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Similar molecular and genetic aberrations among diseases can lead to the
discovery of jointly important treatment options across biologically similar
diseases. Oncologists closely looked at several hormone-dependent cancers
and identified remarkable pathological and molecular similarities in their DNA
repair pathway abnormalities. Although deficiencies in Homologous
Recombination (HR) pathway plays a significant role towards cancer
progression, there could be other DNA-repair pathway deficiencies that
requires careful investigation. In this paper, through a biomarker-driven drug
repurposing model, we identified several potential drug candidates for breast
and prostate cancer patients with DNA-repair deficiencies based on common
specific biomarkers and irrespective of the organ the tumors originated from.
Normalized discounted cumulative gain (NDCG) and sensitivity analysis were
used to assess the performance of the drug repurposing model. Our results
showed that Mitoxantrone and Genistein were among drugs with high
therapeutic effects that significantly reverted the gene expression changes
caused by the disease (FDR adjusted p-values for prostate cancer =1.225e-
4 and 8.195e-8, respectively) for patients with deficiencies in their homologous
recombination (HR) pathways. The proposed multi-cancer treatment
framework, suitable for patients whose cancers had common specific
biomarkers, has the potential to identify promising drug candidates by
enriching the study population through the integration of multiple cancers
and targeting patients who respond poorly to organ-specific treatments.
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1 Introduction

Developing a new drug for a condition can take around
10-13 years and close to 2.8 billion dollars (DiMasi et al., 2016).
Despite this, 90% of the drug candidates entering clinical trials
fail (Sun et al,, 2022). Human body is a complex system, with
myriad interactions taking place simultaneously, interdependent
on each other. The same pathway or mechanism involving
certain genes, may be responsible for different diseases. A
drug developed for a particular condition, therefore, could be
a potential candidate for another condition. Drug repurposing
can drastically reduce the time and cost of developing new drugs
by searching for FDA-approved drugs, drugs under trial, or other
chemicals that have a therapeutic effect on conditions outside the
scope of the original medical indication (Pushpakom et al,, 2019).
Drug repurposing minimizes the chances of failure in clinical
trials and reduces time for approval.

Similar molecular and genetic aberrations among diseases
can lead to the discovery of jointly important treatment options
across biologically similar diseases. Oncologists have closely
looked at prostate, ovarian and breast cancers and identified
that the tumors arising from these cancers are typically hormone-
dependent and have remarkable underlying pathological and
their DNA
abnormalities (Risbridger et al., 2010). Analyzing patient data

molecular similarities in repair pathway
from biologically similar cancers together provides insights into
their similarities as well as knowledge about individual cancers,
which may not have been possible by analyzing individual cancer
data separately. Zhou et al. (2021) identified jointly important
biomarkers across breast, prostate and ovarian cancers by
utilizing patient data from the three cancers using a cross-
cancer learning approach. This reiterates that the same
pathway or a gene is responsible for multiple diseases. These
biological similarities have led to remarkably similar treatment
options. For instance, combining the androgen deprivation
therapy (ADT) with PARP inhibitors (i.e. drugs already used
in breast cancer treatment) showed to be an effective approach in
reducing the progression and recurrence of prostate cancer.
Several single agent activity PARP inhibitors (PARPi) were
recently approved for treating certain ovarian and breast
cancers (Asim et al, 2017). The US Food and Drug
Administration (FDA) the first

treatment (Keytruda®), for patients whose cancers had a

approved multi-cancer
common specific biomarker. FDA, for the first time, approved
a drug based on a common biomarker, instead of the organ the
tumor had originated. Despite this, majority of studies still
consider each cancer disease in isolation from the rest and
identify the treatment options that are cancer-type specific.
Hence, the critical need is to discover multi-cancer treatment
options through the exploitation of cancers with similar
molecular and genetic aberrations.

Mutations in several genes within the homologous
recombination (HR) pathway occur in around 20%-25% of
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advanced prostate cancers (Marshall et al, 2019). There is
accumulating evidence that depicts a considerable proportion
of individuals with metastatic breast cancer are HR deficient with
mutations in BRCA1/BRCA2 genes (den Brok et al., 2017). Base
excision repair (BER) pathway genes limit the ability of DNA
repair in prostate cancer (PCa, henceforth) patients, which leads
to an increased risk of PCa. (Mittal et al., 2012). Further, APEX1,
which is a BER gene, has shown a compelling effect indicating an
increased risk of breast cancer through a gene-gene interactivity
analysis (Kim et al., 2013). In an effort to understand the effect of
mismatch repair (MMR) genes in the progression of PCa, gene
expression-based analysis were conducted within the cancer cell
lines and in tumor specimens, which indicated a loss of MSH2
and MLHI genes in different cell lines (Chen et al., 2001). The
deficiency of MMR genes was observed across most of the
subtypes of breast cancers with high-grade tumor-infiltrating
lymphocyte counts (Cheng et al, 2020). All these findings
confirmed that there were significant commonalities across
breast and prostate cancers in their DNA repair pathway
abnormalities that could lead to common and jointly
important treatment options.

Drug repurposing strategies can be classified into drug-based
and disease-based, depending on the substantial availability of
data and the intent of the research (Jarada et al., 2020) (Dudley
et al, 2011). Several computational approaches proposed in
recent years have used both disease and drug data
(Peyvandipour et al., 2018) (Sirota et al., 2011) (Chiang and
Butte, 2009) (Gottlieb et al., 2011). In a systems biology approach
proposed by Peyvandipour et al. (2018) a drug-disease network
(DDN) was constructed by considering drug targets, disease-
related genes and all signalling pathways that were then
integrated with disease gene expression signatures and drug-
exposure gene expression signatures to discover novel
therapeutic roles for established drugs. Nafiseh et al. used a
machine learning approach to find anti-similarities between
drugs and disease (Saberian et al, 2019). In their approach,
they used drug exposure gene expression data, disease gene
expression data and the associations between FDA-approved
drugs and diseases. They used a distance metric learning (DML)
algorithm where disease and the associated FDA-approved drugs
had smaller distances compared to drugs not associated with
disease. Luo et al. (2016) proposed a novel approach that
computed the similarity between drugs and diseases. In
they
consisting of drug and disease similarity networks and

particular, constructed a heterogeneous network
drug-disease interactions and then used a Bi-Random walk
(BiRW) algorithm to rank the drugs (Xie et al,, 2012). Hu and
Agarwal. (2009) generated a disease-drug network based on
extensive drug and disease gene expression profiles which was
used for identifying new indications for drugs and side effects of
drugs.

In this paper, we used several state-of-the-art drug
repurposing approaches to determine

potential  drug
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FIGURE 1

The Homologous Recombination pathway. The genes are represented in the rectangular boxes, with the shades of blue representing down-

regulated genes for prostate cancer patients.

candidates for patients with breast or prostate cancers with
common specific biomarkers. More specifically, we identified
drugs with potential therapeutic effects on patients with DNA
repair deficiencies.

Our contribution in this study is three-fold: 1) We initially
developed a data-driven approach able to enrich the study
population by integrating data from biologically similar
cancers and using patient subpopulations with different types
of DNA repair deficiencies which will enable personalized
treatment strategies. We then used an existing approach
referred to as drug-disease similarity to come up with novel
treatments on the integrated data by identifying drugs that may
have a therapeutic effect on patients irrespective of their cancer
type. 2) We revisited our previously published deep cross cancer
learning approach to identify jointly important biomarkers
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among breast, prostate and ovarian cancers. These biomarkers
were used to identify common treatment options among those
cancers through network interactions-based drug repositioning.
3) We presented the associations between the proposed drug
target genes and biological functions (e.g., cell cycle) and
investigated the drug target genes within the HR pathway and
their interactions with the proposed drugs.

2 Materials and methods
2.1 Data preparation

The variant data and the disease gene expression data for
breast and prostate cancers were obtained from The Cancer
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TABLE 1 The number of breast and prostate cancer patients with deficiencies in their DNA repair pathways. Note that, different types of DNA-repair

deficiencies has formed several subpopulations, that were analyzed separately.

DNA repair pathway

Breast cancer

Number of patients

Prostate cancer

Homologous Recombination (HR) 36 14
Base Excision Repair (BER) 23 7
Mismatch Repair (MMR) 73 31
Nucleotide Excision Repair (NER) 55 23
Non-Homologous End Joining (NHE]) 23 6
Total 210 147

Genome Atlas (TCGA). The number of samples for breast and
prostate tumors were 1,091 and 495, respectively with 120 and
53 samples with adjacent normal tissues. All expression datasets
were log2 transformed. We obtained the signalling pathways
from Kyoto Encyclopedia of Genes Genomics (KEGG) (Kanehisa
etal,, 2016). The signalling pathways are represented in the form
of a directed graph, where each node represents the genes (or
proteins) and the associations including activation, inhibition,
etc. between the genes were represented by the edges. The large
scale drug-exposure gene expression data were obtained from the
Connectivity Map and the Library of Integrated Network-Based
Cellular Signatures (LINCS) (Subramanian et al., 2017).

We initially identified all genes within each DNA repair
pathway separately using the KEGG database. The DNA
repair pathways used were: homologous recombination
(HR), base excision repair (BER), mismatch repair (MMR),
nucleotide excision repair (NER) and non-homologous end
joining pathway (NHE]). As an example, the set of genes (or
proteins) that exist within the HR pathway can be seen in
Figure 1. Using the variant data collected from TCGA, a
subset of breast and prostate cancer patients with mutations
in any of their DNA repair genes were identified and grouped
according to their type of DNA repair deficiency. This
multiple of
subpopulations with common biomarkers. Table 1 shows

resulted  in cohorts homogeneous
the distribution of the breast and prostate cancer patients
within each cohort. Note that, the same patient may fall into
multiple cohorts.

Next, we identified the differentially expressed genes (DEGs)
through a moderated ¢-test by comparing the tumor samples with
their adjacent normal tissues on each cohort separately. The
resulting p-values were FDR adjusted to correct for multiple
comparisons. Including ovarian cancer samples would have been
optimal as ovarian cancer is known to also have biological
similarities with breast and prostate cancers. However, due to
not having access to TCGA ovarian cancer gene expression data
of adjacent normal tissue, we were unable to run the differential

expression analysis on ovarian cancer samples in this study. An
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alternative approach we considered was to run experiments on
ovarian cancer data collected from different data sources,
however this requires extensive preprocessing due to different
representation, distribution, scale, and density of data.

Our previously published deep cross cancer learning
approach discussed in Section 3.3 identified jointly important
biomarkers among breast, prostate, and ovarian cancers (Zhou
et al,, 2021). We were then able to identify drug candidates
common among the three cancers using the proposed
biomarkers. As this was a multi-label classification based
neural network, we were able to conduct the analysis without
the presence of ovarian normal tissue.

The methodology used for data preparation described above
has been shown in Figures 2A,B. Prediction of drugs using drug-
disease similarity and validation shown in Figure 2C has been
described in subsequent sections.

2.2 The prediction of drugs using drug-
disease similarities

Sirota et al. (2011) proposed a systematic computational drug
repurposing approach to predict novel therapeutic indications by
understanding drug and disease relationships. The association
between every pairing of drug and disease is represented by a
similarity score ranging from +1 to -1, with +1 indicating perfect
correlation and -1 indicating an opposite effect. The largest
negative score representing a reverse set of changes with exposure
to a drug, indicates that the drug may have a therapeutic effect on
the disease.

Here, we used the preprocessed expression data as discussed
in Section 2.1 for breast and prostate cancer and the drug
expression signatures from CMap to calculate the similarity
scores. We only considered those drugs with FDR-adjusted
p-values less than 0.05. This shortened list was then arranged
in the ascending order based on the enrichment scores. The
largest negative score implied the best drug candidates with
highest therapeutic effects.
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FIGURE 2

Framework proposed for data-driven drug repurposing for biologically similar cancers—(A): Genes within each of the DNA repair pathways,

i.e., HR (Homologous Recombination), BER (Base Excision Repair), MMR (Mismatch Repair, NER(Nucleotide Excision Repair) and NHEJ (Non-
Homologous End Joining) were identified using KEGG database. Subset of breast and prostate cancer patients with mutations in DNA repair genes
were identified and grouped based on DNA repair deficiency. (B): Differentially expressed genes (DEGs) were identified on each cohort
separately. (C): Drugs for each cohort were identified using Drug-Disease Similarity. Framework was validated using NDCG (Normalized Discounted
Cumulative Gain) and sensitivity scores; and network interaction analysis was used for validating the utility of the drugs

In an effort to evaluate the results obtained through the drug-
disease similarity model, we performed sensitivity-based validation
only (SV) and calculated the normalized discounted cumulative
gain (NDCG). The best strategy for analytic validation of drug
repurposing is through sensitivity based validation techniques.
Sensitivity and specificity based validation, although ideal, is not
practical to assess the model performance due to the lack of access
to true negatives (TNs) as discussed by Adam et al. (Brown and
Patel, 2018). The discounted cumulative gain was constructed
under the assumption that top rank drugs were more relevant and
more likely to be of interest (Schuler et al., 2022). The NDGC score
was calculated as follows:

P 2rel,~—1
DCG=) ——— (1)
; log, (i + 1)
[REL)| 2rel,- -1
IDCG = —_— 2
; log, (i + 1) @)
NDGC = DCG/IDCG 3)

where i is the rank of the drug of interest, up to rank p, and rel;
denotes the relevance of the drug to the indication, 0 indicating
non-relevance and 1 indicating relevance, REL, is the list of
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associated drugs in the set up to a cutoff position of p, and |REL,|
is the cardinality of the list.

2.3 The validation of proposed drugs using
network interactions

Here, we used a drug repurposing analysis module to identify
FDA-approved drugs that could be used to revert a given pattern
of gene expression changes caused by a disease. The prediction of
upstream Chemicals, Drugs, Toxicants (CDTs) is based on two
types of information: 1) the enrichment of differentially
expressed genes from the experiment and 2) a network of
interactions from the Advaita Knowledge Base (AKB v2006).
The network is a directed graph in which the source node
represents either a chemical substance or compound, a drug,
or a toxicant. The edges represent known effects that these CDT's
have on various genes. A signed edge in this graph consists of a
source CDT, a target gene, and a sign to indicate the type of effect:
activation (+) or inhibition (-). To generate the network, the
analysis selects only those edges observed in the literature with at
least a medium confidence. The analysis considers two
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@ Upstream regulator
DE gene (logFC > 0)
. DE gene (logFC < 0)

—— activation

DE target genes consistent with upstream
regulator predicted as inhibited

inhibition

Target genes consistent with the hypothesis considered: In (A), the signs of the DE genes shown in red (+) and blue (-) match the signs of their
respective incoming edges, suggesting that the upstream regulator u is activated. In (B), the signs of the DE genes shown in red (+) and blue (-) are
opposite to the signs of their edges, suggesting that the upstream regulator u is inhibited.

hypotheses: HA: The upstream regulator is activated in the
condition studied. HI: The upstream regulator is inhibited in
the condition studied. The set of genes from National Center for
Biotechnology Information (NCBI) Gene database is divided into
many subsets by the analysis based on the measurements from
the experiment and the definitions shown in Figure 3. The (+)
sign in the figure indicates up-regulated genes while (-) sign
indicates down-regulated genes. If a gene has at least one
incoming edge, then it is considered as a target gene in the
network. The gene g is consistent with hypothesis HA if there is
an incoming edge e and if sign(g) = sign(e). This implies that
when upstream regulator is activated, the signal is an activation
and gene is up-regulated or signal is an inhibition, and the gene is
down-regulated. (see Figure 3A). The gene g is consistent with
hypothesis HI if there is an incoming edge e and if sign(g) does
not match sign(e). This implies that when upstream regulator is
inhibited the signal is inhibition and gene is up-regulated or
signal is activation and gene is down-regulated. (see Figure 3B).

Herein, we focused on drugs that could reverse the changes
induced by the disease. For this purpose, we hypothesized that
the disease is considered as a state in which the changes are
associated with the absence of a drug. Given the interactions
between a specific drug A and its downstream DE genes, the
Z-score was computed as follows:

Logw(g)-s(e)s(g)

z(A) =
Ylw(g)l®

(4)

where s(e) represents the type of the edge (-1 for inhibition and
+1 for activation), s(g) is the sign of expression change of the gene
(-1 for down-regulated and +1 for up-regulated), and w(g) the
confidence score of the edge g. The Z-score p-value for each drug
was then calculated by mapping the z-score on a p-value using
the normal distribution. (Draghici et al., 2020).

Note that, the drugs identified through drug-disase
similarities as discussed in Section 2.2, though powerful, do
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not consider the network of interactions between drugs and
their associated downstream genes. On the other hand, the
network interactions as discussed in this section may still not
be able to detect all significant drugs as only direct interactions
between drug and disease is considered, rather than investigating
indirect interactions due to co-expressions of genes. Hence in
order to identify drugs with high therapeutic effects, we relied on
the intersecting drugs among multiple approaches.

