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Abstract

More frequent and severe droughts are driving increased forest mortality around the
globe. We urgently need to describe and predict how drought affects forest carbon
cycling and identify thresholds of environmental stress that trigger ecosystem col-
lapse. Quantifying the effects of drought at an ecosystem level is complex because
dynamic climate-plant relationships can cause rapid and/or prolonged shifts in carbon
balance. We employ the CARbon DAta MOdel fraMework (CARDAMOM) to investi-
gate legacy effects of drought on forest carbon pools and fluxes. Our Bayesian model-
data fusion approach uses tower observed meteorological forcing and carbon fluxes
to determine the response and sensitivity of aboveground and belowground ecologi-
cal processes associated with the 2012-2015 California drought. Our study area is a
mid-montane mixed conifer forest in the Southern Sierras. CARDAMOM constrained
with gross primary productivity (GPP) estimates covering 2011-2017 show a ~75%
reduction in GPP, compared to negligible GPP change when constrained with 2011
only. Precipitation across 2012-2015 was 45% (474 mm) lower than the historical av-
erage and drove a cascading depletion in soil moisture and carbon pools (foliar, labile,
roots, and litter). Adding 157 mm during an especially stressful year (2014, annual
rainfall=293 mm) led to a smaller depletion of water and carbon pools, steering the
ecosystem away from a state of GPP tipping-point collapse to recovery. We present
novel process-driven insights that demonstrate the sensitivity of GPP collapse to eco-
system foliar carbon and soil moisture states—showing that the full extent of GPP
response takes several years to arise. Thus, long-term changes in soil moisture and
carbon pools can provide a mechanistic link between drought and forest mortality.
Our study provides an example for how key precipitation threshold ranges can in-
fluence forest productivity, making them useful for monitoring and predicting forest
mortality events.
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1 | INTRODUCTION

Forests contribute 40% to the global terrestrial carbon (C) flux bud-
get, serving as a major sink of atmospheric C (Harris et al., 2021).
The potential for forests to maintain acting as a C sink is threatened
by several climate-related factors, particularly rising temperatures
and drought (Friedlingstein et al., 2022). “Hotter droughts” are caus-
ing large-scale tree dieback globally (Allen et al., 2015; Hammond
et al., 2022) and forest mortality events are expected to increase as
drought becomes more frequent and severe (Brodribb et al., 2020).
Forest die-off amplifies climate change by directly reducing the for-
est's ability to sequester C and releasing stored C back to the atmo-
sphere. Assessing where, when, and to what extent mortality events
will occur is critical for quantifying the future of forest carbon cy-
cling worldwide.

Predicting drought-induced mortality is difficult because many
factors can influence how much stress an ecosystem can endure
before it collapses. At the tree level, drought stress can result in
stomatal closure, limiting photosynthesis (Buckley, 2019). Increased
drought severity can lead to damage in a plant's hydraulic system,
impacting essential functions such as photosynthesis, growth, and
reproduction (Choat et al., 2018). At the ecosystem scale, prolonged
drought over longer time scales (i.e., multiple years) can lead to C
store depletion, further limiting tree growth, via lagged effects
(Anderegg, Flint, et al., 2015; Anderegg, Schwalm, et al., 2015). In
addition, the consequences of drought are further compounded
as risks of forest fires and insect outbreaks increase (McDowell
et al., 2020). These processes can limit both the forest's resilience
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to stress and its recovery (Anderegg, Flint, et al., 2015; Anderegg,
Schwalm, et al., 2015).

Here we examine ecosystem resilience as the capacity to assim-
ilate C at pre-drought conditions following sustained environmen-
tal stress—measured as gross primary productivity (GPP). Extended
periods of drought stress and extreme temperatures from climate
change are likely to alter photosynthetic capacity and overall ecosys-
tem function (Brodribb et al., 2020; Hammond et al., 2022). For ex-
ample, drought stress from the severe 2003 European drought was
linked to 30% reduction in GPP across Europe (Ciais et al., 2005).
Based on this example, a more resilient forest can either tolerate or
recover from a water stress event, eventually recovering GPP to pre-
drought conditions. If instead the forest is stressed beyond recovery,
post-drought GPP may be insufficient for C accumulation and alloca-
tion to plant tissues—in particular, foliar biomass—which, in turn, will
further reduce GPP. Leaf area index (LAIl) is a primary determinant
of photosynthesis and C allocation (Running & Coughlan, 1988) and
can explain approximately 33%-80% of the variation in GPP in dif-
ferent ecosystems (Flack-Prain et al., 2019; Street et al., 2007). The
feedback between declining GPP and declining foliar biomass can in
principle lead to a partial or complete GPP collapse, indicating a shift
in the equilibrium state (foliar biomass) and function (GPP) of the
ecosystem (Figure 1).

The equilibrium state of an ecosystem depends on both external
forces and its internal processes (Luo & Weng, 2011) which impact
its ability to photosynthesize. The dynamics of the ecosystem can
result in systems where a gradual change in the environment can

cause a drastic, non-recoverable change in the equilibrium state of
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FIGURE 1 Potential consequences of drought on the state of a forest ecosystem. (a) GPP decreases in a healthy forest ecosystem (black
line) during (b) sustained drought. Depending on the resilience of the ecosystem, ecosystem GPP recovers under pre-drought precipitation
levels (green line) or ecosystem GPP falls below the point of recovery and the ecosystem collapses despite precipitation conditions
improving (red line). (c) The ecosystem state has a direct effect on GPP, and in this context, is primarily controlled by precipitation deficit.
There is a stable equilibrium state (solid line) between ecosystem state and precipitation deficit until the deficit reaches a tipping point (Tp)
at which the upper stable equilibrium disappears. The dashed line indicates an unstable equilibrium state and collapse of the ecosystem. The
arrows represent the trajectory of a return to steady state. GPP, gross primary productivity.

