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Abstract
Although our observing capabilities of solar-induced chlorophyll fluorescence (SIF) 
have been growing rapidly, the quality and consistency of SIF datasets are still in an 
active stage of research and development. As a result, there are considerable incon-
sistencies among diverse SIF datasets at all scales and the widespread applications 
of them have led to contradictory findings. The present review is the second of the 
two companion reviews, and data oriented. It aims to (1) synthesize the variety, scale, 
and uncertainty of existing SIF datasets, (2) synthesize the diverse applications in the 
sector of ecology, agriculture, hydrology, climate, and socioeconomics, and (3) clarify 
how such data inconsistency superimposed with the theoretical complexities laid out 
in (Sun et al., 2023) may impact process interpretation of various applications and 
contribute to inconsistent findings. We emphasize that accurate interpretation of the 
functional relationships between SIF and other ecological indicators is contingent 

www.wileyonlinelibrary.com/journal/gcb
mailto:
https://orcid.org/0000-0002-9819-1241
https://orcid.org/0000-0001-5756-8738
mailto:ys776@cornell.edu
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fgcb.16646&domain=pdf&date_stamp=2023-03-14


2  |    SUN et al.

1  |  INTRODUC TION

The rapid growth in research of solar-induced chlorophyll fluores-
cence (SIF) remote sensing in the past two decades was primarily ini-
tiated by serendipitous advances in SIF observing capabilities from 
spaceborne platforms since the early 2010s (Frankenberg et al., 2011; 
Guanter et al., 2007, 2012; Joiner et al., 2011). Spaceborne SIF re-
trievals in turn have also generated momentum to push for techno-
logical advances to observe and even image SIF at much finer spatial 
and temporal resolutions with airborne and proximal sensing sys-
tems (Frankenberg et al., 2018; Grossmann et al., 2018; Gu, Wood, 
et al.,  2019; Rascher et al.,  2015; Yang et al.,  2015; Zarco-Tejada 
et al.,  2012), resulting in rapid expansion in applications of SIF in 
diverse research sectors (e.g., ecology, agriculture, hydrology, cli-
mate, and socioeconomics). These developments, while exciting, are 
marred by considerable inconsistencies among diverse SIF datasets 
and contradictory findings in applying them. These issues, which 
represent “growing pains”, are due not only to scale-related chal-
lenges common in Earth system science studies, but also multiple 
factors specific to SIF measurements/products summarized below:

1.	 Lack of specifically designed SIF measurement instrumentation/
mission. So far, all available satellite SIF products are from space 
missions that were designed to monitor atmospheric trace gas-
ses. Ground-based SIF systems use generic spectroradiometers; 
most charge-coupled devices of these spectroradiometers are 
not specifically designed for SIF measurements. This indicates 
that current SIF systems, both spaceborne and in-situ, are not 
optimized for SIF monitoring.

2.	 Observable versus unobservable but ecophysiologically relevant SIF. 
The at-sensor SIF signal that is directly measured does not equal 
to the total ChlaF emission that is directly related to ecophysio-
logical processes. Even when SIF is retrieved accurately at specific 
wavelengths, it is not certain whether they are equally informative 
as the total ChlaF emission (which is a broadband quantity, that is, 
integrated over the full spectra of fluorescence emission) that is 

directly related to photosynthetic electron transport and CO2 as-
similation (Gu, Wood, et al., 2019; Zhang et al., 2019), equations 
6–7 in Sun et al., 2023). Furthermore, a substantial portion of the 
total ChlaF emission is reabsorbed/scattered within a canopy and 
only a fraction escapes from the canopy to be detected by a sen-
sor (section 3.1 in Sun et al., 2023). Unfortunately, the total ChlaF 
emission is currently unobservable.

3.	 Correlation versus causal inference. SIF data availability and appli-
cations far outpace the growth in mechanistic understanding of 
SIF dynamics and their relationships with ecophysiological pro-
cesses of interest to broad scientific communities. Currently, SIF 
research activities have been dominated by correlational analy-
ses, while causal effects have been rarely established. This is pri-
marily caused by the unique challenges transferring knowledge 
from laboratory experiments to actual field conditions under 
natural environment, from molecular to regional/global scales 
(Porcar-Castell et al., 2014, 2021), and from the traditional plant 
physiology to remote sensing communities.

Sun et al. (2023) attempts to provide theoretical guidance to en-
able mechanistic causal inference in SIF research. It demonstrates, 
from theoretical perspectives, that (a) ChlaF emission is interactively 
impacted by a myriad of structural and functional processes at the 
leaf and canopy levels, and (b) how such impacts, when carefully 
quantified and disentangled, can be used to infer terrestrial eco-
system structure, function, and services. However, the theoretical 
inferences envisioned in Sun et al. (2023) can only be achieved with 
the support of high-quality SIF observations at relevant scales/
resolutions.

The present paper, as a companion review to Sun et al.  (2023), 
aims to provide clarifications on the “growing pains” in SIF research 
related to the three issues identified above. It is not our intention 
to offer definitive solutions to these issues in this review. Rather, 
our intention is to place the inconsistencies and contradictory find-
ings of past SIF research from the aspect of unique characteristics of 
available SIF datasets. Further, we attempt to address the forward, 

upon complete understanding of SIF data quality and uncertainty. Biases and uncer-
tainties in SIF observations can significantly confound interpretation of their relation-
ships and how such relationships respond to environmental variations. Built upon our 
syntheses, we summarize existing gaps and uncertainties in current SIF observations. 
Further, we offer our perspectives on innovations needed to help improve informing 
ecosystem structure, function, and service under climate change, including enhancing 
in-situ SIF observing capability especially in “data desert” regions, improving cross-
instrument data standardization and network coordination, and advancing applica-
tions by fully harnessing theory and data.

K E Y W O R D S
carbon cycle, climate change, photosynthesis, precision agriculture, retrievals, SIF, stress 
monitoring and early warning, vegetation index
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inference, and innovation questions laid out in the first companion 
review (Sun et al., 2023) from the data perspective.

A few recent synthesis studies have attempted to summarize or 
intercompare SIF products/measurements from different spaceborne 
platforms (e.g., Doughty et al.,  2022; Parazoo et al.,  2019) or from 
proximal instruments (Aasen et al., 2019; Cendrero-Mateo et al., 2019; 
Pacheco-Labrador et al., 2019). For in-depth review and detailed dis-
cussion of instrument configuration and retrieval methods, we refer 
readers to these previous reviews. However, it still remains unclear 
the extent to which discrepancies and/or uncertainties in SIF prod-
ucts/measurements may confound the inference of ecosystem struc-
ture, function, and service. Compared to previous reviews, the major 
contribution of this paper is to provide thorough discussion of (1) how 
the variety, scale and uncertainty in SIF datasets may impact process 
interpretation for various applications and contribute to inconsistency 
across findings, (2) efforts needed to reconcile such inconsistencies 
from the data perspective, integrated with the theoretical angle (Sun 
et al.,  2023), and (3) existing data gaps in SIF observations and re-
quired innovations to advance SIF applications in ecosystem struc-
ture, function, and service under climate change.

2  |  DATA: VARIET Y,  SC ALE ,  AND 
UNCERTAINT Y IN SIF ME A SUREMENTS

2.1  |  Spaceborne SIF retrievals

The first retrievals of SIF were at the far-red wavelengths, achieved 
regionally with the Medium Resolution Imaging Spectrometer 
(MERIS; Guanter et al., 2007) and globally with high spectral reso-
lution spectrometer (i.e., <0.1  nm) from the Greenhouse gasses 
Observing SATellite (GOSAT; Frankenberg et al.,  2011; Guanter 
et al.,  2012; Joiner et al.,  2011). These retrievals were somewhat 
limited in terms of spatial resolution or revisit time. The next ad-
vance demonstrated that SIF could be retrieved with lower spectral 
resolution instruments (spectral resolution of ~0.5 nm), such as the 

Global Ozone Monitoring Experiment 2 (GOME-2) and the SCanning 
Imaging Absorption SpectroMeter for Atmospheric CHartographY 
(SCIAMACHY; Joiner et al.,  2013; Khosravi et al.,  2015; Köhler 
et al., 2015; Sanders et al., 2016; van Schaik et al., 2020). Since then, 
higher spatial resolution SIF retrievals have also been produced 
using the Orbiting Carbon Observatory 2 (OCO-2) and the Chinese 
Carbon Dioxide Observation Satellite Mission (TanSat) at ~2  km 
resolution (Doughty et al., 2022; Du et al., 2018; Sun et al., 2018). 
Most recently, moderate spatial resolution (~5 km) with a daily revisit 
time was achieved with the TROPOspheric Monitoring Instrument 
(TROPOMI) onboard Sentinel 5p (Guanter et al.,  2015; Köhler, 
Frankenberg, et al.,  2018). Retrieval of red SIF has also been ac-
complished with GOME-2 and TROPOMI (Joiner et al., 2016; Köhler 
et al.,  2020; Wolanin et al.,  2015). For detailed cross-instrument 
comparison and discussion of the impact of instrument characteri-
zation on SIF retrievals, we refer readers to Doughty et al.  (2022), 
Joiner et al. (2020), and Parazoo et al. (2019).

Figure 1 and Table S1a summarize the past, current, and future 
missions with SIF capabilities along with their instrument charac-
teristics. All of these instruments/missions, with the exception of 
the Fluorescence Explorer (FLEX; expected launch in 2025, Drusch 
et al., 2017), were designed for measurements of trace gasses and 
greenhouse gasses (GHGs). Instruments designed to measure GHGs 
(GOSAT, OCO-2, TanSat) typically only have spectral coverage in 
the wavelengths where far-red SIF is emitted. All of the current SIF-
capable instruments are in Low Earth Orbit (LEO). Several of the 
planned instruments in Geostationary Earth Orbit (GEO) will be able 
to retrieve SIF as well, such as Tropospheric Emissions: Monitoring 
of Pollution (TEMPO) and the Copernicus Sentinel-4.

2.2  |  Value-added global SIF products derived from 
native spaceborne SIF retrievals

Existing native spaceborne SIF products are restricted to either 
low spatial resolution, incomplete global coverage, low temporal 

F I G U R E  1  Characteristics of the past 
(grey), current (pink), and future (light blue) 
missions with solar-induced chlorophyll 
fluorescence (SIF)-observing capability. 
Font colors differentiate geostationary 
(GEO; green) from Low Earth Orbit (LEO; 
black) missions. Value-added SIF products 
(purple) are grouped in the dash-line 
boxes based on their spatial and temporal 
resolution; the corresponding native SIF 
retrievals based on which value-added 
products were developed are provided in 
Table S1b. ‘p.’ denotes “present”.
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resolution, short temporal coverage, or a combination of these. 
For example, Figure  1 reveals a general trade-off between spatial 
and temporal resolutions of existing native spaceborne SIF prod-
ucts. These limitations impede operational SIF applications, for 
example, real-time monitoring of vegetation growth in individual 
farms and forest management, or long-term monitoring of global 
ecosystem production and carbon budget. To overcome these 
limitations, a number of “value-added” SIF products have been 
derived based on native SIF retrievals (summarized in Table  S1b). 
These products include RSIF (Gentine & Alemohammad,  2018), 
SIF005 (Wen et al., 2020), SIFoco2_005 (Yu et al., 2019), GOSIF (Li & 
Xiao,  2019b), CSIF (Zhang, Joiner, Alemohammad, et al.,  2018), 
LT_SIFc* (Wang, Zhang, et al., 2022), and other fine-resolution SIF 
products downscaled from GOME-2 (Duveiller et al., 2020; Duveiller 
& Cescatti,  2016) or TROPOMI (Gensheimer et al.,  2022; Turner 
et al., 2020). These products are derived from different native SIF 
products, and have disparate spatial and temporal resolutions as well 
as temporal coverage (Figure 1; Table S1b). Nevertheless, their deri-
vations share a similar strategy. This strategy basically (1) establishes 
a predictive model with native SIF retrievals (i.e., the model training 
step), and (2) estimates SIF at finer spatial/temporal resolutions and 
contiguous spatial coverage utilizing this trained predictive model as 
well as ancillary datasets available at the same fine spatial/tempo-
ral resolutions and spatial coverage (i.e., the model prediction step). 

Here the predictive model can be either (semi-)process-based (e.g., 
the light use efficiency LUE-type equation) or derived from machine-
learning (ML; e.g., neural networks, regression trees). Detailed dis-
cussions on more nuanced differences in technical implementations 
among these products can be found in Wen et al.  (2020). These 
products have demonstrated overall capability in revealing the spa-
tial and seasonal patterns in native SIF retrievals at the global scale, 
and have been widely applied to tackle a variety of issues in ecologi-
cal, agricultural, hydrological, and socioeconomic sectors (Section 3), 
albeit with varying performance depending on regions or biomes or 
application types.

2.3  |  In-situ SIF measurements and retrievals

Various in-situ SIF systems have been developed to acquire top-of-
canopy (TOC) SIF. These systems include both stationary ground 
tower and mobile airborne systems (e.g., Unmanned Aerial Vehicles, 
UAV). The former allows continuous, high temporal resolution acqui-
sition, while the latter adds spatial mapping capability. So far, in-situ 
SIF systems are mostly low-cost non-imaging systems, which broadly 
fall into two configurations (Figure 2). In the bi-hemispherical con-
figuration, both downwelling and upwelling irradiance are collected 
using a cosine-corrected fiber (e.g., FAME, which has developed 

F I G U R E  2  A simplified diagram of system configurations for existing non-imaging in-situ SIF systems. (a) Common components of a bi-
hemispherical system; (b) common components of a hemispherical-conical system; the bi-directional dashed black arrow indicates the 180° 
rotation of the fore-optic. Purple components are utilized in both tower and Unmanned Aerial Vehicles (UAV) systems; blue components 
are currently used only in tower systems. The orange box highlights the key component that differentiate the two types of configurations, 
exemplified with existing systems (italic) that are mounted on tower and/or UAV. Components with dashed lines and lighter colors are 
optionally integrated to enhance system applications. The upwelling field of view (FOV) for hemispherical-conical systems varies by system, 
and typically ranges from ~1° to ~25°. Yellow arrows indicate incoming solar radiation while green arrows indicate incoming reflected 
radiation from the target canopy. SIF, solar-induced chlorophyll fluorescence.
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    |  5SUN et al.

both tower and UAV versions, Chang, Guanter, et al., 2020; Chang, 
Zhou, et al.,  2020; Gu, Wood, et al.,  2019). Recently, a low-cost 
bi-hemispherical sensor that captures multiple ultra-narrow wave-
lengths of far-red SIF using photodiodes was developed (4 S-SIF, 
Kim et al., 2022). In the hemispherical-conical configuration, there 
are alternate acquisitions of hemispherical downwelling irradiance 
and conical upwelling radiance, either using a switch that alternates 
incoming ir/radiance measurements between two fixed fibers (e.g., 
FloX, FluoSpec2, Yang, Shi, et al., 2018) or prisms that rotate acqui-
sition of ir/radiance among different channels to collect dark cur-
rents, downwelling and upwelling measurements (e.g., PhotoSpec: 
Grossmann et al.,  2018; rotoprism, Berry & Kornfeld,  2019; Kim 
et al., 2021). Both configurations now have commercial sources with 
the bi-hemispherical FAME under production by Campbell Scientific 
and the hemispherical-conical FloX produced by JB-Hyperspectral 
GmbH; recently, a multiplexed configuration of the FloX (OctoFlox) 
with multiple fibers for multiple target acquisition was developed by 
JB-Hyperspectral. UAV systems of both the bi-hemispherical (Chang, 
Zhou, et al.,  2020) and the hemispherical-conical (switch-based 
setup) have also been developed (Bendig et al.,  2018; MacArthur 
et al., 2014; Wang, Suomalainen, et al., 2021). For in-depth review 
of specific instrumentation configurations and sensors, we refer 
readers to Pacheco-Labrador et al. (2019). In addition to these non-
imaging (point-based) SIF systems, a hyperspectral imaging SIF sen-
sor is commercially available from Headwall Photonics (Zarco-Tejada 
et al., 2013). Selection of an appropriate in-situ SIF system depends 
upon specific applications (Section 3), and their required resolutions 
(in time and space) and signal-to-noise ratio, since each configura-
tion comes with different strengths and weaknesses (summarized 
in Table S2).

Selection of retrieval methods depends upon not only sys-
tem configuration, but also specifications of the SIF spectrometer 
utilized and the temporal frequency of acquisition (detailed sum-
mary in Table S3). Common SIF retrieval methods are based upon 
Fraunhofer Line Discrimination (FLD; Plascyk & Gabriel,  1975), 
Spectral Fitting Method (SFM; Meroni & Colombo, 2006), Singular 
Vector Decomposition (SVD equivalent to Principal Component 
Analysis PCA; Guanter et al.,  2013), and differential optical ab-
sorption spectroscopy (DOAS; Platt & Stutz, 2008). FLD, SFM and 
DOAS retrieve SIF using single paired up/downwelling spectra, 
while SVD requires a training set of multiple SIF-free (or down-
welling) spectra. The accuracy of SVD improves with higher tempo-
ral frequency of acquisition to obtain multiple downwelling spectra 
under similar sunlight conditions as the upwelling measurement 
(Chang, Guanter, et al.,  2020). FLD, SFM, and SVD can be used 
to retrieve SIF from the broader telluric O2 absorption features, 
while DOAS and SVD can be used to retrieve SIF from narrow solar 
Fraunhofer lines. Fraunhofer line-based retrievals using DOAS or 
SVD require a high spectral resolution (e.g., ≤0.3 FWHM) while re-
trieving SIF from O2 bands using SFM, FLD or SVD are much less 
stringent in terms of spectral resolution. Because FLD and SFM 
use paired spectra, these methods are more prone to error under 
variable cloudy skies where ambient light conditions can change 

between acquisition of downwelling and upwelling spectra, which 
greatly influence the telluric O2 bands by distorting the edges of 
the O2 absorption features. Narrowing the retrieval fitting window 
can effectively alleviate spectral distortion around the O2 bands 
for both SFM and SVD (Chang, Guanter, et al.,  2020). Recently, 
SIF retrievals based on partial least-squares regression (PLS) show 
lower sensitivity to spectral distortion resulting from atmospheric 
reabsorption (Naethe et al., 2022). Variable sky conditions do not 
influence the solar Fraunhofer lines much, but the resulting SIF re-
trievals can be noisier since the narrow spectral window contains 
relatively weaker irradiance and thus weaker reflected radiance. 
For detailed discussion and intercomparisons of these retrieval 
methods, we refer readers to the works of Cendrero-Mateo 
et al. (2019) and Chang, Guanter, et al. (2020).

3  |  APPLIC ATIONS

Solar-induced chlorophyll fluorescence research activities in the 
past two decades have been primarily focused on investigating 
SIF-gross primary production (GPP) relationships across scales and 
under different environmental conditions. So far, research findings 
have shown both consensuses and discrepancies. In this section, we 
first offer our perspectives on factors that led to such consensuses 
and discrepancies, from both the theory (Sun et al., 2023) and data 
aspects (Section 3.1).

Although understanding and teasing out the biological SIF-
GPP connections from uncertain datasets is a necessary first step 
and much work is still needed at this step, broad applications of 
SIF have started. By harnessing the theoretical understanding 
and data revolution of SIF, a variety of new research opportuni-
ties and possibilities have arisen in ecological, hydrological, agri-
cultural, and socioeconomic applications (a graphical summary in 
Figure 3). In Sections 3.2–3.8, we attempt to clarify how SIF data 
uncertainty superimposed with the theoretical complexities laid 
out in Sun et al. (2023) may impact process interpretation of var-
ious applications.

3.1  |  Interpretation of SIF measurements, its 
relationship with GPP, and dependence of their 
relationships to environmental variations

3.1.1  |  The theoretical perspective

Table 1 and Figure 4 summarize consensuses and discrepancies of 
research findings regarding the SIF-GPP relationship. Here, we em-
ploy equations derived in Sun et al. (2023) to theoretically interpret 
these consensuses and discrepancies. Specifically, equation 10 in 
Sun et al.  (2023; copied below for convenience) reveals the com-
plexity of the SIF-GPP relationship, which critically depends on CO2 
diffusion (controlled by stomatal and mesophyll conductances) and 
the redox state of PSII (and NPQ, Sun et al., 2023),
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6  |    SUN et al.

At seasonal scales and beyond and/or aggregated spatial scales, 
variations in CO2 diffusion and the redox state of PSII can be aver-
aged out, and much weaker than variations in the at-sensor SIF, that 
is, F↑

(
�F

)
, resulting in an approximately linear scaling with GPP (de-

noted as GPPT, the canopy total GPP). Further, at these scales, varia-
tion in leaf area index (LAI) and photosynthetic pigments (i.e., arising 
from phenological changes or different biome characteristics) is the 
primary driver of F↑

(
�F

)
 dynamics, via impact on both light harvest-

ing and canopy structure (equation 8 in Sun et al., 2023); meanwhile, 
variation in LAI and photosynthetic pigments also play dominant role 
in controlling GPP at these scales, and such information is carried 
largely by F↑

(
�F

)
 (although not completely, Sun et al., 2023), result-

ing in coherent SIF and GPP variations. In contrast, at shorter time 
scales when LAI and photosynthetic pigments content remain rela-
tively stable, the impact of variations in the redox state (and NPQ) 
and Cc (CO2 partial pressure at chloroplast) on GPP is largely due to 
their instantaneous response to PAR. Moreover, the scattering/re-
absorption of ChlaF emission (e.g., can be represented by k�F, the ex-
tinction coefficient of ChlaF emission under Beer's law) can also vary 
instantaneously with sun-canopy-sensor geometry, PAR intensity, 
and/or other environmental stress. These factors collectively lead to 
deviation from a linear scaling between SIF and GPP at shorter time 
scales. Stronger linearity in C4 than C3 plants reported from leaf 
to global scales is primarily due to the segregation of CO2 diffusion 
effects from SIF-GPP coupling in C4 plants. Crops and deciduous 

forests exhibit stronger SIF-GPP coupling than other biomes (e.g., 
evergreen broadleaf forests), because their distinct seasonality in 
LAI drives the co-variation of SIF and GPP, with the impact of CO2 
diffusion and the redox state of PSII being smoothed out (Magney 
et al., 2020).

Regarding the debate on the existence of biome-universal SIF-
GPP scaling, equation 10 in Sun et al.  (2023) suggests that any 
biome-dependent variables (e.g., k�F, the vertical extinction coeffi-
cient of PAR kPAR, or the redox state of PSII) or parameters (e.g., � 
and Γ∗, denoting the canopy-mean relative contribution of pigments 
associated with PSII and the chloroplastic CO2 compensation point, 
respectively) can prevent a biome-universal scaling. However, these 
individual processes may have a compensatory effect, resulting in an 
apparent biome-universal scaling. The degree of the compensatory 
effect depends on time scale, spatial scale, and stress types/condi-
tions, which currently remains a critical knowledge gap and requires 
dedicated future research.

Equation 10 in Sun et al. (2023) also suggests that SIF-GPP cou-
pling (i.e., often characterized by R2) and/or scaling (i.e., often char-
acterized by the linear regression slope) can diverge or converge 
between stress and normal conditions, depending on time and 
spatial scales under investigation as well as stress intensities and 
durations. For example, at aggregated temporal–spatial scales and 
during prolonged drought/heatwaves, SIF and GPP decline can co-
occur due to loss of photosynthetic pigments and LAI, and therefore 
exhibit positive coupling as under normal conditions; in contrast, 
at local or shorter time scales or during brief stress episodes that 
are too short to induce any structural changes, SIF and GPP tra-
jectories can decouple due to stomatal/mesophyll regulations 
on CO2 diffusion and redistribution of energy dissipation among 
photochemical quenching (PQ)-NPQ-SIF (Han, Chang, et al., 2022; 
Martini et al., 2022). Also, the assumed constant parameters (e. g., 
�, ΦPSIIm , kDF, the latter two denoting the maximal photochemical 
quantum yield of PSII and the ratio of the rate constant for inter-
nal conversion to the rate constant for ChlaF emission, respec-
tively) that represent internal properties of plants can also change 
under stress, which can reshape the SIF-GPP relationship from 
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�
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F I G U R E  3  Applications of solar-
induced chlorophyll fluorescence in 
sectors of ecological, agricultural, 
hydrological, and socioeconomic science 
across temporal and spatial scales. 
G × E × M, interactions of genetics, 
environment, and management; IAV, 
inter-annual variability. Evapotranspiration 
and stomatal conductance are displayed 
diagonally because research in these 
aspects span across the full spectrum of 
temporal and spatial scales.
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normal conditions. For example, ΦPSIIm (the maximal photochemical 
quantum yields for PSII) is assumed to be conserved across non-
stressed plants (Björkman & Demmig, 1987) but can deviate from 
its assumed constant 0.83 under stress. In addition, the redox reac-
tion (represented by qLII, the fraction of open PSII reaction centers 
under the lake model) is sensitive to temperature, while equation 
10 in Sun et al. (2023) only captured the first-order effect of qLII as 
a function of PAR (detailed discussion in Sun et al., 2023). This fac-
tor can further complicate the SIF-GPP relationship beyond what 
equation 10 currently suggests.

Further, mixed findings were reported for the relationships of 
quantum yields between SIF and GPP. This can be explained by 
ΦPSII

ΦF

=
qLIIΦPSIIm(1+ kDF)

1−ΦPSIIm

 (derived as the ratio of equations 16 and 14 in 

Gu, Han, et al., 2019), which reveals the impact of redox states qLII on 
the ratio of quantum yields of GPP over SIF. Further complications 
include the sensitivity of qLII to temperature and water stress (stated 
above, and detailed discussion in Sun et al., 2023).

3.1.2  |  The data perspective

Superimposed on the mechanistic complexities of light and carbon 
reactions of photosynthesis, biases and uncertainties in observa-
tions of SIF and GPP can significantly confound interpretation of 
their relationships and how such relationships respond to environ-
mental variations. Figure  4 synthesizes the GPP-SIF (standardized 
to 740 nm) regression slopes from literature, which reveal a striking 
spread across studies employing different SIF and/or GPP products 
even for the same biome and spatiotemporal scale. For example, if 
in-situ GPP (inferred from net ecosystem exchanges [NEE] at eddy 
covariance EC towers) and spaceborne SIF products (Sections 2.1; 
Table  S1) are utilized for investigation, the GPP-SIF scaling can 
vary by a factor of three, that is, ~10 for TanSatSIF to ~30 for CSIF, 
when spatiotemporal scales are controlled across different studies 
(Figure 4c). Such discrepancies only narrow slightly if SIF products 
originating from the same spaceborne mission are used, e.g., OCO-2, 

TA B L E  1  Synthesis of the current consensus and discrepancies among literatures regarding SIF-GPP relationships.

Consensuses Examples of studies

1. SIF-GPP linearity

a. SIF-GPP linearity at seasonal scales and beyond for most biomes and/or 
aggregated spatial scale for most biomes

Li and Xiao (2019a); Magney et al. (2020); Yang et al. (2015)

b. Nonlinearity at shorter time scales (e.g., sub-daily) and/or proximal spatial 
scale (i.e., leaf or canopy scale)

Damm et al. (2015); Han, Chang, et al. (2022); Kim 
et al. (2021); Pierrat et al. (2022); Zhang et al. (2016)

c. Tighter linearity in C4 than C3 plants (stronger R2) Han, Chang, et al. (2022); Liu, Guan, and Liu (2017); Zhang, 
Zhang, et al. (2020)

d. Overall stronger R2 in crops and deciduous forests and relatively weaker R2 in 
evergreen forests

Dechant et al. (2022); Gentine and Alemohammad (2018); 
Zhang, Zhang, et al., 2020

2. Canopy structure versus function

a. For crops and deciduous forests, canopy structure playing a dominant role in 
controlling SIF dynamics and SIF-GPP relationship from diurnal to seasonal

Dechant et al. (2020); Koffi et al. (2015); Yang et al. (2015)

b. For evergreen conifers, leaf physiology playing significant role in controlling 
SIF dynamics and SIF-GPP relationship at the seasonal scale

Magney et al. (2019); Migliavacca et al. (2017); Pierrat 
et al. (2022)

Discrepancies Potential causes Solutions

1. SIF-GPP scaling: biome-specific 
(Damm et al., 2015; Guanter 
et al., 2012; Parazoo et al., 2014) 
versus biome-universal (Li & 
Xiao, 2022; Li, Xiao, He, et al., 2018)

2. Impact of environmental stress on 
SIF-GPP relationships: consistent 
SIF-GPP scaling with normal 
conditions (Song et al., 2021) 
versus divergent coupling under 
stress (Marrs et al., 2020; Martini 
et al., 2022; Wohlfahrt et al., 2018)

3. Relationship of the quantum yields 
between SIF and GPP: positive 
(Yang et al., 2015), negative (Miao 
et al., 2018), insignificant (Goulas 
et al., 2017)

A. Environmental conditions: temperature, 
soil moisture (A. Chen, Mao, Ricciuto, Lu, 
et al., 2021; A. Chen, Mao, Ricciuto, Xiao, 
et al., 2021; Y. Song et al., 2021)

a. Moving from correlational to causal
b. Accounting for observational bias and uncertainty

B. Biome characteristics: LAI, �↑, p, Vcmax, leaf 
angle distribution

a. Theoretically rigorous and practically feasible 
modeling of individual processes and their 
interactions

b. Measurement innovations at leaf and canopy 
scales

c. Synergy with other techniques

C. Interactive effects between plant 
functional and structural variations 
(Chang et al., 2021)

D. SIF and GPP data sources and their 
uncertainty

Data validation, synthesis, standardization, 
coordination

E. Spatial and time scales Analytical protocol standardization

Note: Cited literatures are only examples of studies that represent each key point here, as including the full list of papers is prohibitive due to space 
limit.
Abbreviations: GPP, gross primary production; LAI, leaf area index; SIF, solar-induced chlorophyll fluorescence.
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8  |    SUN et al.

CSIF, and GOSIF (Figure 4c). Other factors such as the selection of 
EC sites and temporal period may induce extra variations in the GPP-
SIF scaling. Note that most existing studies examined the GPP-SIF 
slopes utilizing at-sensor SIF; a few recent studies suggested that 
the total ChlaF emission of a canopy (i.e., FeT

(
�F

)
), after correcting 

the escape probability fesc
Ω↑

, not only present higher coherence with 
GPP (Lu et al., 2020), but also result in more convergence of GPP-SIF 
slopes across C3 biomes (Zhang, Zhang, et al., 2020). However, spe-
cific formulation of fesc

Ω↑
 may (on top of the choice of SIF data sources) 

can also impact the GPP-SIF.
Moreover, the level of biome-specificity in GPP-SIF scaling can 

be considerably confounded by the choice of SIF products and/or 
versions (Figure  4c; Parazoo et al.,  2019; van Schaik et al.,  2020). 
Further biases/uncertainties in GPP data, for example, global grid-
ded products (e.g., Anav et al., 2015), not only impact the absolute 
magnitude of GPP-SIF scaling but also possibly contribute to more 
biome-specificity (Figure 4b).

If both SIF and GPP come from in-situ measurements (Figure 4a), 
which are usually assumed to be “ground truth”, greater disparity 
can emerge even within the same biome. These disparities arise not 

only from different time scales and plant species, but also from in-
consistencies in SIF retrieval algorithms, instrument configuration, 
footprint sizes, across studies (synthesized in Section  2.3). Often, 
users choose system configuration (which largely determines foot-
print sizes) and retrieval methods depending on the trade-offs of 
advantages and disadvantages (summarized in Tables  S2 and S3) 
that can optimize SIF measurement for specific applications. For 
example, bi-hemispherical systems can more closely match the foot-
print of a typical EC flux system and suffer less from angular effects 
than hemispherical-conical systems. In contrast, the hemispherical-
conical more closely mimics the setup and angular effects of space-
borne SIF instruments. Moreover, certain retrieval methods such 
as SVD and PLS (Chang, Guanter, et al., 2020; Naethe et al., 2022) 
are relatively more robust to atmospheric conditions and therefore 
may be more suitable for in-situ SIF systems across diverse plat-
forms (e.g., at different altitudes) and ecosystems. However, the 
concomitant consequences of inconsistencies in SIF retrieval algo-
rithms, instrument configuration, and footprint size can lead to con-
siderable disparities (especially under variable sky conditions) in SIF 
magnitude, temporal patterns, and functional relationships among 

F I G U R E  4  Synthesis of gross primary production-solar-induced chlorophyll fluorescence (GPP-SIF) slopes (derived from linear regression) 
from literature, based on the protocol in Supporting Information 1. Findings are grouped into three categories, depending on data sources 
of SIF and GPP: right and left quadrants show satellite and in-situ SIF (via proximal sensing), respectively; top and bottom quadrants show 
global gridded and in-situ GPP (inferred from the net ecosystem exchange NEE at eddy covariance EC towers), respectively. Specifically, (a) 
slopes from in-situ SIF and in-situ GPP; (b) slopes from satellite SIF and global GPP products; (c) slopes from satellite SIF and in-situ GPP. 
The units of GPP and SIF are standardized to gC m−2 day−1 and mW m−2 nm−1 sr−1, respectively. All SIF values are normalized to 740 nm 
based on the scaling factors derived from the measured spectra in (Guanter et al., 2013; details in Supporting Information 1). Definition of 
biome types can be found in Supporting Information 1. The shape of scatters differentiates scales across studies, that is, temporal (diurnal, 
seasonal, interannual), spatial (across sites or biomes), or temporal and spatial combined. Open and filled symbols indicate whether the 
intercept is forced to be zero or not, respectively. Colors in (a) differentiate studies with text annotation detailing time scales, crop types or 
stress conditions in the same study; colors in (b) separate different combinations of SIF and GPP products; colors in (c) differentiate sources 
of satellite SIF products. Supporting Information 2 synthesizes all literatures selected for this figure based on the protocol in Supporting 
Information 1.
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    |  9SUN et al.

variables (e.g., GPP-SIF scaling). Therefore, caution is needed when 
interpreting obtained patterns and intercomparing across studies.

3.2  |  Constraining, estimating, and 
understanding the budgets and variability of the 
terrestrial carbon cycle

The global terrestrial carbon sink has increased with rising fossil 
fuel CO2 emissions since the 1960s (Ballantyne et al.,  2012; Ciais 
et al.,  2019), acting as a key negative feedback and mitigating cli-
mate change (Arneth et al., 2010; Arora et al., 2013; Friedlingstein 
et al., 2014; Gregory et al., 2009). A general consensus among mul-
tiple independent observations suggests that intensifying terrestrial 
biosphere activities was dominated by increased GPP. However, 
global estimates of GPP, its interannual variability (IAV), and long-
term trend remain highly uncertain (Ahlström et al.,  2015; Bastos 
et al.,  2019; Fernández-Martínez et al.,  2017; Forkel et al.,  2016; 
Haverd et al., 2020; Keenan & Riley, 2018; Smith et al., 2016). This 
represents one of the largest and most uncertain carbon-climate 
feedbacks for the Earth System Models (ESMs; Arneth et al., 2010). 
SIF carries the hope of curbing such uncertainties if it can accurately 
anchor GPP estimates.

3.2.1  |  The carbon budgets

The current estimates of global GPP have a remarkable divergence 
across literature based on different approaches and/or datasets, 
for example, ~100.2–167.0 PgC year−1 for the contemporary period 
(Anav et al., 2015; Jian et al., 2022). Among them, SIF-based GPP 
estimates exhibit  a narrower but still considerable spread, for ex-
ample, 135.5 ± 8.8 PgC year−1 (2000–2017, Li & Xiao, 2019a) versus 
167.0 ± 5.0 PgC year−1 (for 2015, Norton et al., 2019).

Existing studies employed two broad types of approaches to 
compute GPP from SIF. The first type of approach is to apply a linear 
scaling factor to transform SIF to GPP, for example, GOSIF-based 
GPP products (Li & Xiao,  2019a), and regional GPP in southern 
Amazon (Parazoo et al., 2013). Such GPP estimates were further syn-
ergized with net carbon exchange derived from CO2 column-average 
dry air mole fraction (xCO2), and biomass burning emission derived 
from carbon monoxide (CO), to infer other components of carbon 
fluxes, such as ecosystem respiration (Reco; Bowman et al., 2017; Liu, 
Bowman, et al., 2017). This linear scaling approach is appealing due 
to its simplicity, but the accuracy of derived GPP can be suscepti-
ble to (a) the data quality of SIF products, and (b) the reality of the 
employed SIF-GPP scaling factor (Section  3.1). More importantly, 
a major shortcoming of this strategy is the “implicit” circularity in-
volved (Han, Chang, et al., 2022). For example, the SIF-GPP scaling 
factor is derived from regressing SIF against GPP either from global 
gridded products or inferred from in-situ NEE of CO2 measured 
with EC techniques. Global gridded GPP products are highly uncer-
tain, whereas the latter, commonly treated as the ground “truth”, 

is actually imprecisely partitioned with well documented biases 
(Keenan et al., 2019; Kira et al., 2021; Wehr et al., 2016). SIF-GPP 
scaling derived from these GPP datasets was then used to back-
calculate GPP, which is essentially circular, and inherits uncertainties 
in the original GPP. If in-situ GPP is used for deriving the SIF-GPP 
scaling factor which is subsequently multiplied to satellite SIF to de-
rive a global GPP estimate, additional uncertainties can arise from 
(1) uneven degree of linearity of SIF related to GPP across biomes 
(e.g., weaker correlation in tropical evergreen forests, Gentine & 
Alemohammad,  2018), and (2) uneven representativeness of EC 
tower distribution across biomes (Schimel et al.,  2015). Without 
knowing the inherent biological SIF-GPP scaling (from uncertain/
inconsistent SIF and GPP products), it still remains challenging to de-
rive accurate global GPP estimates via simple linear scaling.

The second type of approach is to assimilate satellite SIF to land 
surface models (LSMs) or terrestrial biosphere models (TBMs) to con-
strain simulations of GPP (based on the Farquhar-von Caemmerer-
Berry model—FvCB; Farquhar et al.,  1980) and net carbon fluxes 
(Bloom et al.,  2020; MacBean et al.,  2018; Norton et al.,  2019; 
Parazoo et al.,  2014). The accuracy of these estimates depend on 
(a) the realism of model representations of SIF-qLII-NPQ-GPP and as-
sociated parameters (Parazoo et al., 2020; Yang et al., 2021), and (b) 
SIF data quality (Section 3.1). LSMs/TBMs that include SIF parame-
terization are generally adopted from Soil-Canopy Observation of 
Photochemistry and Energy (SCOPE; van der Tol et al., 2014), which 
has yet to be tested for a broad range of species or dynamic environ-
mental conditions (Martini et al., 2022; Parazoo et al., 2020; Yang 
et al., 2021). At its core, SCOPE utilized the FvCB biochemical model 
to compute photosynthesis, which subsequently is used to calcu-
late SIF. The accuracy of the simulated SIF and GPP are contingent 
upon the realism of NPQ model parameterization (or qLII, discussed 
above), which is challenging to model due to its complex dynamics 
(Sun et al., 2023). It also depends on the assumption that alternative 
electron sinks are non-existent, which is known to be incorrect as 
plants have a variety of alternative electron sinks (e.g., nitrate re-
duction, Mehler reactions, von Caemmerer, 2000). Furthermore, the 
quality of SIF products (Section 3.1) and the realism of fesc

Ω↑
 proxy or 

leaf/canopy radiative transfer (Sun et al., 2023) modeling determines 
the accuracy of the true ChlaF emission utilized to constrain LSMs/
TBMs.

3.2.2  |  Seasonality and phenology

SIF has been applied to study seasonal patterns of GPP, to charac-
terize phenology dynamics, and to reveal the environmental drivers 
of such dynamics across biomes. Mixed findings were reported for 
pan-tropical rainforests in the response to seasonal water stress. For 
example, in the Amazon basin, SIF tends to increase from the early to 
late dry season (JJA–SON) and peaks in the early wet season (DJF), 
a pattern generally consistent across different spaceborne SIF prod-
ucts and also MODIS EVI (Doughty et al.,  2019; Köhler, Guanter, 
et al.,  2018; Lee et al.,  2013; Parazoo et al.,  2013). Such patterns 
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10  |    SUN et al.

correspond to a greater atmospheric xCO2 in the dry than the 
wet season in the seasonally dry forests over the central-to-south 
Amazon (Parazoo et al., 2013). In tropical Africa, peak SIF appears in 
the wet season, consistent across spaceborne SIF products; vegeta-
tion indices (VIs) may exhibit similar or different seasonal peaks from 
SIF (Guan et al., 2015; Mengistu et al., 2020).

However, Guan et al.  (2015) argued that spatial disparity (i.e., 
contrast between the Amazon and Congo basins) exists in sea-
sonal SIF (and EVI) dynamics in response to water stress in the 
pan-tropics, depending on the precipitation regime. Furthermore, 
Wu et al.  (2021) suggested that the degree of synchrony between 
precipitation and solar radiation determines whether the wet or dry 
season exhibits higher SIF in tropical Asia. These patterns and in-
terpretation can be future confounded by strong BRDF effect on 
spaceborne SIF (Köhler, Guanter, et al., 2018), the degree of which 
also varies across different platforms (Doughty et al., 2019).

Consensus is achieved in characterizing phenological metrics, 
for example, the start, end, and length of growing season (denoted 
as SOS, EOS, and GSL respectively) with different SIF products 
for extra-tropical biomes among literature (e.g., Jeong et al., 2017; 
Joiner et al., 2014; Magney et al., 2019; Smith et al., 2018; Turner 
et al.,  2020; Walther et al.,  2016; Wang, Beringer, et al.,  2019). 
Specifically, both SOS and EOS in SIF closely resembled that of EC 
GPP, outperforming reflectance-based VIs consistently across a di-
verse range of biomes, that is, deciduous broadleaf forests (DBF), 
crops, drylands, and evergreen neefleleaf forests (ENF). Recently, 
NIRv has been demonstrated to have equivalent or superior capabil-
ity to SIF in depicting seasonal variations in GPP, primarily for tem-
perate DBF and crops that have distinct seasonal cycles (Dechant 
et al.,  2022). Such capability does not necessarily hold for ENF 
(Magney et al., 2019; Pierrat et al., 2021, 2022) or dryland ecosys-
tems (Wang, Beringer, et al., 2019; Wang, Biederman, et al., 2022). 
ENF has relatively muted seasonal variations in VIs due to the pres-
ence of chlorophyll content even during the dormant season, but 
exhibits distinct seasonal changes in GPP and SIF in parallel (Kim 
et al., 2021; Magney et al., 2019; Pierrat et al., 2022). Phenology of 
dryland ecosystems (e.g., grassland, savannas, shrublands) is chal-
lenging to characterize with VIs, due to their complex composition/
shifts of diverse species and rapid environmental fluctuations. For 
these systems, Wang, Beringer, et al. (2019) found that SIF outper-
forms NIRv (and other VIs) in depicting the seasonal GPP dynamics, 
thanks to its muted sensitivity to the background soil, which does 
not emit SIF but can contaminate VIs.

Attempts have also been made to understand how environ-
mental variations control the variations in GPP phenology metrics 
utilizing various SIF products (Jeong et al., 2017; Zhang, Commane, 
et al., 2020; Zhang, Parazoo, et al., 2020). Jeong et al. (2017) found 
that variations in SOS and EOS of ENF in northern hemisphere mid-
latitude are constrained by temperature and PAR, respectively, 
based on GOSAT and GOME-2 SIF products; while Zhang, Parazoo, 
et al. (2020) argued for the joint constraints of temperature and pre-
cipitation on IAV of EOS for biomes across the globe, depending on 
which factor is more limiting, based on CSIF. In terms of phenology 

trend, Wang, Ju, et al. (2019) reported that higher daytime LST and 
atmospheric CO2 can jointly lead to earlier onset (i.e., SOS) and 
delayed senescence (i.e., EOS), using the urban–rural gradient (of 
OCO-2 SIF) as a natural laboratory to mimic future warming scenar-
ios. Zhang, Commane, et al. (2020) found a weaker EOS trend in SIF 
than in VIs in northern hemisphere natural biomes, and attributed it 
to PAR limitations. However, all these efforts implicitly assume that 
SIF is an accurate proxy of GPP, which can be invalid, as demon-
strated by the analytical equations in Sun et al. (2023). Detailed dis-
cussion of this issue is provided in section 3.3 of Sun et al. (2023) and 
Section 3.1 above.

3.2.3  |  IAV of terrestrial carbon cycle and its 
climate feedbacks

The net carbon fluxes between terrestrial ecosystems and atmos-
phere (and therefore the atmospheric CO2 growth rate, CGR) ex-
hibit large IAV (Ahlström et al.,  2015; Bacastow,  1976; Bousquet 
et al., 2000), and are strongly regulated by climate variability, for ex-
ample, El Niño–Southern Oscillation (ENSO; Humphrey et al., 2018; 
Wang et al., 2016). However, how individual components (e.g., GPP, 
ecosystem respiration Reco) contribute to the net fluxes and how they 
distinctively respond to and feedback to climate still remain elusive, 
despite numerous studies in the past decades (Piao et al., 2020).

SIF has been employed to anchor IAV of GPP. It is promising that 
SIF outperforms VIs in capturing the IAV of EC GPP in both dry-
lands and ENF ecosystems in the US (Smith et al., 2018; Zuromski 
et al., 2018). Furthermore, by implicitly assuming SIF is an accurate 
proxy of GPP, Butterfield et al. (2020) identified two modes of IAV: 
seasonal compensation (i.e., opposite sign of GPP anomalies be-
tween spring and summer, associated with warmer/colder spring and 
drier/wetter summer) and seasonal amplification (i.e., the same sign 
of GPP anomalies from spring to summer, associated with persistent 
soil moisture anomaly). These studies explained a larger IAV of GPP 
and NEE in the arid western US (dominated by seasonal amplifica-
tion) than the humid eastern US (typical of seasonal compensation; 
Byrne et al., 2020). In contrast, Liu et al. (2018) reported that while 
IAV of NEE is dominated by that of GPP in the western CONUS, Reco 
plays the dominant role in the humid east.

Recently, SIF has been utilized (with the hope) to elucidate the 
relative role of soil moisture versus vapor pressure deficit (VPD) 
in controlling IAV of GPP (Liu et al., 2020; Lu et al., 2022), a long 
debate in the past decade (Fu et al., 2022; Novick et al., 2016). Li 
and Xiao  (2020) and Liu et al.  (2020) reported a dominant role of 
soil moisture in controlling IAV of SIF over >70% of global vege-
tated regions, especially in arid and semi-arid regions. In contrast, 
Lu et al. (2022) showed that the dominant role of soil moisture can 
greatly attenuate if the influence of PAR and fPAR were accounted 
for. They obtained an overall equal or even more important role of 
VPD in controlling IAV of SIF over nearly 60% of global vegetated 
regions, a pattern also supported by EC GPP across the globe (Fu 
et al., 2022). Disparate patterns also exist within the Amazon basin 
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(Green et al., 2020), with the wettest region (light-limited) showing 
positive SIF-VPD response while the tropical savannas and season-
ally dry forests (water-limited) exhibiting a negative relationship.

Regarding climate-carbon cycle feedbacks, Green et al. (2017) re-
ported strong positive feedbacks to precipitation in semi-arid and mon-
soon regions (i.e., greater SIF or GPP leading to higher precipitation), 
while positive feedbacks to PAR occurred in some moderately wet 
regions (e.g., eastern US, central Eurasia) and the Mediterranean (i.e., 
greater SIF or GPP leading to reduced cloud cover and increased PAR).

Similar to the seasonality and phenology characterization with SIF, 
the major caveats of these efforts are the implicit assumption of the 
equivalence of SIF and GPP (which is invalid, Sun et al., 2023) and the 
uncertain and disparate SIF products (Section 3.1). Such caveats can 
confound the interpretation of the obtained patterns; moving forward, 
theoretical (Sun et al., 2023) and observing advances (Section 4.2) are 
needed to refine the research findings synthesized here.

3.2.4  |  The long-term trend of GPP

SIF has also been employed to infer the long-term trend of GPP. Both 
CSIF and GOSIF show a growth in the global mean SIF at a rate of 
~0.4% year−1 since the start of the 21st century, stronger than other 
GPP products (i.e., FLUXCOM, BESS, MODIS C6, and WECANN; Li & 
Xiao, 2019b; Zhang, Joiner, Alemohammad, et al., 2018). Moreover, 
spatial distribution of such SIF trends and regional hotspots (i.e., 
growth in southwest China and India, decline in eastern Brazil) are 
highly consistent with MODIS (C6) EVI (Zhang et al., 2017). Recently, 
Wang, Zhang, et al. (2020) reported a weakened CO2 fertilization ef-
fect on GPP across the globe, utilizing NIRv (from AVHRR, comple-
mented with CSIF), and attributed it to nitrogen and water limitation. 
Robustness of such findings can be confounded by the implicit as-
sumption that NIRv and SIF accurately represent GPP dynamics, along 
with uncertainties in SIF and NIRv datasets and specific analytical ap-
proaches (Frankenberg et al., 2021; Sang et al., 2021; Zhu et al., 2021).

3.3  |  Advancing precision agriculture

The mechanistic linkage among SIF, electron transport rate (ETR), and 
GPP has also generated momentum for employing SIF remote sensing 
as a non-invasive and cost-effective tool to advance precision agri-
culture towards improving food security. Research efforts range from 
informing G × E × M (Genetic variation by Environmental variation by 
agronomic Management) at the field scale (Belwalkar et al.,  2022; 
Chang, Zhou, et al.,  2020; Fu, Meacham-Hensold, et al.,  2021; Jia 
et al., 2021; Zarco-Tejada et al., 2012) to advancing crop monitoring 
and yield estimation at the regional/global scales (Cai et al.,  2018; 
Guan et al., 2016; Peng et al., 2020; Sloat et al., 2021).

At the field scale, high-throughput phenotyping and agronomic 
management have been increasingly exploited with remote sens-
ing techniques, primarily focusing on RGB or multi-spectral images 
(Araus et al.,  2018), but recently extending to SIF acquired from 

ground and UAV platforms as well as piloted aircraft. Promising re-
sults have been obtained in utilizing SIF to guide agronomic manage-
ment. For example, SIF (itself or a SIF-based indicator) outperforms 
reflectance-based VIs in inferring leaf nitrogen content (LNC) of 
wheat (Jia et al., 2021; Wang, Suarez, et al., 2021), indicating its po-
tential in improving nitrogen fertilizer management. Moreover, SIF 
(and/or its quantum yield) has been employed to infer Vcmax (and/or 
Jmax) across cultivars, indicating the potential of SIF in rapidly screen-
ing cultivars with different traits (Camino et al., 2019; Fu, Meacham-
Hensold, et al., 2021). In the future, such efforts can be guided by 
the toy model developed in Sun et al. (2023). For example, any trait 
variations among cultivars (related to genetic variations) may drive 
differences in variables (e.g., LAI, leaf angle, pigment content) and pa-
rameters (e.g., k�F, kPAR, �, and that affecting the redox state) in equa-
tions 8–9 of Sun et al. (2023), assuming other conditions are equal.

At regional/global scales, numerous efforts have been made 
to estimate crop yields utilizing spaceborne SIF products. Earlier 
studies demonstrated that SIF, once translated to GPP, can be 
more precisely correlated with yield-based Net Primary Production 
(NPP) than VIs for corn and soybean (Guan et al.,  2016; Guanter 
et al., 2014). Recent efforts, however, argued that the native coarse-
resolution SIF retrievals superimposed with comparatively higher 
noise may not necessarily lead to superior performance than VIs 
(which are usually available at finer resolution and lower noise; Cai 
et al., 2018). Finer resolution SIF may lead to greater yield predict-
ability than VIs, though other factors such as crop types and ana-
lytical approach can influence such predictability (He et al., 2020; 
Peng et al., 2020). However, Sloat et al. (2021) reported an opposite 
finding, that is, coarse-resolution SIF and NDVI exhibiting similar ca-
pability for in-season forecasting (of corn and soybean yield in the 
US Midwest). Such apparent discrepancies may be a consequence of 
disparate SIF retrieval approaches (Section 3.1) with varying quali-
ties and different statistical yield estimation methods, and therefore 
caution is needed to interpret or compare these findings (detailed 
discussions in Section 3.8). Moreover, crop yield estimation utilizing 
SIF has almost been exclusively based on statistical approaches. Our 
developed toy model (Sun et al., 2023) has the potential to serve as a 
mechanistic model and a scalable approach to transform SIF to GPP 
and ultimately to crop yield.

3.4  |  Enhancing stress monitoring capacity towards 
informing mitigation and adaptation practices

Both leaf-level ChlaF emission and canopy-level SIF observations 
(red, far-red, or their ratio) are sensitive to diverse abiotic stresses 
such as water, temperature, and nitrogen content (Ač et al., 2015), 
even when VIs are asymptomatic to these stresses (Daumard 
et al., 2010; Martini et al., 2022). Such sensitivity generated excite-
ment for utilizing SIF as a cost-effective tool for monitoring climate 
stresses (i.e., temperature and droughts are projected to increase 
in frequency and intensity under climate warming, Seneviratne 
et al.,  2021) and evaluating its agricultural, ecological, and 

 13652486, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16646 by U

niversity O
f U

tah, W
iley O

nline Library on [02/04/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



12  |    SUN et al.

socioeconomic applications to inform decision-making for climate 
impact mitigation and/or adaptation (e.g., Jiao et al., 2019; Mishra 
et al., 2010).

At the regional to global scale, spaceborne SIF has been utilized 
to explore its capability in revealing the spatiotemporal patterns of 
drought/heatwave impacts and the underlying mechanisms. The 
general consensus is that, under severe and/or persistent stress, 
SIF exhibits a significant drop relative to its climatological mean, a 
pattern consistent across a number of record-breaking drought and 
heatwave events over the globe (Qiu et al., 2020; Song et al., 2018; 
Sun et al., 2015; Wen et al., 2020; Yoshida et al., 2015). The stress 
sensitivity of SIF (e.g., under drought) could vary spatially, de-
pending on biome-characteristics and hydro-climatic regimes (Jiao 
et al., 2019). In particular, the tropical Amazon, due to its global sig-
nificance in regulating the terrestrial carbon and water cycles, and in 
turn its climate feedbacks (both local and teleconnection), as well as 
sensitivity to the periodical El Niño-Southern Oscillation (ENSO), has 
been extensively studied in terms of drought impact. Anomalously 
lower SIF occurred from the late dry to wet season (Doughty 
et al.,  2021; Koren et al.,  2018; Li, Xiao, & He,  2018; Yang, Tian, 
et al., 2018) during the 2015–2016 El Nino events, but the severity 
of SIF anomaly had strong spatial heterogeneity and was susceptible 
to data uncertainties in SIF retrievals (Koren et al., 2018; van Schaik 
et al., 2020; Zhang, Joiner, Gentine, et al., 2018). The large reduction 
in SIF suggested a significant drop in GPP during the wet season, 
which may have contributed to the anomalously higher carbon re-
lease during this event (Gloor et al., 2018; Liu, Bowman, et al., 2017).