3 Results
3.1 Drug-disease similarity results

The results obtained through the drug-disease similarity
analysis are shown in Table 2. Initially, all breast and prostate
cancer patients were included in the analysis which resulted in a
list of drugs presented in the first column of the table (see
column: All Patients). In essence, a good repurposing
approach on a truly homogeneous data should place the
already FDA-approved drugs (i.e., the gold standard) at the
very top of the list for that particular disease. Note that, since
we focussed on multiple biologically similar diseases, we expected
to see drugs approved for either or both of the conditions at the
very top of the list.

Results showed that six investigational drugs (two of which
are under investigation for breast and prostate cancers, and four
of which are under investigation for breast cancer only) and no
FDA-approved drugs appeared within the top 10 ranked drugs.
Cancer being a heterogeneous disease with large genetic diversity
even between tumors of the same cancer types, it is common for
the patients to have significant differences between their
molecular profiles (Arslanturk et al., 2020). Our results clearly
showed that the data needed to be further refined to identify
more homogeneous subpopulations for more optimal and
targeted treatment decisions. Hence, as the next step, we
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TABLE 2 The list of top ranked drugs identified through the drug-disease score analysis for subsets of patients with different types of DNA repair deficiencies.
The cells highlighted in green, grey, blue and pink are the FDA-approved drugs, investigational drugs for breast and prostate cancers, investigational drugs
for prostate cancer, and investigational drugs for breast cancer, respectively along with their respective similarity scores that was calculated. Results

demonstrated that although there are certain drugs that are common across subpopulations, the top ranked drugs differed between different DNA-repair
pathways. Hence, the identification of biomarkers associated with a specific subpopulation can change the course of treatment and enable personalized
treatment strategies among individuals.

|| Patients with DNA Repair Deficiencies

All Patients Similarity Score||[Homologous Recombination |Similarity Score ||Base Excision Repair Similarity Score
GSM1738425_decitabine -0.2777||GSM1742795_palbociclib -0.3093||GSM1743216_canertinib -0.4304
GSM1740982_pyrazolanthrone -0.2743||GSM1739132_tranylcypromine -0.2848||GSM1746670_foretinib -0.3975
GSM1744649 _linifanib -0.2669|GSM1744653_linifanib -0.2804"GSM1747119_mitoxantrone -0.3804
GSM1746995_radicicol -0.2638||GSM1744013_selumetinib -0.2778|GSM1743879_trametinib -0.3800
GSM1737390_motesanib -0.2570(GSM1743929_dasatinib -0.2725(GSM1742795_palbociclib -0.3796
GSM1746047_foretinib -0.2547|[GSM1741703_radicicol -0.2689||GSM1743011_imatinib -0.3754
GSM1742374_sorafenib -0.2415|GSM1743780_alvocidib -0.2651|[GSM1739677_dabrafenib -0.3718
GSM1744868_roscovitine -0.2409||GSM1739016_mocetinostat -0.2598|GSM1747001_geldanamycin -0.3714
GSM1744016_selumetinib -0.2328(GSM1746633_dovitinib -0.2547||GSM1746921_radicicol -0.3657
GSM1739132_tranylcypromine -0.2289|GSM1744512_saracatinib -0.2544]GSM1741739_sirolimus -0.3564
GSM1737918_rocilinostat -0.2283||GSM1737624_entinostat -0.2518|[GSM1744905_erlotinib -0.3521
GSM1747012_mitoxantrone -0.2283"GSM1740698_dabrafenib -0.2461/GSM1744041_gefitinib -0.3436
GSM1743003_gefitinib -0.2278||GSM1738635_azacitidine -0.2411(GSM1743959_linifanib -0.3429
GSM1745427 pelitinib -0.2277||GSM1740982_pyrazolanthrone -0.2384||GSM1743114 fostamatinib -0.3404
GSM1739411 _rucaparib -0.2242|GSM1742407_fostamatinib -0.2381|[GSM1737853_iniparib -0.3393
GSM1738010_pracinostat -0.2227|GSM1746979_geldanamycin -0.2356/(GSM1746633_dovitinib -0.3357
GSM1743929_dasatinib -0.2223|GSM1739042_pracinostat -0.2356(GSM1742708_alvocidib -0.3336
GSM1742795_palbociclib -0.2181(GSM1737914 _rocilinostat -0.2316/[GSM1742848_afatinib -0.3325
GSM1744029_lapatinib -0.2167|[GSM1741596_mitoxantrone -0.2283|[GSM1738293_azacitidine -0.3307
GSM1742406_fostamatinib -0.2150|GSM1740862_serdemetan -0.2249"GSM1741787_vorinostat -0.3296

