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Abstract— This paper explores whether experiential knowl-
edge of computer vision from interacting with daily apps (e.g.,
Instagram, Zoom, etc.) can be leveraged to improve users’
expectations of robotic capabilities. We evaluate users’ ability
to predict when computer vision apps might fail and if they
can apply their experience to reason about computer vision
in robotic systems. We show that although users can reliably
predict computer vision app capabilities and functionality, they
tend to ascribe human-level knowledge to those apps and do
not reliably correlate app functionality with similar robotic
tasks. We propose that experiential knowledge gained through
interaction with software apps is a potential way to “calibrate”
user expectations of the function and failure states of complex
systems.

I. INTRODUCTION

Intelligent robotic systems employ fundamentally differ-
ent sensors, actuators, and algorithms than people do, yet
the distinction between human intelligence and intelligent
systems is often blurred by anthropomorphization. This mis-
match causes problems because we (researchers, developers,
application designers, and policy makers) blithely assume
that the two systems will succeed (and fail) in the same way
and for the same reasons. As an example, robots do not “see
humans”. They have laser and camera sensors that result in
a set of measurements that are then compared to previously
seen data that has been labeled as “person”, and combined
with a set of (often implicit) assumptions. If the match
is “close enough” (in mathematical terms) a box is drawn
around the area in the image and labeled as “person”. This
mathematical calculation can fail, leading to not detecting a
person (or detecting one where there isn’t) — in situations
no human would fail at the same task.

In this study, we explore whether interaction with daily
software applications (e.g., Instagram, Zoom) that use Com-
puter Vision (CV), can enable users to reason properly
about the functionality, capabilities, and limitations of such
systems. Moreover, we investigate if this knowledge can be
used to identify the same technology when embodied in a
robotic system.

To explore participants’ understanding of everyday soft-
ware applications, we ask them questions about the func-
tionality, capabilities, and limitations of several widely-used

Funded in part by NSF grants NRI 2024872, 2024673, and 2024643.
Sogol Balali and Cindy Grimm are with the School of Mechanical, Indus-
trial, and Manufacturing Engineering, Oregon State University, Corvallis,
USA {balalis, grimmc}Qoregonstate.edu. lan Afflerbach and
Ruth West are with the College of Engineering, College of Visual Art and
Design, and College of Information, University of North Texas, Denton,
USA {ianafflerbach, ruth.west}Qunt.edu. Ross T. Sowell is
with the Department of Mathematics and Computer Science, The University
of the South, Sewanee, USA {rsowell}@sewanee.edu.

CV software applications. We assess whether the nuanced
differences between the apps are reflected in participants’
responses. We also measure how well they can predict
when an app might fail, and how well they can identify
the cause(s) of, and solution to, the failure. We ask them
questions about functionality to determine if they understand
the difference between how a human might do the task versus
what the algorithm does. To learn whether their experiential
knowledge of everyday software applications helps them
recognize the same technology in robots, we ask them to rate
the extent to which they believe a task-specific robot (e.g.,
receptionist robot) uses a technology similar to the ones used
in the everyday app.

This topic is important because prior literature maintains
that the understanding that people develop through inter-
action with robots about their capabilities and limitations
may be inaccurate, reductive, or involve potentially harmful
simplifications [1]. