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Abstract

Although our observing capabilities of solar-induced chlorophyll fluorescence (SIF)
have been growing rapidly, the quality and consistency of SIF datasets are still in an
active stage of research and development. As a result, there are considerable incon-
sistencies among diverse SIF datasets at all scales and the widespread applications
of them have led to contradictory findings. The present review is the second of the
two companion reviews, and data oriented. It aims to (1) synthesize the variety, scale,
and uncertainty of existing SIF datasets, (2) synthesize the diverse applications in the
sector of ecology, agriculture, hydrology, climate, and socioeconomics, and (3) clarify
how such data inconsistency superimposed with the theoretical complexities laid out
in (Sun et al., 2023) may impact process interpretation of various applications and
contribute to inconsistent findings. We emphasize that accurate interpretation of the

functional relationships between SIF and other ecological indicators is contingent

This paper aims to (1) synthesize the variety, scale, and uncertainty of existing solar-induced chlorophyll fluorescence datasets, (2) synthesize the diverse applications in the sector of

ecology, agriculture, hydrology, climate, and socioeconomics, and (3) clarify how such data inconsistency superimposed with the theoretical complexities may impact process

interpretation of various applications and contribute to inconsistent findings. We offer our perspectives on innovations needed to help improve informing ecosystem structure,

function, and service under climate change.
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1 | INTRODUCTION

The rapid growth in research of solar-induced chlorophyll fluores-
cence (SIF) remote sensing in the past two decades was primarily ini-
tiated by serendipitous advances in SIF observing capabilities from
spaceborne platforms since the early 2010s (Frankenbergetal., 2011;
Guanter et al., 2007, 2012; Joiner et al., 2011). Spaceborne SIF re-
trievals in turn have also generated momentum to push for techno-
logical advances to observe and even image SIF at much finer spatial
and temporal resolutions with airborne and proximal sensing sys-
tems (Frankenberg et al., 2018; Grossmann et al., 2018; Gu, Wood,
et al.,, 2019; Rascher et al., 2015; Yang et al., 2015; Zarco-Tejada
et al.,, 2012), resulting in rapid expansion in applications of SIF in
diverse research sectors (e.g., ecology, agriculture, hydrology, cli-
mate, and socioeconomics). These developments, while exciting, are
marred by considerable inconsistencies among diverse SIF datasets
and contradictory findings in applying them. These issues, which
represent “growing pains”, are due not only to scale-related chal-
lenges common in Earth system science studies, but also multiple

factors specific to SIF measurements/products summarized below:

1. Lack of specifically designed SIF measurement instrumentation/
mission. So far, all available satellite SIF products are from space
missions that were designed to monitor atmospheric trace gas-
ses. Ground-based SIF systems use generic spectroradiometers;
most charge-coupled devices of these spectroradiometers are
not specifically designed for SIF measurements. This indicates
that current SIF systems, both spaceborne and in-situ, are not
optimized for SIF monitoring.

2. Observable versus unobservable but ecophysiologically relevant SIF.
The at-sensor SIF signal that is directly measured does not equal
to the total ChlaF emission that is directly related to ecophysio-
logical processes. Even when SIF is retrieved accurately at specific
wavelengths, it is not certain whether they are equally informative
as the total ChlaF emission (which is a broadband quantity, that is,
integrated over the full spectra of fluorescence emission) that is

upon complete understanding of SIF data quality and uncertainty. Biases and uncer-
tainties in SIF observations can significantly confound interpretation of their relation-
ships and how such relationships respond to environmental variations. Built upon our
syntheses, we summarize existing gaps and uncertainties in current SIF observations.
Further, we offer our perspectives on innovations needed to help improve informing
ecosystem structure, function, and service under climate change, including enhancing
in-situ SIF observing capability especially in “data desert” regions, improving cross-
instrument data standardization and network coordination, and advancing applica-

tions by fully harnessing theory and data.

carbon cycle, climate change, photosynthesis, precision agriculture, retrievals, SIF, stress
monitoring and early warning, vegetation index

directly related to photosynthetic electron transport and CO, as-
similation (Gu, Wood, et al., 2019; Zhang et al., 2019), equations
6-7 in Sun et al., 2023). Furthermore, a substantial portion of the
total ChlaF emission is reabsorbed/scattered within a canopy and
only a fraction escapes from the canopy to be detected by a sen-
sor (section 3.1 in Sun et al., 2023). Unfortunately, the total ChlaF
emission is currently unobservable.

3. Correlation versus causal inference. SIF data availability and appli-
cations far outpace the growth in mechanistic understanding of
SIF dynamics and their relationships with ecophysiological pro-
cesses of interest to broad scientific communities. Currently, SIF
research activities have been dominated by correlational analy-
ses, while causal effects have been rarely established. This is pri-
marily caused by the unique challenges transferring knowledge
from laboratory experiments to actual field conditions under
natural environment, from molecular to regional/global scales
(Porcar-Castell et al., 2014, 2021), and from the traditional plant
physiology to remote sensing communities.

Sun et al. (2023) attempts to provide theoretical guidance to en-
able mechanistic causal inference in SIF research. It demonstrates,
from theoretical perspectives, that (a) ChlaF emission is interactively
impacted by a myriad of structural and functional processes at the
leaf and canopy levels, and (b) how such impacts, when carefully
quantified and disentangled, can be used to infer terrestrial eco-
system structure, function, and services. However, the theoretical
inferences envisioned in Sun et al. (2023) can only be achieved with
the support of high-quality SIF observations at relevant scales/
resolutions.

The present paper, as a companion review to Sun et al. (2023),
aims to provide clarifications on the “growing pains” in SIF research
related to the three issues identified above. It is not our intention
to offer definitive solutions to these issues in this review. Rather,
our intention is to place the inconsistencies and contradictory find-
ings of past SIF research from the aspect of unique characteristics of
available SIF datasets. Further, we attempt to address the forward,
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inference, and innovation questions laid out in the first companion
review (Sun et al., 2023) from the data perspective.

A few recent synthesis studies have attempted to summarize or
intercompare SIF products/measurements from different spaceborne
platforms (e.g., Doughty et al., 2022; Parazoo et al., 2019) or from
proximal instruments (Aasen et al., 2019; Cendrero-Mateo et al., 2019;
Pacheco-Labrador et al., 2019). For in-depth review and detailed dis-
cussion of instrument configuration and retrieval methods, we refer
readers to these previous reviews. However, it still remains unclear
the extent to which discrepancies and/or uncertainties in SIF prod-
ucts/measurements may confound the inference of ecosystem struc-
ture, function, and service. Compared to previous reviews, the major
contribution of this paper is to provide thorough discussion of (1) how
the variety, scale and uncertainty in SIF datasets may impact process
interpretation for various applications and contribute to inconsistency
across findings, (2) efforts needed to reconcile such inconsistencies
from the data perspective, integrated with the theoretical angle (Sun
et al., 2023), and (3) existing data gaps in SIF observations and re-
quired innovations to advance SIF applications in ecosystem struc-

ture, function, and service under climate change.

2 | DATA: VARIETY, SCALE, AND
UNCERTAINTY IN SIF MEASUREMENTS
2.1 | Spaceborne SIF retrievals

The first retrievals of SIF were at the far-red wavelengths, achieved
regionally with the Medium Resolution Imaging Spectrometer
(MERIS; Guanter et al., 2007) and globally with high spectral reso-
lution spectrometer (i.e., <0.1 nm) from the Greenhouse gasses
Observing SATellite (GOSAT; Frankenberg et al., 2011; Guanter
et al., 2012; Joiner et al., 2011). These retrievals were somewhat
limited in terms of spatial resolution or revisit time. The next ad-
vance demonstrated that SIF could be retrieved with lower spectral
resolution instruments (spectral resolution of ~0.5 nm), such as the

oo, MOEMIE

Global Ozone Monitoring Experiment 2 (GOME-2) and the SCanning
Imaging Absorption SpectroMeter for Atmospheric CHartographY
(SCIAMACHY; Joiner et al., 2013; Khosravi et al., 2015; Koéhler
etal., 2015; Sanders et al., 2016; van Schaik et al., 2020). Since then,
higher spatial resolution SIF retrievals have also been produced
using the Orbiting Carbon Observatory 2 (OCO-2) and the Chinese
Carbon Dioxide Observation Satellite Mission (TanSat) at ~2 km
resolution (Doughty et al., 2022; Du et al., 2018; Sun et al., 2018).
Most recently, moderate spatial resolution (~5 km) with a daily revisit
time was achieved with the TROPOspheric Monitoring Instrument
(TROPOMI) onboard Sentinel 5p (Guanter et al., 2015; Kohler,
Frankenberg, et al., 2018). Retrieval of red SIF has also been ac-
complished with GOME-2 and TROPOMI (Joiner et al., 2016; Kéhler
et al., 2020; Wolanin et al., 2015). For detailed cross-instrument
comparison and discussion of the impact of instrument characteri-
zation on SIF retrievals, we refer readers to Doughty et al. (2022),
Joiner et al. (2020), and Parazoo et al. (2019).

Figure 1 and Table S1a summarize the past, current, and future
missions with SIF capabilities along with their instrument charac-
teristics. All of these instruments/missions, with the exception of
the Fluorescence Explorer (FLEX; expected launch in 2025, Drusch
et al., 2017), were designed for measurements of trace gasses and
greenhouse gasses (GHGs). Instruments designed to measure GHGs
(GOSAT, OCO-2, TanSat) typically only have spectral coverage in
the wavelengths where far-red SIF is emitted. All of the current SIF-
capable instruments are in Low Earth Orbit (LEO). Several of the
planned instruments in Geostationary Earth Orbit (GEO) will be able
to retrieve SIF as well, such as Tropospheric Emissions: Monitoring
of Pollution (TEMPQO) and the Copernicus Sentinel-4.

2.2 | Value-added global SIF products derived from
native spaceborne SIF retrievals

Existing native spaceborne SIF products are restricted to either
low spatial resolution, incomplete global coverage, low temporal
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FIGURE 2 A simplified diagram of system configurations for existing non-imaging in-situ SIF systems. (a) Common components of a bi-
hemispherical system; (b) common components of a hemispherical-conical system; the bi-directional dashed black arrow indicates the 180°
rotation of the fore-optic. Purple components are utilized in both tower and Unmanned Aerial Vehicles (UAV) systems; blue components
are currently used only in tower systems. The orange box highlights the key component that differentiate the two types of configurations,
exemplified with existing systems (italic) that are mounted on tower and/or UAV. Components with dashed lines and lighter colors are
optionally integrated to enhance system applications. The upwelling field of view (FOV) for hemispherical-conical systems varies by system,
and typically ranges from ~1° to ~25°. Yellow arrows indicate incoming solar radiation while green arrows indicate incoming reflected
radiation from the target canopy. SIF, solar-induced chlorophyll fluorescence.

resolution, short temporal coverage, or a combination of these.
For example, Figure 1 reveals a general trade-off between spatial
and temporal resolutions of existing native spaceborne SIF prod-
ucts. These limitations impede operational SIF applications, for
example, real-time monitoring of vegetation growth in individual
farms and forest management, or long-term monitoring of global
ecosystem production and carbon budget. To overcome these
limitations, a number of “value-added” SIF products have been
derived based on native SIF retrievals (summarized in Table S1b).
These products include RSIF (Gentine & Alemohammad, 2018),
SIFg0s (Wen et al., 2020), SIF_, o5 (Yu et al,, 2019), GOSIF (Li &
Xiao, 2019b), CSIF (Zhang, Joiner, Alemohammad, et al., 2018),
LT_SIF_* (Wang, Zhang, et al., 2022), and other fine-resolution SIF
products downscaled from GOME-2 (Duveiller et al., 2020; Duveiller
& Cescatti, 2016) or TROPOMI (Gensheimer et al., 2022; Turner
et al., 2020). These products are derived from different native SIF
products, and have disparate spatial and temporal resolutions as well
as temporal coverage (Figure 1; Table S1b). Nevertheless, their deri-
vations share a similar strategy. This strategy basically (1) establishes
a predictive model with native SIF retrievals (i.e., the model training
step), and (2) estimates SIF at finer spatial/temporal resolutions and
contiguous spatial coverage utilizing this trained predictive model as
well as ancillary datasets available at the same fine spatial/tempo-
ral resolutions and spatial coverage (i.e., the model prediction step).

Here the predictive model can be either (semi-)process-based (e.g.,
the light use efficiency LUE-type equation) or derived from machine-
learning (ML; e.g., neural networks, regression trees). Detailed dis-
cussions on more nuanced differences in technical implementations
among these products can be found in Wen et al. (2020). These
products have demonstrated overall capability in revealing the spa-
tial and seasonal patterns in native SIF retrievals at the global scale,
and have been widely applied to tackle a variety of issues in ecologi-
cal, agricultural, hydrological, and socioeconomic sectors (Section 3),
albeit with varying performance depending on regions or biomes or

application types.

