

1 **Increased Frequency of Sediment Heatwaves in a Virginia Seagrass Meadow**

2 Spencer J. Tassone^{1,2*}, Michael L. Pace¹

3 ¹Department of Environmental Sciences, University of Virginia, Charlottesville, VA

4 ²Department of Biological Sciences, Michigan Technological University, Houghton, MI

5 *Corresponding Author:

6 Spencer J. Tassone (ORCID iD: <https://orcid.org/0000-0002-9340-7170>)

7 Department of Biological Sciences

8 Michigan Technological University

9 740 Dow Building

10 Houghton, MI 49931

11 stassone@mtu.edu

1

Summary of Comments on Tassone_Pace_Sediment2023.pdf

Page: 1

Number: 1 Author: Reviewer Subject: Sticky Note Date: 12/19/2023 1:29:49 PM
Tassone, S.J., Pace, M.L. Increased Frequency of Sediment Heatwaves in a Virginia Seagrass Meadow. *Estuaries and Coasts* (2023). <https://doi.org/10.1007/s12237-023-01314-7>

12 **Abstract**

13 Coastal marine heatwaves have destructive and lasting impacts on foundational species
14 and are increasing in frequency, duration, and magnitude. High atmospheric temperatures are
15 often associated with marine heatwaves (MHW) which are defined as 5-days of water
16 temperatures above a seasonally varying 90th percentile threshold. In this study we consider the
17 prevalence of MHW propagation into surficial sediments to cause sediment heatwaves (SHW).
18 Within a shallow, subtidal seagrass meadow in Virginia, USA, sediment temperature was
19 measured at hourly intervals at a depth of 5 cm between June 2020-October 2022 at the meadow
20 edge and central meadow interior. The observed sediment temperature, along with a 29-year
21 record of water temperature and water level was used to develop a sediment temperature model
22 for each location. Modeled sediment temperatures were used to identify sediment heatwaves that
23 may thermally stress belowground seagrass. At both meadow locations, sediment heatwave
24 frequency increased at a rate twice that of MHWs in the average global open ocean, coinciding
25 with a 172% increase in the annual number of SHW days, from 11 to 30 days year⁻¹ between
26 1994-2022. Sediment heatwaves at both meadow locations co-occurred with a MHW 79-81% of
27 the time, with nearly all SHWs having a zero day lag. The top 10% most extreme MHWs and
28 SHWs occurred between November and April when thermal stress to seagrass was unlikely. In
29 June 2015 a SHW co-occurred with an anomalously long duration MHW that was associated
30 with a 90% decline in seagrass from this system, suggesting that SHWs may have contributed to
31 the observed seagrass loss. These results document heatwave propagation across the pelagic-
32 sediment interface which likely occur broadly in shallow systems with impacts to critical coastal
33 ecosystem processes and species dynamics.

34 **Keywords**

35 Disturbance, Heatwave, Seagrass, Sediment, Blue Carbon

36 **Acknowledgements**

37 We thank Patricia L. Wiberg, Karen J. McGlathery, and Julianne Quinn for helpful discussions
38 and early revisions to this manuscript, and Jonathan A. Walter for assistance with the wavelet
39 analysis. We thank the staff of the LTER-Virginia Coast Reserve (Cora Baird, Amelie Berger,
40 Tom Burkett, Buck Doughty, Donna Fauber, Sophia Hoffman, David Lee, Jonah Morreale) for
41 field assistance. This work was supported by funding from an NSF grant supporting the LTER-
42 Virginia Coast Reserve (DEB 1832221) and the Jefferson Scholars Foundation.

43 **Introduction**

44 Extreme high temperature events are expected to continue increasing in frequency,
45 magnitude, and duration in the atmosphere and the ocean (Meehl and Tebaldi 2004; Wuebbles et
46 al. 2017; Frölicher et al. 2018; Oliver et al. 2018). In the marine environment, these discrete
47 heatwaves, defined as local, seasonally varying prolonged periods (≥ 5 days) of anomalously
48 warm ($> 90^{\text{th}}$ percentile) water temperature, may disproportionately stress marine organisms and
49 vegetated coastal ecosystems relative to longer-term increases in mean water temperature
50 (Krumhansl et al. 2021; Serrano et al. 2021). Vegetated coastal ecosystems including, but not
51 limited to, seagrass meadows, represent 5-8% of Earth's land surface, yet collectively store 20-
52 30% of all soil carbon, often referred to as "blue" carbon for its location in oceanic sediments
53 (hereafter, BC; Fourqurean et al. 2012; Nahlik and Fennessy 2016). While also being a major
54 global carbon sink (Duarte et al. 2005; Fourqurean et al. 2012), vegetated coastal ecosystems
55 provide other ecosystem services, including sediment stabilization, erosion protection, nutrient
56 and pathogen filtration, and habitat supporting fisheries (Hansen and Reidenbach 2012;
57 McGlathery et al. 2012; Lamb et al. 2017; Unsworth et al. 2018). These ecosystem services are
58 impacted by marine heatwaves (MHW) that have been implicated in seagrass mass mortality
59 (Collier and Waycott 2014; Berger et al. 2020; Strydom et al. 2020; Aoki et al. 2021), conversion
60 of a seagrass meadow from autotrophy to heterotrophy (Berger et al. 2020), and BC loss from
61 seagrass sediments (Arias-Ortiz et al. 2018; Aoki et al. 2021).

62 Marine heatwaves are generated by anomalous horizontal advective heat fluxes from
63 currents and tides, vertical diffusive heat fluxes across the air-water interface, and larger-scale
64 climate phenomena (Schlegel et al. 2017a; Holbrook et al. 2019). These extreme water
65 temperature events are associated with atmospheric subsidence and high-pressure blocking,
66 which enhances vertical heat fluxes by reducing cloud cover, wind speed, and relative humidity

67 thereby increasing surface air temperature (Holbrook et al. 2019). Furthermore, reduced wind
68 speed decreases oceanic upwelling intensity, thermocline depth, and turbulence, thereby
69 promoting water column stability (Holbrook et al. 2019). Additionally, offshore MHW can be
70 advected horizontally to coastal regions via anomalous ocean circulation patterns, which can be
71 exacerbated by local circulation and geomorphic features (Schlegel et al. 2017a; Schlegel et al.
72 2017b).

73 In a recent survey of researchers, Macreadie et al. (2019) identified fundamental
74 questions to advance BC science, including better characterization of disturbance events in
75 sediments that impact long-term BC storage. While heatwaves are known to occur in the
76 atmosphere (AHW) and the pelagic environment of vegetated coastal marine ecosystems
77 (Wiberg 2023), there has been no study of heatwaves based on long-term data in vegetated
78 coastal marine sediments. This is due to a lack of sediment temperature monitoring over many
79 years as used in MHW analysis, difficulty in predicting when and where heatwaves will occur,
80 and perception that sediment temperature is less variable than atmospheric and water
81 temperature. Nonetheless, MHW events have doubled in duration in recent decades (Frölicher et
82 al. 2018) and are increasing in frequency (Oliver et al. 2018), threatening above and below-
83 ground BC storage, ecosystem resilience, and ecosystem services. Understanding MHW transfer
84 into vegetated coastal sediments is, therefore, critical.

85 Shallow, subtidal seagrass meadows reduce current flow (Hansen and Reidenbach 2012)
86 such that water temperature can become several degrees warmer in meadow interiors relative to
87 meadow edges (Aoki et al. 2021; Berger 2021). This spatial heterogeneity in water temperature
88 may at times exceed seagrass thermal stress thresholds within interior meadow regions. Such an
89 event occurred in June 2015 when the restored *Zostera marina* seagrass meadow in South Bay,

90 VA, experienced a 14-day MHW event associated with a 90% reduction in seagrass shoot
91 density (Berger et al. 2020) and a 20% loss of buried BC (Aoki et al. 2021). The mass mortality
92 of *Z. marina* was spatially heterogenous, with the interior meadow region experiencing the
93 greatest loss. In contrast, the meadow's edge was undisturbed due in part to lower thermal stress
94 provided by greater oceanic exchange from a nearby inlet (Berger 2021). However, it remains
95 unclear if the decline in seagrass occurred, in part, due to prolonged extreme sediment
96 temperature exposure.

97 To investigate discrete, yet prolonged extreme sediment temperatures, we measured
98 sediment temperature at 5 cm depth within the interior and edge regions of the South Bay *Z.*
99 *marina* meadow (locations separated by ~1.4 km) for 2.5 years. This record was used to model
100 sediment temperature in relation to water temperature, water level, day of year, and hour. Using
101 the long-term modeled sediment temperature, we quantified sediment heatwaves (SHWs)
102 retroactively within the meadow to address the questions: 1) do heatwaves occur in vegetated
103 coastal sediments? 2) if so, are there spatial differences and temporal trends in vegetated coastal
104 SHW characteristics? and 3) specifically, did the MHW in June 2015 produce a concurrent SHW
105 in South Bay? We hypothesized that MHWs would be transferred into shallow coastal sediments.
106 However, whether and how frequently sediment temperatures exceed the 90th percentile for 5
107 consecutive days is unknown with the possibility that sediments buffer temperature extremes
108 such that exceedances of the threshold are typically short-lived. As the water temperature at the
109 edge of the South Bay seagrass meadow is cooler due to greater oceanic exchange with an inlet,
110 we expected that the interior region of the meadow would experience a greater frequency,
111 duration, and magnitude of SHWs relative to the edge. Lastly, due to the observed spatial

112 heterogeneity in seagrass loss following the June 2015 MHW event, we hypothesized the
113 meadow interior had a concurrent SHW while the edge did not.

114 **Methods**

115 *Study Site*

116 The region between the Virginia, USA mainland of the Delmarva peninsula and
117 Virginia's 14 coastal barrier islands makes up the Virginia Coast Reserve (VCR). Immediately
118 west of the barrier island Wreck Island is the shallow lagoon - South Bay, that has a mean depth
119 of \leq 1.5 m and tidal range = 1.2 m (Hansen and Reidenbach 2013; Safak et al. 2015). South Bay
120 is bordered by oceanic inlets to the north and south of Wreck Island and by Man and Boy
121 Channel toward the mainland to the west (specific latitudes and longitudes of the study are given
122 below; Figure 1). *Z. marina* was locally extinct from the VCR system for \sim 70 years however,
123 restoration seeding beginning in 1999 has led to a 20.3 km² continuous *Z. marina* meadow in
124 South Bay (Orth et al. 2020). In June 2015, a 14-day MHW preceded a 90% reduction in *Z.*
125 *marina* shoot density and a 20% reduction in stored BC within the central region of the South
126 Bay meadow, which took 2-4 years to recover (Berger et al. 2020; Aoki et al. 2021).

127 *Data Collection*

128 We conducted continuous monitoring of sediment temperature at a depth of 5 cm
129 between June 2020 and October 2022 at the central (37.2638 °N, 75.8153 °W) and northern edge
130 (37.2773 °N, 75.8092 °W) of the South Bay seagrass meadow (\sim 1.4 km apart). A depth of 5 cm
131 was chosen from a visual inspection of where *Z. marina* rhizomes were most abundant. Sediment
132 temperature was measured at one-hour intervals using new Onset HOBO pendant temperature
133 data loggers with a factory temperature accuracy of \pm 0.53 °C (accuracy $< \pm$ 0.53 °C between 0-
134 40 °C; factory stated drift resolution < 0.1 °C year⁻¹). Within each location (i.e., central and
135 edge), two data loggers were buried approximately 26 m apart in areas where seagrass shoot

136 density was undisturbed (i.e., control sites) and areas where seagrass shoots were experimentally
137 removed and allowed to recover (i.e., treatment sites; Tassone 2023). There was no difference in
138 the sediment temperatures within each meadow location for undisturbed versus disturbed sites
139 based on linear regression slopes and R^2 of 0.99 (SI Figure 1). We provide additional details on
140 the experiment and treatment/control plots in the Supplement. The comparison of sediment
141 temperature of the two types of plots indicated temperature was relatively consistent on the scale
142 of at least tens of meters in this system. Therefore, sediment temperatures were averaged at each
143 meadow location.

144 Water depth was measured continuously at 15-minute intervals between October-
145 November 2021 using Onset HOBO Water Level Data Loggers. Over this time period, the
146 meadow edge was, on average, 20 cm deeper (mean depth = 1.5 m) than the central location (1.2
147 m). Concurrent water temperature was measured within each location at a fixed height by zip-
148 tying a temperature sensor sheathed in a 1.5-inch diameter steel tube to a vertical PVC pole 20
149 cm above the sediment surface to compare *in-situ* water temperature with *in-situ* sediment
150 temperature. Water and sediment thermistors were replaced at monthly intervals between April-
151 November and were deployed for the entirety of the winter months (December-March). Overall,
152 sensor malfunction or loss resulted in 1.9% and 3.9% of the sediment temperature data being
153 missing from the central and edge locations, respectively, while $\leq 0.7\%$ of the water temperature
154 data was missing from both locations. The observed sediment and water temperature data from
155 South Bay are publically available via the Environmental Data Initiative data portal (Tassone and
156 Pace 2023).

157 Continuous meteorological and water temperature monitoring has been ongoing within
158 the VCR since 1989 and 1994, respectively. Gap-filled daily mean atmospheric temperature

159 collected from the VCR Oyster Meteorological Station (37.2909 °N, 75.9268 °W; Groleger et al.
160 2022), approximately 10 km west of South Bay, was used to determine long-term atmospheric
161 temperature trends as well as characterize AHW for comparison with MHW. The National
162 Oceanic and Atmospheric Administration's (NOAA) Wachapreague, VA tide station (station ID:
163 8631044; 37.6078 °N, 75.6858 °W) provides publicly-available, continuous hourly water
164 temperature measurements. This NOAA monitoring station is approximately 38 km north of
165 South Bay, and the water temperature record from this station was used to confirm the presence
166 of the June 2015 MHW event (Aoki et al. 2021). Water temperature at this location is collected
167 at a depth of 1.0 m below MLLW. Monitoring records from this station were accessed via the
168 NOAA Tides & Currents webpage (tidesandcurrents.noaa.gov/stationhome.html?id=8631044).
169 This station's water temperature time series was used to determine long-term water temperature
170 trends and characterize MHWs in the VCR. Long-term monthly mean atmospheric and water
171 temperature trend analyses were conducted using Seasonal-Kendall trend tests with Sen's slope
172 estimates using the R package 'wql' (Jassby and Cloern 2017; Tassone et al. 2022a). Months
173 with ≥ 10 missing days were removed prior to trend testing.

174 *Model Development*

175 The lack of long-term sediment temperature time series necessitated the development of
176 sediment temperature models that used the continuous sediment temperature time series from
177 each South Bay location as a dependent variable. Multiple-linear regression models of hourly
178 sediment temperature for each South Bay meadow location were developed using Wachapreague
179 water temperature and mean-centered water level (both spanning 1994-2022), day of the year
180 (i.e., 1-365), and hour (i.e., 1-24) as covariates to account for diffusive, advective, seasonal, and
181 diurnal temperature variability respectively. Using Wachapreague water temperature in our
182 South Bay sediment temperature models was necessary as this was the only source of a long-

183 term hourly water temperature record. This approach assumed that the difference in water
184 temperature between Wachapreague and South Bay was negligible. This assumption was
185 supported by the strong, positive linear relationships between concurrent hourly Wachapreague
186 water temperature and water temperature at the South Bay edge (slope = 0.92, $R^2 = 0.96$) and
187 central sites (slope = 0.96, $R^2 = 0.97$; SI Figure 2). Wachapreague time series gaps ≤ 5 hours
188 were linearly interpolated prior to model development. Model building and validation used a
189 75:25 split-sample design, where 75% of the hourly observed sediment temperatures ($n =$
190 15,168) were randomly sampled and used as the dependent variable during model building. The
191 remaining 25% of the hourly observed sediment temperatures ($n = 5,056$) were used to validate
192 the model predictions. Model validation between the observed and predicted hourly sediment
193 temperatures for each meadow location was assessed using linear regression. Wavelet transforms
194 were used to detect the power spectrum in the water and sediment temperature time series at the
195 central and edge locations using the R package ‘biwavelet’ (Gouhier et al. 2021).

196 *Extreme Event Detection*

197 Aquatic and sediment heatwave detection was determined using the conventional MHW
198 definition such that a heatwave event occurs when the daily mean temperature exceeds a local,
199 seasonally-varying 90th percentile threshold for ≥ 5 days and without a drop > 2 days below the
200 threshold (Hobday et al. 2016). Atmospheric heatwaves used a similar definition as MHWs
201 however, the threshold duration was ≥ 3 days, with no drop below the threshold during an event.
202 The difference in these definitions is related to the increased temperature variability in the
203 atmosphere relative to the water and convention within the atmospheric and oceanographic fields
204 (Perkins and Alexander 2013; Oliver et al. 2021; Tassone et al. 2022b). The severity of all
205 heatwaves was classified based on Hobday et al. (2018), which described heatwave event
206 severity based upon multiples of the difference between the local climatology and the 90th

207 percentile threshold and the peak magnitude of the observed temperature. Heatwave event
208 detection and classification were conducted using the R package ‘heatwaveR’ (Schlegel and Smit
209 2018). As heatwaves are rare events that can span monthly boundaries, long-term trends in
210 heatwave metrics (i.e., frequency, duration, intensity) were conducted on annual time series
211 using non-parametric Mann-Kendall tests with Sen’s slope estimates (“Kendall” and “trend” R
212 packages; McLeod 2011; Pohlert 2020; Tassone et al. 2022a). Influential data points within the
213 non-parametric regressions were identified as those points with a Cook’s distance ($D_i > 4/n$),
214 where n is the total number of observations. All statistical analyses were conducted in the R
215 environment for statistical computing (R Core Team 2022) and are archived on GitHub
216 (<https://github.com/spencer-tassone/SedimentHeatwaves>).

217 **Results**

218 *Observed Sediment and Water Temperature*

219 Sediment temperature at the central meadow and edge locations followed a northern
220 hemisphere temperate seasonal cycle. The maximum summer (June-August of 2020-2022)
221 sediment temperature of the central meadow (32.1 °C) was similar to the edge location (31.6 °C;
222 Figure 2a). Both locations experienced similar low winter (December-February of 2021-2022)
223 temperatures of 1.4 °C and 1.5 °C for the central meadow and edge, respectively. Daily mean
224 sediment temperature at the central meadow was up to 4.1 °C greater than the edge during spring
225 and summer (Figure 2b). Conversely, the daily mean sediment temperature at the edge was up to
226 1.1 °C greater than the central meadow during fall and winter.

227 Sediment temperature seasonality closely followed water temperature seasonality at both
228 locations (SI Figure 3). The water temperature ranges were 2.6 °C and 2.3 °C greater than the
229 sediment temperatures ranges at the central meadow and edge locations, respectively. Water
230 temperature was generally warmer than sediment temperature during summer and cooler than the

231 sediments during winter (Figure 3). The temperature difference range between the water and
232 sediment was 8.6 °C and 6.0 °C at the edge and central locations, respectively. The water and
233 sediment temperature power spectrum at the edge location had a diurnal (24-hour) and semi-
234 diurnal (12-hour) periodicity, while the central sites had only a diurnal signal (SI Figure 4).

235 *Modeled Sediment Temperature*

236 All covariates (i.e., water temperature, mean-centered water level, day of the year, and
237 hour) for the long-term multiple linear regression were statistically significant at the edge
238 location (p-value < 0.001; Table 1). Similarly, all covariates were statistically significant for the
239 central site, except for the mean-centered water level (p-value > 0.05; Table 1). There was an
240 excellent fit between the validation data not used in the construction of the models and the
241 predicted values from the models (Figure 4). The slope of the linear regression between the
242 observed and predicted hourly sediment temperature for the central meadow was 0.98 ± 0.01 (\pm
243 SE) and 0.97 ± 0.01 for the edge ($R^2 \geq 0.97$; Figure 4). Wachapreague water temperature and/or
244 water level were missing for 2006, 2007, and 2017, limiting modeled sediment temperature
245 availability for those periods (SI Figure 5).

246 *Heatwaves*

247 Between 1994-2022 there was a total of 125 AHWs in the VCR (Figure 5a). There was
248 an average (\pm SD) of 4 ± 2 events year^{-1} , with a mean duration of 4 days and a maximum
249 duration of 9 days (Table 2). The mean intensity of the AHWs was 2.1 °C above the seasonally
250 adjusted 90th percentile threshold and was up to 15.7 °C above the threshold. AHWs occurred
251 more in summer (35%), with the other seasons sharing between 21-22% of the remaining AHWs
252 (Figure 6). All of the top 10% most intense AHW occurred between November-March, with 67%
253 ($n = 8$) occurring in winter and the remaining 33% occurring in fall ($n = 2$) and spring ($n = 2$).
254 Atmospheric heatwave frequency had a positive linear increase over the study period; however,

255 this trend was not statistically significant (p-value > 0.05). Similarly, the annual total number of
256 AHW days had a positive trend that was not statistically significant (Figure 5b). Cook's D_i
257 values for the annual total number of AHW days were $> 4/n$ in 1998 and 2014, suggestive of
258 influential outliers in the regression model ($D_i = 0.17$ and 0.15 respectively). Additionally, there
259 was a long-term air temperature trend with a slope of $0.032 \text{ } ^\circ\text{C year}^{-1}$ (p-value < 0.001).

260 There were 67 MHWs during the 29-year study period, averaging 3 ± 2 events year $^{-1}$
261 (Figure 5c). The mean MHW duration was 8 days and ranged up to 26 days (Table 2). The mean
262 MHW intensity was $1.3 \text{ } ^\circ\text{C}$ above the seasonally adjusted 90th percentile threshold and was up to
263 $6.5 \text{ } ^\circ\text{C}$ above the threshold. MHWs occurred most often in summer (34 %), followed by winter
264 (25%), spring (24%), and fall (16%; Figure 6). The top 10% most intense MHWs occurred
265 during winter ($n = 4$) and spring ($n = 3$) between December-April. Heatwave frequency in the
266 water column significantly increased over the study duration at a rate of 0.09 events year $^{-1}$ (p-
267 value = 0.024; Figure 5c). The annual total number of MHW days significantly increased by 0.67
268 days year $^{-1}$ (p-value = 0.022; Figure 5d), representing a 172% increase in the annual total number
269 of heatwave days between 1994 (11 days) and 2022 (30 days). D_i exceeded $4/n$ for the annual
270 total number of MHW days in 1995, 2020, and 2021 ($D_i = 0.19, 0.35, 0.15$ respectively). The 14-
271 day duration of the June 2015 MHW event that impacted *Z. marina* in South Bay was in the 94th
272 percentile of all Wachapreague MHW events between 1994-2022. Lastly, the long-term water
273 temperature trend was $0.041 \text{ } ^\circ\text{C year}^{-1}$ (p-value < 0.001).

274 Among the two SHW locations, there were 66 and 64 SHWs at the central and edge
275 locations, respectively (Figure 5e, g). Annual SHW frequency was, on average, greater at the
276 central meadow location (3 ± 2 events year $^{-1}$) relative to the meadow edge (2 ± 2 events year $^{-1}$;
277 Table 2). The mean and maximum duration of SHWs were equal among locations, averaging 8

278 days and ranging up to a maximum duration of 25 days (Table 2). Similarly, the mean SHW
279 intensity relative to the 90th percentile threshold was equal among locations (mean = 1.2 °C)
280 however, the maximum intensity relative to the 90th percentile threshold was marginally greater
281 at the central meadow location (max = 5.8 °C) relative to the edge location (max = 5.7 °C). Both
282 central and edge locations had the greatest proportion of sediment heatwaves occur in summer
283 (35% and 36%, respectively), followed by spring (26% and 27%, respectively), winter (23% and
284 20%, respectively), and fall (both 17%; Figure 6). The top 10% most intense SHWs occurred
285 between November–April. Sediment heatwave frequency at both locations significantly increased
286 at a rate of 0.10 events year⁻¹ (p-values ≤ 0.015; Figure 5e, g). The annual total number of SHW
287 days significantly increased at an equal rate of 0.67 days year⁻¹ for each location, representing an
288 increase from an average of 11 SHW days in 1994 to 30 SHW days in 2022 (p-values ≤ 0.041;
289 Figure 5f, h). Cook's distance was $> 4/n$ at the central sites in 2020 ($D_i = 0.45$) and at the edge
290 sites in 1995 ($D_i = 0.14$) and 2020 ($D_i = 0.47$).

291 Of the 67 MHW events, 33% started during an active AHW event. Of those 22 co-
292 occurring AHW and MHW events, the MHW lagged the AHW on average by 1 ± 1 day, with a
293 maximum lag of 4 days. Sediment heatwaves co-occurred with an active MHW 79% of the time
294 at the edge and 81% of the time at the central meadow location. Furthermore, the average lag
295 time between MHWs and SHWs was zero days at both locations, and up to 1 day at the central
296 meadow location. The 14-day MHW in June 2015 associated with the observed aboveground
297 seagrass dieback co-occurred with a SHW at both locations (Figure 7). There was no lag between
298 the June 2015 MHW and SHWs, with each persisting for 14 days (June 12, 2015 – June 25,
299 2015). Additionally, there were three atmospheric heat spikes (i.e., daily mean temperature $> 90^{\text{th}}$

300 percentile threshold for a duration < 3 days) and a single 3-day AHW (June 21-23, 2015) that
301 occurred during the MHW and SHWs (Figure 7).

302 **Discussion**

303 The results answer our three original questions about 1) SHW occurrence, 2) SHW
304 spatial patterns and temporal trends, and 3) whether the June 2015 MHW produced a concurrent
305 SHW. First, SHWs were documented based on the modeled sediment temperature dynamics over
306 a 29-year period. SHWs were similar at the central and edge locations and increased over the
307 time period. Finally, there was a concurrent SHW at both sites during the 2015 MHW.
308 MHWs were generally incorporated into shallow coastal sediments as 79-81% of the observed
309 SHWs co-occurred with an active MHW. All but one of the SHWs that coincided with a MHW
310 had a zero-day lag, suggesting that extreme water and sediment temperatures are in phase and
311 strongly coupled.

312 MHWs in the VCR and SHWs in South Bay are increasing in frequency and annual total
313 number of heatwave days between 1994-2022. There was a low number of annual MHWs and
314 SHWs at the beginning of the record (1994-1997) and a high number of MHWs and SHWs at the
315 end of the record (2019-2022) accounting for the the positive trend in MHWs and SHWs over
316 time. For the water column, the linear rate of MHW frequency increase ($0.09 \text{ events year}^{-1}$) was
317 2x greater than the open ocean global average of $0.045 \text{ events year}^{-1}$ (Oliver et al. 2018). This
318 increase in MHW frequency was accompanied by a 172% increase in the annual total MHW
319 days from 11 in 1994 to 30 in 2022. The increase in the annual number of MHW days was less
320 than the globally averaged open ocean (Oliver et al. 2018) yet in agreement with the coastal
321 ocean region of the temperate north-Atlantic (Lima and Wethey 2012; Thoral et al. 2022).
322 MHWs in the VCR are anticipated to increase in the future based on a recent model projection
323 (Wiberg 2023).

324 For the sediments, the linear rate of SHW frequency increase at both locations was 0.1
325 events year⁻¹, which is marginally greater than the increasing rate of MHW frequency in the
326 VCR. This greater rate of SHW frequency increase than MHW and ~20% non-synchronous
327 SHW with MHW suggest an additional sediment heating mechanism or that MHWs at the
328 NOAA Wachapreague tidal station differ somewhat from those in South Bay (~38 km southeast
329 of the NOAA tidal station). The lack of long-term (> 20 years) continuous water temperature
330 records from South Bay limits the ability to test for spatial differences in MHWs. Nonetheless,
331 the annual rate of total SHW days at both locations matched MHWs, increasing from 11 to 30
332 days year⁻¹ during the study period.

333 The central meadow and edge locations had commensurate increasing rates of SHW
334 frequency, annual total SHW days, the proportion of co-occurrence with MHWs, and SHW
335 characteristics. These results did not support the hypothesis that SHW metrics would be greater
336 at the central meadow relative to the edge due to greater oceanic exchange that reduces heating at
337 the edge. Evidence of greater oceanic exchange at the meadow edge was observed as the pelagic
338 and sediment temperature power spectrums exhibited semi-diurnal (12-hour) and diurnal (24-
339 hour) periods, while the central location solely exhibited diurnal periods (SI Figure 3).
340 Additionally, pelagic and sediment temperatures during the summer were often greater at the
341 central location relative to the edge, but during winter, when the most extreme MHWs and
342 SHWs occurred, the meadow edge was typically warmer than the central meadow.

343 The high proportion of MHW and SHW co-occurrence suggests that horizontal advective
344 heat fluxes (transport of heat via tides and currents) within the South Bay lagoon drive SHWs in
345 this system. The relatively low co-occurrence of AHW and MHW in South Bay (33%) further
346 supports that horizontal rather than vertical heat flux (direct atmospheric heating of water and

347 sediment) is the dominant driver of SHWs in this shallow coastal system. Coastal MHWs are
348 driven, in part, by broad-scale processes such as anomalous oceanic and atmospheric circulation
349 patterns, as well as local-scale influences such as circulation and bathymetric features (Schlegel
350 et al. 2017a; Schlegel et al. 2017b). Moreover, the seagrass meadow we studied is shallow with a
351 depth of < 0.25 m during some neap tides, therefore direct heating of the sediments from the
352 atmosphere is possible. Overall, these features all affect temperature dynamics in the nearshore
353 environment, with potential to cause heterogenous heat accumulation in some shallow locations
354 promoting the possibility of MHWs especially with climate warming (Wiberg 2023). While
355 attribution of MHWs was outside the scope of the present study, MHWs in South Bay can occur
356 without an adjacent coastal ocean MHW (Aoki et al. 2021). Additionally, seagrass is known to
357 alter circulation patterns in South Bay (Hansen and Reidenbach 2012) however, the presence of
358 MHWs after seasonal seagrass senescence suggests additional features may promote localized
359 MHW development.

360 Aboveground seagrass biomass loss from the central South Bay meadow region
361 contrasted against the undisturbed seagrass at the meadow edge following the 14-day MHW in
362 June 2015 suggested that the central meadow area had a concurrent SHW while the edge did not.
363 This hypothesis was partially supported as a SHW at the central location started and ended on the
364 same day as the June 2015 MHW. However, a concurrent SHW at the meadow edge also co-
365 occurred with the June 2015 MHW. Differences in observed seagrass loss may be due, in part, to
366 spatial differences in absolute sediment temperature between the meadow edge and interior,
367 spatial differences in sediment organic matter (Oreska et al. 2017), hydrogen sulfide (H_2S)
368 production (Berger 2021), and the extened duration of the MHW event. While *Z. marina* become
369 thermally stressed at 28.6 °C (Berger 2021), heatwave metrics (i.e., climatology, 90th percentile

370 threshold) are localized in space and their thresholds vary throughout the year. Having species
371 specific knowledge of an organism's thermal stress threshold becomes important when linking
372 MHWs to species-level impacts, particularly when the thermal stress threshold is exceeded for
373 multiple days. While thermal stress thresholds are common for the aboveground portion of
374 vegetation, much less is known about thermal stress related to the belowground portions of these
375 organisms. The SHW in June 2015 at the central meadow location exceeded 28.6 °C for three
376 consecutive days while the SHW at the meadow edge did not exceed the *Z. marina* thermal stress
377 threshold. Additionally, high sediment temperatures are associated with increased H₂S
378 production in marine sediments and increased sulfide isotope concentration in seagrass tissues
379 (Berger 2021), which have sub-lethal and lethal impacts on *Z. marina* (Goodman et al. 1995;
380 Pedersen et al. 2004; Höffle et al. 2011; Dooley et al. 2013). Furthermore, H₂S can become
381 concentrated in marine sediments during organic matter decomposition (Dooley et al. 2013) and
382 the fraction of organic matter in South Bay seagrass meadow sediments is up to 3x greater within
383 the central meadow relative to the edge (Oreska et al. 2017). Lastly, while the intensity of the
384 June 2015 MHW was moderate, the 14-day duration of the event was extreme, putting it in the
385 94th percentile of all MHWs observed during the study period. Strydom et al. (2020) modeled
386 seagrass loss from a world heritage area following a MHW event and found MHW duration to be
387 a significant predictor of seagrass loss. The duration of the MHW, increased H₂S production in
388 the meadow interior, and presence of a co-occurring SHW that exceeded the *Z. marina* thermal
389 stress threshold at the meadow interior but not the meadow edge likely contributed to the spatial
390 differences in observed *Z. marina* loss (Aoki et al. 2021) following the June 2015 MHW.

391 Anomalously high sediment temperature events likely have ecosystem and species-level
392 consequences. Optimal microbial temperatures during winter, when SHWs are most intense, are

393 often 20 °C greater than ambient temperatures (Joint and Smale 2017) such that a SHW in winter
394 could increase ecosystem respiration while primary production remains low due to light-
395 limitation and seasonal phenology of marine plants. Additionally, summer SHW may enhance
396 sediment respiration rates above primary production if the primary producers become thermally
397 stressed. The enhancement of winter and summer ecosystem respiration might reduce sediment
398 BC stocks, potentially impacting the ability of seagrass to sequester carbon and reducing the
399 valuation of seagrass in carbon markets (Oreska et al. 2020). At a species level, surficial
400 sediments in subtidal seagrass meadows do not typically provide thermal refugia for sessile and
401 slow-moving organisms during MHWs, given the high proportion of MHW-SHW co-occurrence.
402 This coupling could negatively impact ectothermic benthic marine organisms such as bivalves,
403 foraminifera, and polychaetes which significantly contribute to bioturbation and biogeochemical
404 cycling (Ouellette et al. 2004; Deldicq et al. 2021; Román et al. 2023). Additionally, the intensity
405 of short-term MHWs can have contrasting impacts on the biogeochemical processes of benthic
406 macrofaunal communities such that nutrient cycling rates are enhanced during moderate MHWs
407 and depressed during strong MHWs (Kauppi and Villnäs 2022). Nonetheless, some organisms,
408 including blue crabs (*Callinectes sapidus*), may benefit from increasing SHWs, particularly in
409 the winter, as elevated bottom water temperatures are predicted to increase overwinter survival
410 (Glandon et al. 2019).

411 Future studies should consider the vertical profile of SHWs to better understand the depth
412 to which heatwaves propagate and how SHWs impact critical ecosystem processes, including BC
413 storage, and biogeochemical cycling, as well as temperature-dependent processes such as
414 ecosystem metabolism and species distributions. Moreover, subsequent studies should consider
415 the role of sediment temperature in un-vegetated systems and where there may be a greater

416 decoupling between water and sediment temperature, such as in deep meadows, systems with
417 high turnover, or greater canopy heights.

418 Sediment heatwaves at a depth of 5 cm regularly co-occur with MHW events in the
419 shallow, subtidal vegetated coastal sediments of South Bay, VA. Furthermore, MHWs and
420 SHWs significantly increased in frequency as did the annual total number of heatwave days
421 during the 29 years between 1994-2022. While there were differences in pelagic and sediment
422 temperature periodicity, there were no substantial differences in SHW metrics between the
423 central and edge meadow locations. The June 2015 MHW associated with the 90% decline in
424 aboveground seagrass density, 20% loss in BC stocks, and metabolic conversion of the meadow
425 from autotrophy to heterotrophy (Berger et al. 2020, Aoki et al. 2021) coincided with SHWs at
426 the central and edge meadow locations which may have contributed to observed patterns in
427 seagrass loss.

428 Overall, these results document SHWs in vegetated coastal sediments and indicate these
429 events likely occur in a variety of aquatic systems. While our sediment temperature model did
430 not account for how seagrass metrics (i.e., differences in canopy height, density, biomass) may
431 impact sediment temperature, future studies should consider how these factors impact sediment
432 temperature dynamics. Inclusion of seagrass metrics might improve the accuracy of our sediment
433 temperature model, particularly between the years 1999-2007 when South Bay was actively
434 undergoing a state change due to restoration efforts. Lastly, our study highlights the value of
435 long-term monitoring programs, such as NOAA's Center for Operational Oceanographic
436 Products and Services (CO-OPS) and NSF's Long-Term Ecological Research (LTER) program,
437 to characterize emergent climate change signals such as coastal marine and sediment heatwaves.

438 **References**

439 Aoki, L. R., McGlathery, K. J., Wiberg, P. L., Oreska, M. P. J., Berger, A. C., Berg, P., & Orth,
440 R. J. 2021. Seagrass Recovery Following Marine Heat Wave Influences Sediment Carbon
441 Stocks. *Frontiers in Marine Science*, 7, 576784.
442 <https://doi.org/10.3389/fmars.2020.576784>

443 Arias-Ortiz, A., Serrano, O., Masqué, P., Lavery, P. S., Mueller, U., Kendrick, G. A., Rozaimi,
444 M., Esteban, A., Fourqurean, J. W., Marbà, N., Mateo, M. A., Murray, K., Rule, M. J., &
445 Duarte, C. M. 2018. A marine heatwave drives massive losses from the world's largest
446 seagrass carbon stocks. *Nature Climate Change*, 8(4), 338–344.
447 <https://doi.org/10.1038/s41558-018-0096-y>

448 Berger, A. C. 2021. Long-term aquatic eddy-covariance measurements of seagrass metabolism
449 and ecosystem response to warming ocean. *University of Virginia, Environmental
450 Sciences - Graduate School of Arts and Sciences*, Ph.D. Dissertation.
451 <https://doi.org/10.18130/wfh0-1f94>

452 Berger, A. C., Berg, P., McGlathery, K. J., & Delgard, M. L. 2020. Long-term trends and
453 resilience of seagrass metabolism: A decadal aquatic eddy covariance study. *Limnology
454 and Oceanography*, 65(7), 1423–1438. <https://doi.org/10.1002/limo.11397>

455 Collier, C. J., & Waycott, M. 2014. Temperature extremes reduce seagrass growth and induce
456 mortality. *Marine Pollution Bulletin*, 83(2), 483-490.

457 Deldicq, N., Langlet, D., Delaeter, C., Beaugrand, G., Seuront, L., & Bouchet, V. M. 2021.
458 Effects of temperature on the behavior and metabolism of an intertidal foraminifera and
459 consequences for benthic ecosystem functioning. *Scientific Reports*, 11(1), 4013.

460 Dooley, F. D., Wyllie-Echeverria, S., Roth, M. B., & Ward, P. D. 2013. Tolerance and response
461 of *Zostera marina* seedlings to hydrogen sulfide. *Aquatic Botany*, 105, 7-10.

462 Duarte, C. M., Middelburg, J. J., & Caraco, N. 2005. Major role of marine vegetation on the
463 oceanic carbon cycle. *Biogeosciences*, 2(1), 1-8.

464 Fourqurean, J. W., Duarte, C. M., Kennedy, H., Marbà, N., Holmer, M., Mateo, M. A.,
465 Apostolaki, E. T., Kendrick, G. A., Krause-Jensen, D., McGlathery, K. J., & Serrano, O.
466 2012. Seagrass ecosystems as a globally significant carbon stock. *Nature Geoscience*,
467 5(7), 505–509. <https://doi.org/10.1038/ngeo1477>

468 Frölicher, T. L., E. M. Fischer, and N. Gruber. 2018. Marine heatwaves under global warming.
469 *Nature*, 560(7718): 360–364.

470 Glandon, H. L., Kilbourne, K. H., & Miller, T. J. 2019. Winter is (not) coming: Warming
471 temperatures will affect the overwinter behavior and survival of blue crab. *PLOS ONE*,
472 14(7), e0219555.

473 Goodman, J. L., Moore, K. A., & Dennison, W. C. 1995. Photosynthetic responses of eelgrass

474 (Zostera marina L.) to light and sediment sulfide in a shallow barrier island lagoon.
475 *Aquatic Botany*, 50(1), 37-47.

476 Gouhier, T. C., Grinsted, A., and Simko, V. 2021. R package {biwavelet}: Conduct univariate
477 and bivariate wavelet analyses (Version 0.20.21). <https://github.com/tgouhier/biwavelet>

478 Groleger, N., Morreale, J., and Porter, J. H. 2022. Gap-filled Meteorological Data for the
479 Virginia Coast Reserve LTER - 1989-2022. Virginia Coast Reserve Long-Term
480 Ecological Research Project Data Publication knb-lter-vcr.337.2
481 <https://doi.org/10.6073/pasta/4cf8f0db83783b71f7ee001d794e0016>.

482 Hansen, J., & Reidenbach, M. 2012. Wave and tidally driven flows in eelgrass beds and their
483 effect on sediment suspension. *Marine Ecology Progress Series*, 448, 271–287.
484 <https://doi.org/10.3354/meps09225>

485 Hansen, J. C. R., & Reidenbach, M. A. 2013. Seasonal Growth and Senescence of a Zostera
486 marina Seagrass Meadow Alters Wave-Dominated Flow and Sediment Suspension
487 Within a Coastal Bay. *Estuaries and Coasts*, 36(6), 1099–1114.
488 <https://doi.org/10.1007/s12237-013-9620-5>

489 Hobday, A. J., Alexander, L. V., Perkins, S. E., Smale, D. A., Straub, S. C., Oliver, E. C. J.,
490 BenthuySEN, J. A., Burrows, M. T., Donat, M. G., Feng, M., Holbrook, N. J., Moore, P.
491 J., Scannell, H. A., Sen Gupta, A., and Wernberg, T. 2016. A hierarchical approach to
492 defining marine heatwaves. *Progress in Oceanography*, 141, 227–238.
493 <https://doi.org/10.1016/j.pocean.2015.12.014>

494 Hobday, A., Oliver, E., Sen Gupta, A., BenthuySEN, J., Burrows, M., Donat, M., Holbrook, N.,
495 Moore, P., Thomsen, M., Wernberg, T., and Smale, D. 2018. Categorizing and Naming
496 Marine Heatwaves. *Oceanography*, 31(2). <https://doi.org/10.5670/oceanog.2018.205>

497 Höffle, H., Thomsen, M. S., & Holmer, M. 2011. High mortality of Zostera marina under high
498 temperature regimes but minor effects of the invasive macroalgae Gracilaria
499 vermiculophylla. *Estuarine, Coastal and Shelf Science*, 92(1), 35-46.

500 Holbrook, N.J., Scannell, H.A., Sen Gupta, A., BenthuySEN, J.A., Feng, M., Oliver, E.C.,
501 Alexander, L.V., Burrows, M.T., Donat, M.G., Hobday, A.J. and Moore, P.J., 2019. A
502 global assessment of marine heatwaves and their drivers. *Nature Communications*, 10(1),
503 1-13. <https://doi.org/10.1038/s41467-019-10206-z>

504 Jassby, A. D., and Cloern, J. E. 2017. wq: Some tools for exploring water quality monitoring
505 data. R package version 0.4.9 <https://cran.r-project.org/package=wq>

506 Joint, I., & Smale, D. A. 2017. Marine heatwaves and optimal temperatures for microbial
507 assemblage activity. *FEMS Microbiology Ecology*, 93(2), fiw243.
508 <https://doi.org/10.1093/femsec/fiw243>

509 Krumhansl, K. A., Dowd, M., and Wong, M. C. 2021. Multiple metrics of temperature, light, and
510 water motion drive gradients in eelgrass productivity and resilience. *Frontiers in Marine*

511 *Science*, 8:597707. <https://doi.org/10.3389/fmars.2021.597707>

512 Lamb, J. B., van de Water, J. A. J. M., Bourne, D. G., Altier, C., Hein, M. Y., Fiorenza, E. A.,
513 Abu, N., Jompa, J., & Harvell, C. D. 2017. Seagrass ecosystems reduce exposure to
514 bacterial pathogens of humans, fishes, and invertebrates. *Science*, 355(6326), 731–733.
515 <https://doi.org/10.1126/science.aal1956>

516 Lima, F. P., & Wethey, D. S. 2012. Three decades of high-resolution coastal sea surface
517 temperatures reveal more than warming. *Nature Communications*, 3(1), 704.
518 <https://doi.org/10.1038/ncomms1713>

519 Macreadie, P. I., Anton, A., Raven, J. A., Beaumont, N., Connolly, R. M., Friess, D. A.,
520 Kelleway, J. J., Kennedy, H., Kuwae, T., Lavery, P. S., Lovelock, C. E., Smale, D. A.,
521 Apostolaki, E. T., Atwood, T. B., Baldock, J., Bianchi, T. S., Chmura, G. L., Eyre, B. D.,
522 Fourqurean, J. W., ... Duarte, C. M. 2019. The future of Blue Carbon science. *Nature
523 Communications*, 10(1), 3998. <https://doi.org/10.1038/s41467-019-11693-w>

524 McGlathery, K., Reynolds, L., Cole, L., Orth, R., Marion, S., & Schwarzschild, A. 2012.
525 Recovery trajectories during state change from bare sediment to eelgrass dominance.
526 *Marine Ecology Progress Series*, 448, 209–221. <https://doi.org/10.3354/meps09574>

527 McLeod, A. I. 2011. Kendall: Kendall rank correlation and Mann-Kendall trend test. R package
528 version 2.2. <https://CRAN.R-project.org/package=Kendall>

529 Meehl, G. A., & Tebaldi, C. 2004. More Intense, More Frequent, and Longer Lasting Heat
530 Waves in the 21st Century. *Science*, 305(5686), 994–997.
531 <https://doi.org/10.1126/science.1098704>

532 Nahlik, A. M., & Fennessy, M. S. 2016. Carbon storage in US wetlands. *Nature
533 Communications*, 7(1), 1-9.

534 Oliver, E. C. J., BenthuySEN, J. A., Darmaraki, S., Donat, M. G., Hobday, A. J., Holbrook, N. J.,
535 Schlegel, R. W., & Sen Gupta, A. 2021. Marine Heatwaves. *Annual Review of Marine
536 Science*, 13(1), 313–342. <https://doi.org/10.1146/annurev-marine-032720-095144>

537 Oliver, E. C. J., Donat, M. G., Burrows, M. T., Moore, P. J., Smale, D. A., Alexander, L. V.,
538 BenthuySEN, J. A., Feng, M., Sen Gupta, A., Hobday, A. J., Holbrook, N. J., Perkins-
539 Kirkpatrick, S. E., Scannell, H. A., Straub, S. C., & Wernberg, T. 2018. Longer and more
540 frequent marine heatwaves over the past century. *Nature Communications*, 9(1), 1324.
541 <https://doi.org/10.1038/s41467-018-03732-9>

542 Oreska, M. P. J., McGlathery, K. J., Aoki, L. R., Berger, A. C., Berg, P., & Mullins, L. 2020.
543 The greenhouse gas offset potential from seagrass restoration. *Scientific Reports*, 10(1),
544 7325. <https://doi.org/10.1038/s41598-020-64094-1>

545 Oreska, M. P. J., McGlathery, K. J., & Porter, J. H. 2017. Seagrass blue carbon spatial patterns at
546 the meadow-scale. *PLOS ONE*, 12(4), e0176630.
547 <https://doi.org/10.1371/journal.pone.0176630>

548 Orth, R. J., Lefcheck, J. S., McGlathery, K. S., Aoki, L., Luckenbach, M. W., Moore, K. A.,
549 Oreska, M. P. J., Snyder, R., Wilcox, D. J., & Lusk, B. 2020. Restoration of seagrass
550 habitat leads to rapid recovery of coastal ecosystem services. *Science Advances*, 6(41),
551 eabc6434. <https://doi.org/10.1126/sciadv.abc6434>

552 Ouellette, D., Desrosiers, G., Gagne, J. P., Gilbert, F., Poggiale, J. C., Blier, P. U., & Stora, G.
553 2004. Effects of temperature on in vitro sediment reworking processes by a gallery
554 biodiffusor, the polychaete *Neanthes virens*. *Marine Ecology Progress Series*, 266, 185-
555 193. <https://doi.org/10.3354/meps266185>

556 Pedersen, O., Binzer, T., & Borum, J. 2004. Sulphide intrusion in eelgrass (*Zostera marina* L.).
557 *Plant, Cell and Environment*, 27(5), 595–602. <https://doi.org/10.1111/j.1365-3040.2004.01173.x>

559 Perkins, S. E., & Alexander, L. V. 2013. On the Measurement of Heat Waves. *Journal of*
560 *Climate*, 26(13), 4500–4517. <https://doi.org/10.1175/JCLI-D-12-00383.1>

561 Pohlert, T. 2020. trend: Non-Parametric Trend Tests and Change-Point Detection. R package
562 version 1.1.4. <https://CRAN.R-project.org/package=trend>

563 R Core Team. 2022. R: A language and environment for statistical computing. R Foundation for
564 Statistical Computing, Vienna, Austria. <https://www.R-project.org/>.

565 Román, M., Gilbert, F., Viejo, R. M., Román, S., Troncoso, J. S., Vázquez, E., & Olabarria, C.
566 2023. Are clam-seagrass interactions affected by heatwaves during emersion? *Marine*
567 *Environmental Research*, 186, 105906.

568 Safak, I., Wiberg, P. L., Richardson, D. L., & Kurum, M. O. 2015. Controls on residence time
569 and exchange in a system of shallow coastal bays. *Continental Shelf Research*, 97, 7–20.
570 <https://doi.org/10.1016/j.csr.2015.01.009>

571 Serrano, O., Arias-Ortiz, A., Duarte, C. M., Kendrick, G. A., Lavery, P. S. 2021. Impact of
572 Marine Heatwaves on Seagrass Ecosystems. In: Canadell, J. G., Jackson, R. B. (eds)
573 Ecosystem Collapse and Climate Change. Ecological Studies, vol 241. Springer, Cham.
574 https://doi.org/10.1007/978-3-030-71330-0_13

575 Schlegel, R. W., Oliver, E. C. J., Perkins-Kirkpatrick, S., Kruger, A., & Smit, A. J. 2017a.
576 Predominant Atmospheric and Oceanic Patterns during Coastal Marine Heatwaves.
577 *Frontiers in Marine Science*, 4, 323. <https://doi.org/10.3389/fmars.2017.00323>

578 Schlegel, R. W., Oliver, E. C. J., Wernberg, T., & Smit, A. J. 2017b. Nearshore and offshore co-
579 occurrence of marine heatwaves and cold-spells. *Progress in Oceanography*, 151, 189–
580 205. <https://doi.org/10.1016/j.pocean.2017.01.004>

581 Schlegel, R. W., & J. Smit, A. 2018. heatwaveR: A central algorithm for the detection of
582 heatwaves and cold-spells. *Journal of Open Source Software*, 3(27), 821.
583 <https://doi.org/10.21105/joss.00821>

584 Strydom, S., Murray, K., Wilson, S., Huntley, B., Rule, M., Heithaus, M., Bessey, C., Kendrick,
585 G. A., Burkholder, D., Fraser, M. W., & Zdunic, K. 2020. Too hot to handle:
586 Unprecedented seagrass death driven by marine heatwave in a World Heritage Area.
587 *Global Change Biology*, 26(6), 3525-3538. <https://doi.org/10.1111/gcb.15065>

588 Tassone , S. J. 2023. Quantifying heatwaves and seagrass recovery dynamics in aquatic
589 ecosystems. *University of Virginia, Environmental Sciences - Graduate School of Arts*
590 and Sciences, Ph.D. Dissertation. <https://doi.org/10.18130/0vkc-jj16>

591 Tassone, S. J., Besterman, A. F., Buelo, C. D., Ha, D. T., Walter, J. A., & Pace, M. L. 2022a.
592 Increasing heatwave frequency in streams and rivers of the United States. *Limnology and*
593 *Oceanography Letters*, lol2.10284. <https://doi.org/10.1002/lol2.10284>

