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ABSTRACT

Recent supervised point cloud upsampling methods are re-

stricted by the size of training data and are limited in terms

of covering all object shapes. Besides the challenges faced

due to data acquisition, the networks also struggle to gener-

alize on unseen records. In this paper, we present an internal

point cloud upsampling approach at a holistic level referred

to as “Zero-Shot” Point Cloud Upsampling (ZSPU). Our ap-

proach is data agnostic and relies solely on the internal infor-

mation provided by a particular point cloud without patching

in both self-training and testing phases. This single-stream

design significantly reduces the training time by learning the

relation between low resolution (LR) point clouds and their

high (original) resolution (HR) counterparts. This association

will then provide super resolution (SR) outputs when origi-

nal point clouds are loaded as input. ZSPU achieves com-

petitive/superior quantitative and qualitative performances on

benchmark datasets when compared with other upsampling

methods.

Index Terms— Internal, holistic, zero-shot, upsampling

1. INTRODUCTION

In 3D computer vision domain, point cloud upsampling has

recently achieved outstanding performance through super-

vised deep learning methods [1, 2, 3, 4]. However, these

methods require tremendous amounts of training data to un-

derstand various structural shapes. While current 3D datasets

for upsampling tasks from PU-Net [1], 3PU [3], PU-GAN [4],

Dis-PU [5], and PU-GCN [6] covered a rich variety of ob-

jects, the absence of certain structures observed in real world

scenarios (e.g., trees, vehicles, animals, etc.) would limit

the learning process. Particularly, although 3PU, PU-GAN,

Dis-PU, and PU-GCN have proposed a patch-based scheme

to improve the local uniformity of points for both training

and testing phases, there still exists two potential limitations

that restrict them from being applied to all sizes and struc-

tures of shapes. First, the parameters such as the number

of points in each patch (NoPP) and the number of patches

∗ Corresponding Author. The source code is available at https://

github.com/ky-zhou/ZSPU.

(a) Input (b) PU-GAN (c) ZSPU (d) Mesh

Fig. 1: (a) Input point cloud. (b) Patch based method sacri-

fices partial reconstruction capacity to generate more uniform

distribution of points, while (c) our method tends to recover

the original shape. (d) Ground truth mesh.

(NoP) need to be carefully set for various shapes to avoid pro-

ducing problematic point clouds, (e.g., in Fig. 1b (top), here

the patches generated by farthest-point-sampling (FPS) algo-

rithm are not sufficient to preserve the entire shape). Second,

the nearby curvature might be disturbed by points in a patch

with high geodesic distances e.g., fingers, as shown in Fig. 1b

(bottom). Finally, pre-processing such patches is not trivial,

which requires to extract 3D coordinates (sometimes even the

geodesic [7] or edge [2] information) from the existing mesh

data.

In this paper, we present a “zero-shot” point cloud up-

sampling (ZSPU) framework to internally learn the self-aware

representation of a holistic point cloud. This design skips

the setup of parameters like NoPP and NoP to avoid po-

tentially fallacious topological mappings and effectively pre-

serves the shape of the target point cloud. We summarize

our contributions as follows: (i) To the best of our knowl-

edge, ZSPU is the first holistic and internal point cloud up-

sampling method. Our holistic design adapts the target shape

complexity automatically and avoids the intricate settings and
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patch pre-processing in patch-based methods. Additionally,

the internal learning only requires one input point cloud,

which significantly reduces the amount of training samples

and time required by other supervised methods. (ii) Quantita-

tively, we achieve competitive performances on a benchmark

dataset when compared with existing point cloud upsampling

methods, and our method outperforms those methods on an-

other benchmark dataset with unseen categories. (iii) Qual-

itatively, ZSPU preserves better local detail and curvature

without losing much uniformity performance when compared

with patch-based upsampling methods and thus is well suited

to handle complex scenes obtained from real-world scans.

2. RELATED WORK

In this section, we briefly review the methods of point cloud

upsampling and single image super resolution.

