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Abstract
More frequent and severe droughts are driving increased forest mortality around the 
globe. We urgently need to describe and predict how drought affects forest carbon 
cycling and identify thresholds of environmental stress that trigger ecosystem col-
lapse. Quantifying the effects of drought at an ecosystem level is complex because 
dynamic climate–plant relationships can cause rapid and/or prolonged shifts in carbon 
balance. We employ the CARbon DAta MOdel fraMework (CARDAMOM) to investi-
gate legacy effects of drought on forest carbon pools and fluxes. Our Bayesian model-
data fusion approach uses tower observed meteorological forcing and carbon fluxes 
to determine the response and sensitivity of aboveground and belowground ecologi-
cal processes associated with the 2012–2015 California drought. Our study area is a 
mid-montane mixed conifer forest in the Southern Sierras. CARDAMOM constrained 
with gross primary productivity (GPP) estimates covering 2011–2017 show a ~75% 
reduction in GPP, compared to negligible GPP change when constrained with 2011 
only. Precipitation across 2012–2015 was 45% (474 mm) lower than the historical av-
erage and drove a cascading depletion in soil moisture and carbon pools (foliar, labile, 
roots, and litter). Adding 157 mm during an especially stressful year (2014, annual 
rainfall = 293 mm) led to a smaller depletion of water and carbon pools, steering the 
ecosystem away from a state of GPP tipping-point collapse to recovery. We present 
novel process-driven insights that demonstrate the sensitivity of GPP collapse to eco-
system foliar carbon and soil moisture states—showing that the full extent of GPP 
response takes several years to arise. Thus, long-term changes in soil moisture and 
carbon pools can provide a mechanistic link between drought and forest mortality. 
Our study provides an example for how key precipitation threshold ranges can in-
fluence forest productivity, making them useful for monitoring and predicting forest 
mortality events.
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1  |  INTRODUC TION

Forests contribute 40% to the global terrestrial carbon (C) flux bud-
get, serving as a major sink of atmospheric C (Harris et al., 2021). 
The potential for forests to maintain acting as a C sink is threatened 
by several climate-related factors, particularly rising temperatures 
and drought (Friedlingstein et al., 2022). “Hotter droughts” are caus-
ing large-scale tree dieback globally (Allen et al., 2015; Hammond 
et al., 2022) and forest mortality events are expected to increase as 
drought becomes more frequent and severe (Brodribb et al., 2020). 
Forest die-off amplifies climate change by directly reducing the for-
est's ability to sequester C and releasing stored C back to the atmo-
sphere. Assessing where, when, and to what extent mortality events 
will occur is critical for quantifying the future of forest carbon cy-
cling worldwide.

Predicting drought-induced mortality is difficult because many 
factors can influence how much stress an ecosystem can endure 
before it collapses. At the tree level, drought stress can result in 
stomatal closure, limiting photosynthesis (Buckley, 2019). Increased 
drought severity can lead to damage in a plant's hydraulic system, 
impacting essential functions such as photosynthesis, growth, and 
reproduction (Choat et al., 2018). At the ecosystem scale, prolonged 
drought over longer time scales (i.e., multiple years) can lead to C 
store depletion, further limiting tree growth, via lagged effects 
(Anderegg, Flint, et al., 2015; Anderegg, Schwalm, et al., 2015). In 
addition, the consequences of drought are further compounded 
as risks of forest fires and insect outbreaks increase (McDowell 
et al., 2020). These processes can limit both the forest's resilience 

to stress and its recovery (Anderegg, Flint, et al., 2015; Anderegg, 
Schwalm, et al., 2015).

Here we examine ecosystem resilience as the capacity to assim-
ilate C at pre-drought conditions following sustained environmen-
tal stress—measured as gross primary productivity (GPP). Extended 
periods of drought stress and extreme temperatures from climate 
change are likely to alter photosynthetic capacity and overall ecosys-
tem function (Brodribb et al., 2020; Hammond et al., 2022). For ex-
ample, drought stress from the severe 2003 European drought was 
linked to 30% reduction in GPP across Europe (Ciais et al., 2005). 
Based on this example, a more resilient forest can either tolerate or 
recover from a water stress event, eventually recovering GPP to pre-
drought conditions. If instead the forest is stressed beyond recovery, 
post-drought GPP may be insufficient for C accumulation and alloca-
tion to plant tissues—in particular, foliar biomass—which, in turn, will 
further reduce GPP. Leaf area index (LAI) is a primary determinant 
of photosynthesis and C allocation (Running & Coughlan, 1988) and 
can explain approximately 33%–80% of the variation in GPP in dif-
ferent ecosystems (Flack-Prain et al., 2019; Street et al., 2007). The 
feedback between declining GPP and declining foliar biomass can in 
principle lead to a partial or complete GPP collapse, indicating a shift 
in the equilibrium state (foliar biomass) and function (GPP) of the 
ecosystem (Figure 1).

The equilibrium state of an ecosystem depends on both external 
forces and its internal processes (Luo & Weng, 2011) which impact 
its ability to photosynthesize. The dynamics of the ecosystem can 
result in systems where a gradual change in the environment can 
cause a drastic, non-recoverable change in the equilibrium state of 

F I G U R E  1  Potential consequences of drought on the state of a forest ecosystem. (a) GPP decreases in a healthy forest ecosystem (black 
line) during (b) sustained drought. Depending on the resilience of the ecosystem, ecosystem GPP recovers under pre-drought precipitation 
levels (green line) or ecosystem GPP falls below the point of recovery and the ecosystem collapses despite precipitation conditions 
improving (red line). (c) The ecosystem state has a direct effect on GPP, and in this context, is primarily controlled by precipitation deficit. 
There is a stable equilibrium state (solid line) between ecosystem state and precipitation deficit until the deficit reaches a tipping point (Tp) 
at which the upper stable equilibrium disappears. The dashed line indicates an unstable equilibrium state and collapse of the ecosystem. The 
arrows represent the trajectory of a return to steady state. GPP, gross primary productivity.
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the ecosystem (Figure 1c). The critical threshold at which an ecosys-
tem can abruptly shift to an alternate state is known as a “tipping 
point” (Angeli et al., 2004). Tipping points can occur across a range of 
spatial and temporal scales where disturbances like climate change 
and deforestation can cause dramatic shifts in vegetation type and/
or ecosystem function (Reyer et al., 2015). Despite many theoretical 
models that describe critical thresholds (Luo & Weng, 2011; Scheffer 
et al., 2001), and numerous observations of ecosystem change and 
collapse (Allen et al., 2010; Anderegg, Flint, et al., 2015; Anderegg, 
Schwalm, et al., 2015; Van Mantgem et al., 2009), quantifying where 
tipping points lie through well-defined metrics remains extremely 
difficult (Allen et al., 2015; Forzieri et al., 2022; Trugman et al., 2021).

Californian forests have suffered many severe and prolonged 
droughts, making it an ideal study area for assessing drought-induced 
tipping points. A remarkable drought in 2012–2015 is considered the 
most severe in the last 1200 years (Griffin & Anchukaitis, 2014) and 
led to the mortality of an estimated 30.8 million trees (Goulden & 
Bales, 2019; USFS, 2016). Here, we use an eddy covariance site in 
the southern Sierra Nevada mountains—located in one of the most 
severely affected forests (Goulden et al., 2012). This mid-montane, 
ponderosa pine forest experienced 80% canopy mortality from 
2011 to 2015 (Goulden & Bales, 2019). Severe soil moisture over-
draft from 5 to 15 m soil depth drove tree death at this study site 
and across the Sierra Nevada (Goulden & Bales, 2019). This dataset 
provides a unique opportunity for identifying where precipitation 
induced tipping points for forests could lie and how droughts can 
irreversibly affect forest C balance.

Multi-year in situ observations provide critical evidence for the 
processes regulating drought-recovery cycles in disturbed forests. 
Ecosystem structural and C cycle observations, including leaf area 
estimates, eddy covariance flux tower measurements of net eco-
system exchange, and derived estimates of GPP, can all help con-
strain and resolve the temporal evolution of ecosystem C cycling 
and their responses to environmental forcings (Bloom et al., 2020). 
Furthermore, reconciling land surface observations with mechanis-
tic C cycle models can provide additional constraints on unknown 
process parameters, including biomass C states, uncertain allocation 
and turnover rate parameters, and the overall sensitivity of eco-
system fluxes to climatic variability (Bloom & Williams, 2015; Clark 
et al., 2011). To this end, terrestrial biosphere models that optimize 
dynamic constraints on ecosystem parameters against diverse ob-
servations tend to show better predictive performance (Famiglietti 
et al., 2020).

The CARbon DAta MOdel fraMework (CARDAMOM) provides 
a mechanistic framework for reconciling ecosystem C cycle dy-
namics with observations (Bloom & Williams, 2015). A key advan-
tage of CARDAMOM compared to other models is that it does not 
rely on plant functional type information or prior assumptions of 
plant traits. CARDAMOM has successfully revealed the effect of 
fire decline on the tropical land C sink (Yin et al., 2020), the con-
current effects of disturbance history on tropical carbon balance 
(Bloom et al., 2020), the state of global terrestrial C balance (Bloom 
et al., 2016), and helped diagnose climate variability on evergreen 

GPP (Stettz et al.,  2021). CARDAMOM is a Bayesian model-data 
fusion approach that uses meteorological forcings and land-surface 
observations to estimate time-invariant parameters and initial C and 
water states (Bloom et al., 2020; Bloom & Williams, 2015). This pro-
vides a continuous and self-consistent mechanistic representation of 
climate-forced C and water cycling, permitting a more mechanistic 
diagnosis of processes such as GPP collapse. The Data Assimilation 
Linked Ecosystem Carbon model (DALEC; Williams et al., 2005) is 
a key component of CARDAMOM, representing the key processes 
regulating ecosystem carbon storage and allocation. These include 
internal C processes, such as the transfer across pools (e.g., foliar, 
woody biomass, soil organic carbon), and external forces, such as 
climate, that together drive the C balance of an ecosystem (Luo & 
Weng,  2011). Thus, the ecosystem carbon states and their inter-
actions with climate affect an ecosystem's ability to gain carbon 
through GPP, allowing inference into the potential collapse in forest 
productivity by tracking these pools over time.