Patients with DNA Repair Deficiencies

Mismatch Repair

Similarity Score

Nucleotide Excision Repair

Similarity Score ||Non Homologous End Joining

Similarity Score

GSM1744013_selumetinib -0.2501)[GSM1745351_dovitinib -0.2526||GSM1741596_mitoxantrone -0.1966
GSM1740698_dabrafenib -0.2481|GSM1741655_radicicol ‘0.2504||GSM1742801 _palbociclib -0.1908
GSM1741655_radicicol -0.2408|(GSM1742795_palbociclib -0.2369||GSM1741703_radicicol -0.1874
GSM1741596_mitoxantrone -0.2241]GSM1741669_mitoxantrone -0.2310|GSM1745758_roscovitine -0.1718
GSM1738074_resveratrol -0.2167|(GSM1743222_erlotinib -O.2198||GSM1747003 _geldanamycin -0.1675
GSM1747114_geldanamycin -0.2148|(GSM1743717 gefitinib -0.2159(GSM1740858_serdemetan -0.1571
GSM1743478_saracatinib -0.2138||GSM1738639_azacitidine -0.2146/|[GSM1744653 _linifanib -0.1533
GSM1737697_rucaparib -0.2135|[GSM1742421_saracatinib -0.2145|[GSM1738293_azacitidine -0.1485
GSM1746224_trametinib -0.2122|GSM1740517_veliparib -0.2145[GSM1745640_enzastaurin -0.1336
GSM1738291_azacitidine -0.2112|GSM1745251_brivanib -0.2144|nabumetone_5428 -0.1252
GSM1743162_palbociclib -0.2092(/GSM1744305_linifanib -0.2079||GSM1743082_sorafenib -0.1251
GSM1744099_alvocidib -0.2065|[GSM1743781_alvocidib -0.2065||GSM1745910_neratinib -0.1222
GSM1745118_roscovitine -0.2039||GSM1743465_fostamatinib -0.2054||GSM1742648_gefitinib -0.1198
GSM1738554_olaparib -0.2020/[GSM1743691_selumetinib -0.2052|GSM1746569_crizotinib -0.1160
GSM1742182_neratinib -0.1962|GSM1745328_enzastaurin -0.2032|(GSM1744103_alvocidib -0.1153
GSM1745351_dovitinib -0.1959|GSM1745118_roscovitine -0.2025|(GSM1740644_ponatinib -0.1142
GSM1745226_ruxolitinib -0.1958||GSM1742182_neratinib -0.2020/[GSM1746600_vemurafenib -0.1121
GSM1742374_sorafenib -0.1955[[GSM1742860_canertinib -0.1983|[GSM1745215_nilotinib -0.1107
GSM1740333_dasatinib -0.1922|GSM1744937_trametinib -0.1970||GSM1738748_belinostat -0.1106
GSM1739131_tranylcypromine -0.1898||GSM1742988_lapatinib -0.1939I|GSM1746833_brivanib -0.1102

investigated potential treatment options based on common
biomarkers, specifically for patients with aberrations in genes
within different DNA repair mechanisms. Results showed
Palbociclib, an
approved for

endocrine-based chemotherapeutic agent

treating HER2-negative and HR-positive

advanced or metastatic breast cancers (McCain, 2015)
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(Walker et al., 2016) (Beaver et al., 2015), appeared at the top
of the list for patients with HR-deficiencies. Results further
that
inhibitor, mainly approved for the treatment of major

suggested tranylcypromine, a monoamine oxidase
depressive episodes without melancholia (Ricken et al., 2017),

showed promise as a multi-cancer treatment, specifically for
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Performance comparison of the drug-disease similarity model on DNA-repair deficient patient subpopulations using NDCG (left) and sensitivity
analysis (right). The NDCG/sensitivity values (vertical axes) of all drug—indication associations using different DNA repair deficient subpopulations are
shown according to different cutoff values (horizontal axis). The NDCG results clearly demonstrate that the HR-deficient subpopulations result in
drugs that are clinically more relevant with more FDA-approved/investigational drugs compared with other DNA-repair pathway deficiencies.

The plot has further shown that identifying homogeneous subpopulations through common biomarkers result in better performances when
compared to all patients combined. The sensitivity values demonstrate that the list of breast/prostate cancer drugs retrieved for all cutoff levels are
clinically relevant and indicates an overall better performance relative to random controls (shown as the black curve).

breast and prostate cancers. The top ranked drugs further
consisted of several chemotherapy drugs including linifanib,
selumetinib and dasatinib. The top ranked drugs for all other
DNA repair deficient patients are listed in Table 2. A detailed
description of all the top ranked drugs for each pathway along
with their clinical relevance is reported in the discussion section
of the paper.

The sensitivity and NDCG scores of the proposed drugs are
shown in Figure 4. The sensitivity values of all drug-disease
associations for different subsets of patients based on their types
of DNA repair deficiencies were compared with several random
control runs. The sensitivity values were reported for different
rank/cutoff levels. The SV results as shown in Figure 4B
demonstrates that the list of drugs retrieved for all cutoff
levels for breast and prostate cancer patients were clinically
relevant and indicated an overall better performance relative
to random controls. The NDCG scores as shown in Figure 4A
show that the identification of homogeneous sub populations
with common biomarkers resulted in drugs that were clinically
more relevant with more FDA-approved/investigational drugs
appearing at the very top of the list when compared with all
patients combined. Results further showed that drugs proposed
for patients with aberrations in their HR pathway outperformed
all other pathways. This is mainly due to hormone driven
cancers’ significant molecular similarities within HR pathways
(Toh and Ngeow, 2021) (Watkins et al., 2014). Less is known
about the similarities between those cancers in other DNA-repair
pathways.
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3.2 Drugs proposed through network
interactions

The drugs proposed through network interactions using
iPathwayGuide (Advaita) are listed in Table 3. Note that, this
table includes only the drugs that have a significant therapeutic
effect (p < 0.05) on both breast and prostate cancers. The number
of DE genes that would be reverted by each drug is listed. For
instance, the 15/19 notation next to mitoxantrone demonstrates
that there were 19 downstream genes that mitoxantrone is
interacting with that were DE for prostate cancer (vs. adjacent
normal tissue), 15 of which were consistent with our hypothesis
as described in Section 2.3.

The SV and NDCG are metrics used to evaluate the drug
repurposing models’ ability to identify clinically relevant
treatment options. In order to validate the utility of the
drugs proposed, we investigated the mechanisms through
which the drugs act on genes measured to be DE for the
disease studied. Figure 5 generated using network interactions
shows the mechanisms of mitoxantrone on the DE genes for
prostate cancer. Mitoxantrone was able to activate the down-
regulated genes and inhibit the up-regulated genes 15 out of
19 times (p < 1.225e-4) as described in Section 2.3 In an effort
to confirm the changes in the downstream genes, we have
reported the fold-changes of those genes using cell lines
treated with Mitoxantrone as shown in Figure 5B. The
highlighted red, the
downregulated genes are highlighted in blue.

upregulated genes are in and
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TABLE 3 The top eight drugs proposed for repurposing using the network interactions approach. The table shows the p-values (sorted based on the prostate
tumor vs. adjacent normal tissue experiment), as well as the number of DE genes that would be reverted by each drug (i.e., the number of genes consistent
with the hypothesis) for patients with HR—deficiencies. Doxorubicin slows or stops the growth of cancer cells, and is used to treat certain neoplastic conditions
such as acute lymphoblastic leukemia, soft tissue and bone sarcomas, breast carcinoma and ovarian carcinoma. Genistein is currently under clinical trials for
the treatment of prostate cancer. Melphalan and Estradiol are also among drugs used to treat certain cancers. Mitoxantrone is highlighted as a promising
drug candidate as it appears to be a top drug using both network interactions and drug-disease similarity scores.