2.3 | In-situ SIF measurements and retrievals

Various in-situ SIF systems have been developed to acquire top-of-
canopy (TOC) SIF. These systems include both stationary ground
tower and mobile airborne systems (e.g., Unmanned Aerial Vehicles,
UAV). The former allows continuous, high temporal resolution acqui-
sition, while the latter adds spatial mapping capability. So far, in-situ
SIF systems are mostly low-cost non-imaging systems, which broadly
fall into two configurations (Figure 2). In the bi-hemispherical con-
figuration, both downwelling and upwelling irradiance are collected
using a cosine-corrected fiber (e.g., FAME, which has developed
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both tower and UAV versions, Chang, Guanter, et al., 2020; Chang,
Zhou, et al., 2020; Gu, Wood, et al., 2019). Recently, a low-cost
bi-hemispherical sensor that captures multiple ultra-narrow wave-
lengths of far-red SIF using photodiodes was developed (4S-SIF,
Kim et al., 2022). In the hemispherical-conical configuration, there
are alternate acquisitions of hemispherical downwelling irradiance
and conical upwelling radiance, either using a switch that alternates
incoming ir/radiance measurements between two fixed fibers (e.g.,
FloX, FluoSpec2, Yang, Shi, et al., 2018) or prisms that rotate acqui-
sition of ir/radiance among different channels to collect dark cur-
rents, downwelling and upwelling measurements (e.g., PhotoSpec:
Grossmann et al., 2018; rotoprism, Berry & Kornfeld, 2019; Kim
et al., 2021). Both configurations now have commercial sources with
the bi-hemispherical FAME under production by Campbell Scientific
and the hemispherical-conical FloX produced by JB-Hyperspectral
GmbH; recently, a multiplexed configuration of the FloX (OctoFlox)
with multiple fibers for multiple target acquisition was developed by
JB-Hyperspectral. UAV systems of both the bi-hemispherical (Chang,
Zhou, et al., 2020) and the hemispherical-conical (switch-based
setup) have also been developed (Bendig et al., 2018; MacArthur
et al., 2014; Wang, Suomalainen, et al., 2021). For in-depth review
of specific instrumentation configurations and sensors, we refer
readers to Pacheco-Labrador et al. (2019). In addition to these non-
imaging (point-based) SIF systems, a hyperspectral imaging SIF sen-
sor is commercially available from Headwall Photonics (Zarco-Tejada
et al., 2013). Selection of an appropriate in-situ SIF system depends
upon specific applications (Section 3), and their required resolutions
(in time and space) and signal-to-noise ratio, since each configura-
tion comes with different strengths and weaknesses (summarized
in Table S2).

Selection of retrieval methods depends upon not only sys-
tem configuration, but also specifications of the SIF spectrometer
utilized and the temporal frequency of acquisition (detailed sum-
mary in Table S3). Common SIF retrieval methods are based upon
Fraunhofer Line Discrimination (FLD; Plascyk & Gabriel, 1975),
Spectral Fitting Method (SFM; Meroni & Colombo, 2006), Singular
Vector Decomposition (SVD equivalent to Principal Component
Analysis PCA; Guanter et al., 2013), and differential optical ab-
sorption spectroscopy (DOAS; Platt & Stutz, 2008). FLD, SFM and
DOAS retrieve SIF using single paired up/downwelling spectra,
while SVD requires a training set of multiple SIF-free (or down-
welling) spectra. The accuracy of SVD improves with higher tempo-
ral frequency of acquisition to obtain multiple downwelling spectra
under similar sunlight conditions as the upwelling measurement
(Chang, Guanter, et al., 2020). FLD, SFM, and SVD can be used
to retrieve SIF from the broader telluric O, absorption features,
while DOAS and SVD can be used to retrieve SIF from narrow solar
Fraunhofer lines. Fraunhofer line-based retrievals using DOAS or
SVD require a high spectral resolution (e.g., <0.3 FWHM) while re-
trieving SIF from O, bands using SFM, FLD or SVD are much less
stringent in terms of spectral resolution. Because FLD and SFM
use paired spectra, these methods are more prone to error under
variable cloudy skies where ambient light conditions can change

ST i v L

between acquisition of downwelling and upwelling spectra, which
greatly influence the telluric O, bands by distorting the edges of
the O, absorption features. Narrowing the retrieval fitting window
can effectively alleviate spectral distortion around the O, bands
for both SFM and SVD (Chang, Guanter, et al., 2020). Recently,
SIF retrievals based on partial least-squares regression (PLS) show
lower sensitivity to spectral distortion resulting from atmospheric
reabsorption (Naethe et al., 2022). Variable sky conditions do not
influence the solar Fraunhofer lines much, but the resulting SIF re-
trievals can be noisier since the narrow spectral window contains
relatively weaker irradiance and thus weaker reflected radiance.
For detailed discussion and intercomparisons of these retrieval
methods, we refer readers to the works of Cendrero-Mateo
et al. (2019) and Chang, Guanter, et al. (2020).

3 | APPLICATIONS

Solar-induced chlorophyll fluorescence research activities in the
past two decades have been primarily focused on investigating
SIF-gross primary production (GPP) relationships across scales and
under different environmental conditions. So far, research findings
have shown both consensuses and discrepancies. In this section, we
first offer our perspectives on factors that led to such consensuses
and discrepancies, from both the theory (Sun et al., 2023) and data
aspects (Section 3.1).

Although understanding and teasing out the biological SIF-
GPP connections from uncertain datasets is a necessary first step
and much work is still needed at this step, broad applications of
SIF have started. By harnessing the theoretical understanding
and data revolution of SIF, a variety of new research opportuni-
ties and possibilities have arisen in ecological, hydrological, agri-
cultural, and socioeconomic applications (a graphical summary in
Figure 3). In Sections 3.2-3.8, we attempt to clarify how SIF data
uncertainty superimposed with the theoretical complexities laid
out in Sun et al. (2023) may impact process interpretation of var-

ious applications.

3.1 | Interpretation of SIF measurements, its
relationship with GPP, and dependence of their
relationships to environmental variations

3.1.1 | The theoretical perspective

Table 1 and Figure 4 summarize consensuses and discrepancies of
research findings regarding the SIF-GPP relationship. Here, we em-
ploy equations derived in Sun et al. (2023) to theoretically interpret
these consensuses and discrepancies. Specifically, equation 10 in
Sun et al. (2023; copied below for convenience) reveals the com-
plexity of the SIF-GPP relationship, which critically depends on CO,
diffusion (controlled by stomatal and mesophyll conductances) and
the redox state of PSIl (and NPQ, Sun et al., 2023),
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At seasonal scales and beyond and/or aggregated spatial scales,
variations in CO, diffusion and the redox state of PSII can be aver-
aged out, and much weaker than variations in the at-sensor SIF, that
is, FT(/IF), resulting in an approximately linear scaling with GPP (de-
noted as GPP, the canopy total GPP). Further, at these scales, varia-
tion in leaf area index (LAI) and photosynthetic pigments (i.e., arising
from phenological changes or different biome characteristics) is the
primary driver of F, (A¢) dynamics, via impact on both light harvest-
ing and canopy structure (equation 8 in Sun et al., 2023); meanwhile,
variation in LAl and photosynthetic pigments also play dominant role
in controlling GPP at these scales, and such information is carried
largely by FT(AF) (although not completely, Sun et al., 2023), result-
ing in coherent SIF and GPP variations. In contrast, at shorter time
scales when LAI and photosynthetic pigments content remain rela-
tively stable, the impact of variations in the redox state (and NPQ)
and C_ (CO, partial pressure at chloroplast) on GPP is largely due to
their instantaneous response to PAR. Moreover, the scattering/re-
absorption of ChlaF emission (e.g., can be represented by klr, the ex-
tinction coefficient of ChlaF emission under Beer's law) can also vary
instantaneously with sun-canopy-sensor geometry, PAR intensity,
and/or other environmental stress. These factors collectively lead to
deviation from a linear scaling between SIF and GPP at shorter time
scales. Stronger linearity in C4 than C3 plants reported from leaf
to global scales is primarily due to the segregation of CO, diffusion
effects from SIF-GPP coupling in C4 plants. Crops and deciduous

Global

forests exhibit stronger SIF-GPP coupling than other biomes (e.g.,
evergreen broadleaf forests), because their distinct seasonality in
LAl drives the co-variation of SIF and GPP, with the impact of CO,
diffusion and the redox state of PSIl being smoothed out (Magney
et al., 2020).

Regarding the debate on the existence of biome-universal SIF-
GPP scaling, equation 10 in Sun et al. (2023) suggests that any
biome-dependent variables (e.g., kAF, the vertical extinction coeffi-
cient of PAR kpag, or the redox state of PSIl) or parameters (e.g., #
and I'*, denoting the canopy-mean relative contribution of pigments
associated with PSIl and the chloroplastic CO, compensation point,
respectively) can prevent a biome-universal scaling. However, these
individual processes may have a compensatory effect, resulting in an
apparent biome-universal scaling. The degree of the compensatory
effect depends on time scale, spatial scale, and stress types/condi-
tions, which currently remains a critical knowledge gap and requires
dedicated future research.

Equation 10 in Sun et al. (2023) also suggests that SIF-GPP cou-
pling (i.e., often characterized by R%) and/or scaling (i.e., often char-
acterized by the linear regression slope) can diverge or converge
between stress and normal conditions, depending on time and
spatial scales under investigation as well as stress intensities and
durations. For example, at aggregated temporal-spatial scales and
during prolonged drought/heatwaves, SIF and GPP decline can co-
occur due toloss of photosynthetic pigments and LAI, and therefore
exhibit positive coupling as under normal conditions; in contrast,
at local or shorter time scales or during brief stress episodes that
are too short to induce any structural changes, SIF and GPP tra-
jectories can decouple due to stomatal/mesophyll regulations
on CO, diffusion and redistribution of energy dissipation among
photochemical quenching (PQ)-NPQ-SIF (Han, Chang, et al., 2022;
Martini et al., 2022). Also, the assumed constant parameters (e. g.,
B, @psim» kpr, the latter two denoting the maximal photochemical
quantum yield of PSII and the ratio of the rate constant for inter-
nal conversion to the rate constant for ChlaF emission, respec-
tively) that represent internal properties of plants can also change
under stress, which can reshape the SIF-GPP relationship from
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TABLE 1 Synthesis of the current consensus and discrepancies among literatures regarding SIF-GPP relationships.

Consensuses

1. SIF-GPP linearity

a. SIF-GPP linearity at seasonal scales and beyond for most biomes and/or

aggregated spatial scale for most biomes

b. Nonlinearity at shorter time scales (e.g., sub-daily) and/or proximal spatial

scale (i.e., leaf or canopy scale)

c. Tighter linearity in C4 than C3 plants (stronger R?)

d. Overall stronger R?in crops and deciduous forests and relatively weaker R? in

evergreen forests

2. Canopy structure versus function

a. For crops and deciduous forests, canopy structure playing a dominant role in

Examples of studies

Li and Xiao (2019a); Magney et al. (2020); Yang et al. (2015)

Damm et al. (2015); Han, Chang, et al. (2022); Kim
et al. (2021); Pierrat et al. (2022); Zhang et al. (2016)

Han, Chang, et al. (2022); Liu, Guan, and Liu (2017); Zhang,
Zhang, et al. (2020)

Dechant et al. (2022); Gentine and Alemohammad (2018);
Zhang, Zhang, et al., 2020

Dechant et al. (2020); Koffi et al. (2015); Yang et al. (2015)

controlling SIF dynamics and SIF-GPP relationship from diurnal to seasonal

b. For evergreen conifers, leaf physiology playing significant role in controlling

SIF dynamics and SIF-GPP relationship at the seasonal scale

Discrepancies Potential causes

1. SIF-GPP scaling: biome-specific
(Damm et al., 2015; Guanter
et al., 2012; Parazoo et al., 2014)
versus biome-universal (Li &
Xiao, 2022; Li, Xiao, He, et al., 2018)

2. Impact of environmental stress on
SIF-GPP relationships: consistent
SIF-GPP scaling with normal
conditions (Song et al., 2021)
versus divergent coupling under
stress (Marrs et al., 2020; Martini
et al., 2022; Wohlfahrt et al., 2018)

3. Relationship of the quantum yields
between SIF and GPP: positive
(Yang et al., 2015), negative (Miao
et al., 2018), insignificant (Goulas
etal., 2017)

angle distribution

(Chang et al., 2021)

uncertainty

E. Spatial and time scales

A. Environmental conditions: temperature,
soil moisture (A. Chen, Mao, Ricciuto, Lu,
et al., 2021; A. Chen, Mao, Ricciuto, Xiao,
etal.,, 2021; Y. Song et al., 2021)

B. Biome characteristics: LAl, &, p, V oy l€af

C. Interactive effects between plant
functional and structural variations

D. SIF and GPP data sources and their

Magney et al. (2019); Migliavacca et al. (2017); Pierrat
et al. (2022)

Solutions

a. Moving from correlational to causal
b. Accounting for observational bias and uncertainty

a. Theoretically rigorous and practically feasible
modeling of individual processes and their
interactions

b. Measurement innovations at leaf and canopy
scales

c. Synergy with other techniques

Data validation, synthesis, standardization,
coordination

Analytical protocol standardization

Note: Cited literatures are only examples of studies that represent each key point here, as including the full list of papers is prohibitive due to space

limit.