In this study, we use multi-year in situ GPP observations to re-
solve and assess forest ecosystem drought-induced tipping points; 
specifically, we address four questions: (1) How well can we capture 
forest productivity collapse using a terrestrial biosphere model that 
is constrained with GPP observations? (2) How does drought affect 
intra- and inter-annual forest carbon dynamics? (3) Did the precipi-
tation deficit exceed an ecosystem critical tipping point and how can 
we use CARDAMOM to help inform the mechanistic cause of this? 
And (4) Would GPP collapse have been avoidable under higher pre-
drought foliar C or wetter soil states? To address these questions, 
we integrate tower-based net ecosystem C exchanges and meteoro-
logical drivers within the CARDAMOM Bayesian model-data fusion 
framework. Furthermore, we use the emergent ecosystem C and 
water cycle dynamics to quantitatively resolve the mechanistic links 
between precipitation deficits on observed GPP declines. In the 
face of uncertainty on ecosystem dynamics, CARDAMOM provides 
a unique opportunity to reconcile observed C fluxes and states with 
underlying model parameters to resolve the processes at play during 
drought-induced GPP collapse.

2  |  METHODS

To address the questions outlined above, we (1) analyze the trajec-
tory of ecosystem carbon fluxes and states from in situ and modeled 
estimates, (2) integrate data into the CARDAMOM model-data fu-
sion framework and (3) assess the sensitivity of GPP to changes in C 
and water ecosystem states. We describe datasets and CARDAMOM 
framework in Sections 2.1–2.3 and simulations in Section 2.4.

2.1  |  Study area and data collection

The study area in the Southern Sierras was severely affected by the 
2012–2015 California drought (Goulden & Bales, 2019). We focus 
on the Southern Sierra Critical Zone Observatory eddy covariance 
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tower denoted “CZO2” (37.03106, −119.2566). The site is at an el-
evation of 1160 m and dominated by ponderosa pine forest (Pinus 
ponderosa) with some Californian black oak (Quercus kelloggii) and 
incense cedar and (Calocedrus decurrens). Soils at the site consist 
of fine, coarse, and sandy loams derived from granitic parent ma-
terial, with a weathered bedrock-hard bedrock boundary at 4.5 m 
(O'Geen et al., 2018). A 40 m eddy covariance flux tower collected 
data from 2011 to 2017 including CO2 exchange, evapotranspira-
tion (ET), and meteorology data averaged at half-hourly intervals 
(Goulden et al., 2012). Half-hourly gross ecosystem exchange was 
calculated as the difference between observed net ecosystem ex-
change and respiration, using the nighttime partitioning method 
over 30-day periods (Goulden et al., 2012) and we used these val-
ues to derive a monthly GPP for the site. Historical precipitation 
data for the area were determined from the ERA5 reanalysis data-
set (resolution is 9 km on a reduced Gaussian grid at 1 h; Hersbach 
et al., 2018). Annual precipitation is calculated using the water year, 
October to September. From 1982 to 2010, the historical annual av-
erage precipitation was 1045 mm year−1, with a standard deviation 
of 352 mm year−1. To quantify precipitation deficits, we calculate the 
anomaly using z scores by (annual precipitation – historical average)/
standard deviation.

2.2  |  CARDAMOM framework

CARDAMOM is built around the DALEC model (Figure S1). DALEC 
v2 is a carbon cycle model that uses meteorological inputs to drive 
33 parameters that assess aboveground and belowground carbon 
and water ecological processes such as photosynthesis and turno-
ver rates (Table S1, Williams et al., 2005). Some examples of these 
time-invariant parameters with their respective prior ranges include 
fraction of NPP to autotrophic respiration (0.2%–0.8%), fraction of 
litter decomposition per day (0.0001–0.01 per day), and initial plant 
available water (PAW; 1.0–10,000.0 mm). There is no assumption of 
plant functional type in CARDAMOM, eliminating the need to rely 
on prior information for model initialization. Parameter optimization 
is flexible relative to the meteorological drivers and observational 
constraints but is restricted to their respective prior ranges. Thus, 
CARDAMOM is advantageous when modeling multiple ecosystems 
or in ecosystems with multiple plant species.

DALEC estimates the size and residence times of seven ecosys-
tem pools (Bloom et al., 2020). There are six C pools (g C m−2 day−1): 
nonstructural carbohydrates (CNSC), leaves (CF), litter (CL), roots (CR), 
soil organic matter (CSOM), woody biomass (CW), and one PAW pool 
(mm). Major flux estimates include GPP allocation to the four live 
pools (g C m−2 day−1), CNSC to CF (g m−2 day−1) and wood to soil carbon 
(m−2 day−1, Table S2). The DALEC model uses PAW to determine soil 
water deficit stress on photosynthesis. The PAW model is similar to a 
hydrological “bucket model” and is dynamically derived as the sum of 
precipitation input, and ET and runoff outputs. The ET semi-empirical 
parametrization (Boese et al., 2017) is derived using GPP, PAW, and 
vapor pressure deficit; the runoff parametrization—representing 

both surface and subsurface lateral water flows (Bloom et al., 2020). 
PAW effectively represents the amount of water available to the 
rootzone and does not resolve deep or static stores of water un-
available to plants. The PAW state directly influences GPP through a 
linear scaling function below a “water stress onset” PAW threshold 
value. We expect water parameters (such as the runoff parametri-
zation constant) to be indirectly informed by GPP, since GPP obser-
vations narrow the water balance configurations (i.e., water-related 
parameter combinations) that best represent the observed GPP re-
sponses to soil water deficits. Plant biomass losses are represented 
by fractional losses from three live biomass C pools (CF, CR, and CW) 
to two dead organic C pools (CL and CSOM). Heterotrophic respira-
tion (Rh) is a function of temperature and precipitation—rather than 
PAW—given that Rh is expected to be highly correlated with near-
surface moisture, which is more closely related to precipitation.

CARDAMOM is a Bayesian model-data fusion framework that 
constrains initial conditions and parameters in DALEC using adaptive 
Metropolis-Hastings Markov Chain Monte Carlo (AP-MHMCMC). 
The starting values for each of the 33 parameters are selected ran-
domly from a uniform prior distribution. To optimize the values for 
each parameter, we use the AP-MHMCMC algorithm to modify the 
step size. Likelihood for a suite of parameters for a given iteration 
is generated and compared using Bayesian inference across 108 
iterations, over four chains. The CARDAMOM framework checks 
against 12 ecological dynamical constraints that are simple, de-
fined relationships between certain parameters and help inform the 
model of more realistic values between the priors (Table S3, Bloom 
& Williams, 2015). For example, turnover rate of soil organic matter 
should be slower than that of litter. To reduce parameter uncertainty 
and to guide more efficient model development, we can include 
multiple observations such as soil organic carbon, aboveground–
belowground biomass or productivity (Famiglietti et al.,  2020). 
Posterior distributions provide uncertainty estimates for all pa-
rameters, fluxes, and pools. Model output can then be assessed by 
comparing posterior distributions to priors and against independent 
observations that were not included during model development.

2.3  |  Initial-GPP-constrained versus 
annual-GPP-constrained models for monitoring 
GPP collapse

We perform two CARDAMOM runs using monthly forcings for 
DALEC. Inputs from the flux tower are precipitation, temperature, 
vapor pressure deficit, and solar irradiance (Goulden et al.,  2012). 
We collect inputs of monthly CO2 atmospheric concentrations 
from the Mauna Loa Observatory which vary over time (Keeling & 
Keeling, 2017). To constrain initial pools sizes, we use a single esti-
mate of aboveground and belowground biomass from a tree inven-
tory 2009–2010 survey (171 Mg ha−1, Kelly & Goulden, 2016) and a 
time-invariable estimate of soil organic carbon using the Harmonized 
World Soil Database (4.88 kg C m−2, Hiederer & Köchy,  2012). The 
only difference between our two CARDAMOM models is the 
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number of eddy covariance GPP (GPPEC) observations we include 
for model development to guide AP-MHMCMC.

CARDAMOMU (initial-GPP constrained) uses monthly GPPEC for 
2011 only to constrain initial conditions and then estimates 2012–
2017 GPP solely based on observed meteorological forcing and 
associated climate anomalies. Thus, CARDAMOMU does not lever-
age empirical knowledge of the drought to make predictions and 
mostly reflects prior parameter distributions in DALEC. In contrast, 
CARDAMOMC (annual-GPP-constrained) empirically learns from 
data as it uses monthly GPPEC for the entire period (2011–2017). This 
provides parametric constraints on GPP during wet and dry periods 
and as a result, assimilates GPP by accounting for time variations of 
GPPEC and meteorological forcing. We assess the performance of 
CARDAMOM to capture GPP collapse via the correlation coefficient 
between assimilated GPP from each CARDAMOM run and GPPEC. 
We also include independent validation of site-specific soil moisture, 
eddy covariance ET, and a moderate resolution imaging spectroradi-
ometer (MODIS) estimate of LAI (MOD15A2H, Myneni et al., 2015). 
Using four soil moisture probes measuring the top 30 cm depths, 
we compute interannual change of soil moisture by taking a rolling 
12-month mean to reduce the amplitude variation that is associated 
with drying/wetting of topsoil.

2.4  |  Resolving the mechanistic links between 
drought and GPP collapse

We conduct a series of sensitivity scenarios to provide insight on 
whether GPP collapse is due to (1) precipitation variability and/or (2) 
initial ecosystem C states and water availability using CARDAMOMC.

To test the sensitivity of GPP to changes in precipitation (exper-
iment 1), we conduct a series of perturbed precipitation runs using 
CARDAMOMC parameters and predrought (initial) conditions. We 
modify the monthly precipitation in 2014 (an especially low water 
year where annual precipitation equals 293 mm) by adding 5%–70% 
(in 5% increments) of annual precipitation (1045 mm). For example, 
in the 15% perturbation, we compute the sum of 15% annual pre-
cipitation (157 mm) and 2014 precipitation (293 mm) which equals 
450 mm. The simulated increase from 293 to 450 mm is equivalent 
to 1.536 and we use this factor to multiply the precipitation of each 
month. We plot the change in GPP across 14 simulations (Figure S4). 
For each simulation, we regress GPP against time (all 48 months be-
tween 2014 and 2017) and extract the slope. We define “recovery” 
if the slope is above zero (indicating positive slope) and simulated 
GPP in 2017 is approximately 7 g C m−2 day−1. We define the criti-
cal threshold range for precipitation tipping points as the minimum 
annual precipitation between GPP collapse and recovery. This ap-
proach allows us to characterize and identify the unstable equilib-
rium (Figure 1c).

From this, we assess how C and water pools can drive changes in 
GPP under different precipitation conditions. After determining the 
minimum amount of added precipitation required for GPP recovery 
(from the above sensitivity analysis), we simulate how C and water 

pools change with additional precipitation. We add precipitation 
to 2014, the year just prior to GPP collapse. We define the critical 
threshold range for ecosystem pool tipping points as the range in 
summer peak values from 2015 between collapse and recovery rain-
fall simulations.

We then conduct a dedicated sensitivity simulation to investi-
gate if pre-drought (in this case, 2011 conditions) water or C states 
affect the vulnerability of the forest to GPP collapse (experiment 
2). We first augment pre-drought PAW to 2250 mm which is equal 
to 100% soil moisture in this study and should be seen as a theo-
retical maximum. A maximum PAW of 2250 mm is reasonable given 
that other studies have reported 1200 mm PAW in southern Sierra 
Nevada mid-montane forests (Stocker et al.,  2023) and 2017 was 
a particularly wet year with 1703 mm annual precipitation. We as-
sume that the rooting depth maximum for the site is 4.5 m given 
that there is weathered bedrock–hard bedrock boundary at 4.5 m 
and that porosity for the study area is 0.5. Second, we augment pre-
drought CF in five simulations. We set pre-drought CF to 200 g C m−2 
which reflects the maximum values observed in this study. We then 
include four additional simulations by decreasing pre-drought CF 
(44 g C m−2 day−1) from 80% to 20%, in 20% increments.

3  |  RESULTS

3.1  |  Precipitation deficit can lead to GPP collapse

Each year from 2012 to 2015 corresponded with below-average 
precipitation at CZO2 (645, 549, 293, 411 mm year−1, respec-
tively), with corresponding precipitation deficits and z scores of 
397 (38%, −1.13σ), 493 (47%, −1.4σ), 749 (72%, −2.1σ), 632 (61%, 
−1.8σ) mm year−1, respectively (Figure  2a). The interannual vari-
ability of GPPEC highlights the effect of the severe drought on the 
study forest ecosystem (Figure 2b). At the onset of drought (2011–
2013), summer GPPEC peaks between 7.4 and 7.9 g C m−2 day−1 
and winter GPPEC peaks between 2.4 and 2.6 g C m−2 day−1. From 
2014 to 2015, summer GPPEC maximum declines to 6.2 and 5.2 g 
C m−2 day−1, respectively, and winter GPPEC maximum declines to 
1 and 0 g C m−2 day−1, respectively. The drought ends from 2016 
to 2017, with annual precipitation at 903 and 1703 mm year−1. 
Although the drought breaks from 2016, summer GPPEC maximum 
further declines to 2.0–2.1 g C m−2 day−1 and winter GPPEC remains 
at 0 g C m−2 day−1. From 2011 to 2017, there is an approximate 71%–
75% reduction in summer GPPEC and 100% loss of winter GPPEC. 
These data are also presented in Goulden and Bales (2019).

3.2  |  Annual-GPP-constrained models can detect 
drought-induced GPP collapse

Using annual GPP from 2011 to 2017 to optimize CARDAMOM 
carbon–water cycles and associated processes provide a robust rep-
resentation of GPP variability in response to climate. CARDAMOMC 
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successfully captures the observed GPP collapse (Figure  2b). 
We find good agreement between median CARDAMOMC GPP 
(GPPC) with flux tower (GPPEC) observations (Figure  2d, R2 = .77, 
RMSE = 1.2 g C m−2 day−1 and bias = 0.24). While the general decline 
in GPPEC is well represented in GPPC, there are slight amplitude 
differences. In 2012–2013, CARDAMOMC overestimates GPP and 
in 2014–2015, CARDAMOMC underestimates GPP, peaking later 
than that in GPPEC. In contrast, we find no indication of GPP col-
lapse when using GPP observations to constrain initial conditions 
only (CARDAMOMU, Figure  2b). Furthermore, the CARDAMOMU 
GPP (GPPU) seasonal cycle shows peaks that are smaller in ampli-
tude and later in the season. Overall, we find lower agreement of 
GPPU with GPPEC (Figure 2c, R2 = .31, RMSE = 2.3 g C m−2 day−1, and 
bias = −1.16). To further support the robustness of CARDAMOMC, 
we find that PAW estimated from CARDAMOMC shows strong cor-
relations with an independent validation of soil moisture (R = .7) 
compared with CARDAMOMU (R = .6, Figure S2). CARDAMOMC ET 
has a stronger correlation with eddy covariance ET (R = .61) com-
pared with CARDAMOMU (R = .34, Figure S2). In addition, we find 
weak correlations with MODIS LAI and CARDAMOMC LAI (R = .29, 
Figure S2).

There are major differences in parameter estimates be-
tween CARDAMOM runs when only the first year of GPP is 

assimilated (CARDAMOMU) and when wet and dry periods are 
used (CARDAMOMC). These differences are largest in plant phe-
nology, photosynthetic and water balance parameters (Figure  3; 
Figure S3). CARDAMOMC has a tightly constrained and short leaf 
lifespan of 1.02 years (range25–75 = 1.01–1.04), driven by maximum 
leaf fall on day of year 160 (range25–75 = 151–167) and leaf fall 
period of 37.5 days (range25–75 = 29.9–46.0). Day of bud burst is 
bimodal, with peaks at day of year 118 and 253 and median esti-
mate of leaf mass C per area (LMCA) is 52 g C m−2 (range25–75 = 35–
72 g C m−2). In comparison, CARDAMOMU is poorly constrained 
for leaf phenology parameters (Figure 3). CARDAMOMC predicts 
a higher canopy efficiency of 31.0 (range25–75 = 26.5–36.3) and a 
higher water stress threshold of 1083 mm (range25–75 = 953–1217) 
compared with CARDAMOMU (canopy efficiency median = 15.7, 
range25–75 = 12.0–20.5; water stress threshold median = 69.3 mm, 
range25–75 = 10–225). CARDAMOMC also predicts much more 
constrained estimates of inherent water use efficiency (IWUE) 
of 26.0 hPa g C (kg H2O)−1 (range25–75 = 23.6–29.5) compared 
with CARDAMOMU (Figure  3). Including wet and dry periods of 
GPP also provides tighter estimates of initial ecosystem states 
of PAW of 1154 mm (range25–75 = 1032–1281) and lower ini-
tial estimates of foliar C of 47.0 g C m−2 (range25–75 = 32.0–65.0), 
compared with CARDAMOMU (initial PAW median = 619 mm, 

F I G U R E  2  Time series plots showing 
precipitation and estimates of GPP. 
Annual precipitation in mm (a) was 
measured at the eddy covariance tower 
(dark blue) and collected from ERA5 
(light blue) datasets. The mean annual 
precipitation (grey dashed line) for the site 
from 1982 to 2010. Estimates of GPP via 
eddy covariance [(b), solid black line] and 
CARDAMOM [(b), median, solid orange 
line indicates CARDAMOMC and dashed 
purple line indicates CARDAMOMU]. 
Shaded lines indicate 25–75 percentiles. 
Drought years from 2012 to 2015 are 
marked by the yellow shaded area (b). 
Scatter plots indicate the performance 
of initial-GPP constrained CARDAMOM 
(c) and annual-GPP constrained 
CARDAMOM against GPP observations 
from eddy covariance (d). GPP, gross 
primary productivity.
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range25–75 = 347–1053; initial foliar C median = 58.6 g C m−2, 
range25–75 = 31.1–104).

3.3  |  Reduced PAW can lead to loss of live biomass 
pools and ecosystem GPP collapse

GPP collapse in 2017 could have been avoided if at least 157 mm, 
15% of the annual average, was added to 2014 (Figure  4). Within 

this simulation, we find the 2017 summer GPPC maximum increases 
to 7.2 g C m−2 day−1, closely resembling pre-drought GPPC for the 
forest (7.4–7.9 g C m−2 day−1) and winter GPPC maximum increase to 
1.4 g C m−2 day−1. Thus, augmenting precipitation in 2014 has a re-
sultant effect to 2017 where the full extent of GPP recovery arises 
several years after adding precipitation. The potential critical thresh-
old range for precipitation deficit tipping points could lie between 
z scores −2.1 and −1.6σ where annual precipitation deficit greater 
than −2.1σ leads to GPP collapse.

F I G U R E  3  Posterior parameter values for CARDAMOM constrained with only the first year (initial-GPP constrained, CARDAMOMU, 
orange) and the whole 2011–2017 GPP record (annual-GPP constrained, CARDAMOMC, blue). Points indicate the median, error bars 
represent the 25th and 75th percentiles. GPP, gross primary productivity.
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CARDAMOMC reveals changes in water and C ecosystem states 
during drought (Figure 5). PAW closely tracks changes in annual pre-
cipitation (Figures 2a and 5), where it declines from 2011 to 2015 
and increases when the drought breaks from 2016. The contrasting 
patterns of the C pools demonstrate the legacy effects of drought. 
Nonstructural carbohydrates (CNSC, Figure  5b), woody biomass 
(CWB, Figure 5b), foliar (CF, Figure 5c), litter (CL, Figure 5c), and roots 
(CR, Figure 5d) instead increase from 2011 to 2013. Soil organic C 
(CSOM) increases from mid-2012 to 2015 (Figure 5d). We find notice-
able declines in CNSC (72%), CF, (69%), CR (54%), and CL (42%) from 
2013 to 2015 and pool size remains low through to 2017. The live C 

pool patterns closely track the 49%–67% decline in GPPC and GPP 
collapse occurs from 2016. There is a slight offset in timing where 
CW and CSOM decline from 2014 and 2015, respectively.

To highlight the effect of water ecosystem status on C pools, 
we reduce the precipitation deficit in 2014 from −2.1σ to −1.6σ by 
adding 15% (157 mm) of the historical average. Growing season peak 
GPPC increases from ~5 g C day−1 in 2014 to ~7.1 g C day−1 in 2017. 
The simulation results show recovery across all six C pools from 
2014 (Figure 5). The small differences between the 2015 summer 
peaks of actual and simulated pools indicate a potential minimum 
size of C and water state for the growing season; approximately 825 
PAW mm and 18 g CF m−2.

Pre-drought pool sizes for 2011 water and C ecosystem states 
also affect GPP resilience. A maximized pre-drought PAW state of 
2250 mm supports GPP recovery by 2017 (Figure  6a). When pre-
drought CF is maximized to 200 g C m−2, we instead see earlier and 
more severe GPP collapse (Figure 6b). Alternatively, if pre-drought 
CF reduces to 18 g CF m−2, 40% of pre-drought foliar C (44 g CF m−2), 
we see GPP recovery from 2017 (Figure 6b). Overall, we find that 
the change in pre-drought conditions (in 2011) leads to noticeable 
changes in GPP in the following years (2012–2017).

4  |  DISCUSSION

Carbon and water ecosystem states are highly sensitive to precipita-
tion and can impact GPP response of the forest. Severe periods of 
multi-year droughts can cause a sustained PAW deficit, leading to a 
decline in new production, and subsequent GPP collapse. A drought-
induced tipping point is reached when a gradual decline in C pools 

F I G U R E  4  The change in predicted GPP following a one-time 
increase in monthly precipitation in the year prior to GPP collapse 
(2014). The blue box indicates that precipitation was added in 
2014 only. Added precipitation ranges from 0% to 70% (of annual 
precipitation = 1045 mm year−1) in 5% intervals (color bar). For 
comparisons, observed GPP from eddy covariance measurements 
(grey line) and median assimilated GPP from model. GPP, gross 
primary productivity.

F I G U R E  5  Time series plots of assimilated median GPP (a, blue line) and modelled median carbon and water pools. Pools include plant 
available water (a, orange line), nonstructural carbohydrates (b, blue line), woody biomass (b, orange line), foliar (c, blue line), litter (c, orange 
line), roots (d, blue line) and soil organic matter (d, orange line). Solid lines highlight the effect of drought on the forest. Dashed lines show a 
hypothetical scenario where 15% of annual precipitation was added to the year of 2014 (157 + 293 mm). GPP, gross primary productivity.
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leads to an irreversible shift in the ecosystem; in this case, GPP col-
lapse. Our study highlights the sensitivity of a mid-montane, pon-
derosa pine forest to accumulated water deficit, with significant lags 
in GPP recovery attributable to previous years' drought conditions.

The tipping point for GPP collapse at the ecosystem scale is com-
plex and challenging to predict. At this pine site with soils composed 
of fine, coarse, and sandy loams, the critical threshold range for pre-
cipitation deficit tipping points could lie from −2.1 to −1.6σ where 
a deficit greater than −2.1σ (following 2 years of sustained drought) 
leads to GPP collapse (Figure  7). This ultimately led to significant 
canopy and tree mortality, as was observed in this region (Goulden 
& Bales,  2019; USFS,  2016). Significant deviations from historical 
precipitation averages have driven global tree mortality events. For 
example, monthly precipitation z scores were significantly lower 
(−0.21σ ± 0.03) than the long-term average during a tree mortality 
year (Hammond et al., 2022) and every 35 mm decrease from the his-
torical average leads to an increase in tree mortality risk (1.07 times) 
and rate (0.85% year−1, Stovall et al., 2019). The 752 mm deficit in 
2014 (which could equate to an increase of 23 times mortality risk 
and 18.3% mortality rate) leads to a PAW estimate of 446 mm, which 
is equivalent to 20% soil moisture content. 20% soil moisture levels 
are typically associated with largely negative soil water potentials 
in weathered granitic soils (Hubbert et al., 2001), which can induce 
stomatal closure in drought-stressed plants (Choat et al., 2018).

CARDAMOMC highlights the catastrophic feedback between 
the C and water cycles that can occur during prolonged drought. 
From 2011 to 2015, there is a 75% decline in CF from maximum 

(186 g CF m−2 in 2013) matching the observed 80% canopy mortality 
event in the area (Goulden & Bales,  2019) and decline in LAI ob-
served from MODIS data (Figure S2). Canopy loss is a common plant 
response to conserve water under drought (Choat et al., 2018) but 
has detrimental effects on GPP and plant C pools. The reinforcing 
feedback exacerbates the drought and hinders GPP recovery post-
drought. CARDAMOMC suggests that canopy-level C starvation is 
a result of reduced GPP and could explain the coincident decline in 
CNSC and CF; however, low NSCs alone are not necessarily a driver 
of mortality (Adams et al., 2017). The carbon starvation hypothesis 
proposes that as trees exhaust their carbon reserves, they become 
more susceptible to further stress and may ultimately die (McDowell 
et al., 2008). The decline in available carbohydrates (as a result of 
decreases in photosynthesis) can weaken the tree's ability to grow 
new tissue, repair damaged structure, or produce defense com-
pounds, making them more vulnerable to secondary stressors such 
as insects or disease. Hydraulic failure is another likely cause of for-
est mortality during drought (Choat et al., 2018; Nolan et al., 2021) 
and is a possible cause of long-term reduction of forest GPP post-
drought (Skelton et al., 2017). While CARDAMOM does not explic-
itly account for hydraulic failure, attributing reductions in C pools 
from reduced GPP with reduced PAW suggests hydraulic failure on 
ecosystem C states. Notably, a model like CARDAMOM is unable to 
explicitly attribute if carbon starvation or hydraulic failure is or is not 
at play here, but including information on the coupled carbon–water 
cycle does offer insight.

If ecosystem resilience relies on its ability to gain C, we can as-
sess vulnerability as a function of C and water resources available 
for photosynthesis. The availability of resources relies on historical 
interactions between ecosystem and climate and can be reflected 
by the state of C and water pools. Reducing the severity of drought 
in 2014 enables us to quantify the ideal minimum size for these 
pools. At this ponderosa pine forest, an additional 157 mm of an-
nual precipitation indicates that the maximum pool size for the 2015 
growing season required to avoid GPP collapse should be at least 
825 PAW mm and 63 g CF m−2 (Figure 5). Wetter soils, either during 
a stressful year (Figure  5a, PAW = 825 mm, soil moisture = 36%) or 
pre-drought (Figure 6a, PAW = 2250 mm, soil moisture = 100%) can 
increase forest drought resilience as soil dryness is a long-term driv-
ing factor of widespread forest mortality (Goulden & Bales, 2019).

In contrast, too dense, or too sparse pre-drought forest can-
opy can also affect drought resilience. We simulate pre-drought CF 
perturbations to show the damaging effects of frequent drought 
cycles on a Californian forest. Reducing pre-drought forest canopy 
to 18 g C m−2 at this site led to GPP recovery, whereas increasing it 
to 200 g C m−2 showed the opposite response—GPP collapse was in-
stead earlier and more severe (Figure 6b). Our findings support the 
negative effects of “structural overshoot” where drought-stressed 
forests immediately respond to favorable conditions by quickly 
expanding their canopy but are then at serious risk of losing too 
much water due to the increased leaf area in the event of subse-
quent drought (Jump et al.,  2017). Indeed, antecedent structural 
overshoot from 2009 to 2012, along with warmer temperatures 

F I G U R E  6  The change in predicted GPP following a simulated 
change in predrought (a) PAW or (b) CF states. Scenarios 
included a maximum of 2250 PAW (mm), 200 g CF m−2, and 
decreases of the predrought CF (44 g CF m−2) from 80% to 20%, 
in 20% increments. For comparisons, observed GPP from eddy 
covariance measurements (grey line) is shown. GPP, gross primary 
productivity; PAW, plant available water.
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and precipitation deficit, drove the severe mortality event in the 
Sierra mountains (Goulden & Bales,  2019). We note if CF is too 
low (9.2 CF m−2), forest productivity remains below 1 g C m−2 day−1 
(Figure 6b), suggesting a sweet-spot between the leaf area required 
to gain C and to reduce water loss.