0 ‘61 ‘€20T ‘98KTSIET

sy woy papeoy

ASUDDIT SuOWWo)) dA1ea1) o[qeatjdde oy Aq pauIoAoS dIe SI[OIIE V() oSN JO AN 10f AIRIqIT duljuQ) AJ[IA\ UO (SUONIPUOI-PUE-SULIN/ W00 K[ 1M AIRIqI[oUI[UO//:sdNY) suonIpuo)) pue sud [, oy 998 €707/ 1/81] uo Kreiqi aurjuQ Ad[ip ‘yein Jo Ansioatun £q £9891°99S/1 111°01/10p/wod K[im”



AU ET AL

< Ly

the ecosystem (Figure 1c). The critical threshold at which an ecosys-
tem can abruptly shift to an alternate state is known as a “tipping
point” (Angeli et al., 2004). Tipping points can occur across a range of
spatial and temporal scales where disturbances like climate change
and deforestation can cause dramatic shifts in vegetation type and/
or ecosystem function (Reyer et al., 2015). Despite many theoretical
models that describe critical thresholds (Luo & Weng, 2011; Scheffer
et al., 2001), and numerous observations of ecosystem change and
collapse (Allen et al., 2010; Anderegg, Flint, et al., 2015; Anderegg,
Schwalm, et al., 2015; Van Mantgem et al., 2009), quantifying where
tipping points lie through well-defined metrics remains extremely
difficult (Allen et al., 2015; Forzieri et al., 2022; Trugman et al., 2021).

Californian forests have suffered many severe and prolonged
droughts, making it an ideal study area for assessing drought-induced
tipping points. A remarkable drought in 2012-2015 is considered the
most severe in the last 1200years (Griffin & Anchukaitis, 2014) and
led to the mortality of an estimated 30.8 million trees (Goulden &
Bales, 2019; USFS, 2016). Here, we use an eddy covariance site in
the southern Sierra Nevada mountains—located in one of the most
severely affected forests (Goulden et al., 2012). This mid-montane,
ponderosa pine forest experienced 80% canopy mortality from
2011 to 2015 (Goulden & Bales, 2019). Severe soil moisture over-
draft from 5 to 15m soil depth drove tree death at this study site
and across the Sierra Nevada (Goulden & Bales, 2019). This dataset
provides a unique opportunity for identifying where precipitation
induced tipping points for forests could lie and how droughts can
irreversibly affect forest C balance.

Multi-year in situ observations provide critical evidence for the
processes regulating drought-recovery cycles in disturbed forests.
Ecosystem structural and C cycle observations, including leaf area
estimates, eddy covariance flux tower measurements of net eco-
system exchange, and derived estimates of GPP, can all help con-
strain and resolve the temporal evolution of ecosystem C cycling
and their responses to environmental forcings (Bloom et al., 2020).
Furthermore, reconciling land surface observations with mechanis-
tic C cycle models can provide additional constraints on unknown
process parameters, including biomass C states, uncertain allocation
and turnover rate parameters, and the overall sensitivity of eco-
system fluxes to climatic variability (Bloom & Williams, 2015; Clark
et al., 2011). To this end, terrestrial biosphere models that optimize
dynamic constraints on ecosystem parameters against diverse ob-
servations tend to show better predictive performance (Famiglietti
et al., 2020).

The CARbon DAta MOdel fraMework (CARDAMOM) provides
a mechanistic framework for reconciling ecosystem C cycle dy-
namics with observations (Bloom & Williams, 2015). A key advan-
tage of CARDAMOM compared to other models is that it does not
rely on plant functional type information or prior assumptions of
plant traits. CARDAMOM has successfully revealed the effect of
fire decline on the tropical land C sink (Yin et al., 2020), the con-
current effects of disturbance history on tropical carbon balance
(Bloom et al., 2020), the state of global terrestrial C balance (Bloom
et al., 2016), and helped diagnose climate variability on evergreen

GPP (Stettz et al., 2021). CARDAMOM is a Bayesian model-data
fusion approach that uses meteorological forcings and land-surface
observations to estimate time-invariant parameters and initial C and
water states (Bloom et al., 2020; Bloom & Williams, 2015). This pro-
vides a continuous and self-consistent mechanistic representation of
climate-forced C and water cycling, permitting a more mechanistic
diagnosis of processes such as GPP collapse. The Data Assimilation
Linked Ecosystem Carbon model (DALEC; Williams et al., 2005) is
a key component of CARDAMOM, representing the key processes
regulating ecosystem carbon storage and allocation. These include
internal C processes, such as the transfer across pools (e.g., foliar,
woody biomass, soil organic carbon), and external forces, such as
climate, that together drive the C balance of an ecosystem (Luo &
Weng, 2011). Thus, the ecosystem carbon states and their inter-
actions with climate affect an ecosystem's ability to gain carbon
through GPP, allowing inference into the potential collapse in forest
productivity by tracking these pools over time.

In this study, we use multi-year in situ GPP observations to re-
solve and assess forest ecosystem drought-induced tipping points;
specifically, we address four questions: (1) How well can we capture
forest productivity collapse using a terrestrial biosphere model that
is constrained with GPP observations? (2) How does drought affect
intra- and inter-annual forest carbon dynamics? (3) Did the precipi-
tation deficit exceed an ecosystem critical tipping point and how can
we use CARDAMOM to help inform the mechanistic cause of this?
And (4) Would GPP collapse have been avoidable under higher pre-
drought foliar C or wetter soil states? To address these questions,
we integrate tower-based net ecosystem C exchanges and meteoro-
logical drivers within the CARDAMOM Bayesian model-data fusion
framework. Furthermore, we use the emergent ecosystem C and
water cycle dynamics to quantitatively resolve the mechanistic links
between precipitation deficits on observed GPP declines. In the
face of uncertainty on ecosystem dynamics, CARDAMOM provides
a unique opportunity to reconcile observed C fluxes and states with
underlying model parameters to resolve the processes at play during
drought-induced GPP collapse.

2 | METHODS

To address the questions outlined above, we (1) analyze the trajec-
tory of ecosystem carbon fluxes and states from in situ and modeled
estimates, (2) integrate data into the CARDAMOM model-data fu-
sion framework and (3) assess the sensitivity of GPP to changes in C
and water ecosystem states. We describe datasets and CARDAMOM
framework in Sections 2.1-2.3 and simulations in Section 2.4.

2.1 | Study areaand data collection
The study area in the Southern Sierras was severely affected by the

2012-2015 California drought (Goulden & Bales, 2019). We focus
on the Southern Sierra Critical Zone Observatory eddy covariance
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tower denoted “CZ02" (37.03106, -119.2566). The site is at an el-
evation of 1160m and dominated by ponderosa pine forest (Pinus
ponderosa) with some Californian black oak (Quercus kelloggii) and
incense cedar and (Calocedrus decurrens). Soils at the site consist
of fine, coarse, and sandy loams derived from granitic parent ma-
terial, with a weathered bedrock-hard bedrock boundary at 4.5m
(O'Geen et al., 2018). A 40m eddy covariance flux tower collected
data from 2011 to 2017 including CO, exchange, evapotranspira-
tion (ET), and meteorology data averaged at half-hourly intervals
(Goulden et al., 2012). Half-hourly gross ecosystem exchange was
calculated as the difference between observed net ecosystem ex-
change and respiration, using the nighttime partitioning method
over 30-day periods (Goulden et al., 2012) and we used these val-
ues to derive a monthly GPP for the site. Historical precipitation
data for the area were determined from the ERAS5 reanalysis data-
set (resolution is 9km on a reduced Gaussian grid at 1h; Hersbach
et al., 2018). Annual precipitation is calculated using the water year,
October to September. From 1982 to 2010, the historical annual av-
erage precipitation was 1045 mmyear *, with a standard deviation
of 352mmyear™ . To quantify precipitation deficits, we calculate the
anomaly using z scores by (annual precipitation - historical average)/

standard deviation.

2.2 | CARDAMOM framework

CARDAMOM is built around the DALEC model (Figure S1). DALEC
v2 is a carbon cycle model that uses meteorological inputs to drive
33 parameters that assess aboveground and belowground carbon
and water ecological processes such as photosynthesis and turno-
ver rates (Table S1, Williams et al., 2005). Some examples of these
time-invariant parameters with their respective prior ranges include
fraction of NPP to autotrophic respiration (0.2%-0.8%), fraction of
litter decomposition per day (0.0001-0.01 per day), and initial plant
available water (PAW; 1.0-10,000.0 mm). There is no assumption of
plant functional type in CARDAMOM, eliminating the need to rely
on prior information for model initialization. Parameter optimization
is flexible relative to the meteorological drivers and observational
constraints but is restricted to their respective prior ranges. Thus,
CARDAMOM is advantageous when modeling multiple ecosystems
or in ecosystems with multiple plant species.

DALEC estimates the size and residence times of seven ecosys-
tem pools (Bloom et al., 2020). There are six C pools (gC m'zday'l):
nonstructural carbohydrates (Cy¢ ), leaves (Cp), litter (C)), roots (Cp),
soil organic matter (C,,), woody biomass (C,,), and one PAW pool
(mm). Major flux estimates include GPP allocation to the four live
pools (gCm2day™), Cysc to Cr (gm2day ™) and wood to soil carbon
(m~2day %, Table S2). The DALEC model uses PAW to determine soil
water deficit stress on photosynthesis. The PAW model is similar to a
hydrological “bucket model” and is dynamically derived as the sum of
precipitationinput,and ET and runoff outputs. The ET semi-empirical
parametrization (Boese et al., 2017) is derived using GPP, PAW, and
vapor pressure deficit; the runoff parametrization—representing

T e L

both surface and subsurface lateral water flows (Bloom et al., 2020).
PAW effectively represents the amount of water available to the
rootzone and does not resolve deep or static stores of water un-
available to plants. The PAW state directly influences GPP through a
linear scaling function below a “water stress onset” PAW threshold
value. We expect water parameters (such as the runoff parametri-
zation constant) to be indirectly informed by GPP, since GPP obser-
vations narrow the water balance configurations (i.e., water-related
parameter combinations) that best represent the observed GPP re-
sponses to soil water deficits. Plant biomass losses are represented
by fractional losses from three live biomass C pools (C, Cg, and C,,)
to two dead organic C pools (C, and C,,). Heterotrophic respira-
tion (Rh) is a function of temperature and precipitation—rather than
PAW—given that Rh is expected to be highly correlated with near-
surface moisture, which is more closely related to precipitation.
CARDAMOM is a Bayesian model-data fusion framework that
constrains initial conditions and parameters in DALEC using adaptive
Metropolis-Hastings Markov Chain Monte Carlo (AP-MHMCMC).
The starting values for each of the 33 parameters are selected ran-
domly from a uniform prior distribution. To optimize the values for
each parameter, we use the AP-MHMCMC algorithm to modify the
step size. Likelihood for a suite of parameters for a given iteration
is generated and compared using Bayesian inference across 108
iterations, over four chains. The CARDAMOM framework checks
against 12 ecological dynamical constraints that are simple, de-
fined relationships between certain parameters and help inform the
model of more realistic values between the priors (Table S3, Bloom
& Williams, 2015). For example, turnover rate of soil organic matter
should be slower than that of litter. To reduce parameter uncertainty
and to guide more efficient model development, we can include
multiple observations such as soil organic carbon, aboveground-
belowground biomass or productivity (Famiglietti et al., 2020).
Posterior distributions provide uncertainty estimates for all pa-
rameters, fluxes, and pools. Model output can then be assessed by
comparing posterior distributions to priors and against independent
observations that were not included during model development.

2.3 | Initial-GPP-constrained versus
annual-GPP-constrained models for monitoring
GPP collapse

We perform two CARDAMOM runs using monthly forcings for
DALEC. Inputs from the flux tower are precipitation, temperature,
vapor pressure deficit, and solar irradiance (Goulden et al., 2012).
We collect inputs of monthly CO, atmospheric concentrations
from the Mauna Loa Observatory which vary over time (Keeling &
Keeling, 2017). To constrain initial pools sizes, we use a single esti-
mate of aboveground and belowground biomass from a tree inven-
tory 2009-2010 survey (171 Mgha™, Kelly & Goulden, 2016) and a
time-invariable estimate of soil organic carbon using the Harmonized
World Soil Database (4.88 kng’2, Hiederer & Kochy, 2012). The
only difference between our two CARDAMOM models is the
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number of eddy covariance GPP (GPPEC) observations we include
for model development to guide AP-MHMCMC.

CARDAMOM/ (initial-GPP constrained) uses monthly GPP. for
2011 only to constrain initial conditions and then estimates 2012-
2017 GPP solely based on observed meteorological forcing and
associated climate anomalies. Thus, CARDAMOM, does not lever-
age empirical knowledge of the drought to make predictions and
mostly reflects prior parameter distributions in DALEC. In contrast,
CARDAMOM,. (annual-GPP-constrained) empirically learns from
data as it uses monthly GPP. for the entire period (2011-2017). This
provides parametric constraints on GPP during wet and dry periods
and as a result, assimilates GPP by accounting for time variations of
GPP.. and meteorological forcing. We assess the performance of
CARDAMOM to capture GPP collapse via the correlation coefficient
between assimilated GPP from each CARDAMOM run and GPP.
We also include independent validation of site-specific soil moisture,
eddy covariance ET, and a moderate resolution imaging spectroradi-
ometer (MODIS) estimate of LAl (MOD15A2H, Myneni et al., 2015).
Using four soil moisture probes measuring the top 30cm depths,
we compute interannual change of soil moisture by taking a rolling
12-month mean to reduce the amplitude variation that is associated

with drying/wetting of topsoil.

2.4 | Resolving the mechanistic links between
drought and GPP collapse

We conduct a series of sensitivity scenarios to provide insight on
whether GPP collapse is due to (1) precipitation variability and/or (2)
initial ecosystem C states and water availability using CARDAMOM_..

To test the sensitivity of GPP to changes in precipitation (exper-
iment 1), we conduct a series of perturbed precipitation runs using
CARDAMOM_. parameters and predrought (initial) conditions. We
modify the monthly precipitation in 2014 (an especially low water
year where annual precipitation equals 293 mm) by adding 5%-70%
(in 5% increments) of annual precipitation (1045 mm). For example,
in the 15% perturbation, we compute the sum of 15% annual pre-
cipitation (157 mm) and 2014 precipitation (293 mm) which equals
450 mm. The simulated increase from 293 to 450 mm is equivalent
to 1.536 and we use this factor to multiply the precipitation of each
month. We plot the change in GPP across 14 simulations (Figure S4).
For each simulation, we regress GPP against time (all 48 months be-
tween 2014 and 2017) and extract the slope. We define “recovery”
if the slope is above zero (indicating positive slope) and simulated
GPP in 2017 is approximately 7ng'2day'1. We define the criti-
cal threshold range for precipitation tipping points as the minimum
annual precipitation between GPP collapse and recovery. This ap-
proach allows us to characterize and identify the unstable equilib-
rium (Figure 1c).

From this, we assess how C and water pools can drive changes in
GPP under different precipitation conditions. After determining the
minimum amount of added precipitation required for GPP recovery
(from the above sensitivity analysis), we simulate how C and water

pools change with additional precipitation. We add precipitation
to 2014, the year just prior to GPP collapse. We define the critical
threshold range for ecosystem pool tipping points as the range in
summer peak values from 2015 between collapse and recovery rain-
fall simulations.

We then conduct a dedicated sensitivity simulation to investi-
gate if pre-drought (in this case, 2011 conditions) water or C states
affect the vulnerability of the forest to GPP collapse (experiment
2). We first augment pre-drought PAW to 2250 mm which is equal
to 100% soil moisture in this study and should be seen as a theo-
retical maximum. A maximum PAW of 2250 mm is reasonable given
that other studies have reported 1200mm PAW in southern Sierra
Nevada mid-montane forests (Stocker et al., 2023) and 2017 was
a particularly wet year with 17703 mm annual precipitation. We as-
sume that the rooting depth maximum for the site is 4.5m given
that there is weathered bedrock-hard bedrock boundary at 4.5m
and that porosity for the study area is 0.5. Second, we augment pre-
drought C. in five simulations. We set pre-drought C; to 200gCm™2
which reflects the maximum values observed in this study. We then
include four additional simulations by decreasing pre-drought C.
(44gCm2day™) from 80% to 20%, in 20% increments.