2.1. Point Cloud Upsampling

PointNet [8] and PointNet++ [9] have motivated multiple

point cloud networks targeting upsampling in the past few

years. Taking advantage of multi-scale grouping (MSG)

and feature interpolation, PU-Net [1] first constructed a

deep learning network that hierarchically upsamples the point

clouds. Thereafter, EC-Net [2] took edge and surface infor-

mation as prior knowledge, such that the upsampled point

cloud forces the points to consolidate along the edges and sur-

faces. By leveraging geodesic distance as an additional fea-

ture, GeoNet [7] learned surface topology around each point.

3PU [3] first introduced the progressive trend with skip con-

nections that constructs features from previous layers. Dis-

PU [5] split the upsampling framework to a coarse point gen-

erator and a refiner that regressed offset to the points. AR-

GCN [10], PU-GAN [4], and PU-GCN [6] applied adversar-

ial learning to point cloud upsampling. PU-GCN designed a

novel NodeShuffle module to rearrange the points and their

neighbor features.

In general, the aforementioned external learning methods

perform well to shapes with smooth surfaces or small curva-

tures. However, they are all patch-based approaches and suf-

fer from the potential mismatch between the patching scheme

and the target shape, especially for complex shapes with high

curvatures. Additionally, they may require different hyperpa-

rameters (e.g., NoPP and NoP) for different shapes.

2.2. Single Image Super Resolution

External learning is the most common manner in supervised

learning trained with massive data. In contrast, internal learn-

ing has a pivotal role on problems that are restricted to rela-

tively smaller data size.

Single image super resolution (SISR) aims to reconstruct

an HR image from a degraded LR query. Most recent studies

adopted internal examples [11, 12] for this task. Others uti-

lized external information including zoomed camera image

pairs [13] and texture transfer learning [14] to gain the extra

knowledge for the network. A common characteristic among

these studies is that they are not focusing on generating higher

(super) resolution than the ground truth or the HR image.

“Zero-shot” super resolution (ZSSR) [15] was initially

proposed to perform super resolution (SR) on a single im-

age. This approach synchronously trains and tests the net-

work with augmented pairs of LR-HR images extracted from

the test image such that the synthesized image has a higher

resolution than the HR image. By exploiting the internal re-

currence of information within a single image and training an

image-specific model at test time, ZSSR achieved competi-

tive/superior results when compared with the external learn-

ing methods. Inspired by ZSSR, we use the term “zero-shot”

in this paper to indicate holistic and internal upsampling of

point clouds.

3. METHOD

Given a point set χ = {xi}, where xi ∈ R
d and i =

1, 2, ..., N , we aim at generating a denser point set χr =
{xj}, where r is the upsampling ratio and j = 1, 2, ..., rN .

Here, we use d = 3, i.e., xyz coordinate in Euclidean space.

As the only available training data is χ, we apply either a ran-

dom (non-ideal) or FPS (ideal) kernel to downsample χ to

several LR versions, i.e., χLRi , i = 1, 2, ..., B, where B is

configured by the user during self-training. ZSPU provides

an internal, holistic learning framework for point cloud up-

sampling. The key difference between ZSPU and existing ex-

ternal, patch-based methods is illustrated in Fig. 2, where a

darker object color represents a higher resolution.

3.1. Architecture

Fig. 2: “Zero-Shot” point cloud upsampling. (a) External

methods are first trained on a large number of patches. The

test point cloud (whole or patched) χ is then fed into the net-

work. (b) ZSPU is trained internally on the test point cloud

itself. The resulting point cloud specific network is then ap-

plied on the original point cloud to produce a denser output.

ZSPU is a generative adversarial network (GAN) condi-

tioning on a specific point cloud. More details of the archi-

tecture are provided in supplementary materials.
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Fig. 3: The input point cloud has size of N . After progressive

up expansions, the output χr has rN points. u and r are the

progressive and overall upsampling ratios.

Generator. As shown in Fig. 3, the generator takes LR

children χLRi as input, and progressively upsamples with ra-

tio 2 until the upsampling ratio is reached. This procedure

repeats t times, where t = log(r). This progressive learn-

ing approach supports changing the overall upsampling ratio

r without modifying the network. We use χr to denote the

output (and hereafter).

Discriminator. We adopt the module in [4] to distin-

guish the generated χr from the real target χgt. The global

and point-wise features are first concatenated for better un-

derstanding the overall shape and details of the object. An

attention module thereafter captures the point-wise similari-

ties given the flattened features. Finally, a fidelity score is

predicted via an aggregation of multilayer perceptron, max

pooling, and dense layers.

3.2. Loss Function

Our joint loss function of the generator can be written as:

L = αLG+βLEMD(χr, χgt)+υLuni+λLrep(χ
r)+ω||θ||

2
,

(1)

in where, ||θ|| is the regularization term, and α, β, υ, λ, and

ω are the weights, LG, LEMD, Luni, and Lrep are the ad-

versarial, reconstruction, uniform, and repulsion losses, re-

spectively. The details of loss functions are described in the

supplementary material.

3.3. Holistic vs. Patching

Unlike patch-based methods (i.e., subdividing a point cloud

into patches during testing and then merging upsampled

patches later using FPS), our approach tends to learn and pre-

dict in a holistic style. In patch-based methods, the motivation

is to map the testing patches to the similar pairs in the train-

ing set. However, the formation of patches restricts the accu-

racy of reconstruction of the entire shape, i.e., a set formed

by kNN of a centroid might have extremely large geodesic

distance while having a small euclidean distance. This re-

quires patch based methods to select parameters (e.g., NoPP

and NoP) carefully. In the case of a patch containing points

from different parts of the object (e.g., two fingers), the net-

Fig. 4: In this example, the little finger and the ring finger

are considered as a single shape since the manifold fails to

map the two parts (u1 and u2) simultaneously. Instead, u3

is selected as the corresponding subset in topology TM , such

that the mixture is occurred by ϕ3(u3).

work might fail seeking for the correct subsets in the manifold

for these parts.

We define M as manifold, TM as the topology for M , and

Λ as the transition functions between Euclidean and topolog-

ical spaces. Specifically, in Λ, we denote ϕ−1 and ϕ as the

transition functions into and out of the topological space, re-

spectively. Given (M,TM ,Λ), this procedure can be formally

written as

u ∈ TM : ∃ϕ : u → ϕ(u) ⊂ R
d. (2)

In Fig. 4, we illustrate an example when an input patch

Pin is mapped into the topological space, its corresponding

subsets {u1, u2} = ϕ−1(Pin) cannot be accurately located

since {u1+u2} > {u1∪u2}. Alternatively, the network could

select u3 to represent {u1 ∪ u2} but ϕ({u1 ∪ u2}) 6= ϕ(u3).
Empirically, this phenomenon can be alleviated by using more

training samples. However, it is hard to cover all shapes in

real-world applications.

In our holistic setting, Pin denotes the entire point cloud,

such that uh = ϕ−1(Pin) can represent the topology TM

of Pin. The transition ϕ(uh) to Euclidean space is then di-

rectly conducted without any potential mapping problem in

the topological space.

4. EXPERIMENTS

4.1. Datasets

We use the testing set (20 objects) in PU-GAN [4] and

select 20 representative objects in Princeton Shape Bench-

mark [16] (denoted as DataPU and DataPS , respectively)

for our quantitative experiments. Specifically, due to DataPU

being non-uniform, we generate 4,096 points (HR) using the

meshes in DataPU through Poisson sampling algorithm. If

not specified, we apply the non-ideal kernel to downsample

4,096 points (HR) to 1,024 (LR) through a random selection

in all experiments. The ideal kernel uses FPS to downsam-
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Methods
CD HD P2F (10−3) Uniformity Train Test

Epoch Time
# of

(10−3) µ σ 0.4% (10−3) Holistic param

PU-Net 0.38 3.67 8.19 6.65 6.36 ✗ ✔ 120 4.5h 814k

AR-GCN 0.23 1.78 3.02 3.52 1.29 ✗ ✔ 120 6.2h 822k

3PU 0.21 1.90 1.72 2.21 1.32 ✗ ✗ 400 27h 304k

PU-GAN 0.17 1.76 1.05 1.92 0.55 ✗ ✗ 100 25h 684k

Dis-PU 0.15 1.40 1.19 1.86 0.58 ✗ ✗ 400 80h 1047k

PU-GCN 0.26 2.62 2.15 3.01 1.75 ✗ ✗ 100 9h 542k

ZSPU 0.19 1.11 2.12 2.21 2.24 ✔ ✔ 50 96s 310k

ZSPU-I 0.20 1.10 1.89 1.79 1.89 ✔ ✔ 50 98s 310k

Table 1: Quantitative comparisons with supervised upsam-

pling networks on DataPU .

ple the point sets, which is denoted by ZSPU-I in our experi-

ments. There are B pairs of LR and HR point clouds, which in

our test is set as 12 for the purpose of performance and com-

putational efficiency. In our experiments, the patched training

data from other works are not taken into consideration.

4.2. Implementation Detail

To train ZSPU, we use Adam optimizer with learning rate

0.001 for the generator and 0.0001 for the discriminator, and

batch size 12 for 50 epochs. Data augmentation is applied

to all LR inputs, i.e., rotation, jittering, shifting, and scaling.

The weights in Eq. 1 are empirically set at 0.005, 1, 0.1, 0.01,

and 0.01, respectively. Our network is implemented on Ten-

sorFlow 1.15 and trained by NVIDIA Titan RTX GPU.

4.3. Evaluation Metric

For the quantitative evaluation, we report the following

widely-adopted metrics [4]: Chamfer distance (CD), Haus-

dorff distance (HD), point-to-surface (P2F) distance in aver-

age and its standard deviation, and uniformity on different

radii in a unit area. To compare distances with ground truth,

we uniformly sample 16,384 points from the ground truth

mesh using the Poisson sampling algorithm. Lower values

in the evaluation metrics represent better performances.

4.4. Quantitative Comparison

Although unfair, we quantitatively compare ZSPU with state-

of-the-art external learning networks. We use their pre-trained

models to test on DataPU and DataPS . Here, we manually

set up NoPP and NoP during testing to obtain visually com-

plete point clouds for patch-based methods (i.e., 3PU, PU-

GAN, Dis-PU, and PU-GCN) as they significantly affect the

reconstruction performance. Empirically, these hyperparam-

eters fluctuate exceedingly with the shape complexity of the

object or the number of objects in a target scene, making it

nontrivial to apply patch-based methods straightly on all tar-

get categories. We highlight the best results with red color

and the second best with blue color in all quantitative results.

Methods
CD HD P2F (10−3) Uniformity for different p (10−2)

(10−3) µ σ 0.4% 0.6% 0.8% 1.0% 1.2%

PU-Net 0.83 10.58 9.52 7.98 52.38 29.59 22.51 19.86 19.08

AR-GCN 0.42 4.75 2.73 3.22 51.20 22.17 13.89 11.18 10.57

3PU 0.44 3.04 0.94 1.32 47.37 16.44 8.30 6.06 5.89

PU-GAN 0.52 5.66 1.45 2.61 73.55 28.63 15.35 10.69 9.20

Dis-PU 0.47 4.44 1.45 2.47 80.53 32.32 17.69 12.36 10.52

PU-GCN 0.69 8.65 1.89 3.03 64.55 26.22 14.94 10.98 9.73

ZSPU 0.33 2.40 1.56 1.62 38.89 19.50 14.29 12.80 12.76

ZSPU-I 0.32 2.35 1.45 1.40 44.68 20.79 14.32 12.43 12.27

Table 2: Quantitative comparisons with supervised upsam-

pling networks on DataPS .

Table 1 shows the quantitative comparisons on DataPU .

The epoch and time are reported by the corresponding articles

without retraining on our end. In terms of HD, our ZSPU out-

performs all other supervised methods. Results show that our

method has competitive performance with supervised meth-

ods regarding CD, P2F, and uniformity metrics. Note that

our training time is significantly less than the others, and our

method avoids selecting hyper-parameters (i.e., NoPP and

NoP) for miscellaneous scenarios. Also in Table 1, we re-

port the number of trainable parameters for the upsampling

methods with 4096 points as the input. ZSPU generally has a

smaller size than other models.

Table 2 lists the quantitative results with other supervised

learning methods on unseen shape categories from DataPS .

Our approach achieves the best global and local results. Glob-

ally, the reconstruction is outperformed by our method by

a large margin (21% in CD and HD). Locally, our method

achieves the best local uniformity in the smaller disk (0.4%),

indicating that ZSPU is compatible to numerous shapes.

4.5. Qualitative Comparison

In this section, we qualitatively compare our model with the

top performers based on the quantitative results on mesh

reconstructions, complex shapes, and real-world scenarios.

More results are provided in the supplementary material.

Despite 3PU and PU-GAN achieving best performance

regarding uniformity in quantitative results on DataPU ,

through visual inspection, we find that they both sacrifice

the smoothness of close surfaces in the patch-based predic-

tion phase, which may cause severe mistakes in classifica-

tion and remeshing tasks. Fig. 5 shows that the uniformity

metric does not necessarily lead to better surface reconstruc-

tion, partly due to the interference between nearby patches.

Furthermore, we show some upsampled examples in Fig. 6

for complex shapes in DataPS . Our model produces signifi-

cantly better results, particularly in fine detailed areas. These

examples demonstrate that ZSPU is more suitable than patch-

based upsampling methods on shapes with complex details or

rapid changing curvatures.

External vs. Internal. To further illustrate the upsam-

pling preferences of the external and internal methods on lo-

cal regions of a point cloud, in Fig. 7 we provide the error

4
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(a) Input (b) PU-Net (c) AR-GCN (d) 3PU (e) PU-GAN (f) ZSPU

Fig. 5: Comparison of surface reconstruction results. Our method has better local reconstruction than the patch-based methods

even for shapes with smooth surfaces.

(a) Mesh (b) PU-Net (c) AR-GCN (d) 3PU (e) PU-GAN (f) ZSPU

Fig. 6: Comparison of synthesis for complex shapes. Visually, more local details are preserved by our method.

(a) Input & GT (b) PU-Net (c) AR-GCN (d) 3PU (e) PU-GAN (f) ZSPU

Fig. 7: Comparison of error maps. The colors reveal the nearest distance from each target point to the generated point. ZSPU

tends to preserve more local curvatures while maintaining competitive performance on smooth regions.

map comparison for two examples selected from DataPU

and DataPS , respectively. The colors in error maps reveal

the nearest distance from each target point to the generated

point. Visually, ZSPU generates the least error on local curva-

tures while maintaining competitive performance on smooth

regions.

Upsampling Real-Scanned Data. PU-GAN achieved

the best overall performance on the most common upsam-

pling dataset DataPU . In Fig. 8, we further compare our

model with PU-GAN on LiDAR-scanned point clouds from

the KITTI dataset [17], which contains mixed shapes of car,

bike, scrub, and ground. NoP is carefully set up for PU-GAN

to ensure that all points can be covered. Albeit PU-GAN fills

the tiny gaps through the optimization of the uniformity met-

ric, in practice it leads to the potential interference between

different parts of an object (e.g., the zoomed frames in Fig. 8).

These examples clearly demonstrate the advantages of our

“zero-shot” model over supervised patch-based methods in

real-world scenarios.

5. CONCLUSION

In this paper, we present a “zero-shot” point cloud upsam-

pling framework, which takes the entire point cloud as input

and trains the network internally to produce a point cloud with

a higher resolution. Through the holistic and internal learning

design, our model avoids the intricate settings used in patch-

based approaches and achieves competitive/superior results

on benchmark datasets. It is well suited to handle high cur-

vature regions or complex scenes obtained from real-world

scans.
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