As SIF has the potential to identify physiological responses to 
stress that may be muted in VIs, SIF has been utilized in conjunc-
tion with reflectance-based fPAR to parse the relative contribution 
of structural versus physiological variations to the overall drought 
response. So far, the consensus is that, under severe and/or per-
sistent stress, concurrent decline of fPAR and the apparent quantum 
yield of SIF (without correction of fesc

Ω↑
) are likely to happen, but their 

relative contribution can be biome-dependent and stress-severity 
dependent (Sun et al., 2015; Yoshida et al., 2015). Mechanistic ex-
planation of such patterns and causal inference can be guided by 
equation 8 in Sun et al. (2023) in the future. For example, the contri-
bution of fPAR (previously based on the LUE model) can be broken 
into light harvesting and canopy vertical extinction of PAR and SIF 
driven by the 3D leaf/canopy structure; the contribution of quantum 
yield of SIF can be studied separately from the contribution of PSII/
PSI stoichiometry and state transition (if such ancillary information 
is available).

SIF may offer early warning of stress onset. An earlier study 
observed evidence of a steady decrease in canopy-level SIF under 
progressive water stress and a rapid rebound following rainfall re-
covery at a sorghum field, whereas NDVI and chlorophyll content 
remained unchanged during the same month-long period (Daumard 
et al.,  2010). Other promising findings were reported at the re-
gional scale with spaceborne SIF, which exhibited an earlier drop 
than VIs during the 2010 heatwave in India's Gangetic plain (L. Song 
et al., 2018) and identified flash drought in the US with a lead time of 

2 weeks to 2 months (Mohammadi et al., 2022). However, other stud-
ies allude to limited capacity of SIF in early warning of stress onset 
resulting from rapid-changing physiological response, prior to any 
detectable changes in leaf/canopy structure (that can be detected 
by VIs; Wohlfahrt et al., 2018). For example, Sloat et al.  (2021) re-
ported a significantly better yield prediction with NDVI than with 
spaceborne SIF during droughts in the US Midwest. Further, dis-
parate SIF-GPP responses under water/heat stress were reported 
(Section 3.1). Wohlfahrt et al. (2018) found a steady decline of GPP 
in a Mediterranean pine forest during the 2017 heatwave in Israel 
while a drop in canopy SIF did not emerge until the peak of stress, in-
dicating a decoupling of light reactions and stomatal response under 
stress, a pattern that coincides with response of leaf-level (Helm 
et al., 2020; Marrs et al., 2020) and canopy-level SIF measurements 
(Chen, Liu, Du, Ma, & Liu,  2021) under water stress. In contrast, 
Martini et al. (2022) revealed an inverse SIF-GPP relationship at the 
sub-daily scale from both leaf and canopy measurements during the 
2019 heatwave in a Mediterranean forest in Europe; such inverse 
relationship was attributed to NPQ saturation, which caused the ex-
cess APAR to be emitted as SIF. Such inverse patterns disappeared 
when daily mean values were examined, that is, concomitant de-
cline in daily mean SIF and GPP, while NDVI and NIRv stayed stable. 
Such time scale-dependent SIF response to stress was also evident 
in Damm et al. (2022), which identified a nonlinear response of far-
red SIF (from the airborne HyPlant measurements) to soil moisture 
deficit in a controlled water experiment for corn, that is, an initial 
brief increase followed by a subsequent decrease. Unfortunately, 
such complex SIF-NPQ-GPP dynamics under water/heat stress has 
not been adequately incorporated by the state-of-the-art mecha-
nistic models, for example, SCOPE (Martini et al., 2022; Wohlfahrt 
et al., 2018), although De Cannière et al. (2021) reported improved 
water and carbon fluxes simulations during water stress if SIF was 
utilized to constrain the water stress functions in these models. 
Resolving these discrepancies requires improved theoretical under-
standings of underlying mechanisms (e.g., stress- avoiding or adap-
tation strategies, Flexas & Medrano, 2002; Rascher et al., 2004) and 
modeling of such understanding across stress types, severity, and 
duration (discussion in Sun et al., 2023; Section 3.1.1 above), as well 
as improved SIF data quality and consistency (Section 4.2).

3.5  |  Inferring plant traits

Figure 1 and equation 10 of Sun et al. (2023) depict the theoretical, 
although convoluted, linkage between SIF and inherent plant traits. 
The capability of SIF for inferring plant traits has been explored, with 
target traits so far focusing on: LNC, chlorophyll content, and car-
boxylation parameters (e.g., Vcmax). For example, far-red SIF (and/or 
its ratio with the red SIF) is able to differentiate nitrogen treatments 
for both crop and natural species (Migliavacca et al., 2017; Schächtl 
et al., 2005), primarily driven by the strong sensitivity of far-red SIF 
to LNC (Ač et al., 2015). Moreover, the ratio of far-red to red SIF (or 
their normalized indices) is capable of inferring LNC (and in turn the 
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nitrogen use efficiency NUE) of wheat for both irrigated and rainfed 
fields (Camino et al., 2018; Jia et al., 2021).

As plant nutrients, especially LNC, are key compounds for chlo-
roplast, photosynthetic pigments, and Rubisco, SIF has also been em-
ployed to infer chlorophyll content and Vcmax. Promising correlations 
of chlorophyll content with ΦFII(red)∕ΦFII(fr) (negative) or with far-
red SIF (positive) have been consistently found from observations 
(Tubuxin et al.,  2015) and modeling-based analyses (with SCOPE; 
Koffi et al., 2015; Verrelst et al., 2015). Regarding inferring Vcmax (or 
Jmax) with SIF, conflicting results were reported, ranging from weak 
sensitivity (Koffi et al., 2015; Verrelst et al., 2015) to strong positive 
correlation (Y. Zhang et al., 2014; all based on ensemble SCOPE sim-
ulations), to negative correlation between SIF and Vcmax (or Jmax; P. Fu, 
Meacham-Hensold, et al., 2021) based on field measurements. Han, 
Gu, et al. (2022) attempted to elucidate such discrepancies from the-
oretical perspectives, and revealed that SIF itself is insufficient to re-
liably infer Vcmax (or Jmax), as their relationship is strongly regulated by 
the redox state of PSII (i.e., qLII). Consequently, the sign and strength 
of SIF-Vcmax depends on actual environmental conditions that regu-
late qLII and the actual carboxylation limitation stages (supporting in-
formation 5 in Sun et al., 2023). Despite such complex relationships, 
attempts of retrieving Vcmax via inverting process-based models with 
SIF as one major input have been made at both the field (Camino 
et al., 2019) and global scales (He et al., 2019). The fidelity of these 
inferred traits should be carefully evaluated, as SIF dynamics is im-
pacted by a myriad of interacting canopy and functional processes 
(Sun et al., 2023), and teasing out a single trait requires information 
of all other processes being adequately anchored (e.g., equation 8 in 
Sun et al., 2023). In this regard, the analytical framework developed 
in Sun et al.  (2023) can facilitate the trait inference, if harnessing 
the synergy of SIF with other sensing technology, for example, hy-
perspectral imaging, Lidar, and thermal, and microwave (Section 4.1).

Recently, SIF at high spatial resolution has been demonstrated as 
a powerful measure of ecosystem functional diversity, outperform-
ing reflectances (and the derived VIs) and thus foreshadowing its 
potential for quantifying biodiversity (Tagliabue et al.,  2020). This 
can also be explained by the analytical framework developed in Sun 
et al.  (2023), that is, any structural and/or functional diversity can 
impact variables and parameters in figure 2 of Sun et al. (2023), and 
propagate to the observed F↑

(
�F

)
.

3.6  |  Constraining the dynamics of the 
hydrological cycle

Motivated by the joint control of stomatal conductance (gs) on pho-
tosynthesis and transpiration, SIF was employed to infer gs, transpi-
ration, and evapotranspiration (ET; Jonard et al., 2020). For example, 
X. Lu et al. (2018) found that the canopy-level SIF (especially far-red 
or a combination of far-red and red) was capable of estimating tran-
spiration via parsimonious statistical scaling at the Harvard Forest, 
outperforming the classical Penman-Monteith (PM) model, which is 
more input/parameter-demanding. Expanding to global scales, Maes 

et al. (2020) showed promising correlation between GOME-2 SIF and 
transpiration (partitioned from ET measured at EC towers) across 
diverse biomes, which can be even stronger than the SIF-GPP cor-
relation. Shan et al. (2021) and Zhou et al. (2022) further attempted 
to estimate transpiration with far-red SIF in a more mechanistic 
manner, by integrating Fick's law of water diffusion, optimal water 
use efficiency (WUE) theory, and empirical SIF-GPP scaling, from 
in-situ and satellite-based measurements, respectively. However, 
Damm et al.  (2021) argued that the apparent promising empirical 
SIF-transpiration relationship is a consequence of their shared driv-
ers, that is, PAR and LAI, while a robust estimation of transpiration 
requires not only SIF but also more nuanced considerations of envi-
ronmental and physiological dynamics. Indeed, the apparent promis-
ing correlation between SIF and transpiration is sensitive to multiple 
assumptions that may break depending on biomes, time scale, stress 
conditions (Stoy et al., 2019). In particular, a linear SIF-GPP scaling 
assumption may result in bias in SIF-based estimation of gs and tran-
spiration. This issue should be resolved in the future by coupling 
equation 10 in Sun et al. (2023) and a stomatal conductance model.

3.7  |  Contribution to socioeconomic impact and 
sustainability assessment

Beyond conventional applications in the domain of “natural science”, 
satellite SIF has been recently employed as a real-time cost-effective 
tool for regional-scale socioeconomic evaluation, such as interna-
tional development, sustainability, and food security. For example, 
high-resolution SIF products (e.g., SIF005, Wen et al.,  2020) were 
used as a major input for targeting, mapping and monitoring poverty/
malnutrition in developing countries (Browne et al., 2021; McBride 
et al., 2022). These attempts were motivated by SIF's capability in 
monitoring (and potentially providing early warning, Section  3.4) 
of climate risks/shocks, which can induce crop and forage failure in 
rural areas of the developing world where poor households' liveli-
hoods depend disproportionately, directly or indirectly, on crop and 
livestock productivity.

Another such example is evaluating the impact of the Sustainable 
Land Management Project (SLMP) in Ethiopia, to date one of the 
world's most ambitious national-scale land restoration programs, 
on ecosystem productivity (Constenla-Villoslada et al., 2022). SIF005 
and GOSIF paired with intensive in-situ surveys revealed the sub-
stantial benefits of SLMP, that is, improved drought resilience of 
GPP in Ethiopia's degraded watersheds. Such national-scale socio-
economic evaluation was previously challenging with conventional 
survey-based approaches, which are costly and labor-intensive.

One emerging line of SIF application is to evaluate urban sustain-
ability and human health. Cities support more than half of the global 
population. Urban vegetation supports urban sustainability and is 
critical for mitigating climate extremes via carbon sequestration and 
evaporative cooling. For example, Sun et al. (2017) demonstrated the 
remarkable urban–rural SIF gradients from OCO-2; further, SIF com-
bined with LAI were used to quantify the role of evaporative cooling 
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in regulating urban heat islands (Paschalis et al., 2021). From a flipped 
perspective, the urban–rural climate gradient was taken as a natural 
experiment to study how future climate change/extremes impact on 
ecosystem health (P. Fu, Hu, et al., 2021; Wang, Ju, et al., 2019).

3.8  |  Practical benefits and barriers of 
remotely sensed SIF over conventional surface 
reflectance and the derived VIs

One may wonder: Does the mechanistic advantage of SIF (i.e., carry-
ing structural and functional information of plants, Sun et al., 2023), 
combined with its lower sensitivity to atmospheric contamination (such 
as thin clouds and thus alleviating potential data loss, Frankenberg 
et al.,  2012), reduced susceptibility to background soil (i.e., non-
fluorescing, Wang, Beringer, et al.,  2019) and to saturation under 
high LAI relative to the conventional surface reflectance and/or 
derived VIs, outweigh SIF's practical barriers (e.g., coarser spatial/
temporal resolutions and comparatively stronger retrieval noise/
bias), and thus lead to practical benefits in real-world applications 
(e.g., crop yield estimation, socioeconomic impact evaluation, stress 
early-warning)?