Chemical name

Prostate tumor (HR deficiency) vs. Normal tissue -
mRNA (RNA-seq)

Breast tumor (HR deficiency) vs. Normal tissue -
mRNA (RNA-seq)

Consistent (-)/DE targets p-value Consistent (-)/DE targets p-value
& Doxorubicin 785/1161 2.863¢-11 1288/2101 2.863¢-11
& Genistein 231/351 8.195¢-8 363/574 3.503¢-6
& Melphalan 46/58 2.122e-6 72/98 2.005¢-6
& Triclosan 330/579 2.766e-5 494/865 2.889e-4
# Mitoxantrone 15/19 1.225e-4 17/24 0.01
& rofecoxib 17/26 0.014 26/42 0.011
&PD 0325901 14/19 0.025 28/36 8.808¢-5
& Estradiol 447/734 0.047 830/1268 9.072¢-9

3.3 Drugs proposed using novel
biomarkers discovered using cross cancer
learning approach

We utilized our previously published approach that
discovered jointly important novel biomarkers across breast,
prostate and ovarian cancers through a data-driven, deep
learning approach referred to as cross-cancer learning (Zhou
etal.,2021). This approach exploited patient data from multiple
cancers to discover prostate cancer biomarkers and jointly
important biomarkers across breast, prostate and ovarian
cancers by leveraging pathological and molecular similarities
in their DNA repair pathways. Different cancers share common
genomic instabilities. Exploring cancers having similarities can
help discover previously unknown biomarkers and pathways.
In addition, this helps in alleviating the problem of limited
patient samples availability and underestimation of various
genes previously not known to be involved. This cross
learning multi-label
classification autoencoder (MLC-AE) that wused lower

dimensional latent representation of the mRNA gene

cancer framework utilized a

expression profiles to predict the tissue type (breast, prostate,
ovarian) and the disease state (solid tumor vs. adjacent normal
tissue) as separate output layers. To explain and interpret the
MLC-AE model, SHapley Additive exPlanations (SHAP) was
used. This method uses SHAP values to extract feature
importance across three cancers. SHAP method used each
feature to calculate the change in performance in the
presence and absence of each feature. The features whose
absence lead to reduction in the performance were given the
highest score. The cross cancer framework has been shown in
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Figure 6. Figure 7 A shows the most significant genes based on
their contribution towards prediction using breast, prostate,
and ovarian tissues. The biomarkers discovered using this
approach were further used to find disrupted pathways using
the impact analysis. The drugs identified using cross cancer
genes are listed in Figure 7B and are discussed in detail in the
Discussion section.

In order to validate our results further, additional
experiments were conducted using the cell lines obtained
from CMap. Table 4 shows the fold changes that were
calculated using the cell lines treated with the drugs shown
on each column. Specifically, the drugs investigated were
Genistein, Mitoxantrone, Palbociclib, Tranylcypromine,
Linifanib and Selumetinib. Threshold parameters used for
the analysis were an absolute fold-change greater than
0.6 and false discovery rate (FDR) adjusted p-value less
than 0.05. All genes presented in the table are differentially
expressed, with the genes associated with DNA repair
pathways being color-coded. Specifically, the red, yellow,
green, blue, and gray colors represent significant changes in
the genes associated with BER, HR, MMR, NER and a
combination of multiple DNA repair pathways, respectively.

Note that there are no differentially expressed genes involved
in the DNA repair process for Genistein. However, expression
changes obtained from CMap includes an arbitrary selection of
patients and is not filtered based on homogeneous
subpopulations identified through specific DNA repair
deficiencies. Instead, our proposed drug candidates have been
derived by filtering a list of patients with specific types of DNA
repair deficiencies, and therefore, is a preprocessed dataset with a
more homogenous population than the CMap patient set.
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(A) The mechanism through which Mitoxantone act on the genes measured to be DE for prostate cancer. Note that, out of the 19 downstream

DE genes that Mitoxantone is interacting with, 15 were consistent with the hypothesis, i.e., the drug was able to revert the expression changes caused
by disease 15 out of 19 times. All 15 genes were shown on the figure with three down-regulated genes (blue circles) being activated, and 12 up-
regulated genes (red circles) being inhibited with the exposure of the drug. (B) Fold changes reported for cell lines treated with Mitoxantrone.

The upregulated genes are highlighted in red, and the downregulated genes are highlighted in blue.

Although this could explain the lack of gene changes in DNA
repair pathways when Genistein is administered, additional
analyses would be required to further confirm the therapeutic
effect of this drug.

In order to understand the effect of our proposed drugs on
the nodes within the HR pathway, we explored the drug-gene
interactions. The results are shown in Figure 8. The
differentially expressed genes highlighted in this figure are
based on patients with HR deficient breast cancer vs. adjacent
normal tissue. This figure clearly shows that several HR genes
are indeed drug targets and our proposed drugs are indeed
interacting with such genes.

In summary, our results showed several promising drug
candidates including Mitoxantrone, Palbociclib and Genistein
for multi-cancer treatment as supported by multiple approaches.
Mitoxantrone appeared to be a top drug using drug-disease
similarity scores and network interactions approaches, and
Genistein appeared to be a top drug using cross-cancer
biomarkers and network interactions.