3 | RESULTS
3.1 | Precipitation deficit can lead to GPP collapse

Each year from 2012 to 2015 corresponded with below-average
precipitation at CZO2 (645, 549, 293, 411mmyear®, respec-
tively), with corresponding precipitation deficits and z scores of
397 (38%, -1.130), 493 (47%, -1.40), 749 (72%, -2.16), 632 (61%,
-1.80)mmyear™, respectively (Figure 2a). The interannual vari-
ability of GPP. highlights the effect of the severe drought on the
study forest ecosystem (Figure 2b). At the onset of drought (2011-
2013), summer GPP.. peaks between 7.4 and 7.9gCm“day”’
and winter GPP.. peaks between 2.4 and 2.6gCm2day". From
2014 to 2015, summer GPP . maximum declines to 6.2 and 5.2g
Cm™2day™, respectively, and winter GPP,. maximum declines to
1 and Ong_Zday_l, respectively. The drought ends from 2016
to 2017, with annual precipitation at 903 and 1703mmyear ™.
Although the drought breaks from 2016, summer GPP . maximum
further declines to 2.0-2.1gCm2day™* and winter GPP. remains
at 0gCm2day™ . From 2011 to 2017, there is an approximate 71%-
75% reduction in summer GPP_. and 100% loss of winter GPP.

These data are also presented in Goulden and Bales (2019).

3.2 | Annual-GPP-constrained models can detect
drought-induced GPP collapse

Using annual GPP from 2011 to 2017 to optimize CARDAMOM
carbon-water cycles and associated processes provide a robust rep-
resentation of GPP variability in response to climate. CARDAMOM_
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FIGURE 2 Time series plots showing (a)
precipitation and estimates of GPP.
Annual precipitation in mm (a) was
measured at the eddy covariance tower
(dark blue) and collected from ERA5

(light blue) datasets. The mean annual
precipitation (grey dashed line) for the site
from 1982 to 2010. Estimates of GPP via
eddy covariance [(b), solid black line] and 0

Total P (mm)

ST e L

W= EC annual
®= ERAS5 annual
Mean 1982-2010

CARDAMOM [(b), median, solid orange

line indicates CARDAMOM_. and dashed
purple line indicates CARDAMOM_].
Shaded lines indicate 25-75 percentiles.
Drought years from 2012 to 2015 are

GPP (g C m2 day™)
3
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successfully captures the observed GPP collapse (Figure 2b).
We find good agreement between median CARDAMOM_. GPP
(GPP.) with flux tower (GPP..) observations (Figure 2d, R?=.77,
RMSE=1.2gCm 2day ! and bias=0.24). While the general decline
in GPP.. is well represented in GPP, there are slight amplitude
differences. In 2012-2013, CARDAMOM_.. overestimates GPP and
in 2014-2015, CARDAMOM_. underestimates GPP, peaking later
than that in GPP.. In contrast, we find no indication of GPP col-
lapse when using GPP observations to constrain initial conditions
only (CARDAMOM,,, Figure 2b). Furthermore, the CARDAMOM
GPP (GPP)) seasonal cycle shows peaks that are smaller in ampli-
tude and later in the season. Overall, we find lower agreement of
GPP,, with GPP. (Figure 2c, R?=.31, RMSE=2.3gCm ?day*, and
bias=-1.16). To further support the robustness of CARDAMOM,
we find that PAW estimated from CARDAMOM.. shows strong cor-
relations with an independent validation of soil moisture (R=.7)
compared with CARDAMOM, (R=.6, Figure S2). CARDAMOM_ ET
has a stronger correlation with eddy covariance ET (R=.61) com-
pared with CARDAMOM,, (R=.34, Figure S2). In addition, we find
weak correlations with MODIS LAl and CARDAMOM_. LAI (R=.29,
Figure S2).

There are major differences in parameter estimates be-
tween CARDAMOM runs when only the first year of GPP is

GPPgc (g C m2day™")

assimilated (CARDAMOM,)) and when wet and dry periods are
used (CARDAMOM,.). These differences are largest in plant phe-
nology, photosynthetic and water balance parameters (Figure 3;
Figure S3). CARDAMOM.. has a tightly constrained and short leaf
lifespan of 1.02years (range,; ;5 =1.01-1.04), driven by maximum
leaf fall on day of year 160 (range,; ,;=151-167) and leaf fall
period of 37.5days (range,; ,-=29.9-46.0). Day of bud burst is
bimodal, with peaks at day of year 118 and 253 and median esti-
mate of leaf mass C per area (LMCA) is 52gC m~2 (range,s ;- =35~
72gCm™2). In comparison, CARDAMOMy; is poorly constrained
for leaf phenology parameters (Figure 3). CARDAMOM_. predicts
a higher canopy efficiency of 31.0 (range,; ,;=26.5-36.3) and a
higher water stress threshold of 1083 mm (range,;_,5=953-1217)
compared with CARDAMOM|; (canopy efficiency median=15.7,
range,s 5, =12.0-20.5; water stress threshold median=69.3mm,
range,s ,;=10-225). CARDAMOM.. also predicts much more
constrained estimates of inherent water use efficiency (IWUE)
of 26.0hPagC (kg HZO)'1 (range,s_,5=23.6-29.5) compared
with CARDAMOM; (Figure 3). Including wet and dry periods of
GPP also provides tighter estimates of initial ecosystem states
of PAW of 1154mm (range,; ,;=1032-1281) and lower ini-
tial estimates of foliar C of 47.0gCm™ (range,; 55 =32.0-65.0),
compared with CARDAMOM,; (initial PAW median=619 mm,
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FIGURE 3 Posterior parameter values for CARDAMOM constrained with only the first year (initial-GPP constrained, CARDAMOM,,
orange) and the whole 2011-2017 GPP record (annual-GPP constrained, CARDAMOM_, blue). Points indicate the median, error bars
represent the 25th and 75th percentiles. GPP, gross primary productivity.

range,s ,;=347-1053; initial foliar C median=58.6ng’2

range,s ,s=31.1-104).
3.3 | Reduced PAW can lead to loss of live biomass
pools and ecosystem GPP collapse

GPP collapse in 2017 could have been avoided if at least 157 mm,
15% of the annual average, was added to 2014 (Figure 4). Within

this simulation, we find the 2017 summer GPP. maximum increases
to 7.2ng’2day’1, closely resembling pre-drought GPP. for the
forest (7.4-7.9gCm 2day™) and winter GPP. maximum increase to
1.4gCm 2day™ . Thus, augmenting precipitation in 2014 has a re-
sultant effect to 2017 where the full extent of GPP recovery arises
several years after adding precipitation. The potential critical thresh-
old range for precipitation deficit tipping points could lie between
z scores -2.1 and -1.66 where annual precipitation deficit greater
than -2.1s leads to GPP collapse.
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CARDAMOM( reveals changes in water and C ecosystem states
during drought (Figure 5). PAW closely tracks changes in annual pre-
cipitation (Figures 2a and 5), where it declines from 2011 to 2015
and increases when the drought breaks from 2016. The contrasting
patterns of the C pools demonstrate the legacy effects of drought.
Nonstructural carbohydrates (Cys., Figure 5b), woody biomass
(C\yp. Figure 5b), foliar (C, Figure 5c), litter (C,, Figure 5c), and roots
(Cg. Figure 5d) instead increase from 2011 to 2013. Soil organic C
(Csop) increases from mid-2012 to 2015 (Figure 5d). We find notice-
able declines in Cyqc (72%), C, (69%), Cy, (54%), and C_ (42%) from
2013 to 2015 and pool size remains low through to 2017. The live C

10 70
65
60 X
81 55 3
_cc%‘ 50 &
6 45“2
E 40.3
o 35%
2, %0°g
& 25 &
0] Jzoé
2 15%
—GPP, 103

—.GPP 5

(9]
0

2011 2012 2013 201 2017
FIGURE 4 The change in predicted GPP following a one-time
increase in monthly precipitation in the year prior to GPP collapse
(2014). The blue box indicates that precipitation was added in
2014 only. Added precipitation ranges from 0% to 70% (of annual
precipitation=1045mmyear™) in 5% intervals (color bar). For
comparisons, observed GPP from eddy covariance measurements
(grey line) and median assimilated GPP from model. GPP, gross
primary productivity.
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pool patterns closely track the 49%-67% decline in GPP. and GPP
collapse occurs from 2016. There is a slight offset in timing where
Cy and Cg,, decline from 2014 and 2015, respectively.

To highlight the effect of water ecosystem status on C pools,
we reduce the precipitation deficit in 2014 from -2.16 to -1.66 by
adding 15% (157 mm) of the historical average. Growing season peak
GPP.. increases from ~5gCday™ in 2014 to ~7.1gCday! in 2017.
The simulation results show recovery across all six C pools from
2014 (Figure 5). The small differences between the 2015 summer
peaks of actual and simulated pools indicate a potential minimum
size of C and water state for the growing season; approximately 825
PAWmm and 18gC.m ™%

Pre-drought pool sizes for 2011 water and C ecosystem states
also affect GPP resilience. A maximized pre-drought PAW state of
2250mm supports GPP recovery by 2017 (Figure 6a). When pre-
drought C_ is maximized to 200gC m~2, we instead see earlier and
more severe GPP collapse (Figure 6b). Alternatively, if pre-drought
C; reduces to 18gC.m?, 40% of pre-drought foliar C (44gC.m™),
we see GPP recovery from 2017 (Figure 6b). Overall, we find that
the change in pre-drought conditions (in 2011) leads to noticeable
changes in GPP in the following years (2012-2017).

4 | DISCUSSION

Carbon and water ecosystem states are highly sensitive to precipita-
tion and can impact GPP response of the forest. Severe periods of
multi-year droughts can cause a sustained PAW deficit, leading to a
decline in new production, and subsequent GPP collapse. A drought-
induced tipping point is reached when a gradual decline in C pools

2500
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— Actual drought = -Added precipitation‘ ><104
20 . . <
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FIGURE 5 Time series plots of assimilated median GPP (a, blue line) and modelled median carbon and water pools. Pools include plant
available water (a, orange line), nonstructural carbohydrates (b, blue line), woody biomass (b, orange line), foliar (c, blue line), litter (c, orange
line), roots (d, blue line) and soil organic matter (d, orange line). Solid lines highlight the effect of drought on the forest. Dashed lines show a
hypothetical scenario where 15% of annual precipitation was added to the year of 2014 (157 +293 mm). GPP, gross primary productivity.
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FIGURE 6 The change in predicted GPP following a simulated
change in predrought (a) PAW or (b) C;. states. Scenarios

included a maximum of 2250 PAW (mm), 200gC,. m~2, and
decreases of the predrought C (44gC. m~?) from 80% to 20%,

in 20% increments. For comparisons, observed GPP from eddy
covariance measurements (grey line) is shown. GPP, gross primary
productivity; PAW, plant available water.

leads to an irreversible shift in the ecosystem; in this case, GPP col-
lapse. Our study highlights the sensitivity of a mid-montane, pon-
derosa pine forest to accumulated water deficit, with significant lags
in GPP recovery attributable to previous years' drought conditions.
The tipping point for GPP collapse at the ecosystem scale is com-
plex and challenging to predict. At this pine site with soils composed
of fine, coarse, and sandy loams, the critical threshold range for pre-
cipitation deficit tipping points could lie from -2.1 to -1.66 where
a deficit greater than -2.1¢ (following 2years of sustained drought)
leads to GPP collapse (Figure 7). This ultimately led to significant
canopy and tree mortality, as was observed in this region (Goulden
& Bales, 2019; USFS, 2016). Significant deviations from historical
precipitation averages have driven global tree mortality events. For
example, monthly precipitation z scores were significantly lower
(-0.216+0.03) than the long-term average during a tree mortality
year (Hammond et al., 2022) and every 35 mm decrease from the his-
torical average leads to an increase in tree mortality risk (1.07 times)
and rate (0.85% year'i, Stovall et al., 2019). The 752mm deficit in
2014 (which could equate to an increase of 23 times mortality risk
and 18.3% mortality rate) leads to a PAW estimate of 446 mm, which
is equivalent to 20% soil moisture content. 20% soil moisture levels
are typically associated with largely negative soil water potentials
in weathered granitic soils (Hubbert et al., 2001), which can induce
stomatal closure in drought-stressed plants (Choat et al., 2018).
CARDAMOM_.. highlights the catastrophic feedback between
the C and water cycles that can occur during prolonged drought.
From 2011 to 2015, there is a 75% decline in C. from maximum

(186gC, m~2 in 2013) matching the observed 80% canopy mortality
event in the area (Goulden & Bales, 2019) and decline in LAl ob-
served from MODIS data (Figure S2). Canopy loss is a common plant
response to conserve water under drought (Choat et al., 2018) but
has detrimental effects on GPP and plant C pools. The reinforcing
feedback exacerbates the drought and hinders GPP recovery post-
drought. CARDAMOM_. suggests that canopy-level C starvation is
a result of reduced GPP and could explain the coincident decline in
Cusc and C; however, low NSCs alone are not necessarily a driver
of mortality (Adams et al., 2017). The carbon starvation hypothesis
proposes that as trees exhaust their carbon reserves, they become
more susceptible to further stress and may ultimately die (McDowell
et al., 2008). The decline in available carbohydrates (as a result of
decreases in photosynthesis) can weaken the tree's ability to grow
new tissue, repair damaged structure, or produce defense com-
pounds, making them more vulnerable to secondary stressors such
as insects or disease. Hydraulic failure is another likely cause of for-
est mortality during drought (Choat et al., 2018; Nolan et al., 2021)
and is a possible cause of long-term reduction of forest GPP post-
drought (Skelton et al., 2017). While CARDAMOM does not explic-
itly account for hydraulic failure, attributing reductions in C pools
from reduced GPP with reduced PAW suggests hydraulic failure on
ecosystem C states. Notably, a model like CARDAMOM is unable to
explicitly attribute if carbon starvation or hydraulic failure is or is not
at play here, but including information on the coupled carbon-water
cycle does offer insight.

If ecosystem resilience relies on its ability to gain C, we can as-
sess vulnerability as a function of C and water resources available
for photosynthesis. The availability of resources relies on historical
interactions between ecosystem and climate and can be reflected
by the state of C and water pools. Reducing the severity of drought
in 2014 enables us to quantify the ideal minimum size for these
pools. At this ponderosa pine forest, an additional 157 mm of an-
nual precipitation indicates that the maximum pool size for the 2015
growing season required to avoid GPP collapse should be at least
825PAW mm and <53gCFm'2 (Figure 5). Wetter soils, either during
a stressful year (Figure 5a, PAW =825mm, soil moisture=36%) or
pre-drought (Figure 6a, PAW =2250mm, soil moisture=100%) can
increase forest drought resilience as soil dryness is a long-term driv-
ing factor of widespread forest mortality (Goulden & Bales, 2019).

In contrast, too dense, or too sparse pre-drought forest can-
opy can also affect drought resilience. We simulate pre-drought C,
perturbations to show the damaging effects of frequent drought
cycles on a Californian forest. Reducing pre-drought forest canopy
to 18ng’2 at this site led to GPP recovery, whereas increasing it
to 200ng’2 showed the opposite response—GPP collapse was in-
stead earlier and more severe (Figure 6b). Our findings support the
negative effects of “structural overshoot” where drought-stressed
forests immediately respond to favorable conditions by quickly
expanding their canopy but are then at serious risk of losing too
much water due to the increased leaf area in the event of subse-
quent drought (Jump et al., 2017). Indeed, antecedent structural
overshoot from 2009 to 2012, along with warmer temperatures
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FIGURE 7 The relationship between precipitation deficit in 2014 on pre-drought (a) PAW and (b) C. ecosystem state and how it can lead
to GPP growth or collapse from 2014 to 2017. With increasing precipitation deficit, all ecosystem states gradually decline to an irreversible
state of (A) GPP collapse*, i.e., “tipping point” (Tp), irrespective of ecosystem state value. (a) Availability of water has a positive effect on GPP
where (A) actual drought conditions lead to GPP collapse”, (B) reduce precipitation deficit to 595-648 leads to GPP growth, (C, D) increase
predrought PAW to 2000 or 2250 leads to GPP growth. (b) Predrought C has a non-linear effect on GPP where (A, B) actual drought caused
severe precipitation deficit that could not support a C, state of 44 or 200, leading to GPP collapse”, (C) reduce precipitation deficit to 595-
648 leads to GPP growth, (D) reducing predrought C. to 18 allows GPP growth, (E) very low C. of 09 leads to GPP collapse®. GPP, gross

primary productivity; PAW, plant available water.

and precipitation deficit, drove the severe mortality event in the
Sierra mountains (Goulden & Bales, 2019). We note if C; is too
low (9.2CFm_2), forest productivity remains below 1gCm™2day™
(Figure 6b), suggesting a sweet-spot between the leaf area required
to gain C and to reduce water loss.

It can take years for an ecosystem's response to changing cli-
mate to manifest into a measurable change in ecosystem GPP. Trees
are long-lived and respond to the variability in current and past cli-
mate and soil conditions, leading to potential temporal mismatch
between conditions and ecosystem GPP response (i.e. lagged ef-
fects). For example, deciduous forests can store enough C to replace
the canopy up to four times (Hoch et al., 2003). Our study shows
forest GPP >7.4gCm™2day™ from 2011 to 2013 (Figure 2b) even if
drought starts from 2012 (Figure 2a) and PAW declines from 2011
(Figure 5a).

There is also a time-lag for forest recovery (Figures 4-6). We
show that the sensitivity of GPP recovery increases with time,
where the full extent of recovery is observed 3years following
added precipitation (Figures 4 and 5). Recovery from water stress
can be slow as NSC pools can continue to decline following drought
to cope with initial costs of canopy recovery (Lloret et al., 2018) and
C is needed to repair hydraulic damage due to water stress before
C gain (Ruehr et al., 2019; Trugman et al., 2018). Furthermore, mor-
tality effects can occur years following a drought event in a variety

of forest types (Phillips et al., 2010; Trugman et al., 2018). Thus,
GPP responses are not necessarily reflective of current precipita-
tion conditions but of the previous years (i.e. legacy effects) and can
explain why nonlinear relationships can exist between productivity
and precipitation (Felton et al., 2021). Given that lagged effects can
contribute 64% of the interannual variability of net biosphere ex-
change in the tropics (Bloom et al., 2020), not accounting for this
can lead to large uncertainties in terrestrial C balance and produc-
tivity (Anderegg, Flint, et al., 2015; Anderegg, Schwalm, et al., 2015).
While the mismatch between drought and ecosystem response has
been observed in many studies (Allen et al., 2010; Anderegg, Flint,
et al.,, 2015; Anderegg, Schwalm, et al., 2015; Lloret et al., 2004;
Phillips et al., 2009; Trugman et al., 2018), this statistical challenge
is difficult to resolve without the guidance of long-term data input
from stressful events.

Giventhat CARDAMOM does not use plant species orecosystem-
specific information, it enables flexibility for ecosystem parameters
to better reflect times of stress. GPP observations that cover wet and
drought periods provide critical information that constrains the com-
plex feedback between C and water cycles. Greater water sensitivity
of photosynthesis is a key reason why CARDAMOM_. predicts GPP
well across the whole sequence, whereas CARDAMOM; predicts
the drought period poorly (Figure 2) and provides broad estimates of
many parameters (Figure 3; Figure S3). For example, CARDAMOM_
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shows that this pine forest has leaves that can do higher rates of
photosynthesis but are more sensitive to water compared with
predictions from CARDAMOM ;. Estimated LMCA are also better
constrained in CARDAMOM. (Figure 3, range,; ,5=35-72gC m2)
and the median estimate (52gCm™) is similar to that found in other
North American ponderosa pine stands (52-64g Cm™2, O'Hara &
Nagel, 2006). This contrasts with a less constrained and overesti-
mate from CARDAMOM, (9Ong’2, range25_75:51—136). Plant
trait information from databases like TRY (Kattge et al., 2011) could
be incorporated in future work to further assess model parameter-
izations and provide insight into prior ranges for future models.

CARDAMOM_.. estimates short leaf longevities, a bimodal bud-
burst day and highly seasonal foliar C pools, which are unusual for an
evergreen forest. Our estimate of leaf life span of ~1year for an ev-
ergreen forest would contradict assumptions of this plant functional
type but possibly reflects what is happening (lots of needles drop-
ping) in a particularly drought-stressed forest. Indeed, premature
leaf abscission is a mechanism that both evergreen and deciduous
trees can employ to avoid water stress (Dallstream & Piper, 2021)
and reflects the study area's 80% canopy loss from 2012 to 2015
(Goulden & Bales, 2019). The underestimation of GPP in 2015 via
CARDAMOM.. also suggests that our framework may be overly re-
liant on leaf fall and flushing to capture seasonal changes in GPP at
this site. We find that MODIS LAI shows seasonal changes in LAI
that mirror C. from CARDAMOM_. but are not as severe (Figure S2).
Models that allow forests to adjust leaf longevity in response to
severe drought may warrant consideration in ecosystem models
used for carbon cycle projections and ecological forecasting and
will be important for modeling non-typical ecosystem response
during times of stress. The flexibility during parameterization is a
key strength of the CARDAMOM framework and future work may
need to consider structural changes to the model to better reflect
seasonal dynamics of GPP.

CARDAMOM has a static IWUE, which could be an issue when
covering wet and drought periods, given that stomatal closure under
water stress increases IWUE (Beer et al., 2009). This may explain
the limited performance of CARDAMOM to capture ET (Figure S2).
In this study, we used ET values for validating the model; however,
including ET observations during CARDAMOM development could
help us better understand if IWUE stays constant or changes after
a major mortality event. CARDAMOM_.. also predicts only modest
changes in woody biomass pre- and post-drought. This is because
there is no partitioning of living and non-living woody biomass in
CARDAMOM-—all respiration occurs as a proportion of GPP—and
there is no mechanism for woody biomass mortality. This is unlikely
to impact our results, however, because woody C does not influence
living carbon-water interactions in CARDAMOM. Future models
could benefit from better representations of tree mortality; such
as whole-plant turnover being a function of C availability, and cap-
ping the maximum amount of leaf growth possible per unit area as a
function of live woody biomass. However, this would rely on more
detailed quantitative data that can track changes in living and non-
living woody biomass.

We provide a framework to assess tipping points leading to eco-
system collapse in other forests, enabling better monitoring of for-
est vulnerability. While our study is limited to a single ponderosa
pine forest in California, applying the CARDAMOM framework to
eddy covariance observations of a forest experiencing multi-year
drought allows us to calibrate and track ecosystem processes in situ.
We suggest critical threshold ranges for precipitation deficit tipping
points, which can be tested against other studies that assess the
role of water stress on forests and under future climate scenarios
(Forzieri et al., 2022). Quantifying how far an ecosystem is from a
precipitation deficit tipping points will also provide information on
its resilience to other risk factors such as warming temperatures, for-
est fires, and insect attacks (Knapp et al., 2021; Stovall et al., 2019;
Van Nieuwstadt & Sheil, 2005).
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