It can take years for an ecosystem's response to changing cli-
mate to manifest into a measurable change in ecosystem GPP. Trees 
are long-lived and respond to the variability in current and past cli-
mate and soil conditions, leading to potential temporal mismatch 
between conditions and ecosystem GPP response (i.e. lagged ef-
fects). For example, deciduous forests can store enough C to replace 
the canopy up to four times (Hoch et al., 2003). Our study shows 
forest GPP >7.4 g C m−2 day−1 from 2011 to 2013 (Figure 2b) even if 
drought starts from 2012 (Figure 2a) and PAW declines from 2011 
(Figure 5a).

There is also a time-lag for forest recovery (Figures  4–6). We 
show that the sensitivity of GPP recovery increases with time, 
where the full extent of recovery is observed 3 years following 
added precipitation (Figures 4 and 5). Recovery from water stress 
can be slow as NSC pools can continue to decline following drought 
to cope with initial costs of canopy recovery (Lloret et al., 2018) and 
C is needed to repair hydraulic damage due to water stress before 
C gain (Ruehr et al., 2019; Trugman et al., 2018). Furthermore, mor-
tality effects can occur years following a drought event in a variety 

of forest types (Phillips et al.,  2010; Trugman et al.,  2018). Thus, 
GPP responses are not necessarily reflective of current precipita-
tion conditions but of the previous years (i.e. legacy effects) and can 
explain why nonlinear relationships can exist between productivity 
and precipitation (Felton et al., 2021). Given that lagged effects can 
contribute 64% of the interannual variability of net biosphere ex-
change in the tropics (Bloom et al., 2020), not accounting for this 
can lead to large uncertainties in terrestrial C balance and produc-
tivity (Anderegg, Flint, et al., 2015; Anderegg, Schwalm, et al., 2015). 
While the mismatch between drought and ecosystem response has 
been observed in many studies (Allen et al., 2010; Anderegg, Flint, 
et al.,  2015; Anderegg, Schwalm, et al.,  2015; Lloret et al.,  2004; 
Phillips et al., 2009; Trugman et al., 2018), this statistical challenge 
is difficult to resolve without the guidance of long-term data input 
from stressful events.

Given that CARDAMOM does not use plant species or ecosystem-
specific information, it enables flexibility for ecosystem parameters 
to better reflect times of stress. GPP observations that cover wet and 
drought periods provide critical information that constrains the com-
plex feedback between C and water cycles. Greater water sensitivity 
of photosynthesis is a key reason why CARDAMOMC predicts GPP 
well across the whole sequence, whereas CARDAMOMU predicts 
the drought period poorly (Figure 2) and provides broad estimates of 
many parameters (Figure 3; Figure S3). For example, CARDAMOMC 

F I G U R E  7  The relationship between precipitation deficit in 2014 on pre-drought (a) PAW and (b) CF ecosystem state and how it can lead 
to GPP growth or collapse from 2014 to 2017. With increasing precipitation deficit, all ecosystem states gradually decline to an irreversible 
state of (A) GPP collapse*, i.e., “tipping point” (Tp), irrespective of ecosystem state value. (a) Availability of water has a positive effect on GPP 
where (A) actual drought conditions lead to GPP collapse>, (B) reduce precipitation deficit to 595–648 leads to GPP growth, (C, D) increase 
predrought PAW to 2000 or 2250 leads to GPP growth. (b) Predrought CF has a non-linear effect on GPP where (A, B) actual drought caused 
severe precipitation deficit that could not support a CF state of 44 or 200, leading to GPP collapse^, (C) reduce precipitation deficit to 595–
648 leads to GPP growth, (D) reducing predrought CF to 18 allows GPP growth, (E) very low CF of 09 leads to GPP collapse#. GPP, gross 
primary productivity; PAW, plant available water.
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shows that this pine forest has leaves that can do higher rates of 
photosynthesis but are more sensitive to water compared with 
predictions from CARDAMOMU. Estimated LMCA are also better 
constrained in CARDAMOMC (Figure  3, range25–75 = 35–72 g C m−2) 
and the median estimate (52 g C m−2) is similar to that found in other 
North American ponderosa pine stands (52–64 g C m−2, O'Hara & 
Nagel,  2006). This contrasts with a less constrained and overesti-
mate from CARDAMOMU (90 g C m−2, range25–75 = 51–136). Plant 
trait information from databases like TRY (Kattge et al., 2011) could 
be incorporated in future work to further assess model parameter-
izations and provide insight into prior ranges for future models.

CARDAMOMC estimates short leaf longevities, a bimodal bud-
burst day and highly seasonal foliar C pools, which are unusual for an 
evergreen forest. Our estimate of leaf life span of ~1 year for an ev-
ergreen forest would contradict assumptions of this plant functional 
type but possibly reflects what is happening (lots of needles drop-
ping) in a particularly drought-stressed forest. Indeed, premature 
leaf abscission is a mechanism that both evergreen and deciduous 
trees can employ to avoid water stress (Dallstream & Piper, 2021) 
and reflects the study area's 80% canopy loss from 2012 to 2015 
(Goulden & Bales, 2019). The underestimation of GPP in 2015 via 
CARDAMOMC also suggests that our framework may be overly re-
liant on leaf fall and flushing to capture seasonal changes in GPP at 
this site. We find that MODIS LAI shows seasonal changes in LAI 
that mirror CF from CARDAMOMC but are not as severe (Figure S2). 
Models that allow forests to adjust leaf longevity in response to 
severe drought may warrant consideration in ecosystem models 
used for carbon cycle projections and ecological forecasting and 
will be important for modeling non-typical ecosystem response 
during times of stress. The flexibility during parameterization is a 
key strength of the CARDAMOM framework and future work may 
need to consider structural changes to the model to better reflect 
seasonal dynamics of GPP.

CARDAMOM has a static IWUE, which could be an issue when 
covering wet and drought periods, given that stomatal closure under 
water stress increases IWUE (Beer et al.,  2009). This may explain 
the limited performance of CARDAMOM to capture ET (Figure S2). 
In this study, we used ET values for validating the model; however, 
including ET observations during CARDAMOM development could 
help us better understand if IWUE stays constant or changes after 
a major mortality event. CARDAMOMC also predicts only modest 
changes in woody biomass pre- and post-drought. This is because 
there is no partitioning of living and non-living woody biomass in 
CARDAMOM—all respiration occurs as a proportion of GPP—and 
there is no mechanism for woody biomass mortality. This is unlikely 
to impact our results, however, because woody C does not influence 
living carbon-water interactions in CARDAMOM. Future models 
could benefit from better representations of tree mortality; such 
as whole-plant turnover being a function of C availability, and cap-
ping the maximum amount of leaf growth possible per unit area as a 
function of live woody biomass. However, this would rely on more 
detailed quantitative data that can track changes in living and non-
living woody biomass.

We provide a framework to assess tipping points leading to eco-
system collapse in other forests, enabling better monitoring of for-
est vulnerability. While our study is limited to a single ponderosa 
pine forest in California, applying the CARDAMOM framework to 
eddy covariance observations of a forest experiencing multi-year 
drought allows us to calibrate and track ecosystem processes in situ. 
We suggest critical threshold ranges for precipitation deficit tipping 
points, which can be tested against other studies that assess the 
role of water stress on forests and under future climate scenarios 
(Forzieri et al., 2022). Quantifying how far an ecosystem is from a 
precipitation deficit tipping points will also provide information on 
its resilience to other risk factors such as warming temperatures, for-
est fires, and insect attacks (Knapp et al., 2021; Stovall et al., 2019; 
Van Nieuwstadt & Sheil, 2005).

ACKNOWLEDG MENTS
We are grateful to M. Williams, T.L. Smallman, and D.M. Milodowski 
and to three reviewers whose comments greatly improved the man-
uscript. We acknowledge D. Malgarini Perez as the graphical artist 
for Figure 1. This project was funded by the University of California 
Davis Center for Data Science and Artificial Intelligence Research 
Seed Funding Program and the California Department of Forestry 
and Fire Protection Forest Health Research Program (CAL FIRE 
agreement #8GG20808). T.S. Magney and C.Y.S. Wong were funded 
by the National Science Foundation, through the Macrosystems 
Biology and NEON-Enabled Science program (DEB-5791926090). 
R.M. Deans was supported by a Royal Society Newton International 
Fellowship. Part of this work was carried out at the Jet Propulsion 
Laboratory, California Institute of Technology, under a contract with 
the National Aeronautics and Space Administration (NASA).

CONFLIC T OF INTERE S T S TATEMENT
The authors declare no conflicts of interest.

DATA AVAIL ABILIT Y S TATEMENT
The data used in this study are publicly available on the Ameriflux 
website https://ameri​flux.lbl.gov/sites/​sitei​nfo/US-CZ2. Data for 
figures are available in the Supporting Information.

