to do with the science itself
and more to do with our scientific training.”® Scientific training is
worth highlighting here, as our reductionist educational model,
which segregates knowledge into disciplines, creates divides we
must actively engage to bridge to generate understanding across
different fields."" This is critical if we want, for example,
toxicologists to understand the value of quantum chemistry as a
solution to toxicological problems.

In practice, outside of science education and communication,
we recognize two main barriers to the progress of QM-focused
tools in predictive toxicology. One, extensive use of QM in
model development necessitates investment in both knowledge
(i.e., hiring modelers with expertise in QM) and resources (i.e.,
developing infrastructure for the execution of QM calculations
at scale). Two, adoption of QM-based models requires changes
to the current paradigm of using predictive tools. In that regard,
we need to move away from self-contained programs that offer
instantaneous predictions on personal computers to an
infrastructure that facilitates data transfer and remote execution
on HPCC. In client engagement, we have observed that “not
being able to run your own calculations” is often viewed as a
deficit of emerging toxicology tools that require greater
processing power. Our rebuttal is that these approaches are
now common in computational chemistry and biology and work
perfectly well.””~*® Furthermore, remotely executed tools offer
distinct advantages over standalone counterparts in terms of
software updates, data curation, and outcome interpretation. We
have previously written about data-sharing as the major hurdle in
the progress of in silico model development, noting this is a
largely irrational obstacle (as are negative sentiments about not
running the software yourself!), given that highly secure
protocols exist to transfer data in a way that protects the
intellectual property of all parties involved.”” Last but not least,
we should abolish the notion that computational tools are cheap;
while even the most complex QM-based models are more
affordable than in vivo or in vitro tests, they have greater
operational costs than traditional (Q)SARs.

B PRACTICAL CONSIDERATIONS FOR SUCCESSFUL
IMPLEMENTATIONS

Although we made the claim that our computational resources
and capabilities are vast, they remain finite with respect to cost
and time available for any hazard or risk assessment. To that end,
a prudent choice of a QM method and a modeling approach is
necessary. For example, it is useful to characterize key toxicity-
initiating events using reaction-pathway modeling at a high level
of QM theory to gain better understanding of the process***” or
to expand the training set of chemicals.’® However, this
approach does not scale well in hazard assessments, where a
“deconstruction” into QM-based reactivity indices, which can be
obtained at a fraction of the computational cost, is likely the
better option.””*”*">* The studies cited above illustrate this
QM adaptation for modeling of N-nitrosamines’ metabolic
activation into DNA-alkylating (i.e., mutagenic/carcinogenic)
diazonium byproducts and for the reactivity of Michael
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Figure 2. Proposed metabolic pathways for N-nitroso compounds leading to mutagenesis that necessitate trade-offs between model predictivity and

mechanistic applicability in view of limited training-set data.

acceptors with skin proteins (i.e., the initiating event in dermal
sensitization).

QM models in predictive toxicology must also grapple with
uncertainty and variability of biological data.>® While these tools
may be very accurate in capturing well-defined and well-
understood biochemical events,>* many adverse outcome
pathways (AOPs) are incomplete (e.g., respiratory sensitiza-
tion),”>*° and toxic end points used to fit models can be
dominated by unreliable experimental data.’”*® In the N-
nitrosamine example above, rodent cancer bioassays used to
determine carcinogenic potency (i.e., tumor dose—TDy,
values) have a mere 57% reproducibility.”” While some issues
can be alleviated with curation,”*° and QM is particularly
amendable to this as a “first-principle” approach that does not
need ample data to be robust,”” no predictive tool should be held
to a higher standard (of predictivity) than the underlying data
upon which it was built. In dealing with uncertainty (vs data
quality or variability), one can tune model specificity to balance
resolution of predictivity (i.e, what metrics can be reliably
predicted) with breadth of mechanistic applicability (i.e., what
processes can be captured by the model). This is useful when we
do not understand all relevant mechanisms of key events but also
when there are too many well-characterized mechanisms for the
size of available data, and so model overfitting would be an issue
if we attempted to describe all transformations explicitly. For
example, in the case of N-nitroso metabolism, one might
calculate atom-based QM indices to capture reactivity at specific
molecular sites in @- or f-hydroxylation, heterolysis, or DNA-
binding events (Figure 2).>” However, one might also want to
incorporate global reactivity metrics, such as those derived from
frontier molecular orbital theory (FMOT),*" to account for
uncertainty in the mechanistic pathway and to capture the
known competing processes, such as 1,3-sigmatropic shift or
hydrolysis available for some N-nitroso compounds,’” albeit
with a lower resolution. Lastly, one needs to account for
bioavailability (e.g., GI tract absorption). The resultant trade-off
is decreased resolution of predictivity to a few potency
categories (vs specific tumor dose values), in return for greater
applicability across the diverse N-nitroso chemical class.”” While
this trade-off is necessary to develop a robust model, it is also
perfectly sensible given the variability and uncertainty of the
underlying experimental data.

For the practitioner, the value proposition of QM does not
rest on a single exemplar of the N-nitroso model above. QM-
based reactivity indices developed either as global (i.e., whole-
molecule) descriptors derived from FMOT or local (i.e., atom-
based) metrics leveraging the Fukui function®>®* have resulted

in robust predictive models across toxic endpoints (e.g., for
skin®® and respiratory sensitization,” acute and chronic aquatic
toxicity,“’67 and mutagenicity and carcinogenicity37). Ecotox-
icity is of particular relevance here due to the many underlying
modes of action (MOA), the high number of tested chemical
classes (49), and the end point’s modern role as an alternative to
vertebrate animals for hazard assessment.' In comparing
ecotoxicity models, Melnikov et al. showed that a QM-based
approach outperforms other tools by a considerable margin in
external testing,’’ underscoring QM applicability to both
specific transformations in toxicity pathways (e.g, inhibition
of acetylcholinesterase as an ecotoxicity MOA) as well as
processes with poorer mechanistic resolution (e.g., narcosis or
general electrophilicity MOAs).*®

The reader could raise several objections here. First, QM-
based reactivity indices do not explicitly consider sterics, and
indeed all models above integrate steric factors (e.g., atom-based
solvent-accessible surface area or volume) along with electronic
parameters. Second, many key events for the aforementioned
toxic end points are Lewis acid—base reactions, with toxicants
acting as electrophiles. These are the proverbial “low-hanging
fruits”, readily supported by the theory of Hard and Soft Acids
and Bases (HSAB) in QM calculations of electrophilicity
indices.”® In contrast, nucleophilicity and radical-chemistry
indices are less explored in the literature, though recent studies
have demonstrated their respective utility to describe organic
reactivity’” and metabolic activation and depletion mecha-
nisms.>7°%6° Lastly, there will be cases where insufficient data
and knowledge limits training of QM-based predictive models.
To that end, QM can still deliver supporting evidence in hazard
assessments (e.g., in electronic structure read-across),”” as was
shown for carcinogenicitgr, neurotoxicity, oxidative stress, or
general cytotoxicity.””**”

B THE ROAD AHEAD

One could define the dilemma of future model development by
how we decide to allocate our large (but finite) resources. We
can invest into physics-driven (QM) models or data-driven
approaches based on Al (artificial intelligence), which has been
reshaping our scientific enterprise in recent years, from
predicting outcomes of chemical reactions’' to supporting
vaccine research and clinical trials.”” In principle, QM and AI
can coexist in predictive toxicology,”” whereby QM is used to
calculate descriptors and Al constructs relationships between
descriptors and toxicity outcomes. However, both approaches
are quite power-hungry, so, in practice, the need for big data by
Al limits generation of computationally demanding QM
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descriptors. Concurrently, Al in predictive toxicology suffers
from the limited amount of high-quality (whole-animal) data
that is available now and for the foreseeable future if we
eliminate animal testing. Case in point, there are fewer than 100
N-nitrosamines with reliable carcinogenicity studies to support
model development.’*” This is a constraint that may never be
fully alleviated by high-throughput screening (HTS) of in vitro
and in chemico assays, as these tools offer a partial glimpse into
organism-level effects’* and might be better suited either to
validate specific events in the training of in silico models or to
contribute to a weight of evidence approach.25 Conceptually,
our concern with Al as a tool to predict toxicity outcomes is that
while the optimization algorithms are comprehensible, the
relationships constructed between model inputs and outputs are
inscrutable, undermining confidence in external predictivity.
Crucially, these models do not further our toxicological
knowledge, i.e., our understanding of molecular mechanisms
that lead to adverse outcomes, as they are the proverbial “black
boxes”.

There exists, however, an alternate paradigm, where Al is not
used to predict toxicity but is applied instead to improve the
accuracy of QM methods at lower computational cost. In this
case, we have ample data to train Al models (and we can readily
generate more data as models are trained on computational vs
experimental outcomes). To this end, Bogojeski et al. leveraged
machine learning (ML) to calculate highly accurate coupled-
cluster (CC) energies from density functional theory (DFT),
reducing computational errors from 2—3 kcal/mol to under 1
kcal/mol.” They showed that the use of point groups reduced
the amount of training data required (Achilles heel of ML), and
the lower computational cost allowed for integration of these
methods into molecular simulations to capture system
dynamics, which we showed is key to modeling key events in
predictive toxicology.”**”* In a different example, aiming to
advance drug and materials design, Smith and co-workers
approached CC accuracy for a broad range of organic chemistry
by training a neural network on DFT data and then using
transfer learnin7g techniques to retrain the model on a higher
level of theory.”® In the same vein as the two studies above, Al
can be used to target physicochemical properties derived from
molecular energy. For example, Isert et al. reported that ML can
be learnt on calculated log K, values to obtain a computa-
tionally affordable, QM-based estimation of lipophilicity.””
Thus, Al and QM have a shared future that can benefit in silico
toxicology, so long as we keep in mind their fundamental
differences and limitations. In this regard, while QM has evolved
in the Darwinian sense from human knowledge and under-
standing of the natural world and has been extensively tested
over the past nearly 100 years, Al is a difficult-to-verify construct
of the machine world that requires large data to ensure
robustness. Marie Curie, the first woman to win the Nobel
Prize, famously said that “nothing in life is to be feared, it is only
to be understood. Now is the time to understand more, so that
we may fear less.” For many practitioners in toxicology, this
statement applies to both QM and Al if we want to move beyond
current structure—activity relationships and develop in silico
frameworks robust enough to replace animal tests.

B A WIN-WIN SCENARIO

In conclusion, let me address the risk and hazard assessors, who
are the end-users and immediate (though not the ultimate)
beneficiaries of in silico tools in predictive toxicology. Whatever
your hesitancy might be, the adage that “the proof is in the

pudding” holds true, and so I encourage you to give QM a try,
whatever the model, to judge for yourself the validity of our
claims based on real-world results. While QM may not be the
“magic bullet” for your purposes (though it might very well be!),
the strategy of incorporating QM into your workflow is
consistent with the widely accepted framework of integrated
testing strategies (ITS) in support of safety assessments.””””
There is a clear benefit to combining orthogonal (i.e.,
differentially derived) modeling approaches to gauge potential
risk from untested chemicals, as was recently showcased by a
study on the skin sensitization potency of peptide coupling
agents, which won the Occupational and Public Health Specialty
Section of Society of Toxicology Paper of the Year Award for
2022.*' By incorporating QM into hazard assessment, these
models can help elucidate structure—activity relationships and
pinpoint dubious experimental outcomes that may warrant
retesting.”’ In the end, bringing QM fully into the fold of
predictive toxicology is a “win—win” scenario for both fields.
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