Abbreviations: GPP, gross primary production; LA, leaf area index; SIF, solar-induced chlorophyll fluorescence.

normal conditions. For example, ®pg), (the maximal photochemical
quantum yields for PSll) is assumed to be conserved across non-
stressed plants (Bjorkman & Demmig, 1987) but can deviate from
its assumed constant 0.83 under stress. In addition, the redox reac-
tion (represented by q,, the fraction of open PSlI reaction centers
under the lake model) is sensitive to temperature, while equation
10 in Sun et al. (2023) only captured the first-order effect of gy, as
a function of PAR (detailed discussion in Sun et al., 2023). This fac-
tor can further complicate the SIF-GPP relationship beyond what
equation 10 currently suggests.

Further, mixed findings were reported for the relationships of
quantum yields between SIF and GPP. This can be explained by

% = W%mk“) (derived as the ratio of equations 16 and 14 in
F ~ FPSIIm

Gu, Han, et al., 2019), which reveals the impact of redox states g;;, on
the ratio of quantum yields of GPP over SIF. Further complications
include the sensitivity of g, to temperature and water stress (stated

above, and detailed discussion in Sun et al., 2023).

3.1.2 | The data perspective

Superimposed on the mechanistic complexities of light and carbon
reactions of photosynthesis, biases and uncertainties in observa-
tions of SIF and GPP can significantly confound interpretation of
their relationships and how such relationships respond to environ-
mental variations. Figure 4 synthesizes the GPP-SIF (standardized
to 740nm) regression slopes from literature, which reveal a striking
spread across studies employing different SIF and/or GPP products
even for the same biome and spatiotemporal scale. For example, if
in-situ GPP (inferred from net ecosystem exchanges [NEE] at eddy
covariance EC towers) and spaceborne SIF products (Sections 2.1;
Table S1) are utilized for investigation, the GPP-SIF scaling can
vary by a factor of three, that is, ~10 for TanSatSIF to ~30 for CSIF,
when spatiotemporal scales are controlled across different studies
(Figure 4c). Such discrepancies only narrow slightly if SIF products

originating from the same spaceborne mission are used, e.g., OCO-2,
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FIGURE 4 Synthesis of gross primary production-solar-induced chlorophyll fluorescence (GPP-SIF) slopes (derived from linear regression)
from literature, based on the protocol in Supporting Information 1. Findings are grouped into three categories, depending on data sources
of SIF and GPP: right and left quadrants show satellite and in-situ SIF (via proximal sensing), respectively; top and bottom quadrants show
global gridded and in-situ GPP (inferred from the net ecosystem exchange NEE at eddy covariance EC towers), respectively. Specifically, (a)
slopes from in-situ SIF and in-situ GPP; (b) slopes from satellite SIF and global GPP products; (c) slopes from satellite SIF and in-situ GPP.
The units of GPP and SIF are standardized to gCm™ day™* and mWm™ nm™ sr'?, respectively. All SIF values are normalized to 740nm
based on the scaling factors derived from the measured spectra in (Guanter et al., 2013; details in Supporting Information 1). Definition of
biome types can be found in Supporting Information 1. The shape of scatters differentiates scales across studies, that is, temporal (diurnal,
seasonal, interannual), spatial (across sites or biomes), or temporal and spatial combined. Open and filled symbols indicate whether the
intercept is forced to be zero or not, respectively. Colors in (a) differentiate studies with text annotation detailing time scales, crop types or
stress conditions in the same study; colors in (b) separate different combinations of SIF and GPP products; colors in (c) differentiate sources
of satellite SIF products. Supporting Information 2 synthesizes all literatures selected for this figure based on the protocol in Supporting

Information 1.

CSIF, and GOSIF (Figure 4c). Other factors such as the selection of
EC sites and temporal period may induce extra variations in the GPP-
SIF scaling. Note that most existing studies examined the GPP-SIF
slopes utilizing at-sensor SIF; a few recent studies suggested that
the total ChlaF emission of a canopy (i.e., FeT(/lF)), after correcting
the escape probability fSSTC, not only present higher coherence with
GPP (Lu et al., 2020), but also result in more convergence of GPP-SIF
slopes across C3 biomes (Zhang, Zhang, et al., 2020). However, spe-
cific formulation of f;ff may (on top of the choice of SIF data sources)
can also impact the GPP-SIF.

Moreover, the level of biome-specificity in GPP-SIF scaling can
be considerably confounded by the choice of SIF products and/or
versions (Figure 4c; Parazoo et al., 2019; van Schaik et al., 2020).
Further biases/uncertainties in GPP data, for example, global grid-
ded products (e.g., Anav et al., 2015), not only impact the absolute
magnitude of GPP-SIF scaling but also possibly contribute to more
biome-specificity (Figure 4b).

If both SIF and GPP come from in-situ measurements (Figure 4a),
which are usually assumed to be “ground truth”, greater disparity
can emerge even within the same biome. These disparities arise not

only from different time scales and plant species, but also from in-
consistencies in SIF retrieval algorithms, instrument configuration,
footprint sizes, across studies (synthesized in Section 2.3). Often,
users choose system configuration (which largely determines foot-
print sizes) and retrieval methods depending on the trade-offs of
advantages and disadvantages (summarized in Tables S2 and S3)
that can optimize SIF measurement for specific applications. For
example, bi-hemispherical systems can more closely match the foot-
print of a typical EC flux system and suffer less from angular effects
than hemispherical-conical systems. In contrast, the hemispherical-
conical more closely mimics the setup and angular effects of space-
borne SIF instruments. Moreover, certain retrieval methods such
as SVD and PLS (Chang, Guanter, et al., 2020; Naethe et al., 2022)
are relatively more robust to atmospheric conditions and therefore
may be more suitable for in-situ SIF systems across diverse plat-
forms (e.g., at different altitudes) and ecosystems. However, the
concomitant consequences of inconsistencies in SIF retrieval algo-
rithms, instrument configuration, and footprint size can lead to con-
siderable disparities (especially under variable sky conditions) in SIF
magnitude, temporal patterns, and functional relationships among
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variables (e.g., GPP-SIF scaling). Therefore, caution is needed when

interpreting obtained patterns and intercomparing across studies.

3.2 | Constraining, estimating, and
understanding the budgets and variability of the
terrestrial carbon cycle

The global terrestrial carbon sink has increased with rising fossil
fuel CO, emissions since the 1960s (Ballantyne et al., 2012; Ciais
et al.,, 2019), acting as a key negative feedback and mitigating cli-
mate change (Arneth et al., 2010; Arora et al., 2013; Friedlingstein
et al., 2014; Gregory et al., 2009). A general consensus among mul-
tiple independent observations suggests that intensifying terrestrial
biosphere activities was dominated by increased GPP. However,
global estimates of GPP, its interannual variability (IAV), and long-
term trend remain highly uncertain (Ahlstrém et al., 2015; Bastos
et al., 2019; Fernandez-Martinez et al., 2017; Forkel et al., 2016;
Haverd et al., 2020; Keenan & Riley, 2018; Smith et al., 2016). This
represents one of the largest and most uncertain carbon-climate
feedbacks for the Earth System Models (ESMs; Arneth et al., 2010).
SIF carries the hope of curbing such uncertainties if it can accurately
anchor GPP estimates.

3.2.1 | The carbon budgets

The current estimates of global GPP have a remarkable divergence
across literature based on different approaches and/or datasets,
for example, ~100.2-167.0 PgCyear"1 for the contemporary period
(Anav et al., 2015; Jian et al., 2022). Among them, SIF-based GPP
estimates exhibit a narrower but still considerable spread, for ex-
ample, 135.5+8.8 PgCyear’1 (2000-2017, Li & Xiao, 2019a) versus
167.0+5.0 PgCyear™* (for 2015, Norton et al., 2019).

Existing studies employed two broad types of approaches to
compute GPP from SIF. The first type of approach is to apply a linear
scaling factor to transform SIF to GPP, for example, GOSIF-based
GPP products (Li & Xiao, 2019a), and regional GPP in southern
Amazon (Parazoo et al., 2013). Such GPP estimates were further syn-
ergized with net carbon exchange derived from CO, column-average
dry air mole fraction (xCO,), and biomass burning emission derived
from carbon monoxide (CO), to infer other components of carbon
Bowman et al., 2017; Liu,

Bowman, et al., 2017). This linear scaling approach is appealing due

fluxes, such as ecosystem respiration (Reco;
to its simplicity, but the accuracy of derived GPP can be suscepti-
ble to (a) the data quality of SIF products, and (b) the reality of the
employed SIF-GPP scaling factor (Section 3.1). More importantly,
a major shortcoming of this strategy is the “implicit” circularity in-
volved (Han, Chang, et al., 2022). For example, the SIF-GPP scaling
factor is derived from regressing SIF against GPP either from global
gridded products or inferred from in-situ NEE of CO, measured
with EC techniques. Global gridded GPP products are highly uncer-
tain, whereas the latter, commonly treated as the ground “truth”,

ST v

is actually imprecisely partitioned with well documented biases
(Keenan et al., 2019; Kira et al., 2021; Wehr et al., 2016). SIF-GPP
scaling derived from these GPP datasets was then used to back-
calculate GPP, which is essentially circular, and inherits uncertainties
in the original GPP. If in-situ GPP is used for deriving the SIF-GPP
scaling factor which is subsequently multiplied to satellite SIF to de-
rive a global GPP estimate, additional uncertainties can arise from
(1) uneven degree of linearity of SIF related to GPP across biomes
(e.g., weaker correlation in tropical evergreen forests, Gentine &
Alemohammad, 2018), and (2) uneven representativeness of EC
tower distribution across biomes (Schimel et al., 2015). Without
knowing the inherent biological SIF-GPP scaling (from uncertain/
inconsistent SIF and GPP products), it still remains challenging to de-
rive accurate global GPP estimates via simple linear scaling.

The second type of approach is to assimilate satellite SIF to land
surface models (LSMs) or terrestrial biosphere models (TBMs) to con-
strain simulations of GPP (based on the Farquhar-von Caemmerer-
Berry model—FvCB; Farquhar et al., 1980) and net carbon fluxes
(Bloom et al., 2020; MacBean et al.,, 2018; Norton et al., 2019;
Parazoo et al., 2014). The accuracy of these estimates depend on
(a) the realism of model representations of SIF-q;,"NPQ-GPP and as-
sociated parameters (Parazoo et al., 2020; Yang et al., 2021), and (b)
SIF data quality (Section 3.1). LSMs/TBMs that include SIF parame-
terization are generally adopted from Soil-Canopy Observation of
Photochemistry and Energy (SCOPE; van der Tol et al., 2014), which
has yet to be tested for a broad range of species or dynamic environ-
mental conditions (Martini et al., 2022; Parazoo et al., 2020; Yang
etal., 2021). At its core, SCOPE utilized the FvCB biochemical model
to compute photosynthesis, which subsequently is used to calcu-
late SIF. The accuracy of the simulated SIF and GPP are contingent
upon the realism of NPQ model parameterization (or g, discussed
above), which is challenging to model due to its complex dynamics
(Sun et al., 2023). It also depends on the assumption that alternative
electron sinks are non-existent, which is known to be incorrect as
plants have a variety of alternative electron sinks (e.g., nitrate re-
duction, Mehler reactions, von Caemmerer, 2000). Furthermore, the
quality of SIF products (Section 3.1) and the realism of fgSTC proxy or
leaf/canopy radiative transfer (Sun et al., 2023) modeling determines
the accuracy of the true ChlaF emission utilized to constrain LSMs/
TBMs.

3.2.2 | Seasonality and phenology

SIF has been applied to study seasonal patterns of GPP, to charac-
terize phenology dynamics, and to reveal the environmental drivers
of such dynamics across biomes. Mixed findings were reported for
pan-tropical rainforests in the response to seasonal water stress. For
example, in the Amazon basin, SIF tends to increase from the early to
late dry season (JJA-SON) and peaks in the early wet season (DJF),
a pattern generally consistent across different spaceborne SIF prod-
ucts and also MODIS EVI (Doughty et al., 2019; Kohler, Guanter,
et al., 2018; Lee et al., 2013; Parazoo et al., 2013). Such patterns
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correspond to a greater atmospheric xCO, in the dry than the
wet season in the seasonally dry forests over the central-to-south
Amazon (Parazoo et al., 2013). In tropical Africa, peak SIF appears in
the wet season, consistent across spaceborne SIF products; vegeta-
tion indices (VIs) may exhibit similar or different seasonal peaks from
SIF (Guan et al., 2015; Mengistu et al., 2020).

However, Guan et al. (2015) argued that spatial disparity (i.e.,
contrast between the Amazon and Congo basins) exists in sea-
sonal SIF (and EVI) dynamics in response to water stress in the
pan-tropics, depending on the precipitation regime. Furthermore,
Wu et al. (2021) suggested that the degree of synchrony between
precipitation and solar radiation determines whether the wet or dry
season exhibits higher SIF in tropical Asia. These patterns and in-
terpretation can be future confounded by strong BRDF effect on
spaceborne SIF (Kéhler, Guanter, et al., 2018), the degree of which
also varies across different platforms (Doughty et al., 2019).

Consensus is achieved in characterizing phenological metrics,
for example, the start, end, and length of growing season (denoted
as SOS, EOS, and GSL respectively) with different SIF products
for extra-tropical biomes among literature (e.g., Jeong et al., 2017;
Joiner et al., 2014; Magney et al., 2019; Smith et al., 2018; Turner
et al., 2020; Walther et al., 2016; Wang, Beringer, et al., 2019).
Specifically, both SOS and EOS in SIF closely resembled that of EC
GPP, outperforming reflectance-based VIs consistently across a di-
verse range of biomes, that is, deciduous broadleaf forests (DBF),
crops, drylands, and evergreen neefleleaf forests (ENF). Recently,
NIRv has been demonstrated to have equivalent or superior capabil-
ity to SIF in depicting seasonal variations in GPP, primarily for tem-
perate DBF and crops that have distinct seasonal cycles (Dechant
et al., 2022). Such capability does not necessarily hold for ENF
(Magney et al., 2019; Pierrat et al., 2021, 2022) or dryland ecosys-
tems (Wang, Beringer, et al., 2019; Wang, Biederman, et al., 2022).
ENF has relatively muted seasonal variations in VIs due to the pres-
ence of chlorophyll content even during the dormant season, but
exhibits distinct seasonal changes in GPP and SIF in parallel (Kim
et al., 2021; Magney et al., 2019; Pierrat et al., 2022). Phenology of
dryland ecosystems (e.g., grassland, savannas, shrublands) is chal-
lenging to characterize with Vls, due to their complex composition/
shifts of diverse species and rapid environmental fluctuations. For
these systems, Wang, Beringer, et al. (2019) found that SIF outper-
forms NIRv (and other VIs) in depicting the seasonal GPP dynamics,
thanks to its muted sensitivity to the background soil, which does
not emit SIF but can contaminate Vls.

Attempts have also been made to understand how environ-
mental variations control the variations in GPP phenology metrics
utilizing various SIF products (Jeong et al., 2017; Zhang, Commane,
et al., 2020; Zhang, Parazoo, et al., 2020). Jeong et al. (2017) found
that variations in SOS and EOS of ENF in northern hemisphere mid-
latitude are constrained by temperature and PAR, respectively,
based on GOSAT and GOME-2 SIF products; while Zhang, Parazoo,
et al. (2020) argued for the joint constraints of temperature and pre-
cipitation on IAV of EOS for biomes across the globe, depending on
which factor is more limiting, based on CSIF. In terms of phenology

trend, Wang, Ju, et al. (2019) reported that higher daytime LST and
atmospheric CO, can jointly lead to earlier onset (i.e., SOS) and
delayed senescence (i.e., EOS), using the urban-rural gradient (of
OCO-2 SIF) as a natural laboratory to mimic future warming scenar-
ios. Zhang, Commane, et al. (2020) found a weaker EOS trend in SIF
than in Vls in northern hemisphere natural biomes, and attributed it
to PAR limitations. However, all these efforts implicitly assume that
SIF is an accurate proxy of GPP, which can be invalid, as demon-
strated by the analytical equations in Sun et al. (2023). Detailed dis-
cussion of this issue is provided in section 3.3 of Sun et al. (2023) and
Section 3.1 above.

3.2.3 | AV of terrestrial carbon cycle and its
climate feedbacks

The net carbon fluxes between terrestrial ecosystems and atmos-
phere (and therefore the atmospheric CO, growth rate, CGR) ex-
hibit large 1AV (Ahlstrém et al., 2015; Bacastow, 1976; Bousquet
et al., 2000), and are strongly regulated by climate variability, for ex-
ample, El Nino-Southern Oscillation (ENSO; Humphrey et al., 2018;
Wang et al., 2016). However, how individual components (e.g., GPP,

ecosystem respiration R__ ) contribute to the net fluxes and how they

€eco
distinctively respond to and feedback to climate still remain elusive,
despite numerous studies in the past decades (Piao et al., 2020).

SIF has been employed to anchor IAV of GPP. It is promising that
SIF outperforms VIs in capturing the 1AV of EC GPP in both dry-
lands and ENF ecosystems in the US (Smith et al., 2018; Zuromski
et al., 2018). Furthermore, by implicitly assuming SIF is an accurate
proxy of GPP, Butterfield et al. (2020) identified two modes of IAV:
seasonal compensation (i.e., opposite sign of GPP anomalies be-
tween spring and summer, associated with warmer/colder spring and
drier/wetter summer) and seasonal amplification (i.e., the same sign
of GPP anomalies from spring to summer, associated with persistent
soil moisture anomaly). These studies explained a larger IAV of GPP
and NEE in the arid western US (dominated by seasonal amplifica-
tion) than the humid eastern US (typical of seasonal compensation;
Byrne et al., 2020). In contrast, Liu et al. (2018) reported that while
IAV of NEE is dominated by that of GPP in the western CONUS, R,
plays the dominant role in the humid east.

Recently, SIF has been utilized (with the hope) to elucidate the
relative role of soil moisture versus vapor pressure deficit (VPD)
in controlling 1AV of GPP (Liu et al., 2020; Lu et al., 2022), a long
debate in the past decade (Fu et al., 2022; Novick et al., 2016). Li
and Xiao (2020) and Liu et al. (2020) reported a dominant role of
soil moisture in controlling 1AV of SIF over >70% of global vege-
tated regions, especially in arid and semi-arid regions. In contrast,
Lu et al. (2022) showed that the dominant role of soil moisture can
greatly attenuate if the influence of PAR and fPAR were accounted
for. They obtained an overall equal or even more important role of
VPD in controlling IAV of SIF over nearly 60% of global vegetated
regions, a pattern also supported by EC GPP across the globe (Fu
et al., 2022). Disparate patterns also exist within the Amazon basin
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(Green et al., 2020), with the wettest region (light-limited) showing
positive SIF-VPD response while the tropical savannas and season-
ally dry forests (water-limited) exhibiting a negative relationship.
Regarding climate-carbon cycle feedbacks, Green et al. (2017) re-
ported strong positive feedbacks to precipitation in semi-arid and mon-
soon regions (i.e., greater SIF or GPP leading to higher precipitation),
while positive feedbacks to PAR occurred in some moderately wet
regions (e.g., eastern US, central Eurasia) and the Mediterranean (i.e.,
greater SIF or GPP leading to reduced cloud cover and increased PAR).
Similar to the seasonality and phenology characterization with SIF,
the major caveats of these efforts are the implicit assumption of the
equivalence of SIF and GPP (which is invalid, Sun et al., 2023) and the
uncertain and disparate SIF products (Section 3.1). Such caveats can
confound the interpretation of the obtained patterns; moving forward,
theoretical (Sun et al., 2023) and observing advances (Section 4.2) are

needed to refine the research findings synthesized here.

3.2.4 | The long-term trend of GPP

SIF has also been employed to infer the long-term trend of GPP. Both
CSIF and GOSIF show a growth in the global mean SIF at a rate of
~0.4% year ! since the start of the 21st century, stronger than other
GPP products (i.e., FLUXCOM, BESS, MODIS Cé6, and WECANN; Li &
Xiao, 2019b; Zhang, Joiner, Alemohammad, et al., 2018). Moreover,
spatial distribution of such SIF trends and regional hotspots (i.e.,
growth in southwest China and India, decline in eastern Brazil) are
highly consistent with MODIS (Cé) EVI (Zhang et al., 2017). Recently,
Wang, Zhang, et al. (2020) reported a weakened CO, fertilization ef-
fect on GPP across the globe, utilizing NIRv (from AVHRR, comple-
mented with CSIF), and attributed it to nitrogen and water limitation.
Robustness of such findings can be confounded by the implicit as-
sumption that NIRv and SIF accurately represent GPP dynamics, along
with uncertainties in SIF and NIRv datasets and specific analytical ap-
proaches (Frankenberg et al., 2021; Sang et al., 2021; Zhu et al., 2021).

3.3 | Advancing precision agriculture

The mechanistic linkage among SIF, electron transport rate (ETR), and
GPP has also generated momentum for employing SIF remote sensing
as a non-invasive and cost-effective tool to advance precision agri-
culture towards improving food security. Research efforts range from
informing GXExM (Genetic variation by Environmental variation by
agronomic Management) at the field scale (Belwalkar et al., 2022;
Chang, Zhou, et al., 2020; Fu, Meacham-Hensold, et al., 2021; Jia
et al., 2021; Zarco-Tejada et al., 2012) to advancing crop monitoring
and vyield estimation at the regional/global scales (Cai et al., 2018;
Guan et al., 2016; Peng et al., 2020; Sloat et al., 2021).

At the field scale, high-throughput phenotyping and agronomic
management have been increasingly exploited with remote sens-
ing techniques, primarily focusing on RGB or multi-spectral images
(Araus et al., 2018), but recently extending to SIF acquired from
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ground and UAV platforms as well as piloted aircraft. Promising re-
sults have been obtained in utilizing SIF to guide agronomic manage-
ment. For example, SIF (itself or a SIF-based indicator) outperforms
reflectance-based VIs in inferring leaf nitrogen content (LNC) of
wheat (Jia et al., 2021; Wang, Suarez, et al., 2021), indicating its po-
tential in improving nitrogen fertilizer management. Moreover, SIF
(and/or its quantum yield) has been employed to infer V,,,, (and/or
Jmax) @cross cultivars, indicating the potential of SIF in rapidly screen-
ing cultivars with different traits (Camino et al., 2019; Fu, Meacham-
Hensold, et al., 2021). In the future, such efforts can be guided by
the toy model developed in Sun et al. (2023). For example, any trait
variations among cultivars (related to genetic variations) may drive
differences in variables (e.g., LAl leaf angle, pigment content) and pa-
rameters (e.g., le, Kpars E and that affecting the redox state) in equa-
tions 8-9 of Sun et al. (2023), assuming other conditions are equal.
At regional/global scales, numerous efforts have been made
to estimate crop yields utilizing spaceborne SIF products. Earlier
studies demonstrated that SIF, once translated to GPP, can be
more precisely correlated with yield-based Net Primary Production
(NPP) than Vls for corn and soybean (Guan et al., 2016; Guanter
et al., 2014). Recent efforts, however, argued that the native coarse-
resolution SIF retrievals superimposed with comparatively higher
noise may not necessarily lead to superior performance than Vls
(which are usually available at finer resolution and lower noise; Cai
et al., 2018). Finer resolution SIF may lead to greater yield predict-
ability than Vls, though other factors such as crop types and ana-
lytical approach can influence such predictability (He et al., 2020;
Peng et al., 2020). However, Sloat et al. (2021) reported an opposite
finding, that is, coarse-resolution SIF and NDVI exhibiting similar ca-
pability for in-season forecasting (of corn and soybean yield in the
US Midwest). Such apparent discrepancies may be a consequence of
disparate SIF retrieval approaches (Section 3.1) with varying quali-
ties and different statistical yield estimation methods, and therefore
caution is needed to interpret or compare these findings (detailed
discussions in Section 3.8). Moreover, crop yield estimation utilizing
SIF has almost been exclusively based on statistical approaches. Our
developed toy model (Sun et al., 2023) has the potential to serve as a
mechanistic model and a scalable approach to transform SIF to GPP

and ultimately to crop yield.

3.4 | Enhancing stress monitoring capacity towards
informing mitigation and adaptation practices

Both leaf-level ChlaF emission and canopy-level SIF observations
(red, far-red, or their ratio) are sensitive to diverse abiotic stresses
such as water, temperature, and nitrogen content (Ac et al., 2015),
even when VlIs are asymptomatic to these stresses (Daumard
et al., 2010; Martini et al., 2022). Such sensitivity generated excite-
ment for utilizing SIF as a cost-effective tool for monitoring climate
stresses (i.e., temperature and droughts are projected to increase
in frequency and intensity under climate warming, Seneviratne
et al., 2021) and evaluating its agricultural, ecological, and
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socioeconomic applications to inform decision-making for climate
impact mitigation and/or adaptation (e.g., Jiao et al., 2019; Mishra
et al., 2010).

At the regional to global scale, spaceborne SIF has been utilized
to explore its capability in revealing the spatiotemporal patterns of
drought/heatwave impacts and the underlying mechanisms. The
general consensus is that, under severe and/or persistent stress,
SIF exhibits a significant drop relative to its climatological mean, a
pattern consistent across a number of record-breaking drought and
heatwave events over the globe (Qiu et al., 2020; Song et al., 2018;
Sun et al., 2015; Wen et al., 2020; Yoshida et al., 2015). The stress
sensitivity of SIF (e.g., under drought) could vary spatially, de-
pending on biome-characteristics and hydro-climatic regimes (Jiao
et al., 2019). In particular, the tropical Amazon, due to its global sig-
nificance in regulating the terrestrial carbon and water cycles, and in
turn its climate feedbacks (both local and teleconnection), as well as
sensitivity to the periodical El Nifio-Southern Oscillation (ENSO), has
been extensively studied in terms of drought impact. Anomalously
lower SIF occurred from the late dry to wet season (Doughty
et al., 2021; Koren et al., 2018; Li, Xiao, & He, 2018; Yang, Tian,
et al., 2018) during the 2015-2016 El Nino events, but the severity
of SIF anomaly had strong spatial heterogeneity and was susceptible
to data uncertainties in SIF retrievals (Koren et al., 2018; van Schaik
et al.,, 2020; Zhang, Joiner, Gentine, et al., 2018). The large reduction
in SIF suggested a significant drop in GPP during the wet season,
which may have contributed to the anomalously higher carbon re-
lease during this event (Gloor et al., 2018; Liu, Bowman, et al., 2017).