ORCID
J. Au   https://orcid.org/0000-0002-5089-9793 
A. A. Bloom   https://orcid.org/0000-0002-1486-1499 
N. C. Parazoo   https://orcid.org/0000-0002-4424-7780 
R. M. Deans   https://orcid.org/0000-0003-3831-2520 
C. Y. S. Wong   https://orcid.org/0000-0001-9608-9916 
B. Z. Houlton   https://orcid.org/0000-0002-1414-0261 
T. S. Magney   https://orcid.org/0000-0002-9033-0024 

R E FE R E N C E S
Adams, H. D., Zeppel, M. J. B., Anderegg, W. R. L., Hartmann, H., 

Landhäusser, S. M., Tissue, D. T., Huxman, T. E., Hudson, P. J., 
Franz, T. E., Allen, C. D., Anderegg, L. D. L., Barron-Gafford, G. A., 
Beerling, D. J., Breshears, D. D., Brodribb, T. J., Bugmann, H., Cobb, 

 13652486, 2023, 19, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16867 by U

niversity of U
tah, W

iley O
nline Library on [18/12/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://ameriflux.lbl.gov/sites/siteinfo/US-CZ2
https://orcid.org/0000-0002-5089-9793
https://orcid.org/0000-0002-5089-9793
https://orcid.org/0000-0002-1486-1499
https://orcid.org/0000-0002-1486-1499
https://orcid.org/0000-0002-4424-7780
https://orcid.org/0000-0002-4424-7780
https://orcid.org/0000-0003-3831-2520
https://orcid.org/0000-0003-3831-2520
https://orcid.org/0000-0001-9608-9916
https://orcid.org/0000-0001-9608-9916
https://orcid.org/0000-0002-1414-0261
https://orcid.org/0000-0002-1414-0261
https://orcid.org/0000-0002-9033-0024
https://orcid.org/0000-0002-9033-0024


    |  5663AU et al.

R. C., Collins, A. D., Dickman, L. T., … McDowell, N. G. (2017). A 
multi-species synthesis of physiological mechanisms in drought-
induced tree mortality. Nature Ecology and Evolution, 1(9), 1285–
1291. https://doi.org/10.1038/s4155​9-017-0248-x

Allen, C. D., Breshears, D. D., & McDowell, N. G. (2015). On underestima-
tion of global vulnerability to tree mortality and forest die-off from 
hotter drought in the Anthropocene. Ecosphere, 6(8), 1–55. https://
doi.org/10.1890/ES15-00203.1

Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, 
N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D., Hogg, 
E. H., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, 
N., Lim, J. H., Allard, G., Running, S. W., Semerci, A., & Cobb, N. 
(2010). A global overview of drought and heat-induced tree mortal-
ity reveals emerging climate change risks for forests. Forest Ecology 
and Management, 259(4), 660–684. https://doi.org/10.1016/j.
foreco.2009.09.001

Anderegg, W. R. L., Flint, A., Huang, C. Y., Flint, L., Berry, J. A., Davis, F. 
W., Sperry, J. S., & Field, C. B. (2015). Tree mortality predicted from 
drought-induced vascular damage. Nature Geoscience, 8(5), 367–
371. https://doi.org/10.1038/ngeo2400

Anderegg, W. R. L., Schwalm, C., Biondi, F., Camarero, J. J., Koch, G., 
Litvak, M., Ogle, K., Shaw, J. D., Shevliakova, E., Williams, A. P., 
Wolf, A., Ziaco, E., & Pacala, S. (2015). Pervasive drought legacies 
in forest ecosystems and their implications for carbon cycle mod-
els. Science, 349(6247), 528–532. https://doi.org/10.1126/scien​
ce.aab1833

Angeli, D., Ferrell, J. E., & Sontag, E. D. (2004). Detection of multistability, 
bifurcations, and hysteresis in a large class of biological positive-
feedback systems. Proceedings of the National Academy of Sciences 
of the United States of America, 101(7), 1822–1827. https://doi.
org/10.1073/pnas.03082​65100

Beer, C., Ciais, P., Reichstein, M., Baldocchi, D., Law, B. E., Papale, D., 
Soussana, J.-F., Ammann, C., Buchmann, N., Frank, D., Gianelle, 
D., Janssens, I. A., Knohl, A., Köstner, B., Moors, E., Roupsard, O., 
Verbeeck, H., Vesala, T., Williams, C. A., & Wohlfahrt, G. (2009). 
Temporal and among-site variability of inherent water use effi-
ciency at the ecosystem level. Global Biogeochemical Cycles, 23(2), 
3233. https://doi.org/10.1029/2008G​B003233

Bloom, A. A., Bowman, K. W., Liu, J., Konings, A. G., Worden, J. R., 
Parazoo, N. C., Meyer, V., Reager, J. T., Worden, H. M., Jiang, Z., 
Quetin, G. R., Luke Smallman, T., Exbrayat, J. F., Yin, Y., Saatchi, 
S. S., Williams, M., & Schimel, D. S. (2020). Lagged effects reg-
ulate the inter-annual variability of the tropical carbon balance. 
Biogeosciences, 17(24), 6393–6422. https://doi.org/10.5194/
bg-17-6393-2020

Bloom, A. A., Exbrayat, J. F., Van Der Velde, I. R., Feng, L., & Williams, 
M. (2016). The decadal state of the terrestrial carbon cycle: Global 
retrievals of terrestrial carbon allocation, pools, and residence 
times. Proceedings of the National Academy of Sciences of the United 
States of America, 113(5), 1285–1290. https://doi.org/10.1073/
pnas.15151​60113

Bloom, A. A., & Williams, M. (2015). Constraining ecosystem carbon 
dynamics in a data-limited world: Integrating ecological “common 
sense” in a model-data fusion framework. Biogeosciences, 12, 1299–
1315. https://doi.org/10.5194/bg-12-1299-2015

Boese, S., Jung, M., Carvalhais, N., & Reichstein, M. (2017). The impor-
tance of radiation for semiempirical water-use efficiency mod-
els. Biogeosciences, 14(12), 3015–3026. https://doi.org/10.5194/
bg-14-3015-2017

Brodribb, T. J., Powers, J., Cochard, H., & Choat, B. (2020). Hanging by a 
thread? Forests and drought. Science, 368(6488), 261–266. https://
doi.org/10.1126/scien​ce.aat7631

Buckley, T. N. (2019). How do stomata respond to water status? New 
Phytologist, 224(1), 21–36. https://doi.org/10.1111/nph.15899

Choat, B., Brodribb, T. J., Brodersen, C. R., Duursma, R. A., López, R., 
& Medlyn, B. E. (2018). Triggers of tree mortality under drought. 

Nature, 558(7711), 531–539. https://doi.org/10.1038/s4158​
6-018-0240-x

Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V., 
Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Chevallier, 
F., De Noblet, N., Friend, A. D., Friedlingstein, P., Grünwald, T., 
Heinesch, B., Keronen, P., Knohl, A., Krinner, G., … Valentini, R. 
(2005). Europe-wide reduction in primary productivity caused by 
the heat and drought in 2003. Nature, 437(7058), 529–533. https://
doi.org/10.1038/natur​e03972

Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. 
J., Pryor, M., Rooney, G. G., Essery, R. L. H., Blyth, E., Boucher, O., 
Harding, R. J., Huntingford, C., & Cox, P. M. (2011). The Joint UK Land 
Environment Simulator (JULES), model description – Part 2: Carbon 
fluxes and vegetation dynamics. Geoscientific Model Development, 
4(3), 701–722. https://doi.org/10.5194/gmd-4-701-2011

Dallstream, C., & Piper, F. I. (2021). Drought promotes early leaf abscis-
sion regardless of leaf habit but increases litter phosphorus losses 
only in evergreens. Australian Journal of Botany, 69(3), 121–130. 
https://doi.org/10.1071/BT20052

Famiglietti, C., Smallman, T. L., Flack-Prain, S., Levine, P. A., Ma, S., Quetin, 
G. R., Meyer, V., Parazoo, N. C., Stettz, S. G., Yang, Y., Bonal, D., 
Bloom, A. A., Williams, M., & Konings, A. G. (2020). Optimal model 
complexity for terrestrial carbon cycle prediction. Biogeosciences, 
18, 2727–2754.

Felton, A. J., Knapp, A. K., & Smith, M. D. (2021). Precipitation–
productivity relationships and the duration of precipitation 
anomalies: An underappreciated dimension of climate change. 
Global Change Biology, 27(6), 1127–1140. https://doi.org/10.1111/
gcb.15480

Flack-Prain, S., Meir, P., Malhi, Y., Luke Smallman, T., & Williams, M. 
(2019). The importance of physiological, structural and trait re-
sponses to drought stress in driving spatial and temporal variation 
in GPP across Amazon forests. Biogeosciences, 16(22), 4463–4484. 
https://doi.org/10.5194/bg-16-4463-2019

Forzieri, G., Dakos, V., McDowell, N. G., Ramdane, A., & Cescatti, A. 
(2022). Emerging signals of declining forest resilience under climate 
change. Nature, 608(7923), 534–539. https://doi.org/10.1038/
s4158​6-022-04959​-9

Friedlingstein, P., Jones, M. W., Sullivan, M. O., Andrew, R. M., Bakker, 
D. C. E., Hauck, J., Le Quéré, C., Peters, G. P., & Peters, W. (2022). 
Global carbon budget 2021. Earth System Science Data, 14, 
1917–2005.