Experiments conducted by Tang et al. (2018) and Siddiqui et al.
(2021) suggest that genistein and mitoxantrone in combination with
other drugs can influence the cell cycle of the cancer cells. In order to
understand the effects of these drugs on cell-cycle, we ran an
experiment on iPathwayGuide, to understand the associations
between the downstream genes of Genistein and Mitoxantrone
and their associations with biological processes including the cell
cycle. Results are presented in Figure 9.
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4 Discussion

DNA damage is not uncommon and results in tens of
thousands of damages everyday (Jackson and Bartek, 2009;
O’Connor, 2015). This genomic instability is the key feature
of carcinogenesis. DNA damage response (DDR) collectively
refers to all the mechanisms that are responsible for the DNA
damage repair. O’Connor. (2015) discussed targeted therapies
based on DNA damage response of patients to tailor targeted
therapy. They further mentioned various drugs under clinical
trials for different types of cancers targeting DNA repair
pathways.

Homologous Recombination is responsible for the repair of
DNA double stranded breaks (DSBs) during G2/M phase (Saleh-
Gohari and Helleday, 2004). Li and Heyer. (2008); Al-Mugotir
etal. (2021) showed that doxorubicin, and quinacrine, along with
mitoxantrone were effective in HR deficient cells by recruiting
RAD52 to repair sites of DNA damage.

Table 2 shows the drugs that were identified using drug-
disease score analysis for the subset of patients who had
deficiencies in their DNA repair pathways for prostate cancer
and breast cancer. In the list of drugs identified for HR pathway,
palbociclib came as significant. Palbociclib is approved for
HER2-negative and HR-positive advanced or metastatic breast
cancer. It is known that BRCAI and BRCA2 mutations are
involved in the HR deficiency. Hence, this could be a
promising drug for the prostate cancer patients who at
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FIGURE 6
Drugs proposed using cross cancer genes. (A) Breast, prostate and ovarian cancer expression data was used to predict the tissue type and the

disease type using multi-label classification—auto encoder (MLC-AE). SHAP Explanation model was used to identify the contribution of each gene
towards the prediction using SHAP values that rank the genes. (B) Network interaction analysis was used to perform meta analysis and predict novel
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FIGURE 7
(A) Significant genes identified using SHAP based on contribution scores for all three tissues (breast, prostate and ovary). (T) Denotes solid tumor
and (N) denotes solid normal tissue. Figure utilized from Zhou et al. (2021) (B) Top eight drugs proposed for repurposing using cross cancer genes.

present do not respond to the current treatment. The network
interactions approach shown in Table 3 came up with interesting
set of drugs. Studies have shown that Genistein affects cell cycle
during G2/M phase (Zhang et al, 2013). Genistein inhibits
(DNA
topoisomerases, type II) and is under investigation as an anti-

protein-tyrosine  kinase and  topoisomerase-II
cancer agent. In vivo experiments carried out by Tang et al.

(2018). have showed that Genistein when combined with
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AG1024 (a tyrosine kinase inhibitor) led to a decrease in
tumor size in prostate cancer patients. Genistein suppressed
the homologous (HR) the
homologous end joining (NHE]) pathways by inhibiting the
expression of Rad51 and Ku70 (Tang et al., 2018). Genistein,
an isoflavone found in soy products and an integral part of the
Asian diet, was found to be effective against various cancers and
responsible for lowering the prostate and breast cancer rates in

recombination and non-
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TABLE 4 This table shows the expression changes of genes when the drugs that were found to be significant in our analysis were administered. Red, yellow,
green, blue, and gray colors represent significant changes in the genes associated with BER, HR, MMR, NER, and a combination of multiple DNA repair

pathways, respectively.

MITOXANTRONE GENISTEIN PALBOCICLIB TRANYLCYPROMINE LINIFANIB SELUMETINIB
Gene Fold Change Gene Fold Change Gene Fold Change)| Gene Fold Change Gene Fold Change Gene Fold Change
POLE2 -16.0984] TFPI2 -0.601714122] PCNA -10] OXA1L -10] BIRCS -10] PARP1 -10
RFC2 -12.9617] TACC3 0.666655568] POLE2 -7.882] CCNAL -10] CD44 -10] CD58 -10
BRCA1 -9.5644 KRT12 0.648860924 PARP1 -5.49| DNM1L -10| CDK1 -10| IER3 -10|
RFC5 -6.14226667 MRPS14 -1.007313661] DDB2 -4.78) PHKAL -9.618 DLD -10| DNM1L -10]
TOPBP1 -4.7233 DET1 -0.640326879] BRCA1 -4.616 TJP1 -6.588 MCM3 -10 TXNDC3S -10|
PARP1 -2.8768 CRYBB1 -0.614814657| RFC2 -4.372)] MSH6 -2.472)] LIG1 -2.806) CCNH 0.732)
MSH6 -2.0806} OSR2 -0.827627071] LIG1 -3.853| RFC5 -0.747| TOPBP1 1.414] PARP2 1.32
RAD51C -1.7007| NCAPD3 0.632002377} PARP2 -3.061] RFC2 -0.633) PARP2 1.51] CDK7 1.33
CCNH -1.3119 MBIP -0.619790329 RFC5 -2.443| CDK7 0.719 RFC5 2.55 RFC5S 1.506
CDK7 1.4394 ASCC2 -0.685010907| MSH6 -1.715 POLD4 0.801 DUSP22 8.1212] ERCC6 2.187
ERCC6 2.5378 DUSP1 0.618809242 TOPBP1 -1.405| RAD51C 1.05) PRR15L 8.34) CCL2 10/
POLD4 4.5108 TMEM186 -0.633685938) RAD51C -1.136) BRCA1 1.68] POLD4 8.877| SUV39H1 10/
DDB2 5.9346] LIPE -0.995489484) CCNH -0.761] P4HA2 4.113) FBXL12 9.742 TLR4 10|
ADATL 13.0098| GABARAPL3 | -0.625627357 ERCC6 0.732] CLPX 4.227) CIAO3 10] MAP7 10|
DDX42 13.9626) MAP7D1 -0.715569418 CDK7 1.634] PRR15L 4.285 C2CD2 10] CLPX 10|
MAPKAPK2 | 15.32706667 SUPT16H -0.628213568 POLD4 8.877| NUDT9 4.683) E2F2 10] PRR7 10|
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FIGURE 8

The drug target genes within the HR pathway and their interactions with the proposed drugs. The differential expression analysis here were
conducted on patients with breast cancer with HR deficiencies vs. adjacent normal tissue.

Asian countries. It inhibited the cell cycle proliferation and

induces apoptosis. (Banerjee et al., 2008). Khan et al. (2021)

described the emerging role of natural products in cancer

treatment. Among them, soy isoflavones, were reported to

Frontiers in Genetics

target BRCA histones for repair. Through their in vivo

experiments, Fan et al. (2006) found that genistein along with
indoole-3-carbinol targeted both BRCAI and BRCA2 genes in
breast and prostate cancer cells. This research is useful in
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FIGURE 9

(A) The DE genes of prostate cancer associated with the cell cycle downstream of Mitoxantrone and (B) The DE genes of prostate cancer

associated with the cell cycle downstream of Genistein.

suggesting that natural products can be potential therapeutics for
cancer treatment.

Al-Mugotir et al. (2021) listed mitoxantrone as a potential
drug for clinical use targeting Topoisomerase II. Siddiqui et al.
(2021) showed that mitoxantrone along with imatinib could be
used to suppress apoptosis. Their research specifically targeted
treatment-resistant HR-proficient cancers. RAD52, a protein
involved in the HR pathway, was found to be differentially
expressed in BRCA-deficient cells. The changes in the
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expression of the gene RADS52 is associated with HR activity
and hence can affect the way cancer can be treated (Nogueira
et al,, 2019), (Lok and Powell, 2012). Al-Mugotir et al. (2021)
reported that RAD52 could be a potential target for the HR
deficient cancers and further showed the effectiveness of
further
strengthen our proposed results of mitoxantrone as a potential
candidate for patients with mutations in their HR repair

mitoxantrone on such cancers. These findings

pathways.
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In a study conducted on COX-2 inhibitors and breast cancer
patients between 1998-2004, it was shown that rofecoxib had the
highest percentage (71%, p < 0.01) of breast cancer reduction as
compared to other drugs including ibuprofen (63%) and 325 mg
aspirin (49%). (Harris et al., 2014).

Estradiol is already in use for breast and prostate cancers for
palliation therapy.

Figure 7B shows the drugs that were listed as siginificant for the
novel biomarkers discovered using cross cancer learning approach
by Zhou et al. (2021) Acyline showed as significant drug in our table.
In a study conducted by Sofikerim et al. (2007) to find the hormonal
predictors of the prostate cancer, follicle-stimulating hormone
(FSH) was found to be significantly higher in patients with
prostate cancer. Crawford et al. (2017) discussed about evidences
of high levels of FSH in the advanced and metastatic prostate cancer.
Christenson and Antonarakis. (2018) discussed the use of
gonadotropin-releasing hormone (GnRH) agonists to inhibit FSH
levels as an initial step once prostate cancer turns metastatic. In the
first experiment conducted on humans, Herbst et al., (2002) found
that acyline, a novel GnRH antagonist was found to suppress FSH
levels. They discussed the use of acyline as a probable prostate cancer
drug. O'Toole et al. (2007) discussed the potential use of acyline for
breast cancer and prostate cancer. Limonta et al. (2012) discussed
GnRH agonists decreasing the tumor growth and proliferation in
prostate, ovarian and breast cancers. Genistein, which came up as
significant for HR-deficient patients earlier, was listed as significant
for cross cancer genes as well and has been discussed earlier.

Currently, there is a strong evidence that the biologically
similar cancers have the same underlying genetic aberrations
(Risbridger et al., 2010). Hence, providing jointly important
treatments could drastically reduce the time invested in
development of novel drugs as well as repurposing drugs
for diseases separately. Our study exploited the prostate
cancer and breast cancer patients with deficiencies in their
DNA-repair pathways. There is not clear understanding of
DNA repair pathways (excluding HR pathway) involved in
the breast and prostate cancer, and hence may require
further study. There is a strong evidence that a subset of
prostate and breast cancer patients have deficiencies in their
HR pathways. The drugs proposed using our approach for
this pool of patients have strong evidence from literature and
show strong promise.

5 Conclusion

DNA repair pathways are responsible for maintaining the
genome stability by performing various mechanisms to reverse
the damage caused. Failure to do so may result in various
diseases, including cancer. Most malignancies arise from
mutations caused by damage to the DNA that was not
repaired. While some patients respond to treatments, a subset
of patients do not respond to the standard treatments. This

Frontiers in Genetics

14

10.3389/fgene.2022.1015531

clearly concludes that there is heterogeneity within the same type
of cancer that needs to be further refined.

In this paper, we identified commonalities and differences
among multiple cancers by leveraging the abnormalities
within the DNA repair pathways to identify potential drugs
through repurposing. Often, a specific drug repurposing
approach may not always provide optimal results due to its
limitations. Hence, we employed multiple approaches and
provided treatment options that were intersecting between
the approaches.

Our multi cancer treatment model 1) integrated subsets of
patients with common biomarkers in their DNA repair pathways
and 2) provided promising drug candidates for patients with
different DNA repair deficiencies. The results of the proposed
framework can be further utilized as a personalized medicine
option for patients who do not respond to regular and organ
specific treatment options.
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