As SIF has the potential to identify physiological responses to
stress that may be muted in VIs, SIF has been utilized in conjunc-
tion with reflectance-based fPAR to parse the relative contribution
of structural versus physiological variations to the overall drought
response. So far, the consensus is that, under severe and/or per-
sistent stress, concurrent decline of fPAR and the apparent quantum
yield of SIF (without correction of fgSTC) are likely to happen, but their
relative contribution can be biome-dependent and stress-severity
dependent (Sun et al., 2015; Yoshida et al., 2015). Mechanistic ex-
planation of such patterns and causal inference can be guided by
equation 8 in Sun et al. (2023) in the future. For example, the contri-
bution of fPAR (previously based on the LUE model) can be broken
into light harvesting and canopy vertical extinction of PAR and SIF
driven by the 3D leaf/canopy structure; the contribution of quantum
yield of SIF can be studied separately from the contribution of PSII/
PSI stoichiometry and state transition (if such ancillary information
is available).

SIF may offer early warning of stress onset. An earlier study
observed evidence of a steady decrease in canopy-level SIF under
progressive water stress and a rapid rebound following rainfall re-
covery at a sorghum field, whereas NDVI and chlorophyll content
remained unchanged during the same month-long period (Daumard
et al., 2010). Other promising findings were reported at the re-
gional scale with spaceborne SIF, which exhibited an earlier drop
than Vls during the 2010 heatwave in India's Gangetic plain (L. Song
et al.,, 2018) and identified flash drought in the US with a lead time of

2 weeks to 2months (Mohammadi et al., 2022). However, other stud-
ies allude to limited capacity of SIF in early warning of stress onset
resulting from rapid-changing physiological response, prior to any
detectable changes in leaf/canopy structure (that can be detected
by Vls; Wohlfahrt et al., 2018). For example, Sloat et al. (2021) re-
ported a significantly better yield prediction with NDVI than with
spaceborne SIF during droughts in the US Midwest. Further, dis-
parate SIF-GPP responses under water/heat stress were reported
(Section 3.1). Wohlfahrt et al. (2018) found a steady decline of GPP
in a Mediterranean pine forest during the 2017 heatwave in Israel
while a drop in canopy SIF did not emerge until the peak of stress, in-
dicating a decoupling of light reactions and stomatal response under
stress, a pattern that coincides with response of leaf-level (Helm
et al., 2020; Marrs et al., 2020) and canopy-level SIF measurements
(Chen, Liu, Du, Ma, & Liu, 2021) under water stress. In contrast,
Martini et al. (2022) revealed an inverse SIF-GPP relationship at the
sub-daily scale from both leaf and canopy measurements during the
2019 heatwave in a Mediterranean forest in Europe; such inverse
relationship was attributed to NPQ saturation, which caused the ex-
cess APAR to be emitted as SIF. Such inverse patterns disappeared
when daily mean values were examined, that is, concomitant de-
cline in daily mean SIF and GPP, while NDVI and NIRv stayed stable.
Such time scale-dependent SIF response to stress was also evident
in Damm et al. (2022), which identified a nonlinear response of far-
red SIF (from the airborne HyPlant measurements) to soil moisture
deficit in a controlled water experiment for corn, that is, an initial
brief increase followed by a subsequent decrease. Unfortunately,
such complex SIF-NPQ-GPP dynamics under water/heat stress has
not been adequately incorporated by the state-of-the-art mecha-
nistic models, for example, SCOPE (Martini et al., 2022; Wohlfahrt
et al., 2018), although De Canniére et al. (2021) reported improved
water and carbon fluxes simulations during water stress if SIF was
utilized to constrain the water stress functions in these models.
Resolving these discrepancies requires improved theoretical under-
standings of underlying mechanisms (e.g., stress- avoiding or adap-
tation strategies, Flexas & Medrano, 2002; Rascher et al., 2004) and
modeling of such understanding across stress types, severity, and
duration (discussion in Sun et al., 2023; Section 3.1.1 above), as well

as improved SIF data quality and consistency (Section 4.2).

3.5 | Inferring plant traits

Figure 1 and equation 10 of Sun et al. (2023) depict the theoretical,
although convoluted, linkage between SIF and inherent plant traits.
The capability of SIF for inferring plant traits has been explored, with
target traits so far focusing on: LNC, chlorophyll content, and car-
boxylation parameters (e.g., V... For example, far-red SIF (and/or
its ratio with the red SIF) is able to differentiate nitrogen treatments
for both crop and natural species (Migliavacca et al., 2017; Schachtl!
et al., 2005), primarily driven by the strong sensitivity of far-red SIF
to LNC (Ac et al., 2015). Moreover, the ratio of far-red to red SIF (or
their normalized indices) is capable of inferring LNC (and in turn the
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nitrogen use efficiency NUE) of wheat for both irrigated and rainfed
fields (Camino et al., 2018; Jia et al., 2021).

As plant nutrients, especially LNC, are key compounds for chlo-
roplast, photosynthetic pigments, and Rubisco, SIF has also been em-
ployed to infer chlorophyll content and V_,,. Promising correlations
of chlorophyll content with @ (red) / @, (fr) (negative) or with far-
red SIF (positive) have been consistently found from observations
(Tubuxin et al., 2015) and modeling-based analyses (with SCOPE;
Koffi et al., 2015; Verrelst et al., 2015). Regarding inferring V., (or
Jnax)
sensitivity (Koffi et al., 2015; Verrelst et al., 2015) to strong positive

with SIF, conflicting results were reported, ranging from weak

correlation (Y. Zhang et al., 2014; all based on ensemble SCOPE sim-
ulations), to negative correlation between SIF and V., (or Jias P. Fu,
Meacham-Hensold, et al., 2021) based on field measurements. Han,
Gu, et al. (2022) attempted to elucidate such discrepancies from the-
oretical perspectives, and revealed that SIF itself is insufficient to re-
liably infer V., (or Ji,54), as their relationship is strongly regulated by
the redox state of PSlI (i.e., q,;). Consequently, the sign and strength
of SIF-V,

max depends on actual environmental conditions that regu-

late g,;, and the actual carboxylation limitation stages (supporting in-
formation 5 in Sun et al., 2023). Despite such complex relationships,

attempts of retrieving V..., via inverting process-based models with

cmax
SIF as one major input have been made at both the field (Camino
et al., 2019) and global scales (He et al., 2019). The fidelity of these
inferred traits should be carefully evaluated, as SIF dynamics is im-
pacted by a myriad of interacting canopy and functional processes
(Sun et al., 2023), and teasing out a single trait requires information
of all other processes being adequately anchored (e.g., equation 8 in
Sun et al., 2023). In this regard, the analytical framework developed
in Sun et al. (2023) can facilitate the trait inference, if harnessing
the synergy of SIF with other sensing technology, for example, hy-
perspectral imaging, Lidar, and thermal, and microwave (Section 4.1).

Recently, SIF at high spatial resolution has been demonstrated as
a powerful measure of ecosystem functional diversity, outperform-
ing reflectances (and the derived Vls) and thus foreshadowing its
potential for quantifying biodiversity (Tagliabue et al., 2020). This
can also be explained by the analytical framework developed in Sun
et al. (2023), that is, any structural and/or functional diversity can
impact variables and parameters in figure 2 of Sun et al. (2023), and

propagate to the observed F, (4).

3.6 | Constraining the dynamics of the
hydrological cycle

Motivated by the joint control of stomatal conductance (g on pho-
tosynthesis and transpiration, SIF was employed to infer g, transpi-
ration, and evapotranspiration (ET; Jonard et al., 2020). For example,
X. Lu et al. (2018) found that the canopy-level SIF (especially far-red
or a combination of far-red and red) was capable of estimating tran-
spiration via parsimonious statistical scaling at the Harvard Forest,
outperforming the classical Penman-Monteith (PM) model, which is
more input/parameter-demanding. Expanding to global scales, Maes
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et al. (2020) showed promising correlation between GOME-2 SIF and
transpiration (partitioned from ET measured at EC towers) across
diverse biomes, which can be even stronger than the SIF-GPP cor-
relation. Shan et al. (2021) and Zhou et al. (2022) further attempted
to estimate transpiration with far-red SIF in a more mechanistic
manner, by integrating Fick's law of water diffusion, optimal water
use efficiency (WUE) theory, and empirical SIF-GPP scaling, from
in-situ and satellite-based measurements, respectively. However,
Damm et al. (2021) argued that the apparent promising empirical
SIF-transpiration relationship is a consequence of their shared driv-
ers, that is, PAR and LAI, while a robust estimation of transpiration
requires not only SIF but also more nuanced considerations of envi-
ronmental and physiological dynamics. Indeed, the apparent promis-
ing correlation between SIF and transpiration is sensitive to multiple
assumptions that may break depending on biomes, time scale, stress
conditions (Stoy et al., 2019). In particular, a linear SIF-GPP scaling
assumption may result in bias in SIF-based estimation of g, and tran-
spiration. This issue should be resolved in the future by coupling
equation 10 in Sun et al. (2023) and a stomatal conductance model.

3.7 | Contribution to socioeconomic impact and
sustainability assessment

Beyond conventional applications in the domain of “natural science”,
satellite SIF has been recently employed as a real-time cost-effective
tool for regional-scale socioeconomic evaluation, such as interna-
tional development, sustainability, and food security. For example,
high-resolution SIF products (e.g., SIF,,;, Wen et al., 2020) were
used as a major input for targeting, mapping and monitoring poverty/
malnutrition in developing countries (Browne et al., 2021; McBride
et al., 2022). These attempts were motivated by SIF's capability in
monitoring (and potentially providing early warning, Section 3.4)
of climate risks/shocks, which can induce crop and forage failure in
rural areas of the developing world where poor households' liveli-
hoods depend disproportionately, directly or indirectly, on crop and
livestock productivity.

Another such example is evaluating the impact of the Sustainable
Land Management Project (SLMP) in Ethiopia, to date one of the
world's most ambitious national-scale land restoration programs,
on ecosystem productivity (Constenla-Villoslada et al., 2022). SIF 5
and GOSIF paired with intensive in-situ surveys revealed the sub-
stantial benefits of SLMP, that is, improved drought resilience of
GPP in Ethiopia's degraded watersheds. Such national-scale socio-
economic evaluation was previously challenging with conventional
survey-based approaches, which are costly and labor-intensive.

One emerging line of SIF application is to evaluate urban sustain-
ability and human health. Cities support more than half of the global
population. Urban vegetation supports urban sustainability and is
critical for mitigating climate extremes via carbon sequestration and
evaporative cooling. For example, Sun et al. (2017) demonstrated the
remarkable urban-rural SIF gradients from OCO-2; further, SIF com-
bined with LAI were used to quantify the role of evaporative cooling
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in regulating urban heat islands (Paschalis et al., 2021). From a flipped
perspective, the urban-rural climate gradient was taken as a natural
experiment to study how future climate change/extremes impact on
ecosystem health (P. Fu, Hu, et al., 2021; Wang, Ju, et al., 2019).

3.8 | Practical benefits and barriers of
remotely sensed SIF over conventional surface
reflectance and the derived Vs

One may wonder: Does the mechanistic advantage of SIF (i.e., carry-
ing structural and functional information of plants, Sun et al., 2023),
combined with its lower sensitivity to atmospheric contamination (such
as thin clouds and thus alleviating potential data loss, Frankenberg
et al., 2012), reduced susceptibility to background soil (i.e., non-
fluorescing, Wang, Beringer, et al., 2019) and to saturation under
high LAl relative to the conventional surface reflectance and/or
derived VIs, outweigh SIF's practical barriers (e.g., coarser spatial/
temporal resolutions and comparatively stronger retrieval noise/
bias), and thus lead to practical benefits in real-world applications
(e.g., crop yield estimation, socioeconomic impact evaluation, stress
early-warning)?

The general consensus so far is a stronger sensitivity of SIF than
NDVI to seasonal and IAV across all major biomes, but SIF does not
appear to possess substantial comparative advantage over EVI or
NIRv, especially for crops and temperate DBF (Badgley et al., 2019;
Baldocchi et al., 2020; Dechant et al., 2022). Note that a comparison
between SIF and surface reflectance (or Vls) as a proxy of GPP is not
valid unless the latter is converted to a flux quantity with an energy
unit (e.g., multiplied with irradiance/radiance; G. Wu et al., 2020).
Moreover, intensive efforts utilizing hyperspectral imaging spec-
troscopy to infer plant traits have obtained promising outcomes
(Serbin et al., 2016; Wang, Chlus, et al., 2020; Wang, Townsend, &
Kruger, 2022; Zarco-Tejada et al., 2021). The practical benefits of
SIF relative to hyperspectral reflectance remain to be explored, es-
pecially considering that SIF, as a flux variable, is not only affected
by plant structural and functional traits (state variables) but also
rapid environmental fluctuations, which need to be teased out. On
the other hand, SIF may still carry greater scalability in inferring
GPP (and other associated functions and traits) across biomes than
NIRv, given its mechanistic linkage with ETR and GPP (equations 9
and 10 in Sun et al., 2023), despite the biome-specific or universal
debate on the SIF-GPP scaling. Moreover, the practical advantage
of SIF over NIRv may be more apparent under stress conditions
(Damm et al., 2022; Martini et al., 2022), and when the growing sea-
son progresses towards senescence especially for conifers (Raczka
et al., 2019). We should acknowledge that NIRv is still sensitive to
the reflectance of soil, snow, wood and cirrus clouds, which is un-
related to SIF. This may make the relationship between NIRv and
SIF biome-specific. In order to answer the above question, future
research is critically needed to investigate more biomes (especially
in tropical rainforests and boreal ecosystems in the northern high-
latitudes where the largest uncertainties in carbon sink/source

changes are located) and more dynamic environments (e.g., climate

extremes and natural/anthropogenic disturbance).

4 | INNOVATIONS

Given the numerous discrepancies among current litera-
ture across the spectrum of applications (Section 3), does
SIF help resolve existing knowledge gaps or add extra

complexities and uncertainty?

To answer this question, innovations are needed to fill existing theo-
retical and data gaps that currently challenge real-world applications
(Figure 5). Sun et al. (2023) offers perspectives on research priorities
and potential solutions to theoretical knowledge gaps. This paper
focuses on discussing data gaps (Section 4.1), research innovations
needed in observations (Section 4.2) and applications (Section 4.3).

4.1 | Datagaps
41.1 | Biasin “ground-truth” GPP and transpiration

Present studies all consider GPP fluxes partitioned from NEE of CO,
(measured at EC towers) with the standard night- or day-time (NT or
DT) based approaches (Lasslop et al., 2010; Reichstein et al., 2005) as
the ground-truth, and use it to establish the empirical SIF-GPP scaling,
or evaluate SIF product quality using the degree of their linearity as
metrics. However, NT and DT are known to contain biases, the extent
of which also change across the seasonal course and environmental
variations (Keenan et al., 2019; Kira et al., 2021; Wehr et al., 2016).
Similarly, transpiration fluxes at EC towers, usually taken as the in-situ
gold standard for validation, are not directly measured but partitioned
from the total ET, which involve common assumptions of transpira-
tion/ET ratio approaching to unity and the optimal theory of WUE
(Stoy et al., 2019). Under circumstances when these assumptions are
violated (which can be common, Stoy et al., 2019), transpiration esti-
mated from SIF can suffer from bias. Data uncertainties in GPP and

transpiration fluxes are under-appreciated at present.

4.1.2 | SIF retrieval bias and noise

The SIF-GPP relationships (Figure 4) and all other applications ob-
tained so far can be greatly confounded by bias and noise in SIF
measurements/retrievals, for both spaceborne (Parazoo et al., 2019)
and in-situ (Aasen et al., 2019; Cendrero-Mateo et al., 2019;
Chang, Guanter, et al., 2020; Marrs et al., 2021; Pacheco-Labrador
et al., 2019) platforms. Discrepancies among studies across ap-
plications identified in Section 3 may arise partly from these data
artifacts.

Spaceborne SIF products can differ significantly across SIF re-
trieval algorithms, fitting spectral window, footprint size, overpass
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time, BRDF (Bidirectional Reflectance Distribution Function) ef-
fect, which can be further confounded by instrumental degradation
and other calibration issues (Joiner et al., 2013; Oshio et al., 2019;
Parazoo et al., 2019; Zhang, Joiner, Gentine, et al., 2018). For ex-
ample, negative GOME-2 SIF anomalies can be an artifact of or am-
plified by its secular decline due to instrument degradation (Song
et al., 2018; Yang, Tian, et al., 2018). The effects of clouds on mod-
erate to low spatial resolution satellite data also have to be consid-
ered, although SIF retrievals with relatively good accuracy can be
achieved under thin clouds and aerosol (Frankenberg et al., 2012).
Validation of spaceborne retrievals has been a major challenge,
particularly for instruments with larger footprints, where the rep-
resentativeness error for comparison with in-situ instruments can
be large.

Accuracy and precision of in-situ (and also airborne) SIF are sen-
sitive to instrument configuration, calibration protocols, retrieval
methods, and atmospheric conditions, as well as ambient environ-
ment (e.g., temperature, humidity) that can impact instrument stabil-
ity (Aasen et al., 2019; Cendrero-Mateo et al., 2019; Chang, Guanter,
et al., 2020; Chang, Zhou, et al., 2020; Marrs et al., 2021; Pacheco-
Labrador et al., 2019).

Such uncertainties in SIF retrievals can propagate to the quan-
tum yield of SIF, which is usually computed as the ratio of SIF against

APAR (with or without correction of ff;f). As both the numerator and
denominator are measurements/retrievals that contain noise/bias,
the derived quantum yield of SIF could carry these uncertainties that
may be further exaggerated by the division. Consequently, the quan-
tum yield of SIF may not necessarily reflect true biological variations.

41.3 | Low temporal frequency

Most spaceborne SIF retrievals have relatively low temporal fre-
quency (Table S1), which is inadequate to characterize the intra-
seasonal variation of plant activities. This can inhibit SIF's full
potential for phenology characterization (e.g., dryland ecosystems
that have fast-changing dynamics and complex species composi-
tion/abundance), prediction of crop yield (as it is highly sensitive
to agronomic management that can be irregular depending on
weather fluctuations, and stress during grain filling that is short-
duration), and monitoring/early-warning of fast-onset stresses.
These applications may require at least sub-weekly temporal reso-
lutions. For example, TROPOMI SIF has greatly improved revisit
time, and demonstrated such benefits in depicting the complex
seasonal trajectory of California's complex mixture of ecosystems
(Turner et al., 2020).
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41.4 | Lack of long-time record

The major roadblocks to applying spaceborne SIF to study the
long-term trend and IAV of the terrestrial carbon cycle is lack
of a SIF record that is both sufficiently long and of trustworthy
quality. For example, native SIF retrievals from GOME-2 have the
longest time coverage (Table S1), but suffer from inherent instru-
ment degradation/orbital drift (i.e., post August 2013), which
could lead to a spurious negative trend (van Schaik et al., 2020);
GOSAT SIF is available for over 10years but has sparse spatial
sampling.

4.1.5 | Coarse spatial resolution and/or sparse
spatial sampling

Current native spaceborne SIF retrievals are at low spatial resolu-
tions and/or spatially discontinuous (Table S1). Value-added SIF
products have relatively finer spatial resolution with global con-
tiguous coverage (Table S1), but have not yet been sufficiently vali-
dated with independent in-situ or airborne SIF at high-resolution.
Moreover, they can be susceptible to (a) biases/noise inherited from
native SIF retrievals; (b) the training algorithm; (c) uncertainties in se-
lected predictor variables. These limitations hamper the potential of
SIF in truly benefiting crop monitoring and yield prediction, poverty
and malnutrition targeting, or urban sustainability, which all require
resolving complex and heterogeneous landscapes. For example, ex-
isting SIF-based attempts exclusively focus on developed countries
where agricultural landscapes and management practices are more
homogeneous and high-quality ground-truthing data (for calibrating
yield estimation models) are more readily available. However, in het-
erogeneous landscapes (such as developing countries where farm
size is typically small), present SIF products (both native and value-
added products) are unable to resolve individual crop types or fields
(Kira & Sun, 2020), making them of limited use to inform decision-
making at the field-scale (e.g., fertilizer or irrigation). Moreover, none
of the existing spaceborne SIF products can be reliably matched
with in-situ socioeconomic surveys (e.g., poverty metrics, children
malnutrition) due to their sparse data acquisition, randomized spa-
tial offsets of socioeconomic data to protect respondents' privacy,
or some combination. Consequently, it remains unclear whether SIF
possesses substantial competitive advantages over conventional
Vls for these operational applications, as the latter is technologi-
cally much more mature and available at super fine resolutions (e.g.,

sub-meter).

4.1.6 | Scarcity of in-situ SIF measurements

Despite the growth of in-situ SIF observing systems in the north-
ern hemisphere mid-latitude, especially in agricultural regions, such
systems are sparse in the pan-tropics and arctic/boreal regions as
well as developing countries (e.g., Africa; see figure 4 of Parazoo

et al., 2019), a situation similar to the uneven global distribution of

the EC flux measurements (Schimel et al., 2015).

4.2 | Observational innovations
4.2.1 | Satellite missions and airborne campaigns

Validation and cross-instrument standardization

High SIF data accuracy/precision is foundational to meaning-
ful downstream applications. Parazoo et al. (2019) demonstrated
that agreement among spaceborne SIF retrievals can be achieved
if overpass time, fitting windows, and viewing angles are stand-
ardized. Dedicated efforts have also been made to apply stand-
ardized retrieval algorithms consistently to GOME, SCIAMACHY,
and GOME-2/MetOp-A (and also corrected the artificial trend in
GOME-2 SIF). Such cross-instrument comparison and standardiza-
tion should continue in the future (e.g., extending to other space-
borne instruments, as well as airborne measurements), to further
improve the retrieval accuracy/precision of spaceborne SIF prod-
ucts. In addition, validation of spaceborne SIF retrievals (as well as
value-added products and airborne measurements) with in-situ SIF
is critical, but remains a major research gap. Challenges preventing
effectiveness of such efforts include scale mismatch, inconsistency
in instrument configuration and retrieval approaches, BRDF effect,
and so forth but can be addressed if utilizing trustworthy radiative
transfer model (RTM) simulations (section 3.1 and table 1 in Sun
et al., 2023) as a bridge to reproduce both in-situ and spaceborne/
airborne SIF in parallel under their respective instrument setup and
landscape scenarios.

Multi-instrument harmonization

So far value-added SIF products (e.g., based on ML approaches) date
back to 1995, but their reliability still requires further investigation,
given the above-stated quality issues in native SIF retrievals, which
the value-added SIF products are trained against. Also, temporal ex-
trapolation has been employed to cover periods prior to the avail-
ability of native SIF products, but may result in bias as the true SIF
signal falls outside the “observed” range/distribution of the training
period. One alternative approach to extend the timespan is to har-
monize SIF from different instruments with some overlaps (Parazoo
et al.,, 2019; Wang, Zhang, et al., 2022; Wen et al., 2020), for ex-
ample, GOME (1995-2003), SCIAMACHY (2003-2012), GOME-2/
MetOp-A (2007-2018; Joiner et al., 2019, 2021), and MetOp-B/C
(2012-present; Table S1). Caution is needed as quality of such har-
monized products is contingent upon consistency of the native
products across different instruments.

Pushing higher-frequency sampling

A new frontier in spaceborne SIF will be realized with the first meas-
urements from geostationary (GEO) platforms on an approximately
hourly basis. These observations, from Tropospheric Emissions:
Monitoring Pollution (TEMPO) and Sentinel-4, may provide a
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glimpse into diurnal variability in plant function at a regional scale
(Figure 6). While the suite of current instruments in LEO covers a
wide range of hours due to their large swaths and slightly inclined
orbits, recovering information on the diurnal variations in plant
physiology was found to be problematic owing to the difficulty in
accounting for the large variations due to sun-viewing geometry
(Joiner et al., 2020). GEO observations, in contrast, will have a fixed
geometry day-to-day for a given point on Earth and a given time of
day. Both SIF and reflectance have complicated diurnal variations
owing to changes of sun-viewing geometries throughout a day, mak-
ing it difficult to decouple structural and physiological effects on SIF
(Chang et al., 2021). Averaging at fixed times of day and fixed loca-
tions, where the GEO satellite geometry is identical day to day may
lead to the ability to detect temporal anomalies in the SIF signal at
different times of day. Here, it would not be necessary to adjust for
the structural effects that may impact the signal over the course of
a day; rather these effects on SIF would be assumed to remain rela-
tively stable over short time periods. The anomalous signals due to
stress could then be studied at different times of day as indicated in

Figure 6.

Harnessing the synergy of SIF with hyperspectral imaging, Lidar,
and thermal, and microwave remote sensing

In principle, SIF carries plant physiological information beyond plant
biophysical properties that hyperspectral reflectance can help infer
and leaf/canopy structures that lidar (or VIs) can characterize (figure
2in Sun et al., 2023). On the flip side, SIF is a mixed signal of all these
factors, making it necessary to disentangle them. This is particu-
larly critical for applications where a pool of plant traits is required
in applications such as plant phenotyping (Belwalkar et al., 2022),
precision agronomic management (Wang, Suarez, et al., 2021), and
disease detection (Poblete et al., 2021; Zarco-Tejada et al., 2018).
One innovation is to harness the complementary strengths among
SIF, hyperspectral reflectance, and lidar to disentangle contributions
from physiological variations, leaf biophysical traits (e.g., chlorophyll,
carotenoids, xanthophylls and anthocyanin content), and canopy

S iy L

structure (e.g., LAI, leaf inclination angle, canopy height, and crown
volume; Porcar-Castell et al., 2021; Schimel & Schneider, 2019;
Stavros et al., 2017). For example, an optimal instrument would
measure radiance in the visible and NIR range to derive hyperspec-
tral reflectances and SIF simultaneously, and thus ensure the same
sun-viewing geometry between them. Most SIF-capable instruments
currently flying in-orbit do not have such capability. Moreover, utiliz-
ing synergies with thermal and/or microwave-based measurements
(i.e., Land Surface Temperature LST, soil moisture) when possible
can also help disentangle contributions from physiology versus leaf-
canopy structure under biotic or abiotic stress. Harnessing these di-
verse and complementary remote sensing techniques can also help
infer ecosystem efficiency terms, such as light use efficiency (LUE),
water use efficiencies (LUE), carbon use efficiencies (CUE), and ni-
trogen use efficiency (NUE), which cannot be measured directly
but carry functional information of ecosystem dynamics (Schimel &
Schneider, 2019; Stavros et al., 2017). To facilitate such synergy, the
key here is to integrate different types of measurements from the
“hardware” side as much as possible (e.g., a single multi-functional
instrument, or different instruments onboard the same platform),
which is more beneficial than from the “software” side (e.g., correc-
tion of sun-viewing geometry, irradiance calibration, or footprint
mismatch via post-processing). Meanwhile, theoretical modeling is
much needed to guide the integration of different data streams (e.g.,
equations 8-10, and figure 2 in Sun et al., 2023) and maximize their
information content while mitigating their individual measurement
uncertainties. For example, LAl and pigment contents that deter-
mine light harvesting in equation 8 of Sun et al. (2023) could be an-
chored (to some degree) by Lidar and hyperspectral measurements,
and hence SIF can be used to infer other physiological quantities.
On the other hand, these diverse measurements can help reveal the
degree to which and conditions under which certain assumptions
hold in deriving the analytical equations of Sun et al. (2023), and
hence identify quantities/variables that should be prioritized for ei-
ther more data collection, process understanding, or sophisticated
modeling (laid out in figure 5 in Sun et al., 2023).
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FIGURE 6 Diagram of resolving diurnal cycle of spaceborne solar-induced chlorophyll fluorescence for the past and future from (a) Low

Earth Orbit (LEO) and (b) geostationary (GEO) platforms.
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4.2.2 | Canopy-scale observations

Standardization of instrument configuration, calibration, and
retrieval methods

The diversity of available in-situ systems and retrieval methods for
canopy SIF currently presents a challenge for large-scale syntheses
that have proven fruitful in other ecological networks (i.e., Fluxnet),
as SIF observation so far has no standardization of procedure, cali-
bration, or system design across sites and principal investigators
(Pls). Such standardization is critical for establishing an effective
global SIF network, ensuring comparability across SIF measure-
ments (Aasen et al., 2019; Albert et al., 2023; Cendrero-Mateo
et al., 2019; Marrs et al., 2021; Pacheco-Labrador et al., 2019), and
validating spaceborne SIF retrievals. To facilitate this endeavor,
differences among system configurations and retrieval methods
for the same canopy target must be carefully quantified and cor-
rected. This can be done with concurrent bi-hemispherical and
hemispherical-conical systems, ideally mounted on both station-
ary tower and mobile UAV platforms. Continuous high-frequency
point measurements at fixed locations of a stationary tower and
spatial mapping (within the tower footprint) with flexible resolu-
tion/altitude control of a mobile UAV offer complementary infor-
mation towards quantifying (a) spatial heterogeneity within a tower
footprint, (b) impact of atmospheric conditions on SIF retrievals. In
the meantime, intercomparison of different instrument configura-
tion and retrieval methods must be conducted over a wide range
of biomes and sky conditions (Chang et al., 2021; Chang, Zhou,
et al., 2020). Further, each system should simultaneously observe a
minimum set of meteorological variables (e.g., radiation, tempera-
ture, humidity, and wind speed) that can facilitate designing prac-
tical solutions for correcting differences of SIF retrievals across

system configurations.

Improving in-situ SIF observing capability in “data desert” regions

The information contained in SIF complements that observed by
EC systems. Thus more SIF observations should be conducted
at well-established flux sites such as AmeriFlux or Fluxnet, per-
haps using integrated SIF-EC systems (Gu, Wood, et al., 2019).
In particular, more in-situ SIF instruments are needed in “data
desert” regions, for example, tropical rainforests and north-
ern hemisphere high-latitudes where the most discrepancies
among literature and largest uncertainties in carbon fluxes/stor-
ages as well as strength of carbon-climate feedbacks (Schimel
et al., 2015) are both located. Also, dryland ecosystems, although
important in regulating IAV of the global carbon cycle, are under-
represented by in-situ SIF (and EC) measurements (Schimel &
Schneider, 2019). Deploying more SIF observing systems in these
areas will assist satellite SIF retrievals (e.g., validation and spa-
tial scaling) for constraining regional carbon mapping/budgets.
Moreover, improving in-situ SIF observing capability in areas
with high socioeconomic vulnerability is also highly beneficial

(discussion in Section 3.7).

Development of high-resolution SIF-specific spectroradiometers

A critical need of observational innovation is the development of
high-resolution spectroradiometers that are designed specifically
for observing SIF. Scientists have been working with companies to
design spectroradiometers tailored for SIF research (e.g., Ocean
Optics QE-Pro), while others have used off the shelf spectrom-
eters (e.g., ASD Field Spec). These spectrometers contain a great
number of charges coupled devices (CCDs) that collect charges at
wavelengths that are not usable for SIF retrieval. These unusable
CCDs increase the cost, contribute to heat generation which de-
creases spectroradiometer sensitivity, and limit the number of CCDs
that can be used in a spectroradiometer for retrieving SIF at single
wavelengths. Future development of SIF-specific spectroradiom-
eters should focus on Fraunhofer lines and oxygen absorption bands
which are highly resolved with a limited number of CCDs in neigh-
boring bands to provide reference wavelengths. Similar to point
measurements, SIF imaging systems will also be useful but will need
to undergo strict retrieval processes and reflectance correction
(Frankenberg et al., 2012). A close collaboration between the SIF
science community and industry is needed to develop SIF-specific

spectroradiometers.

4.2.3 | Leaf scale observations

At the canopy level, the true values of neither SIF nor GPP can be
directly measured and known. Therefore, it is at the leaf level that
the relationship between SIF and photosynthesis can be theoreti-
cally established and verified. Currently, no commercially available
instruments can be used to measure total ChlaF emission from a
leaf, which includes adaxial and abaxial emissions and re-absorption.
Current commercially available fluorometers output fluorescence
quantum yield (typically across all wavelengths >700nm) in arbitrary
units, which must be ratioed to a reference (e.g., maximal or minimal
fluorescence, Baker, 2008) in any calculations. These measurements
cannot be used directly as total ChlaF emission (i.e., in the unit of
molm™2s™1). Thereis an urgent need for fluorometers that can meas-
ure total ChlaF emission from a leaf directly (Magney et al., 2017,
Meeker et al., 2021; Van Wittenberghe et al., 2019, 2021). This
includes both broadband and spectral fluorescence from both the
adaxial and abaxial sides. Ideally, these emission measurements
should be accompanied with transmittance measurements of A,
perhaps with incidence from both adaxial and abaxial sides. These
transmittance measurements can be used to estimate the fraction of
total ChlaF emission that is being self-absorbed with a leaf RTM, for
example, equation S25 of Sun et al. (2023) derived with Beer's Law.

Ideally, the true ChlaF emission measurements at the leaf level
should be jointly conducted with conventional PAM fluorometry
and gas exchange measurements (Magney et al., 2017, Meeker
et al., 2021). With these measurements, mechanistic ChlaF emission
models can be tested and theoretical SIF-photosynthesis relation-

ships can be verified. Breakthroughs in this much-needed innovation
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cannot be made without close collaboration between the scientific

community and industry.

4.2.4 | Bridging the scaling gap: From leaf to
canopy, to ecosystems, and to the globe

Built upon innovations at individual scales discussed above, efforts
are also much needed to bridge the “scaling” gap from leaf to canopy,
ecosystems, and globe, a paramount issue not only to SIF but almost
to every variable in the Earth system science context. For example, it
is challenging to couple SIF acquiring instruments at different scales,
due to their vastly different footprints composed of dynamic/heter-
ogeneous vegetation structures/functions (Sun et al., 2023). Specific
to leaf-to-canopy scaling, vertical profiling of the joint spectral SIF,
PAM fluorometry, and gas exchange measurements (Section 4.2.3)
along with a hemispherical-conical system over a plant canopy will
be ideal to resolve these issues. Further, concurrent stationary tower
and mobile UAV measurements (Chang et al., 2021) will offer quanti-
tative information on spatial heterogeneity within a tower footprint,
towards bridging the gap from individual canopy to the ecosystem
scale. Most often, the relationship between SIF and GPP (or with
other variables) had to be examined with mismatched footprints. To
resolve such scale mismatch, emerging efforts attempt to couple the
OctoFlox SIF system and LI-7000 gas analyzers (acquiring carbon
and water fluxes) for crop measurements in enclosures with precise
temperature and CO, control. This allows a much closer footprint
(~1-2 m?) than any setup currently achievable with EC towers. In the
meantime, the theory-driven model remains an important tool to
bridge the scaling gap, as model simulations can be conducted at any
temporal and spatial scale while measurements can only be made
at discrete and disparate scales. If measurements made at different
scales can all be reproduced by model simulations, confidence can
be gained in these models. For example, the theoretical framework
developed in Sun et al. (2023) can be applied and tested for such
purposes.

4.3 | Application innovations

To advance our current understanding of SIF dynamics and expand
its utility to infer ecosystem structure, function, and service, we

offer perspectives on potential application innovations.

4.3.1 | Innovations in ecological applications

Quest for the “true” GPP across time and space

The culprit of the challenges in pinning down the true GPP and its
variability in space and time is the infeasibility of directly meas-
uring this flux beyond a single leaf. In the quest to identify “true”
GPP at the canopy scale and beyond, SIF should be utilized in a way
that can stay away from the current known uncertainties, moving

T e L

beyond simple correlational analyses between SIF and existing GPP
estimates that are well documented to have bias at many different
scales. Two potential pathways to tackle this core problem: What is

the true GPP, at the canopy and global scale respectively?

A. NEE partitioning. At the canopy scale, the commonly referred
“gold standard” GPP at EC towers, is not a direct observable, but
rather indirectly inferred from the directly measurable NEE with
EC techniques (Lasslop et al., 2010; Reichstein et al., 2005). SIF
could be employed in a way that truly escapes from existing known
uncertainties. For example, it could be directly used to partition NEE,
if functional relationships can be integrated with SIF to anchor GPP
(e.g., the toy model developed in Sun et al., 2023). Initial exploration
has been made for a single biome (e.g., C4) during a single growing
season (Kira et al., 2021) but much larger-scale coordinated efforts
are needed to expand such exploration, that is, for more biomes/
sites with SIF-observing capabilities. Such strategies would allow for
true GPP inference and avoid the current “circular” and “uncertain”
approaches (Section 3.1). In the meantime, we should always be
vigilant to measurement quality/noise, and cross-site calibration/
standardizations, which are key to ensure faithful GPP estimation
(Section 4.1).

B. Integration of SIF, OCS, and §'°CO,. Over the past decades,
multiple photosynthetic tracers, including SIF, carbonyl sulfide
(0CS), and 613CO2 isotopes, were identified and utilized to constrain
GPP fluxes (Campbell et al., 2017; Graven et al., 2020). Specifically,
OCS is an atmospheric trace gas that diffuses from the atmosphere
to photosynthetic enzymes along a shared pathway with CO,. It
is consumed by plants (Berry et al., 2013; Campbell et al., 2008;
Montzka et al., 2007; Seibt et al., 2010; Whelan et al., 2018;
Wohlfahrt et al., 2012), and at regional scales is closely correlated
with GPP (Campbell et al., 2017; Hilton et al., 2017). *°C isotope
has long been used to study photosynthetic metabolism and its
environmental response (Farquhar et al., 1989), taking advantage
of the unique feature of isotopic discrimination of photosynthesis,
that is, selective uptake of 12C02 over 13C02. The long-term
measurements of atmospheric 613CO2 have also been used to provide
unique insights on the growth trend of global GPP and WUE along
with the underlying drivers (Graven et al., 2020; Keeling et al., 2017).
The shared strength of these independent tracers is their capability
to directly infer photosynthesis without involving uncertainties
in separating ecosystem respiration. However, progress toward
this end has only been made within their respective communities;
their joint power for constraining predictive understanding of
GPP has never been explored or realized. Future research efforts
should leverage their unique and complementary strengths as
photosynthetic tracers. Towards this end, a theory-driven model
that can mechanistically represent/connect these three tracers is
foundational to harnessing their synergy. For example, coupling the
analytical equation(s) (e.g., equations 8 and 10) in Sun et al. (2023)
with an OCS model (Berry et al., 2013; Kooijmans et al., 2021) can
be a starting endeavor.
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Pigment content

Pigment contents are sensitive to various environmental stresses.
Large scale monitoring of pigment contents represents one of
the most promising applications of SIF remote sensing for climate
change and ecosystem research. As ChlaF is emitted by excited chlo-
rophyll molecules, a natural application of SIF would be to use it to
monitor chlorophyll content. Equation 8 in Sun et al. (2023) shows
that SIF could be approximately proportional to the pigment content
of the canopy if LAl and PAR are controlled. To our knowledge, this
approach has not been tested, but may be more direct and sensi-
tive than reflectance/transmittance-based approaches, as it has a
theoretic basis and can be derived in a mechanistic way, as opposed
to the conventional approach such as statistical regression (Wang,
Townsend, & Kruger, 2022).

4.3.2 | Innovations in hydrological applications

ET partitioning

Evapotranspiration is a keystone climate variable that links the
water cycle, energy balance, and carbon cycle (Fisher et al., 2017,
Katul et al., 2012; Monteith, 1965; Wang & Dickinson, 2012; Wong
et al.,, 1979). Its trajectory under changing climate, however, is highly
uncertain (Gedney et al., 2006; Mao et al., 2015; Piao et al., 2007;
Zeng et al., 2017). One primary reason for such uncertainty is a
lack of understanding of how ET is partitioned into its constituent
fluxes—transpiration (T) and evaporation (E)—across a wide range of
bio-climatic conditions, because these components are differentially
impacted by changing temperature, CO,, and hydrologic regimes
(Fisher et al., 2017; Lawrence et al., 2007; Miralles et al., 2016; Wang
& Dickinson, 2012). Studies have reported a large divergence of global
T:ET ratio (Coenders-Gerrits et al., 2014; Fatichi & Pappas, 2017; Wang
et al., 2014; Wei et al., 2017), indicating a severe lack of understand-
ing of the dynamics of ET partitioning and its underlying controlling
factors. This level of uncertainty impairs the ability to predict both
future ET budgets (due to the differential sensitivity of E and T to en-
vironmental forcings) as well as how ET will dampen or amplify climate
feedbacks (Fisher et al., 2017). It will also inhibit our ability to optimize
sustainable water allocations for food production in a changing climate
to meet the demands of a growing population (Foley et al., 2011).

A major source of difficulty to partition the observed ET (at the
canopy scale), which is typically measured with EC techniques, into
the desired E and T is due to a lack of constraining information. This
issue is, in many ways, similar to the classical problem of NEE par-
titioning (Section 4.3.1). Existing efforts utilizing SIF to constrain
transpiration is highly empirical (Section 3.6), and involves many as-
sumptions (Stoy et al., 2019; discussed in Sun et al., 2023). Currently,
there are no studies explicitly utilizing SIF to partition ET in a mech-
anistic way, and also bypassing the key assumptions. A promising
approach is to couple the light-reaction based GPP estimation de-
rived from SIF (e.g., equation 10 in Sun et al., 2023), with g, models
and energy balance models, in order to dynamically close the sys-
tem of equations. In this regard, thermal remote sensing would be

also helpful to constrain the energy balance model (e.g., leaf/canopy
temperature; Anderson et al., 1997), while concurrent SIF can an-
chor GPP, both in a mechanistic way. ET partitioning can be further
combined with NEE partitioning above, to fully take advantage of
the constraining power of shared information contained in ET and
NEE fluxes and in the meantime preserving the authentic functional
relationships among constituent components and their respective

sensitivity to environmental forcings.

Stress monitoring and early warning

To unleash the potential of SIF in assisting operational stress moni-
toring and early warning systems for informing stakeholders and
policy-making, it is crucial to have real-time SIF observations at
high temporal frequency (e.g., sub-daily) and fine spatial resolution.
The diurnal SIF capability from GEO satellites, for example, TEMPO
(Section 4.2.1), holds potential to reveal both the short-term physi-
ological dynamics and long-term impacts. Exploration along this
line can already be started with platforms like OCO-3 or synthetic
simulations with observing system simulation experiments (OSSEs)-
type systems (Somkuti et al., 2021). To concurrently alleviate the is-
sues of coarse spatial resolution (which is the case for geostationary
satellite), data fusion with other types of spaceborne observations
available at fine resolutions (e.g., reflectance, thermal, radar) with
state-of-the-art ML techniques (Gensheimer et al., 2022) are worth
research exploration. Elucidating the mechanisms in response to
stress, especially co-occurring events, requires effective synergy of
different sensing techniques (e.g., SIF, thermal, hyperspectral, lidar)

along with mechanistic models/understanding.

4.3.3 | Innovations in agricultural and forestry
management applications

Agriculture and forest management must rapidly adapt to face chal-
lenges including extreme climate events, shifting prevalence of dis-
eases and pests, changes in water availability and temperatures. Two
main and complementary avenues of agricultural and forest man-
agement research focus on climate adaptation and mitigation. The
adaptation strategy focuses on identifying or developing plant spe-
cies and cultivars, as well as management practices, which are better
suited for future climate conditions through a better understanding
of GXExM interaction in phenotyping studies. The mitigation strat-
egy focuses on developing and improving regional or site-specific
plant and environmental monitoring systems which can alert when
and how to adjust management practice, for example, by knowledge
guided fertilization, optimized pesticide and herbicide use and irriga-
tion schemes. SIF could be an advantageous tool for both adaptation
and mitigation strategies, due to the critical nature and sensitivity of
photosynthesis for plant health and productivity.

Climate change adaptation
While fluorescence-based phenotyping approaches are already
widely included in laboratory, greenhouse and field trials (Murchie
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et al., 2018), airborne-based hyperspectral scanners capable of as-
sessing plant traits including SIF for operational stress detection in
the context of plant phenotyping only recently emerged (Belwalkar
et al., 2022). For example, Belwalkar et al. (2022) demonstrated that
hyperspectral airborne imaging spectrometers of 5-6 nm FWHM
can quantify the spatial variability of SIF linked to nutrient defi-
ciencies towards improving plant phenotyping. Airborne systems
capable of SIF retrieval are well-adapted for precision agriculture
applications but often lack spatial resolution for the relatively small
plots of field phenotyping (Kramer et al., 2021). UAV-based SIF sen-
sors (imaging and non-imaging) are currently being developed with
the goal to close this technological gap and it can be expected that
such UAV-based SIF approaches will become available for a wider
use in field phenotyping science (Bendig et al., 2018; Chang, Zhou,
et al., 2020; MacArthur et al.,, 2014; Quirds-Vargas et al., 2020;
Wang, Suomalainen, et al., 2021).

On the other hand, active fluorescence techniques are often
lacking high throughput capabilities for large field-phenotyping
experiments. Recently laser-based scanning fluorescence systems
have been shown to potentially overcome this limitation of through-
put, but thus far only a very limited number of studies using active
fluorescence approaches are available (Keller et al., 2022; Zendonadi
Dos Santos et al., 2021). Developing SIF-capable phenotyping sys-
tems may allow for rapid screening of genotypes with high photosyn-
thetic capacity under different environmental and/or management
conditions in statistically relevant settings. In the future, such ef-
forts can be further coupled with the analytical modeling framework
in Sun et al. (2023) to uncover the biological (both plant structure
and function) drivers.

Climate change mitigation

The rapidly exploding availability of ground and satellite measure-
ments for crops and forests is currently revolutionizing management
practice by enabling the farmer and forest manager to detect both
abiotic and biotic stresses earlier than conventional approaches.
Here, SIF may play a unique role in identifying early signs of vegeta-
tion stress, before classical measurement techniques (reflectance-
or thermal-based approaches) become sensitive (Damm et al., 2022).
Studies have demonstrated the potential of SIF for monitoring of
water stress in fruit orchards (Zarco-Tejada et al., 2016), potato (Xu
et al., 2021), heat stress in wheat (Song et al., 2020), and disease in
olive orchards (Poblete et al., 2020; Zarco-Tejada et al., 2018) and
oak forests (Hernandez-Clemente et al., 2017). SIF may also play a
unique role in early detection and improving the specificity of dis-
ease detection by complementing hyper- and multispectral methods
(Mahlein et al., 2019). For example, SIF has also been demonstrated
critical in the early detection of pathogen-induced stress due to the
reduction in photosynthesis along with the degradation and reduc-
tion of the concentration of plant pigments such as anthocyanins,
xanthophylls, chlorophyll and carotenoids quantified using airborne
imaging spectroscopy (Zarco-Tejada et al., 2018). In such a study, SIF
was the fifth ranked plant trait used in the ML model to detect all
levels of infection, but ranked first at the initial (pre-visual) versus
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advanced pathogen infection stages. This indicates that SIF is mod-
ulated by the infection level, and is important to differentiate be-
tween biotic- and abiotic-induced stress (Zarco-Tejada et al., 2021).
Moreover, the sensitivity of SIF to pathogen-induced stress in vas-
cular diseases was shown across plants infected with Verticillium
dahliae and Xylella fastidiosa using airborne imaging spectroscopy
(Poblete et al., 2021).

4.3.4 | Innovations in socioeconomic and
sustainability applications

Socioeconomic assessment and intervention

The core promise that SIF offers is a scalable measure in time and
space, binded in its functional and quantifiable relationship with
productivity, unlike VlIs. A “scalable” approach is highly desired
as it would not require much in-situ data for model recalibration,
which can be cost- or logistically-prohibitive to obtain especially
in regions with poor communications, low-quality transporta-
tion infrastructure or suffering from active conflicts (Browne
et al., 2021). The potential “scalability” of the SIF-based approach
to link between GPP and agricultural production, rangeland health,
and carbon sequestration (and also carbon accounting/trading)
make SIF a highly promising Earth Observation (EO) technique to
aid poverty targeting/intervention, agricultural index insurance
design, conservation finance metrics, and carbon-neutral goals.
Advances in these applications also open up important new op-
portunities to extend SIF application to broader policy questions,
from addressing food insecurity and rural poverty in the Global
South, to monitoring forest degradation for conservation finance,
and to identifying infectious disease hotspots based on inferred

ecosystem structure and function.

Urban sustainability

Maintaining and enhancing urban ecosystem health is a critical
step towards sustainable urban development under a changing cli-
mate. A degraded urban ecosystem combined with a rapid urban
expansion can decrease NPP (Liu et al., 2019). The spatial or tem-
poral anomalies of SIF in complex urban landscapes can potentially
assist understanding the feedbacks between urban vegetation
and the microclimate under urban environmental stresses (e.g.,
drought and heat extremes). However, depicting such variations
from much weaker background urban SIF signals (due to relatively
low coverage of vegetation) requires more precise retrievals from
satellite platforms. This also requires isolation of the urban vegeta-
tive SIF signals from building interference, which can impact the
illumination-viewing geometry in tall building districts. An initial at-
tempt (Paschalis et al., 2021) used the simple urban-rural contrasts
among cities to characterize the spatial variability of evaporative
cooling using SIF but was limited by its coarse spatial resolution.
Growing spatial resolutions with improved SIF retrieval algorithms
over heterogeneous landscapes can offer new research opportu-
nities on intra-urban variability of urban vegetation health and the
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consequent capability in mitigating heat and air pollution, which is
vital in human living environments. SIF measurement that can reveal
biological processes in all forms of urban greenery is much needed
for effective management and long-term development of sustain-
able community-level urban infrastructures in the context of climate
change and environmental justice.

5 | CONCLUSIONS

This review synthesizes progress in SIF observations/instrumen-
tation while highlighting diverse applications of SIF datasets in
ecology, agriculture, hydrology, climate, and socioeconomics
research domains. This synthesis identifies inconsistent/contra-
dictory findings in SIF literature, provides clarifications on these
issues, and offers insights, from the data perspective integrated
with the theoretical perspective, on innovations needed to fill
knowledge gaps in utilizing SIF to inform ecosystem structure,
function, and service under climate change. Key points this re-

view aims to deliver are:

e Data uncertainty: Accurate interpretation of the functional rela-
tionships between SIF and other ecological indicators is contin-
gent upon complete understanding of the SIF data quality and
uncertainty. Biases and uncertainties in SIF observations can
significantly confound interpretation of their relationships and
how such relationships respond to environmental variations.
Controlling data uncertainties requires coordinated efforts of
SIF-specific instrumentation design, uncertainty quantification,
tracing, and documentation. For example, despite the many
merging value-added SIF products, their accuracy and credibility
require further investigation, given the many yet-to-be-resolved
uncertainties in native SIF retrievals (against which value-added
SIF products were trained) and well-documented low transfer-
ability of ML algorithms in time and space.

e Data network coordination and synthesis: To promote the mechanis-
tic understanding of SIF and its relationship with other ecological
indicators across biomes and hydroclimatic regimes, a dedicated
effort is needed to establish a global network with in-situ and air-
borne SIF instruments, with standardized protocols to minimize
discrepancies resulting from instrument configuration/setup, re-
trieval methods, atmospheric contamination, sun-canopy-viewing
geometries, and so forth.

e Improving in-situ SIF observing capability in “data desert” regions:
More in-situ SIF observations are needed in regions with the larg-
est uncertainties in carbon-climate feedbacks or with high socio-
economic vulnerability.

e Data fusion and harmonization: There is a need to maximize the
synergy among different SIF products, and among SIF, ther-
mal, lidar, and hyperspectral, and microwave measurements.
Standardization is needed to minimize challenges in SIF post-
processing such as cross-instrument calibration, overpass time,

instrument degradation, footprint mismatch, and so forth.
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