Goulden, M. L., Anderson, R. G., Bales, R. C., Kelly, A. E., Meadows, M., 
& Winston, G. C. (2012). Evapotranspiration along an elevation gra-
dient in California's Sierra Nevada. Journal of Geophysical Research: 
Biogeosciences, 117(3), 1–13. https://doi.org/10.1029/2012J​
G002027

Goulden, M. L., & Bales, R. C. (2019). California forest die-off linked 
to multi-year deep soil drying in 2012–2015 drought. Nature 
Geoscience, 12, 632–637. https://doi.org/10.1038/s4156​
1-019-0388-5

Griffin, D., & Anchukaitis, K. J. (2014). How unusual is the 2012–2014 
California drought? Geophysical Research Letters, 41(24), 9017–
9023. https://doi.org/10.1002/2014G​L062433

Hammond, W. M., Williams, A. P., Abatzoglou, J. T., Adams, H. D., 
Klein, T., López, R., Sáenz-Romero, C., Hartmann, H., Breshears, 
D. D., & Allen, C. D. (2022). Global field observations of tree die-
off reveal hotter-drought fingerprint for Earth's forests. Nature 
Communications, 13(1), 1761. https://doi.org/10.1038/s4146​7-022-
29289​-2

Harris, N. L., Gibbs, D. A., Baccini, A., Birdsey, R. A., de Bruin, S., Farina, 
M., Fatoyinbo, L., Hansen, M. C., Herold, M., Houghton, R. A., 
Potapov, P. V., Suarez, D. R., Roman-Cuesta, R. M., Saatchi, S. S., 
Slay, C. M., Turubanova, S. A., & Tyukavina, A. (2021). Global maps 
of twenty-first century forest carbon fluxes. Nature Climate Change, 
2021, 1–7. https://doi.org/10.1038/s4155​8-020-00976​-6

 13652486, 2023, 19, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16867 by U

niversity of U
tah, W

iley O
nline Library on [18/12/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://doi.org/10.1038/s41559-017-0248-x
https://doi.org/10.1890/ES15-00203.1
https://doi.org/10.1890/ES15-00203.1
https://doi.org/10.1016/j.foreco.2009.09.001
https://doi.org/10.1016/j.foreco.2009.09.001
https://doi.org/10.1038/ngeo2400
https://doi.org/10.1126/science.aab1833
https://doi.org/10.1126/science.aab1833
https://doi.org/10.1073/pnas.0308265100
https://doi.org/10.1073/pnas.0308265100
https://doi.org/10.1029/2008GB003233
https://doi.org/10.5194/bg-17-6393-2020
https://doi.org/10.5194/bg-17-6393-2020
https://doi.org/10.1073/pnas.1515160113
https://doi.org/10.1073/pnas.1515160113
https://doi.org/10.5194/bg-12-1299-2015
https://doi.org/10.5194/bg-14-3015-2017
https://doi.org/10.5194/bg-14-3015-2017
https://doi.org/10.1126/science.aat7631
https://doi.org/10.1126/science.aat7631
https://doi.org/10.1111/nph.15899
https://doi.org/10.1038/s41586-018-0240-x
https://doi.org/10.1038/s41586-018-0240-x
https://doi.org/10.1038/nature03972
https://doi.org/10.1038/nature03972
https://doi.org/10.5194/gmd-4-701-2011
https://doi.org/10.1071/BT20052
https://doi.org/10.1111/gcb.15480
https://doi.org/10.1111/gcb.15480
https://doi.org/10.5194/bg-16-4463-2019
https://doi.org/10.1038/s41586-022-04959-9
https://doi.org/10.1038/s41586-022-04959-9
https://doi.org/10.1029/2012JG002027
https://doi.org/10.1029/2012JG002027
https://doi.org/10.1038/s41561-019-0388-5
https://doi.org/10.1038/s41561-019-0388-5
https://doi.org/10.1002/2014GL062433
https://doi.org/10.1038/s41467-022-29289-2
https://doi.org/10.1038/s41467-022-29289-2
https://doi.org/10.1038/s41558-020-00976-6


5664  |    AU et al.

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz 
Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, 
D., Simmons, A., Soci, C., Dee, D., & Thépaut, J.-N. (2018). ERA5 
hourly data on single levels from 1979 to present. Copernicus Climate 
Change Service (C3S) Climate Data Store (CDS). https://doi.
org/10.24381/​cds.adbb2d47

Hiederer, R., & Köchy, M. (2012). Global soil organic carbon estimates and 
the harmonized world soil database. EUR 25225EN, Luxembourg.

Hoch, G., Richter, A., & Körner, C. (2003). Non-structural carbon com-
pounds in temperate forest trees. Plant, Cell and Environment, 26(7), 
1067–1081. https://doi.org/10.1046/j.0016-8025.2003.01032.x

Hubbert, K. R., Graham, R. C., & Anderson, M. A. (2001). Soil and weath-
ered bedrock. Soil Science Society of America Journal, 65(4), 1255–
1262. https://doi.org/10.2136/sssaj​2001.6541255x

Jump, A. S., Ruiz-Benito, P., Greenwood, S., Allen, C. D., Kitzberger, T., 
Fensham, R., Martínez-Vilalta, J., & Lloret, F. (2017). Structural 
overshoot of tree growth with climate variability and the global 
spectrum of drought-induced forest dieback. Global Change Biology, 
23(9), 3742–3757. https://doi.org/10.1111/gcb.13636

Kattge, J., Díaz, S., Lavorel, S., Prentice, I. C., Leadley, P., Bönisch, G., 
Garnier, E., Westoby, M., Reich, P. B., Wright, I. J., Cornelissen, J. 
H. C., Violle, C., Harrison, S. P., Bodegom, P. M., Reichstein, M., 
Enquist, B. J., Soudzilovskaia, N. A., Ackerly, D. D., Anand, M., … 
Wirth, C. (2011). TRY – A global database of plant traits. Global 
Change Biology, 17, 905–2935.

Keeling, R. F., & Keeling, C. D. (2017). Atmospheric monthly in situ CO2 
data - Mauna Loa observatory, Hawaii. Scripps CO2 Program Data. 
UC San Diego Library Digital Collections.

Kelly, A. E., & Goulden, M. L. (2016). A montane Mediterranean climate 
supports year-round photosynthesis and high forest biomass. Tree 
Physiology, 36(4), 459–468. https://doi.org/10.1093/treep​hys/
tpv131

Knapp, E. E., Bernal, A. A., Kane, J. M., Fettig, C. J., & North, M. P. 
(2021). Variable thinning and prescribed fire influence tree mor-
tality and growth during and after a severe drought. Forest 
Ecology and Management, 479, 118595. https://doi.org/10.1016/j.
foreco.2020.118595

Lloret, F., Sapes, G., Rosas, T., Galiano, L., Saura-Mas, S., Sala, A., & 
Martínez-Vilalta, J. (2018). Non-structural carbohydrate dynam-
ics associated with drought-induced die-off in woody species of a 
shrubland community. Annals of Botany, 121(7), 1383–1396. https://
doi.org/10.1093/aob/mcy039

Lloret, F., Siscart, D., & Dalmases, C. (2004). Canopy recovery after 
drought dieback in holm-oak Mediterranean forests of Catalonia 
(NE Spain). Global Change Biology, 10(12), 2092–2099. https://doi.
org/10.1111/j.1365-2486.2004.00870.x

Luo, Y., & Weng, E. (2011). Dynamic disequilibrium of the terrestrial 
carbon cycle under global change. Trends in Ecology and Evolution, 
26(2), 96–104. https://doi.org/10.1016/j.tree.2010.11.003

McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, 
N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D. G., & 
Yepez, E. A. (2008). Mechanisms of plant survival and mortality 
during drought: Why do some plants survive while others suc-
cumb to drought? New Phytologist, 178(4), 719–739. https://doi.
org/10.1111/j.1469-8137.2008.02436.x

McDowell, N. G., Allen, C. D., Anderson-Teixeira, K., Aukema, B. H., 
Bond-Lamberty, B., Chini, L., Clark, J. S., Dietze, M., Grossiord, 
C., Hanbury-Brown, A., Hurtt, G. C., Jackson, R. B., Johnson, D. 
J., Kueppers, L., Lichstein, J. W., Ogle, K., Poulter, B., Pugh, T. A. 
M., Seidl, R., … Xu, C. (2020). Pervasive shifts in forest dynam-
ics in a changing world. Science, 368(6494), aaz9463. https://doi.
org/10.1126/scien​ce.aaz9463

Myneni, R., Knyazikhin, Y., & Park, T. (2015). MOD15A2H MODIS/Terra 
leaf area index/FPAR 8-day L4 global 500 m SIN grid V006. [Data set]. 
NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/
MODIS/​MOD15​A2H.006

Nolan, R. H., Gauthey, A., Losso, A., Medlyn, B. E., Smith, R., Chhajed, S. 
S., Fuller, K., Song, M., Li, X., Beaumont, L. J., Boer, M. M., Wright, 
I. J., & Choat, B. (2021). Hydraulic failure and tree size linked 
with canopy die-back in eucalypt forest during extreme drought. 
New Phytologist, 230(4), 1354–1365. https://doi.org/10.1111/
nph.17298

O'Geen, A. T., Safeeq, M., Wagenbrenner, J., Stacy, E., Hartsough, P., 
Devine, S., Tian, Z., Ferrell, R., Goulden, M., Hopmans, J. W., & 
Bales, R. (2018). Southern Sierra Critical Zone Observatory and 
Kings River Experimental Watersheds: A synthesis of measure-
ments, new insights, and future directions. Vadose Zone Journal, 
17(1), 1–18. https://doi.org/10.2136/vzj20​18.04.0081

O'Hara, K. L., & Nagel, L. M. (2006). A functional comparison of pro-
ductivity in even-aged and multiaged stands: A synthesis for Pinus 
ponderosa. Forest Science, 52(3), 290–303.

Phillips, O. L., Aragão, L. E. O. C., Lewis, S. L., Fisher, J. B., Lloyd, J., López-
gonzález, G., Malhi, Y., Monteagudo, A., Peacock, J., Quesada, C. 
A., Van Der Heijden, G., Almeida, S., Amaral, I., Arroyo, L., Aymard, 
G., Baker, T. R., Bánki, O., Blanc, L., Bonal, D., … Salamão, R. 
(2009). Drought sensitivity of the Amazon rainforest. Science, 323, 
1344–1347.