The general consensus so far is a stronger sensitivity of SIF than 
NDVI to seasonal and IAV across all major biomes, but SIF does not 
appear to possess substantial comparative advantage over EVI or 
NIRv, especially for crops and temperate DBF (Badgley et al., 2019; 
Baldocchi et al., 2020; Dechant et al., 2022). Note that a comparison 
between SIF and surface reflectance (or VIs) as a proxy of GPP is not 
valid unless the latter is converted to a flux quantity with an energy 
unit (e.g., multiplied with irradiance/radiance; G. Wu et al.,  2020). 
Moreover, intensive efforts utilizing hyperspectral imaging spec-
troscopy to infer plant traits have obtained promising outcomes 
(Serbin et al., 2016; Wang, Chlus, et al., 2020; Wang, Townsend, & 
Kruger,  2022; Zarco-Tejada et al.,  2021). The practical benefits of 
SIF relative to hyperspectral reflectance remain to be explored, es-
pecially considering that SIF, as a flux variable, is not only affected 
by plant structural and functional traits (state variables) but also 
rapid environmental fluctuations, which need to be teased out. On 
the other hand, SIF may still carry greater scalability in inferring 
GPP (and other associated functions and traits) across biomes than 
NIRv, given its mechanistic linkage with ETR and GPP (equations 9 
and 10 in Sun et al., 2023), despite the biome-specific or universal 
debate on the SIF-GPP scaling. Moreover, the practical advantage 
of SIF over NIRv may be more apparent under stress conditions 
(Damm et al., 2022; Martini et al., 2022), and when the growing sea-
son progresses towards senescence especially for conifers (Raczka 
et al., 2019). We should acknowledge that NIRv is still sensitive to 
the reflectance of soil, snow, wood and cirrus clouds, which is un-
related to SIF. This may make the relationship between NIRv and 
SIF biome-specific. In order to answer the above question, future 
research is critically needed to investigate more biomes (especially 
in tropical rainforests and boreal ecosystems in the northern high-
latitudes where the largest uncertainties in carbon sink/source 

changes are located) and more dynamic environments (e.g., climate 
extremes and natural/anthropogenic disturbance).

4  |  INNOVATIONS

Given the numerous discrepancies among current litera-
ture across the spectrum of applications (Section 3), does 
SIF help resolve existing knowledge gaps or add extra 
complexities and uncertainty?

To answer this question, innovations are needed to fill existing theo-
retical and data gaps that currently challenge real-world applications 
(Figure 5). Sun et al. (2023) offers perspectives on research priorities 
and potential solutions to theoretical knowledge gaps. This paper 
focuses on discussing data gaps (Section  4.1), research innovations 
needed in observations (Section 4.2) and applications (Section 4.3).

4.1  |  Data gaps

4.1.1  |  Bias in “ground-truth” GPP and transpiration

Present studies all consider GPP fluxes partitioned from NEE of CO2 
(measured at EC towers) with the standard night- or day-time (NT or 
DT) based approaches (Lasslop et al., 2010; Reichstein et al., 2005) as 
the ground-truth, and use it to establish the empirical SIF-GPP scaling, 
or evaluate SIF product quality using the degree of their linearity as 
metrics. However, NT and DT are known to contain biases, the extent 
of which also change across the seasonal course and environmental 
variations (Keenan et al., 2019; Kira et al., 2021; Wehr et al., 2016). 
Similarly, transpiration fluxes at EC towers, usually taken as the in-situ 
gold standard for validation, are not directly measured but partitioned 
from the total ET, which involve common assumptions of transpira-
tion/ET ratio approaching to unity and the optimal theory of WUE 
(Stoy et al., 2019). Under circumstances when these assumptions are 
violated (which can be common, Stoy et al., 2019), transpiration esti-
mated from SIF can suffer from bias. Data uncertainties in GPP and 
transpiration fluxes are under-appreciated at present.

4.1.2  |  SIF retrieval bias and noise

The SIF-GPP relationships (Figure 4) and all other applications ob-
tained so far can be greatly confounded by bias and noise in SIF 
measurements/retrievals, for both spaceborne (Parazoo et al., 2019) 
and in-situ (Aasen et al.,  2019; Cendrero-Mateo et al.,  2019; 
Chang, Guanter, et al., 2020; Marrs et al., 2021; Pacheco-Labrador 
et al.,  2019) platforms. Discrepancies among studies across ap-
plications identified in Section 3 may arise partly from these data 
artifacts.

Spaceborne SIF products can differ significantly across SIF re-
trieval algorithms, fitting spectral window, footprint size, overpass 
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time, BRDF (Bidirectional Reflectance Distribution Function) ef-
fect, which can be further confounded by instrumental degradation 
and other calibration issues (Joiner et al., 2013; Oshio et al., 2019; 
Parazoo et al., 2019; Zhang, Joiner, Gentine, et al., 2018). For ex-
ample, negative GOME-2 SIF anomalies can be an artifact of or am-
plified by its secular decline due to instrument degradation (Song 
et al., 2018; Yang, Tian, et al., 2018). The effects of clouds on mod-
erate to low spatial resolution satellite data also have to be consid-
ered, although SIF retrievals with relatively good accuracy can be 
achieved under thin clouds and aerosol (Frankenberg et al., 2012). 
Validation of spaceborne retrievals has been a major challenge, 
particularly for instruments with larger footprints, where the rep-
resentativeness error for comparison with in-situ instruments can 
be large.

Accuracy and precision of in-situ (and also airborne) SIF are sen-
sitive to instrument configuration, calibration protocols, retrieval 
methods, and atmospheric conditions, as well as ambient environ-
ment (e.g., temperature, humidity) that can impact instrument stabil-
ity (Aasen et al., 2019; Cendrero-Mateo et al., 2019; Chang, Guanter, 
et al., 2020; Chang, Zhou, et al., 2020; Marrs et al., 2021; Pacheco-
Labrador et al., 2019).

Such uncertainties in SIF retrievals can propagate to the quan-
tum yield of SIF, which is usually computed as the ratio of SIF against 

APAR (with or without correction of fesc
Ω↑

). As both the numerator and 
denominator are measurements/retrievals that contain noise/bias, 
the derived quantum yield of SIF could carry these uncertainties that 
may be further exaggerated by the division. Consequently, the quan-
tum yield of SIF may not necessarily reflect true biological variations.

4.1.3  |  Low temporal frequency

Most spaceborne SIF retrievals have relatively low temporal fre-
quency (Table  S1), which is inadequate to characterize the intra-
seasonal variation of plant activities. This can inhibit SIF's full 
potential for phenology characterization (e.g., dryland ecosystems 
that have fast-changing dynamics and complex species composi-
tion/abundance), prediction of crop yield (as it is highly sensitive 
to agronomic management that can be irregular depending on 
weather fluctuations, and stress during grain filling that is short-
duration), and monitoring/early-warning of fast-onset stresses. 
These applications may require at least sub-weekly temporal reso-
lutions. For example, TROPOMI SIF has greatly improved revisit 
time, and demonstrated such benefits in depicting the complex 
seasonal trajectory of California's complex mixture of ecosystems 
(Turner et al., 2020).

F I G U R E  5  Existing theoretical and data gaps through the lens of applications, and potential solutions moving forward. This paper focuses 
on the theoretical side (the left columns highlighted in dark color) of this diagram. BRDF, Bidirectional Reflectance Distribution Function; 
ET, evapotranspiration; G × E × M, interactions of genetics, environment, and management; GPP, gross primary production; IAV, interannual 
variability; NEE, net ecosystem exchange; NPQ, non-photochemical quenching; PS, photosystem; RTM, radiative transfer model; SIF, solar-
induced chlorophyll fluorescence; WUE, water use efficiency.
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4.1.4  |  Lack of long-time record

The major roadblocks to applying spaceborne SIF to study the 
long-term trend and IAV of the terrestrial carbon cycle is lack 
of a SIF record that is both sufficiently long and of trustworthy 
quality. For example, native SIF retrievals from GOME-2 have the 
longest time coverage (Table S1), but suffer from inherent instru-
ment degradation/orbital drift (i.e., post August 2013), which 
could lead to a spurious negative trend (van Schaik et al., 2020); 
GOSAT SIF is available for over 10 years but has sparse spatial 
sampling.

4.1.5  |  Coarse spatial resolution and/or sparse 
spatial sampling

Current native spaceborne SIF retrievals are at low spatial resolu-
tions and/or spatially discontinuous (Table  S1). Value-added SIF 
products have relatively finer spatial resolution with global con-
tiguous coverage (Table S1), but have not yet been sufficiently vali-
dated with independent in-situ or airborne SIF at high-resolution. 
Moreover, they can be susceptible to (a) biases/noise inherited from 
native SIF retrievals; (b) the training algorithm; (c) uncertainties in se-
lected predictor variables. These limitations hamper the potential of 
SIF in truly benefiting crop monitoring and yield prediction, poverty 
and malnutrition targeting, or urban sustainability, which all require 
resolving complex and heterogeneous landscapes. For example, ex-
isting SIF-based attempts exclusively focus on developed countries 
where agricultural landscapes and management practices are more 
homogeneous and high-quality ground-truthing data (for calibrating 
yield estimation models) are more readily available. However, in het-
erogeneous landscapes (such as developing countries where farm 
size is typically small), present SIF products (both native and value-
added products) are unable to resolve individual crop types or fields 
(Kira & Sun, 2020), making them of limited use to inform decision-
making at the field-scale (e.g., fertilizer or irrigation). Moreover, none 
of the existing spaceborne SIF products can be reliably matched 
with in-situ socioeconomic surveys (e.g., poverty metrics, children 
malnutrition) due to their sparse data acquisition, randomized spa-
tial offsets of socioeconomic data to protect respondents' privacy, 
or some combination. Consequently, it remains unclear whether SIF 
possesses substantial competitive advantages over conventional 
VIs for these operational applications, as the latter is technologi-
cally much more mature and available at super fine resolutions (e.g., 
sub-meter).

4.1.6  |  Scarcity of in-situ SIF measurements

Despite the growth of in-situ SIF observing systems in the north-
ern hemisphere mid-latitude, especially in agricultural regions, such 
systems are sparse in the pan-tropics and arctic/boreal regions as 
well as developing countries (e.g., Africa; see figure 4 of Parazoo 

et al., 2019), a situation similar to the uneven global distribution of 
the EC flux measurements (Schimel et al., 2015).

4.2  |  Observational innovations

4.2.1  |  Satellite missions and airborne campaigns

Validation and cross-instrument standardization
High SIF data accuracy/precision is foundational to meaning-
ful downstream applications. Parazoo et al.  (2019) demonstrated 
that agreement among spaceborne SIF retrievals can be achieved 
if overpass time, fitting windows, and viewing angles are stand-
ardized. Dedicated efforts have also been made to apply stand-
ardized retrieval algorithms consistently to GOME, SCIAMACHY, 
and GOME-2/MetOp-A (and also corrected the artificial trend in 
GOME-2 SIF). Such cross-instrument comparison and standardiza-
tion should continue in the future (e.g., extending to other space-
borne instruments, as well as airborne measurements), to further 
improve the retrieval accuracy/precision of spaceborne SIF prod-
ucts. In addition, validation of spaceborne SIF retrievals (as well as 
value-added products and airborne measurements) with in-situ SIF 
is critical, but remains a major research gap. Challenges preventing 
effectiveness of such efforts include scale mismatch, inconsistency 
in instrument configuration and retrieval approaches, BRDF effect, 
and so forth but can be addressed if utilizing trustworthy radiative 
transfer model (RTM) simulations (section 3.1 and table 1 in Sun 
et al., 2023) as a bridge to reproduce both in-situ and spaceborne/
airborne SIF in parallel under their respective instrument setup and 
landscape scenarios.

Multi-instrument harmonization
So far value-added SIF products (e.g., based on ML approaches) date 
back to 1995, but their reliability still requires further investigation, 
given the above-stated quality issues in native SIF retrievals, which 
the value-added SIF products are trained against. Also, temporal ex-
trapolation has been employed to cover periods prior to the avail-
ability of native SIF products, but may result in bias as the true SIF 
signal falls outside the “observed” range/distribution of the training 
period. One alternative approach to extend the timespan is to har-
monize SIF from different instruments with some overlaps (Parazoo 
et al.,  2019; Wang, Zhang, et al.,  2022; Wen et al.,  2020), for ex-
ample, GOME (1995–2003), SCIAMACHY (2003–2012), GOME-2/
MetOp-A (2007–2018; Joiner et al., 2019, 2021), and MetOp-B/C 
(2012–present; Table S1). Caution is needed as quality of such har-
monized products is contingent upon consistency of the native 
products across different instruments.

Pushing higher-frequency sampling
A new frontier in spaceborne SIF will be realized with the first meas-
urements from geostationary (GEO) platforms on an approximately 
hourly basis. These observations, from Tropospheric Emissions: 
Monitoring Pollution (TEMPO) and Sentinel-4, may provide a 
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glimpse into diurnal variability in plant function at a regional scale 
(Figure 6). While the suite of current instruments in LEO covers a 
wide range of hours due to their large swaths and slightly inclined 
orbits, recovering information on the diurnal variations in plant 
physiology was found to be problematic owing to the difficulty in 
accounting for the large variations due to sun-viewing geometry 
(Joiner et al., 2020). GEO observations, in contrast, will have a fixed 
geometry day-to-day for a given point on Earth and a given time of 
day. Both SIF and reflectance have complicated diurnal variations 
owing to changes of sun-viewing geometries throughout a day, mak-
ing it difficult to decouple structural and physiological effects on SIF 
(Chang et al., 2021). Averaging at fixed times of day and fixed loca-
tions, where the GEO satellite geometry is identical day to day may 
lead to the ability to detect temporal anomalies in the SIF signal at 
different times of day. Here, it would not be necessary to adjust for 
the structural effects that may impact the signal over the course of 
a day; rather these effects on SIF would be assumed to remain rela-
tively stable over short time periods. The anomalous signals due to 
stress could then be studied at different times of day as indicated in 
Figure 6.

Harnessing the synergy of SIF with hyperspectral imaging, Lidar, 
and thermal, and microwave remote sensing
In principle, SIF carries plant physiological information beyond plant 
biophysical properties that hyperspectral reflectance can help infer 
and leaf/canopy structures that lidar (or VIs) can characterize (figure 
2 in Sun et al., 2023). On the flip side, SIF is a mixed signal of all these 
factors, making it necessary to disentangle them. This is particu-
larly critical for applications where a pool of plant traits is required 
in applications such as plant phenotyping (Belwalkar et al.,  2022), 
precision agronomic management (Wang, Suarez, et al., 2021), and 
disease detection (Poblete et al.,  2021; Zarco-Tejada et al.,  2018). 
One innovation is to harness the complementary strengths among 
SIF, hyperspectral reflectance, and lidar to disentangle contributions 
from physiological variations, leaf biophysical traits (e.g., chlorophyll, 
carotenoids, xanthophylls and anthocyanin content), and canopy 

structure (e.g., LAI, leaf inclination angle, canopy height, and crown 
volume; Porcar-Castell et al.,  2021; Schimel & Schneider,  2019; 
Stavros et al.,  2017). For example, an optimal instrument would 
measure radiance in the visible and NIR range to derive hyperspec-
tral reflectances and SIF simultaneously, and thus ensure the same 
sun-viewing geometry between them. Most SIF-capable instruments 
currently flying in-orbit do not have such capability. Moreover, utiliz-
ing synergies with thermal and/or microwave-based measurements 
(i.e., Land Surface Temperature LST, soil moisture) when possible 
can also help disentangle contributions from physiology versus leaf-
canopy structure under biotic or abiotic stress. Harnessing these di-
verse and complementary remote sensing techniques can also help 
infer ecosystem efficiency terms, such as light use efficiency (LUE), 
water use efficiencies (LUE), carbon use efficiencies (CUE), and ni-
trogen use efficiency (NUE), which cannot be measured directly 
but carry functional information of ecosystem dynamics (Schimel & 
Schneider, 2019; Stavros et al., 2017). To facilitate such synergy, the 
key here is to integrate different types of measurements from the 
“hardware” side as much as possible (e.g., a single multi-functional 
instrument, or different instruments onboard the same platform), 
which is more beneficial than from the “software” side (e.g., correc-
tion of sun-viewing geometry, irradiance calibration, or footprint 
mismatch via post-processing). Meanwhile, theoretical modeling is 
much needed to guide the integration of different data streams (e.g., 
equations 8–10, and figure 2 in Sun et al., 2023) and maximize their 
information content while mitigating their individual measurement 
uncertainties. For example, LAI and pigment contents that deter-
mine light harvesting in equation 8 of Sun et al. (2023) could be an-
chored (to some degree) by Lidar and hyperspectral measurements, 
and hence SIF can be used to infer other physiological quantities. 
On the other hand, these diverse measurements can help reveal the 
degree to which and conditions under which certain assumptions 
hold in deriving the analytical equations of Sun et al.  (2023), and 
hence identify quantities/variables that should be prioritized for ei-
ther more data collection, process understanding, or sophisticated 
modeling (laid out in figure 5 in Sun et al., 2023).

F I G U R E  6  Diagram of resolving diurnal cycle of spaceborne solar-induced chlorophyll fluorescence for the past and future from (a) Low 
Earth Orbit (LEO) and (b) geostationary (GEO) platforms.
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4.2.2  |  Canopy-scale observations

Standardization of instrument configuration, calibration, and 
retrieval methods
The diversity of available in-situ systems and retrieval methods for 
canopy SIF currently presents a challenge for large-scale syntheses 
that have proven fruitful in other ecological networks (i.e., Fluxnet), 
as SIF observation so far has no standardization of procedure, cali-
bration, or system design across sites and principal investigators 
(PIs). Such standardization is critical for establishing an effective 
global SIF network, ensuring comparability across SIF measure-
ments (Aasen et al.,  2019; Albert et al.,  2023; Cendrero-Mateo 
et al., 2019; Marrs et al., 2021; Pacheco-Labrador et al., 2019), and 
validating spaceborne SIF retrievals. To facilitate this endeavor, 
differences among system configurations and retrieval methods 
for the same canopy target must be carefully quantified and cor-
rected. This can be done with concurrent bi-hemispherical and 
hemispherical-conical systems, ideally mounted on both station-
ary tower and mobile UAV platforms. Continuous high-frequency 
point measurements at fixed locations of a stationary tower and 
spatial mapping (within the tower footprint) with flexible resolu-
tion/altitude control of a mobile UAV offer complementary infor-
mation towards quantifying (a) spatial heterogeneity within a tower 
footprint, (b) impact of atmospheric conditions on SIF retrievals. In 
the meantime, intercomparison of different instrument configura-
tion and retrieval methods must be conducted over a wide range 
of biomes and sky conditions (Chang et al.,  2021; Chang, Zhou, 
et al., 2020). Further, each system should simultaneously observe a 
minimum set of meteorological variables (e.g., radiation, tempera-
ture, humidity, and wind speed) that can facilitate designing prac-
tical solutions for correcting differences of SIF retrievals across 
system configurations.

Improving in-situ SIF observing capability in “data desert” regions
The information contained in SIF complements that observed by 
EC systems. Thus more SIF observations should be conducted 
at well-established flux sites such as AmeriFlux or Fluxnet, per-
haps using integrated SIF-EC systems (Gu, Wood, et al.,  2019). 
In particular, more in-situ SIF instruments are needed in “data 
desert” regions, for example, tropical rainforests and north-
ern hemisphere high-latitudes where the most discrepancies 
among literature and largest uncertainties in carbon fluxes/stor-
ages as well as strength of carbon-climate feedbacks (Schimel 
et al., 2015) are both located. Also, dryland ecosystems, although 
important in regulating IAV of the global carbon cycle, are under-
represented by in-situ SIF (and EC) measurements (Schimel & 
Schneider, 2019). Deploying more SIF observing systems in these 
areas will assist satellite SIF retrievals (e.g., validation and spa-
tial scaling) for constraining regional carbon mapping/budgets. 
Moreover, improving in-situ SIF observing capability in areas 
with high socioeconomic vulnerability is also highly beneficial 
(discussion in Section 3.7).

Development of high-resolution SIF-specific spectroradiometers
A critical need of observational innovation is the development of 
high-resolution spectroradiometers that are designed specifically 
for observing SIF. Scientists have been working with companies to 
design spectroradiometers tailored for SIF research (e.g., Ocean 
Optics QE-Pro), while others have used off the shelf spectrom-
eters (e.g., ASD Field Spec). These spectrometers contain a great 
number of charges coupled devices (CCDs) that collect charges at 
wavelengths that are not usable for SIF retrieval. These unusable 
CCDs increase the cost, contribute to heat generation which de-
creases spectroradiometer sensitivity, and limit the number of CCDs 
that can be used in a spectroradiometer for retrieving SIF at single 
wavelengths. Future development of SIF-specific spectroradiom-
eters should focus on Fraunhofer lines and oxygen absorption bands 
which are highly resolved with a limited number of CCDs in neigh-
boring bands to provide reference wavelengths. Similar to point 
measurements, SIF imaging systems will also be useful but will need 
to undergo strict retrieval processes and reflectance correction 
(Frankenberg et al.,  2012). A close collaboration between the SIF 
science community and industry is needed to develop SIF-specific 
spectroradiometers.

4.2.3  |  Leaf scale observations

At the canopy level, the true values of neither SIF nor GPP can be 
directly measured and known. Therefore, it is at the leaf level that 
the relationship between SIF and photosynthesis can be theoreti-
cally established and verified. Currently, no commercially available 
instruments can be used to measure total ChlaF emission from a 
leaf, which includes adaxial and abaxial emissions and re-absorption. 
Current commercially available fluorometers output fluorescence 
quantum yield (typically across all wavelengths >700 nm) in arbitrary 
units, which must be ratioed to a reference (e.g., maximal or minimal 
fluorescence, Baker, 2008) in any calculations. These measurements 
cannot be used directly as total ChlaF emission (i.e., in the unit of 
mol m−2 s−1). There is an urgent need for fluorometers that can meas-
ure total ChlaF emission from a leaf directly (Magney et al., 2017; 
Meeker et al.,  2021; Van Wittenberghe et al.,  2019, 2021). This 
includes both broadband and spectral fluorescence from both the 
adaxial and abaxial sides. Ideally, these emission measurements 
should be accompanied with transmittance measurements of �F, 
perhaps with incidence from both adaxial and abaxial sides. These 
transmittance measurements can be used to estimate the fraction of 
total ChlaF emission that is being self-absorbed with a leaf RTM, for 
example, equation S25 of Sun et al. (2023) derived with Beer's Law.

Ideally, the true ChlaF emission measurements at the leaf level 
should be jointly conducted with conventional PAM fluorometry 
and gas exchange measurements (Magney et al.,  2017; Meeker 
et al., 2021). With these measurements, mechanistic ChlaF emission 
models can be tested and theoretical SIF-photosynthesis relation-
ships can be verified. Breakthroughs in this much-needed innovation 
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cannot be made without close collaboration between the scientific 
community and industry.

4.2.4  |  Bridging the scaling gap: From leaf to 
canopy, to ecosystems, and to the globe

Built upon innovations at individual scales discussed above, efforts 
are also much needed to bridge the “scaling” gap from leaf to canopy, 
ecosystems, and globe, a paramount issue not only to SIF but almost 
to every variable in the Earth system science context. For example, it 
is challenging to couple SIF acquiring instruments at different scales, 
due to their vastly different footprints composed of dynamic/heter-
ogeneous vegetation structures/functions (Sun et al., 2023). Specific 
to leaf-to-canopy scaling, vertical profiling of the joint spectral SIF, 
PAM fluorometry, and gas exchange measurements (Section 4.2.3) 
along with a hemispherical-conical system over a plant canopy will 
be ideal to resolve these issues. Further, concurrent stationary tower 
and mobile UAV measurements (Chang et al., 2021) will offer quanti-
tative information on spatial heterogeneity within a tower footprint, 
towards bridging the gap from individual canopy to the ecosystem 
scale. Most often, the relationship between SIF and GPP (or with 
other variables) had to be examined with mismatched footprints. To 
resolve such scale mismatch, emerging efforts attempt to couple the 
OctoFlox SIF system and LI-7000 gas analyzers (acquiring carbon 
and water fluxes) for crop measurements in enclosures with precise 
temperature and CO2 control. This allows a much closer footprint 
(~1–2 m2) than any setup currently achievable with EC towers. In the 
meantime, the theory-driven model remains an important tool to 
bridge the scaling gap, as model simulations can be conducted at any 
temporal and spatial scale while measurements can only be made 
at discrete and disparate scales. If measurements made at different 
scales can all be reproduced by model simulations, confidence can 
be gained in these models. For example, the theoretical framework 
developed in Sun et al.  (2023) can be applied and tested for such 
purposes.

4.3  |  Application innovations

To advance our current understanding of SIF dynamics and expand 
its utility to infer ecosystem structure, function, and service, we 
offer perspectives on potential application innovations.

4.3.1  |  Innovations in ecological applications

Quest for the “true” GPP across time and space
The culprit of the challenges in pinning down the true GPP and its 
variability in space and time is the infeasibility of directly meas-
uring this flux beyond a single leaf. In the quest to identify “true” 
GPP at the canopy scale and beyond, SIF should be utilized in a way 
that can stay away from the current known uncertainties, moving 

beyond simple correlational analyses between SIF and existing GPP 
estimates that are well documented to have bias at many different 
scales. Two potential pathways to tackle this core problem: What is 
the true GPP, at the canopy and global scale respectively?

A. NEE partitioning. At the canopy scale, the commonly referred 
“gold standard” GPP at EC towers, is not a direct observable, but 
rather indirectly inferred from the directly measurable NEE with 
EC techniques (Lasslop et al.,  2010; Reichstein et al.,  2005). SIF 
could be employed in a way that truly escapes from existing known 
uncertainties. For example, it could be directly used to partition NEE, 
if functional relationships can be integrated with SIF to anchor GPP 
(e.g., the toy model developed in Sun et al., 2023). Initial exploration 
has been made for a single biome (e.g., C4) during a single growing 
season (Kira et al., 2021) but much larger-scale coordinated efforts 
are needed to expand such exploration, that is, for more biomes/
sites with SIF-observing capabilities. Such strategies would allow for 
true GPP inference and avoid the current “circular” and “uncertain” 
approaches (Section  3.1). In the meantime, we should always be 
vigilant to measurement quality/noise, and cross-site calibration/
standardizations, which are key to ensure faithful GPP estimation 
(Section 4.1).

B. Integration of SIF, OCS, and δ13CO2. Over the past decades, 
multiple photosynthetic tracers, including SIF, carbonyl sulfide 
(OCS), and δ13CO2 isotopes, were identified and utilized to constrain 
GPP fluxes (Campbell et al., 2017; Graven et al., 2020). Specifically, 
OCS is an atmospheric trace gas that diffuses from the atmosphere 
to photosynthetic enzymes along a shared pathway with CO2. It 
is consumed by plants (Berry et al.,  2013; Campbell et al.,  2008; 
Montzka et al.,  2007; Seibt et al.,  2010; Whelan et al.,  2018; 
Wohlfahrt et al., 2012), and at regional scales is closely correlated 
with GPP (Campbell et al.,  2017; Hilton et al., 2017). 13C isotope 
has long been used to study photosynthetic metabolism and its 
environmental response (Farquhar et al.,  1989), taking advantage 
of the unique feature of isotopic discrimination of photosynthesis, 
that is, selective uptake of 12CO2 over 13CO2. The long-term 
measurements of atmospheric δ13CO2 have also been used to provide 
unique insights on the growth trend of global GPP and WUE along 
with the underlying drivers (Graven et al., 2020; Keeling et al., 2017). 
The shared strength of these independent tracers is their capability 
to directly infer photosynthesis without involving uncertainties 
in separating ecosystem respiration. However, progress toward 
this end has only been made within their respective communities; 
their joint power for constraining predictive understanding of 
GPP has never been explored or realized. Future research efforts 
should leverage their unique and complementary strengths as 
photosynthetic tracers. Towards this end, a theory-driven model 
that can mechanistically represent/connect these three tracers is 
foundational to harnessing their synergy. For example, coupling the 
analytical equation(s) (e.g., equations 8 and 10) in Sun et al.  (2023) 
with an OCS model (Berry et al., 2013; Kooijmans et al., 2021) can 
be a starting endeavor.
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Pigment content
Pigment contents are sensitive to various environmental stresses. 
Large scale monitoring of pigment contents represents one of 
the most promising applications of SIF remote sensing for climate 
change and ecosystem research. As ChlaF is emitted by excited chlo-
rophyll molecules, a natural application of SIF would be to use it to 
monitor chlorophyll content. Equation 8 in Sun et al.  (2023) shows 
that SIF could be approximately proportional to the pigment content 
of the canopy if LAI and PAR are controlled. To our knowledge, this 
approach has not been tested, but may be more direct and sensi-
tive than reflectance/transmittance-based approaches, as it has a 
theoretic basis and can be derived in a mechanistic way, as opposed 
to the conventional approach such as statistical regression (Wang, 
Townsend, & Kruger, 2022).

4.3.2  |  Innovations in hydrological applications

ET partitioning
Evapotranspiration is a keystone climate variable that links the 
water cycle, energy balance, and carbon cycle (Fisher et al.,  2017; 
Katul et al., 2012; Monteith, 1965; Wang & Dickinson, 2012; Wong 
et al., 1979). Its trajectory under changing climate, however, is highly 
uncertain (Gedney et al., 2006; Mao et al., 2015; Piao et al., 2007; 
Zeng et al.,  2017). One primary reason for such uncertainty is a 
lack of understanding of how ET is partitioned into its constituent 
fluxes—transpiration (T) and evaporation (E)—across a wide range of 
bio-climatic conditions, because these components are differentially 
impacted by changing temperature, CO2, and hydrologic regimes 
(Fisher et al., 2017; Lawrence et al., 2007; Miralles et al., 2016; Wang 
& Dickinson, 2012). Studies have reported a large divergence of global 
T:ET ratio (Coenders-Gerrits et al., 2014; Fatichi & Pappas, 2017; Wang 
et al., 2014; Wei et al., 2017), indicating a severe lack of understand-
ing of the dynamics of ET partitioning and its underlying controlling 
factors. This level of uncertainty impairs the ability to predict both 
future ET budgets (due to the differential sensitivity of E and T to en-
vironmental forcings) as well as how ET will dampen or amplify climate 
feedbacks (Fisher et al., 2017). It will also inhibit our ability to optimize 
sustainable water allocations for food production in a changing climate 
to meet the demands of a growing population (Foley et al., 2011).

A major source of difficulty to partition the observed ET (at the 
canopy scale), which is typically measured with EC techniques, into 
the desired E and T is due to a lack of constraining information. This 
issue is, in many ways, similar to the classical problem of NEE par-
titioning (Section  4.3.1). Existing efforts utilizing SIF to constrain 
transpiration is highly empirical (Section 3.6), and involves many as-
sumptions (Stoy et al., 2019; discussed in Sun et al., 2023). Currently, 
there are no studies explicitly utilizing SIF to partition ET in a mech-
anistic way, and also bypassing the key assumptions. A promising 
approach is to couple the light-reaction based GPP estimation de-
rived from SIF (e.g., equation 10 in Sun et al., 2023), with gs models 
and energy balance models, in order to dynamically close the sys-
tem of equations. In this regard, thermal remote sensing would be 

also helpful to constrain the energy balance model (e.g., leaf/canopy 
temperature; Anderson et al., 1997), while concurrent SIF can an-
chor GPP, both in a mechanistic way. ET partitioning can be further 
combined with NEE partitioning above, to fully take advantage of 
the constraining power of shared information contained in ET and 
NEE fluxes and in the meantime preserving the authentic functional 
relationships among constituent components and their respective 
sensitivity to environmental forcings.

Stress monitoring and early warning
To unleash the potential of SIF in assisting operational stress moni-
toring and early warning systems for informing stakeholders and 
policy-making, it is crucial to have real-time SIF observations at 
high temporal frequency (e.g., sub-daily) and fine spatial resolution. 
The diurnal SIF capability from GEO satellites, for example, TEMPO 
(Section 4.2.1), holds potential to reveal both the short-term physi-
ological dynamics and long-term impacts. Exploration along this 
line can already be started with platforms like OCO-3 or synthetic 
simulations with observing system simulation experiments (OSSEs)-
type systems (Somkuti et al., 2021). To concurrently alleviate the is-
sues of coarse spatial resolution (which is the case for geostationary 
satellite), data fusion with other types of spaceborne observations 
available at fine resolutions (e.g., reflectance, thermal, radar) with 
state-of-the-art ML techniques (Gensheimer et al., 2022) are worth 
research exploration. Elucidating the mechanisms in response to 
stress, especially co-occurring events, requires effective synergy of 
different sensing techniques (e.g., SIF, thermal, hyperspectral, lidar) 
along with mechanistic models/understanding.

4.3.3  |  Innovations in agricultural and forestry 
management applications

Agriculture and forest management must rapidly adapt to face chal-
lenges including extreme climate events, shifting prevalence of dis-
eases and pests, changes in water availability and temperatures. Two 
main and complementary avenues of agricultural and forest man-
agement research focus on climate adaptation and mitigation. The 
adaptation strategy focuses on identifying or developing plant spe-
cies and cultivars, as well as management practices, which are better 
suited for future climate conditions through a better understanding 
of G × E × M interaction in phenotyping studies. The mitigation strat-
egy focuses on developing and improving regional or site-specific 
plant and environmental monitoring systems which can alert when 
and how to adjust management practice, for example, by knowledge 
guided fertilization, optimized pesticide and herbicide use and irriga-
tion schemes. SIF could be an advantageous tool for both adaptation 
and mitigation strategies, due to the critical nature and sensitivity of 
photosynthesis for plant health and productivity.

Climate change adaptation
While fluorescence-based phenotyping approaches are already 
widely included in laboratory, greenhouse and field trials (Murchie 
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et al., 2018), airborne-based hyperspectral scanners capable of as-
sessing plant traits including SIF for operational stress detection in 
the context of plant phenotyping only recently emerged (Belwalkar 
et al., 2022). For example, Belwalkar et al. (2022) demonstrated that 
hyperspectral airborne imaging spectrometers of 5–6  nm FWHM 
can quantify the spatial variability of SIF linked to nutrient defi-
ciencies towards improving plant phenotyping. Airborne systems 
capable of SIF retrieval are well-adapted for precision agriculture 
applications but often lack spatial resolution for the relatively small 
plots of field phenotyping (Krämer et al., 2021). UAV-based SIF sen-
sors (imaging and non-imaging) are currently being developed with 
the goal to close this technological gap and it can be expected that 
such UAV-based SIF approaches will become available for a wider 
use in field phenotyping science (Bendig et al., 2018; Chang, Zhou, 
et al.,  2020; MacArthur et al.,  2014; Quirós-Vargas et al.,  2020; 
Wang, Suomalainen, et al., 2021).

On the other hand, active fluorescence techniques are often 
lacking high throughput capabilities for large field-phenotyping 
experiments. Recently laser-based scanning fluorescence systems 
have been shown to potentially overcome this limitation of through-
put, but thus far only a very limited number of studies using active 
fluorescence approaches are available (Keller et al., 2022; Zendonadi 
Dos Santos et al., 2021). Developing SIF-capable phenotyping sys-
tems may allow for rapid screening of genotypes with high photosyn-
thetic capacity under different environmental and/or management 
conditions in statistically relevant settings. In the future, such ef-
forts can be further coupled with the analytical modeling framework 
in Sun et al.  (2023) to uncover the biological (both plant structure 
and function) drivers.

Climate change mitigation
The rapidly exploding availability of ground and satellite measure-
ments for crops and forests is currently revolutionizing management 
practice by enabling the farmer and forest manager to detect both 
abiotic and biotic stresses earlier than conventional approaches. 
Here, SIF may play a unique role in identifying early signs of vegeta-
tion stress, before classical measurement techniques (reflectance- 
or thermal-based approaches) become sensitive (Damm et al., 2022). 
Studies have demonstrated the potential of SIF for monitoring of 
water stress in fruit orchards (Zarco-Tejada et al., 2016), potato (Xu 
et al., 2021), heat stress in wheat (Song et al., 2020), and disease in 
olive orchards (Poblete et al., 2020; Zarco-Tejada et al., 2018) and 
oak forests (Hernández-Clemente et al., 2017). SIF may also play a 
unique role in early detection and improving the specificity of dis-
ease detection by complementing hyper- and multispectral methods 
(Mahlein et al., 2019). For example, SIF has also been demonstrated 
critical in the early detection of pathogen-induced stress due to the 
reduction in photosynthesis along with the degradation and reduc-
tion of the concentration of plant pigments such as anthocyanins, 
xanthophylls, chlorophyll and carotenoids quantified using airborne 
imaging spectroscopy (Zarco-Tejada et al., 2018). In such a study, SIF 
was the fifth ranked plant trait used in the ML model to detect all 
levels of infection, but ranked first at the initial (pre-visual) versus 

advanced pathogen infection stages. This indicates that SIF is mod-
ulated by the infection level, and is important to differentiate be-
tween biotic- and abiotic-induced stress (Zarco-Tejada et al., 2021). 
Moreover, the sensitivity of SIF to pathogen-induced stress in vas-
cular diseases was shown across plants infected with Verticillium 
dahliae and Xylella fastidiosa using airborne imaging spectroscopy 
(Poblete et al., 2021).

4.3.4  |  Innovations in socioeconomic and 
sustainability applications

Socioeconomic assessment and intervention
The core promise that SIF offers is a scalable measure in time and 
space, binded in its functional and quantifiable relationship with 
productivity, unlike VIs. A “scalable” approach is highly desired 
as it would not require much in-situ data for model recalibration, 
which can be cost- or logistically-prohibitive to obtain especially 
in regions with poor communications, low-quality transporta-
tion infrastructure or suffering from active conflicts (Browne 
et al., 2021). The potential “scalability” of the SIF-based approach 
to link between GPP and agricultural production, rangeland health, 
and carbon sequestration (and also carbon accounting/trading) 
make SIF a highly promising Earth Observation (EO) technique to 
aid poverty targeting/intervention, agricultural index insurance 
design, conservation finance metrics, and carbon-neutral goals. 
Advances in these applications also open up important new op-
portunities to extend SIF application to broader policy questions, 
from addressing food insecurity and rural poverty in the Global 
South, to monitoring forest degradation for conservation finance, 
and to identifying infectious disease hotspots based on inferred 
ecosystem structure and function.

Urban sustainability
Maintaining and enhancing urban ecosystem health is a critical 
step towards sustainable urban development under a changing cli-
mate. A degraded urban ecosystem combined with a rapid urban 
expansion can decrease NPP (Liu et al., 2019). The spatial or tem-
poral anomalies of SIF in complex urban landscapes can potentially 
assist understanding the feedbacks between urban vegetation 
and the microclimate under urban environmental stresses (e.g., 
drought and heat extremes). However, depicting such variations 
from much weaker background urban SIF signals (due to relatively 
low coverage of vegetation) requires more precise retrievals from 
satellite platforms. This also requires isolation of the urban vegeta-
tive SIF signals from building interference, which can impact the 
illumination-viewing geometry in tall building districts. An initial at-
tempt (Paschalis et al., 2021) used the simple urban–rural contrasts 
among cities to characterize the spatial variability of evaporative 
cooling using SIF but was limited by its coarse spatial resolution. 
Growing spatial resolutions with improved SIF retrieval algorithms 
over heterogeneous landscapes can offer new research opportu-
nities on intra-urban variability of urban vegetation health and the 
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consequent capability in mitigating heat and air pollution, which is 
vital in human living environments. SIF measurement that can reveal 
biological processes in all forms of urban greenery is much needed 
for effective management and long-term development of sustain-
able community-level urban infrastructures in the context of climate 
change and environmental justice.

5  |  CONCLUSIONS

This review synthesizes progress in SIF observations/instrumen-
tation while highlighting diverse applications of SIF datasets in 
ecology, agriculture, hydrology, climate, and socioeconomics 
research domains. This synthesis identifies inconsistent/contra-
dictory findings in SIF literature, provides clarifications on these 
issues, and offers insights, from the data perspective integrated 
with the theoretical perspective, on innovations needed to fill 
knowledge gaps in utilizing SIF to inform ecosystem structure, 
function, and service under climate change. Key points this re-
view aims to deliver are:

•	 Data uncertainty: Accurate interpretation of the functional rela-
tionships between SIF and other ecological indicators is contin-
gent upon complete understanding of the SIF data quality and 
uncertainty. Biases and uncertainties in SIF observations can 
significantly confound interpretation of their relationships and 
how such relationships respond to environmental variations. 
Controlling data uncertainties requires coordinated efforts of 
SIF-specific instrumentation design, uncertainty quantification, 
tracing, and documentation. For example, despite the many 
merging value-added SIF products, their accuracy and credibility 
require further investigation, given the many yet-to-be-resolved 
uncertainties in native SIF retrievals (against which value-added 
SIF products were trained) and well-documented low transfer-
ability of ML algorithms in time and space.

•	 Data network coordination and synthesis: To promote the mechanis-
tic understanding of SIF and its relationship with other ecological 
indicators across biomes and hydroclimatic regimes, a dedicated 
effort is needed to establish a global network with in-situ and air-
borne SIF instruments, with standardized protocols to minimize 
discrepancies resulting from instrument configuration/setup, re-
trieval methods, atmospheric contamination, sun-canopy-viewing 
geometries, and so forth.

•	 Improving in-situ SIF observing capability in “data desert” regions: 
More in-situ SIF observations are needed in regions with the larg-
est uncertainties in carbon-climate feedbacks or with high socio-
economic vulnerability.

•	 Data fusion and harmonization: There is a need to maximize the 
synergy among different SIF products, and among SIF, ther-
mal, lidar, and hyperspectral, and microwave measurements. 
Standardization is needed to minimize challenges in SIF post-
processing such as cross-instrument calibration, overpass time, 
instrument degradation, footprint mismatch, and so forth.
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