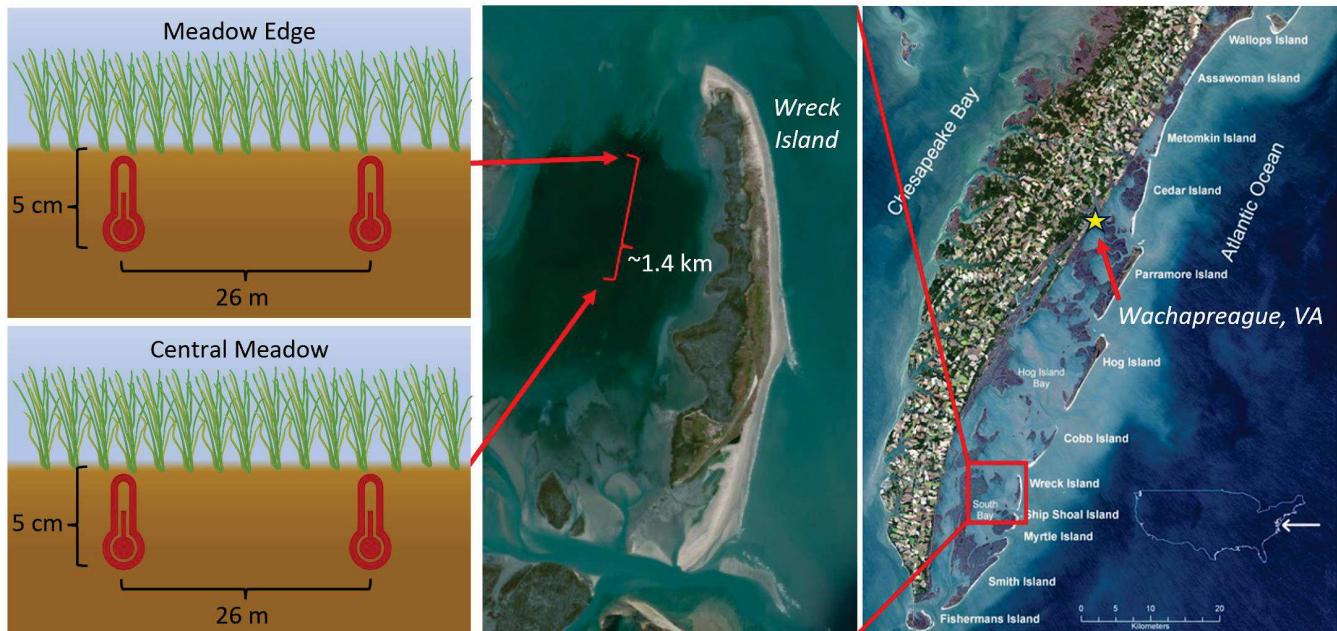
594 Tassone, S. J., Besterman, A. F., Buelo, C. D., Walter, J. A., & Pace, M. L. 2022b. Co-
595 occurrence of Aquatic Heatwaves with Atmospheric Heatwaves, Low Dissolved Oxygen,
596 and Low pH Events in Estuarine Ecosystems. *Estuaries and Coasts*, 45(3), 707–720.
597 <https://doi.org/10.1007/s12237-021-01009-x>

598 Tassone, S. and M.L. Pace. 2023. High-frequency water and sediment temperature from the
599 Seagrass Recovery Experiment, South Bay, VA 2020-2022 ver 1. *Environmental Data*
600 *Initiative*. <https://doi.org/10.6073/pasta/9d0556bf46a3a79b6bde96003529f407>

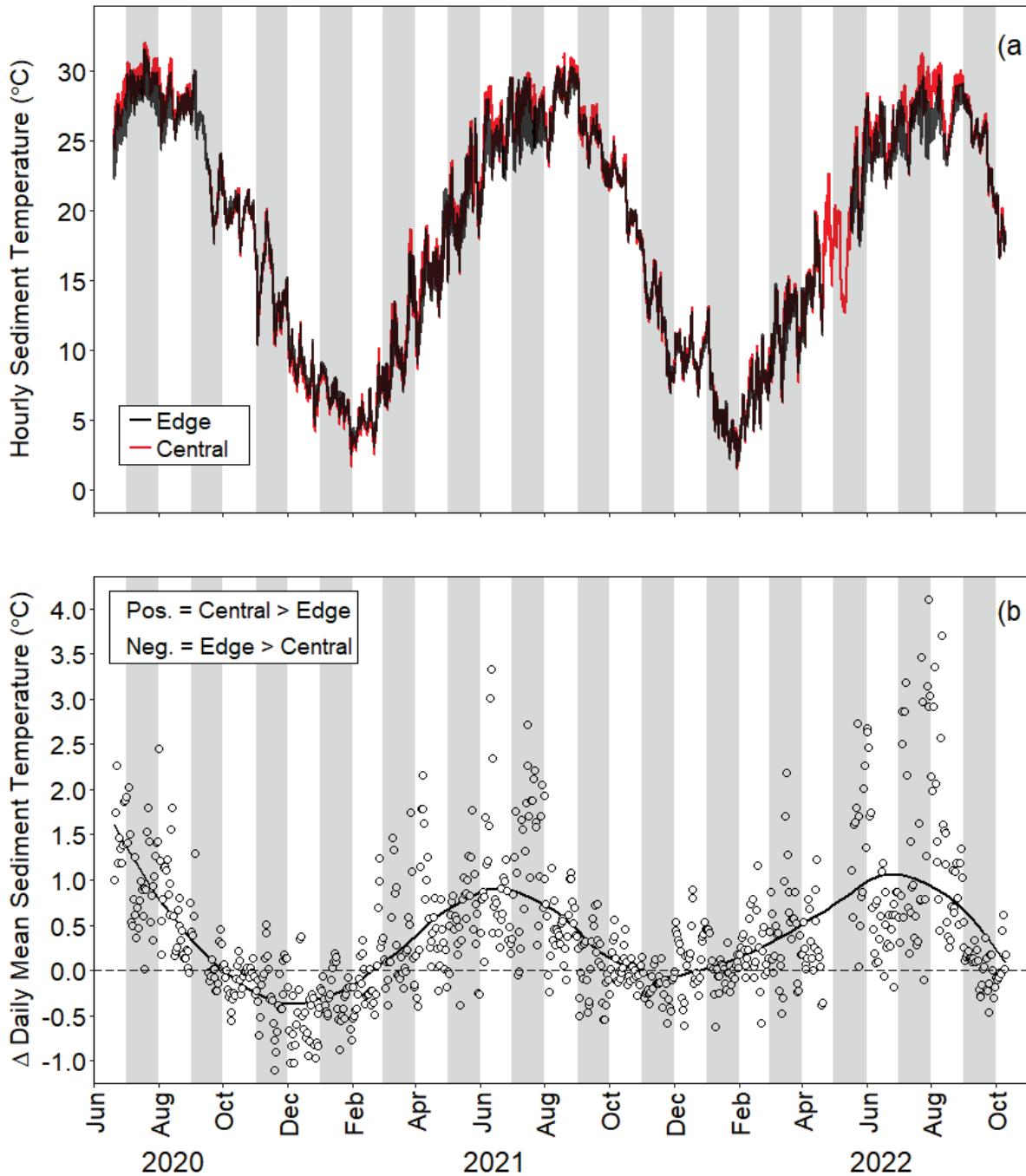
601 Thoral, F., Montie, S., Thomsen, M. S., Tait, L. W., Pinkerton, M. H., & Schiel, D. R. 2022.
602 Unravelling seasonal trends in coastal marine heatwave metrics across global
603 biogeographical realms. *Scientific Reports*, 12(1), 7740. <https://doi.org/10.1038/s41598-022-11908-z>

605 Unsworth, R. K. F., Collier, C. J., Waycott, M., Mckenzie, L. J., & Cullen-Unsworth, L. C. 2015.
606 A framework for the resilience of seagrass ecosystems. *Marine Pollution Bulletin*,
607 100(1), 34–46. <https://doi.org/10.1016/j.marpolbul.2015.08.016>

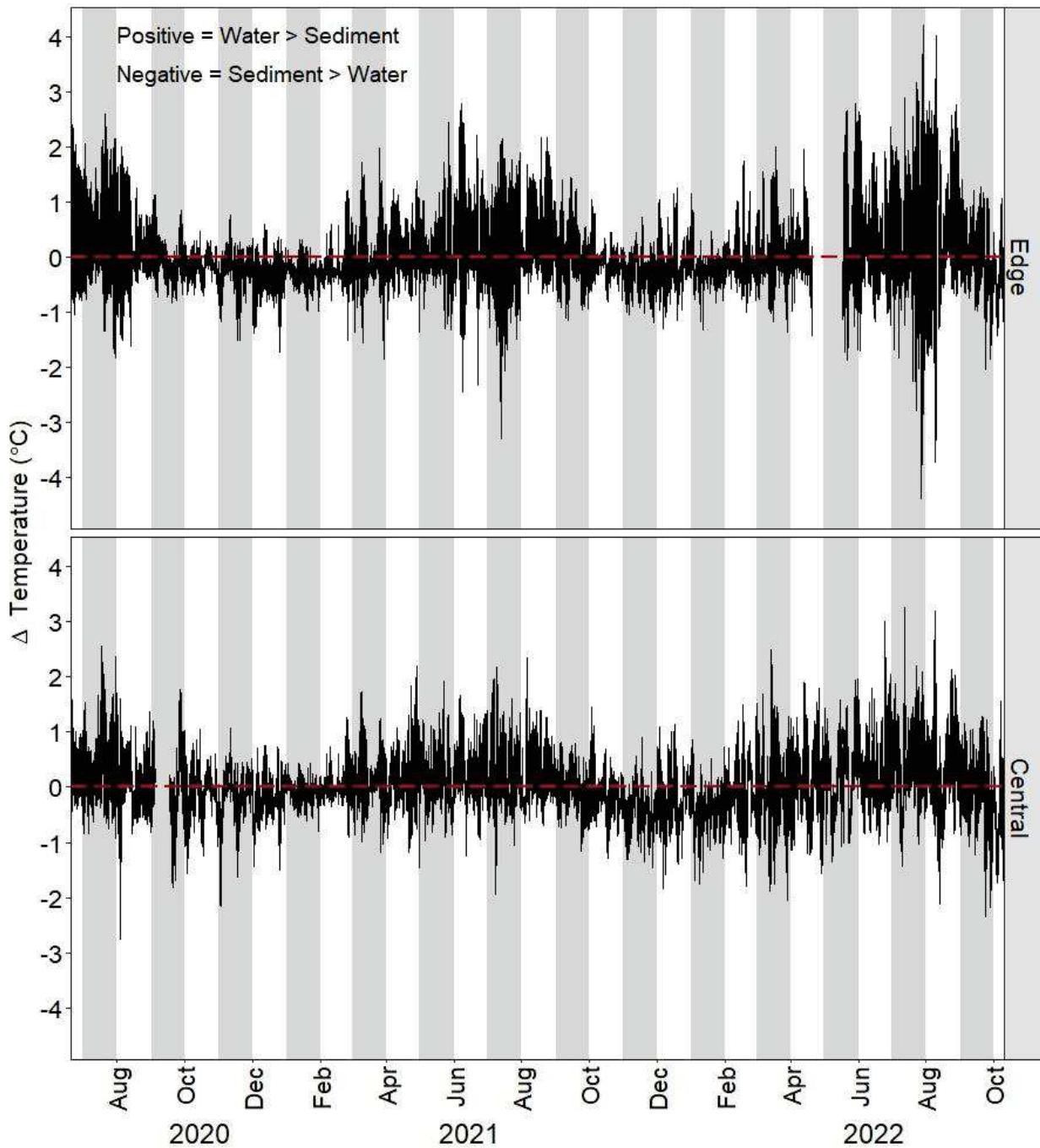
608 Wiberg, P. L. 2023. Temperature amplification and marine heatwave alteration in shallow
609 coastal bays. *Frontiers in Marine Science* 10: <https://doi.org/10.3389/fmars.2023.1129295>


610 Wuebbles, D. J., Fahey, D. W., Hibbard, K. A., DeAngelo, B., Doherty, S., Hayhoe, K., Horton,
611 R., Kossin, J. P., Taylor, P. C., Waple, A. M., & Yohe, C. P. 2017. Executive summary.
612 Climate Science Special Report: Fourth National Climate Assessment, Volume I. U.S.
613 Global Change Research Program. <https://doi.org/10.7930/J0DJ5CTG>

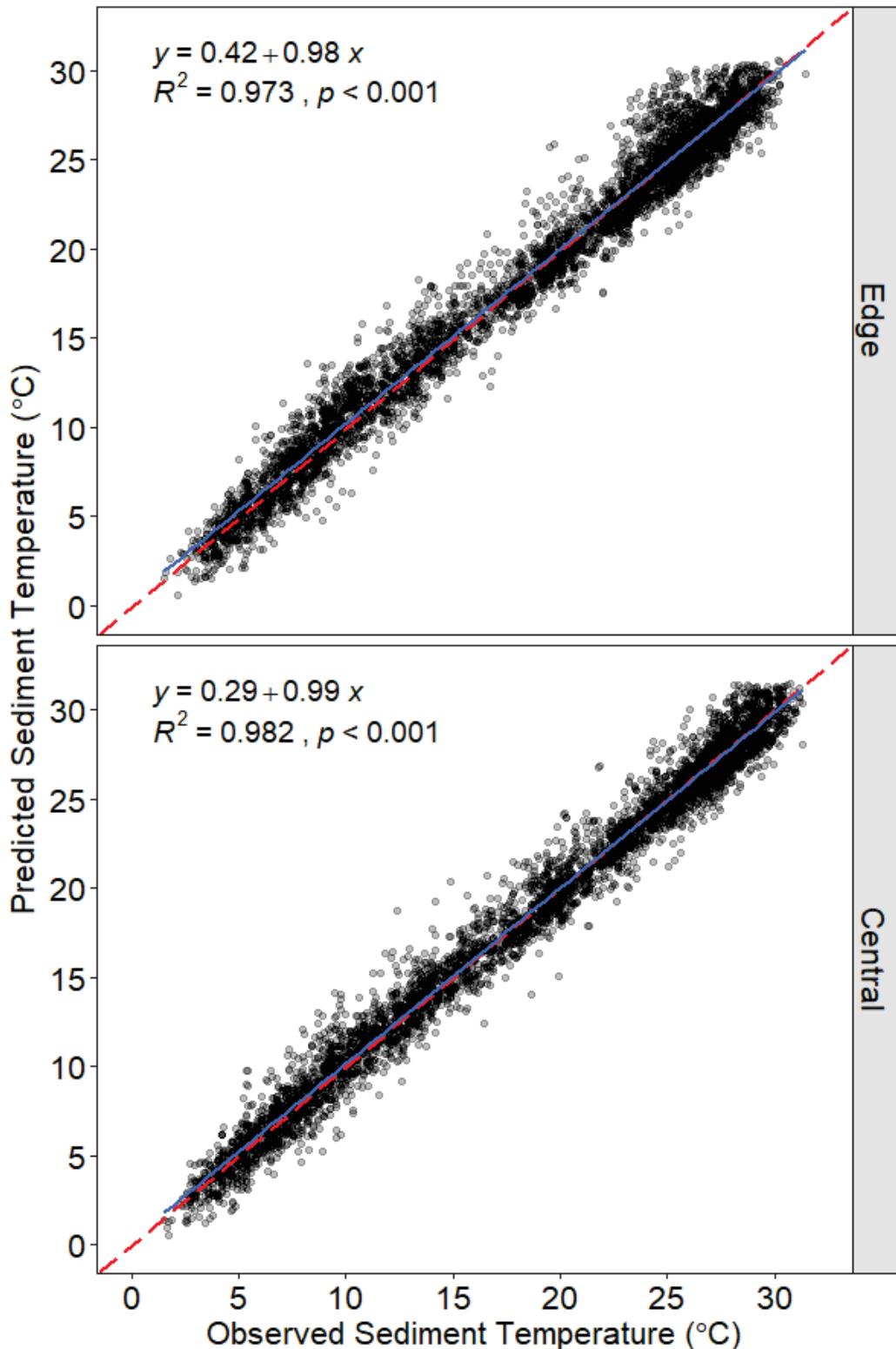
614 **Tables & Figures**615 Table 1. Multiple linear regression model characteristics for South Bay sediment temperature.
616 The long-term mean was removed from the Water Level variable prior to model development.


Location	Variable	Estimate \pm SE	Variable p-val.	Adj. R ²	Model p-val.
Edge	Intercept	0.782 \pm 0.034	< 0.001	0.974	< 0.001
	Water Temp. (°C)	0.879 \pm 0.001	< 0.001		
	Water Level (m)	-0.744 \pm 0.053	< 0.001		
	Day of Year	0.005 \pm 0	< 0.001		
Central	Hour	0.01 \pm 0.002	< 0.001		
	Intercept	0.513 \pm 0.029	< 0.001	0.982	< 0.001
	Water Temp. (°C)	0.934 \pm 0.001	< 0.001		
	Water Level (m)	0.022 \pm 0.045	0.623		
	Day of Year	0.003 \pm 0	< 0.001		
	Hour	0.02 \pm 0.001	< 0.001		

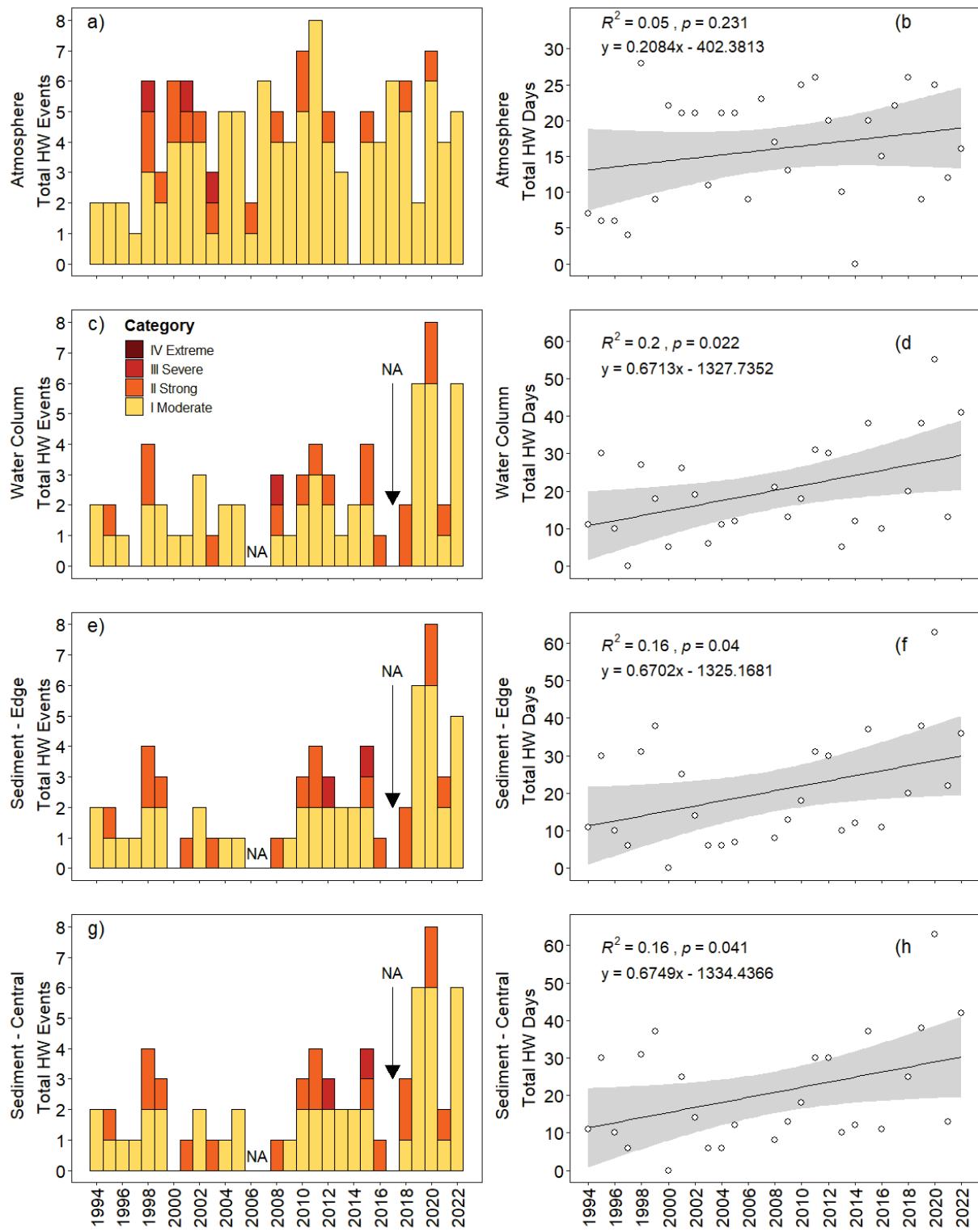
617 Table 2. Heatwave characteristics for the VCR atmosphere at Oyster, VA, water column of
 618 South Bay, VA, and the sediments at the edge and central South Bay meadow locations.
 619 Frequency results are the annual mean number of events \pm standard deviation.


Variable	Atmosphere	Water	Edge	Central
Total Events	125	67	64	66
Frequency (events year ⁻¹)	4 \pm 2	3 \pm 2	2 \pm 2	3 \pm 2
Mean Duration (days)	4	8	8	8
Max Duration (days)	9	26	25	25
Mean Intensity - Rel. Thres. (°C)	2.1	1.3	1.2	1.2
Max Intensity - Rel. Thres. (°C)	15.7	6.5	5.7	5.8

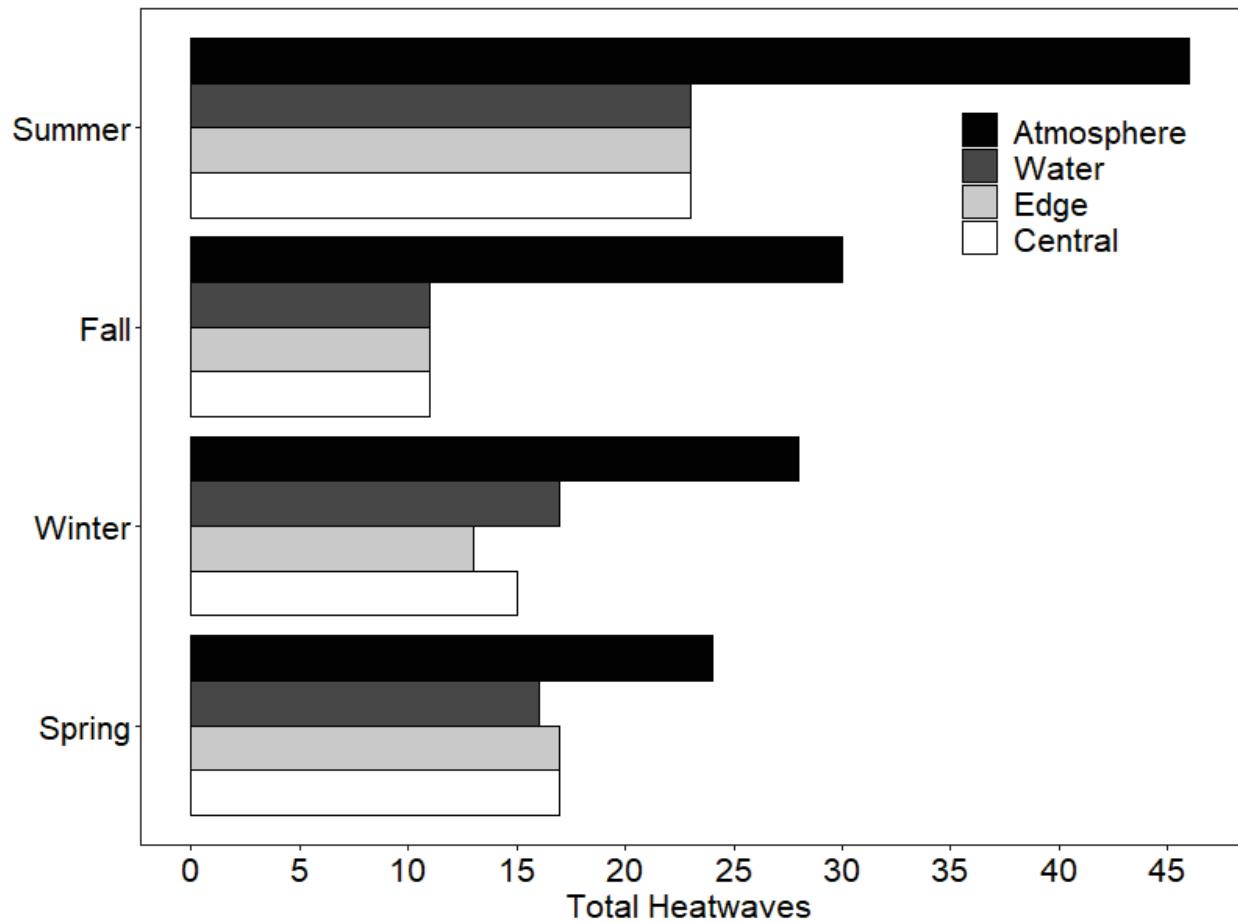
620 Figure 1. Map of the study area along with the position of sediment temperature thermistors (not to scale). Two temperature
 621 thermistors were buried to a depth of 5 cm at the meadow edge and central meadow interior which were approximately 1.4 km apart.
 622 Within each location, thermistors were spaced 26 meters apart. NOAA's tidal monitoring station at Wachapreague, VA, is denoted by
 623 a star in the right panel and is approximately 38 km north of South Bay.

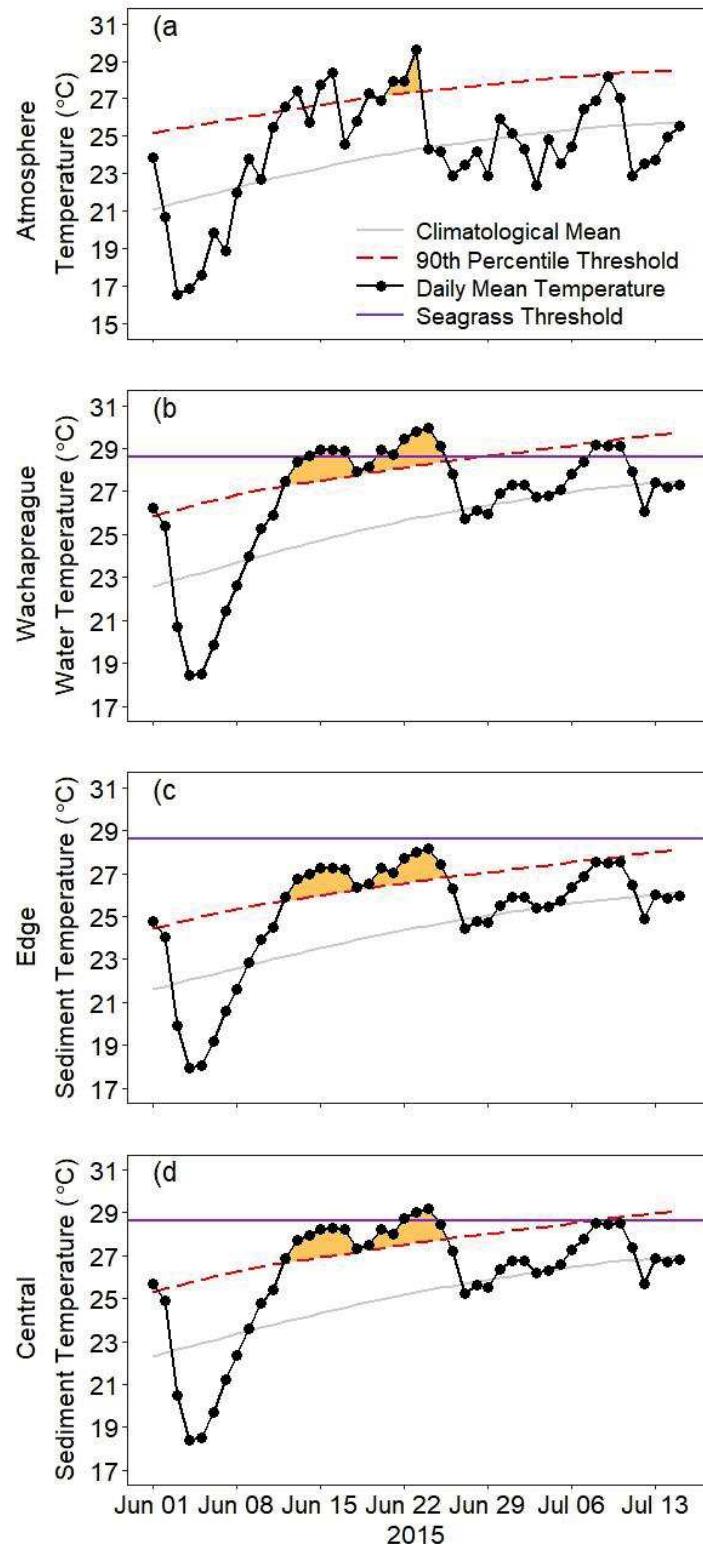


624 Figure 2. Hourly sediment temperature for the edge and central locations within the South Bay
625 seagrass meadow (a). Daily mean difference in sediment temperature between the edge and
626 central locations within South Bay (b). Positive values indicate that the central site was warmer
627 than the edge, whereas negative values indicated that the edge was warmer than the central site.
628 Dots represent the daily mean difference, while the smoothing line was produced using locally
629 weighted polynomial regression.



630
631
632
633
634


Figure 3. Observed hourly difference between water and sediment temperature for the edge and central locations. Positive values indicate that the water temperature was greater than the sediment temperature, whereas negative values indicate that the sediment temperature was greater than the water temperature.


635 Figure 4. Sediment temperature model validation for the edge (top) and central meadow (bottom)
 636 locations of the South Bay seagrass meadow. The red dashed lines represent the 1:1 line, while
 637 the blue lines represent the line of best fit from linear regression.

638 Figure 5. Annual heatwave frequency for the VCR atmosphere (a), the South Bay water column
 639 (c), edge (e), and central meadow (g) sediments. Linear regression of the annual total number of
 640 heatwave days for the atmosphere (b) water column (d), edge (f), and central meadow sediments
 641 (h). NA refers to years when NOAA water temperature and/or water level data was unavailable
 642 such that MHW and SHW analyses were not possible.

643 Figure 6. Total number of heatwaves per season for the atmosphere and water column, as well as
644 the central meadow and edge sediments.

645 Figure 7. Concurrent heatwaves in the atmosphere (a), water column (b), edge sediments (c), and
 646 central meadow (d) sediments. Areas under the curve between the daily mean temperature and
 647 90th percentile represent heatwave conditions. The purple horizontal line in b, c and d represent
 648 the 28.6 °C thermal stress threshold for *Z. marina*.