Phillips, O. L., Van Der Heijden, G., Lewis, S. L., Lo, G., Lloyd, J., Malhi, Y., 
Monteagudo, A., Almeida, S., Da, E. A., Jime, E., Keeling, H., Tim, J., 
Lovett, J. C., Meir, P., Mendoza, C., Morel, A., Nu, P., Peh, K. S., Pen, 
A., … Va, R. (2010). Drought – Mortality relationships for tropical 
forests. New Phytologist, 187, 631–646.

Reyer, C. P. O., Brouwers, N., Rammig, A., Brook, B. W., Epila, J., Grant, R. 
F., Holmgren, M., Langerwisch, F., Leuzinger, S., Lucht, W., Medlyn, 
B., Pfeifer, M., Steinkamp, J., Vanderwel, M. C., Verbeeck, H., & 
Villela, D. M. (2015). Forest resilience and tipping points at differ-
ent spatio-temporal scales: Approaches and challenges. Journal of 
Ecology, 103(1), 5–15. https://doi.org/10.1111/1365-2745.12337

Ruehr, N. K., Grote, R., Mayr, S., & Arneth, A. (2019). Beyond the ex-
treme: Recovery of carbon and water relations in woody plants fol-
lowing heat and drought stress. Tree Physiology, 39(8), 1285–1299. 
https://doi.org/10.1093/treep​hys/tpz032

Running, S. W., & Coughlan, J. C. (1988). A general model of for-
est ecosystem processes for regional applications I. Hydrologic 
balance, canopy gas exchange and primary production pro-
cesses. Ecological Modelling, 42(2), 125–154. https://doi.
org/10.1016/0304-3800(88)90112​-3

Scheffer, M., Carpenter, S., Foley, J. A., Folke, C., & Walker, B. (2001). 
Catastrophic shifts in ecosystems. Nature, 413(6856), 591–596. 
https://doi.org/10.1038/35098000

Skelton, R. P., Brodribb, T. J., McAdam, S. A. M., & Mitchell, P. J. (2017). 
Gas exchange recovery following natural drought is rapid unless 
limited by loss of leaf hydraulic conductance: Evidence from an ev-
ergreen woodland. New Phytologist, 215(4), 1399–1412. https://doi.
org/10.1111/nph.14652

Stettz, S. G., Parazoo, N. C., Bloom, A. A., Blanken, P. D., Bowling, D. 
R., Burns, S. P., Bacour, C., Maignan, F., Raczka, B., Norton, A. J., 
Baker, I., Williams, M., Shi, M., Zhang, Y., & Qiu, B. (2021). Resolving 
temperature limitation on spring productivity in an evergreen co-
nifer forest using a model-data fusion framework. Biogeosciences 
Discussions, 19, 541–558.

Stocker, B. D., Tumber-Dávila, S. J., Konings, A. G., Anderson, M. C., Hain, 
C., & Jackson, R. B. (2023). Global patterns of water storage in 
the rooting zones of vegetation. Nature Geoscience., 16, 250–256. 
https://doi.org/10.1038/s4156​1-023-01125​-2

Stovall, A. E. L., Shugart, H., & Yang, X. (2019). Tree height explains mor-
tality risk during an intense drought. Nature Communications, 10(1), 
1–6. https://doi.org/10.1038/s4146​7-019-12380​-6

Street, L. E., Shaver, G. R., Williams, M., & Van Wijk, M. T. (2007). What is 
the relationship between changes in canopy leaf area and changes 
in photosynthetic CO2 flux in arctic ecosystems? Journal of Ecology, 
95(1), 139–150. https://doi.org/10.1111/j.1365-2745.2006.01187.x

 13652486, 2023, 19, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16867 by U

niversity of U
tah, W

iley O
nline Library on [18/12/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.1046/j.0016-8025.2003.01032.x
https://doi.org/10.2136/sssaj2001.6541255x
https://doi.org/10.1111/gcb.13636
https://doi.org/10.1093/treephys/tpv131
https://doi.org/10.1093/treephys/tpv131
https://doi.org/10.1016/j.foreco.2020.118595
https://doi.org/10.1016/j.foreco.2020.118595
https://doi.org/10.1093/aob/mcy039
https://doi.org/10.1093/aob/mcy039
https://doi.org/10.1111/j.1365-2486.2004.00870.x
https://doi.org/10.1111/j.1365-2486.2004.00870.x
https://doi.org/10.1016/j.tree.2010.11.003
https://doi.org/10.1111/j.1469-8137.2008.02436.x
https://doi.org/10.1111/j.1469-8137.2008.02436.x
https://doi.org/10.1126/science.aaz9463
https://doi.org/10.1126/science.aaz9463
https://doi.org/10.5067/MODIS/MOD15A2H.006
https://doi.org/10.5067/MODIS/MOD15A2H.006
https://doi.org/10.1111/nph.17298
https://doi.org/10.1111/nph.17298
https://doi.org/10.2136/vzj2018.04.0081
https://doi.org/10.1111/1365-2745.12337
https://doi.org/10.1093/treephys/tpz032
https://doi.org/10.1016/0304-3800(88)90112-3
https://doi.org/10.1016/0304-3800(88)90112-3
https://doi.org/10.1038/35098000
https://doi.org/10.1111/nph.14652
https://doi.org/10.1111/nph.14652
https://doi.org/10.1038/s41561-023-01125-2
https://doi.org/10.1038/s41467-019-12380-6
https://doi.org/10.1111/j.1365-2745.2006.01187.x


    |  5665AU et al.

Trugman, A. T., Anderegg, L. D. L., Anderegg, W. R. L., Das, A. J., & 
Stephenson, N. L. (2021). Why is tree drought mortality so hard to 
predict? Trends in Ecology and Evolution, 36(6), 520–532. https://doi.
org/10.1016/j.tree.2021.02.001

Trugman, A. T., Detto, M., Bartlett, M. K., Medvigy, D., Anderegg, W. R. 
L., Schwalm, C., Schaffer, B., & Pacala, S. W. (2018). Tree carbon al-
location explains forest drought-kill and recovery patterns. Ecology 
Letters, 21(10), 1552–1560. https://doi.org/10.1111/ele.13136

USFS. (2016). 2015 Aerial survey results: California. United States 
Department of Agriculture Forest Service, Pacific Southwest Region.

Van Mantgem, P. J., Stephenson, N. L., Byrne, J. C., Daniels, L. D., Franklin, 
J. F., Fulé, P. Z., Harmon, M. E., Larson, A. J., Smith, J. M., Taylor, A. 
H., & Veblen, T. T. (2009). Widespread increase of tree mortality 
rates in the Western United States. Science, 323(5913), 521–524. 
https://doi.org/10.1126/scien​ce.1165000

Van Nieuwstadt, M. G. L., & Sheil, D. (2005). Drought, fire and 
tree survival in a Borneo rain forest, East Kalimantan, 
Indonesia. Journal of Ecology, 93(1), 191–201. https://doi.
org/10.1111/j.1365-2745.2004.00954.x

Williams, M., Schwarz, P. A., Law, B. E., Irvine, J., & Kurpius, M. R. 
(2005). An improved analysis of forest carbon dynamics using 
data assimilation. Global Change Biology, 11(1), 89–105. https://doi.
org/10.1111/j.1365-2486.2004.00891.x

Yin, Y., Bloom, A. A., Worden, J., Saatchi, S., Yang, Y., Williams, M., Liu, 
J., Jiang, Z., Worden, H., Bowman, K., Frankenberg, C., & Schimel, 
D. (2020). Fire decline in dry tropical ecosystems enhances decadal 
land carbon sink. Nature Communications, 11(1), 1–7. https://doi.
org/10.1038/s4146​7-020-15852​-2

SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.

How to cite this article: Au, J., Bloom, A. A., Parazoo, N. C., 
Deans, R. M., Wong, C. Y. S., Houlton, B. Z., & Magney, T. S. 
(2023). Forest productivity recovery or collapse? Model-data 
integration insights on drought-induced tipping points. Global 
Change Biology, 29, 5652–5665. https://doi.org/10.1111/
gcb.16867

 13652486, 2023, 19, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16867 by U

niversity of U
tah, W

iley O
nline Library on [18/12/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://doi.org/10.1016/j.tree.2021.02.001
https://doi.org/10.1016/j.tree.2021.02.001
https://doi.org/10.1111/ele.13136
https://doi.org/10.1126/science.1165000
https://doi.org/10.1111/j.1365-2745.2004.00954.x
https://doi.org/10.1111/j.1365-2745.2004.00954.x
https://doi.org/10.1111/j.1365-2486.2004.00891.x
https://doi.org/10.1111/j.1365-2486.2004.00891.x
https://doi.org/10.1038/s41467-020-15852-2
https://doi.org/10.1038/s41467-020-15852-2
https://doi.org/10.1111/gcb.16867
https://doi.org/10.1111/gcb.16867

	Forest productivity recovery or collapse? Model-­data integration insights on drought-­induced tipping points
	Abstract
	1|INTRODUCTION
	2|METHODS
	2.1|Study area and data collection
	2.2|CARDAMOM framework
	2.3|Initial-­GPP-­constrained versus annual-­GPP-­constrained models for monitoring GPP collapse
	2.4|Resolving the mechanistic links between drought and GPP collapse

	3|RESULTS
	3.1|Precipitation deficit can lead to GPP collapse
	3.2|Annual-­GPP-­constrained models can detect drought-­induced GPP collapse
	3.3|Reduced PAW can lead to loss of live biomass pools and ecosystem GPP collapse

	4|DISCUSSION
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES


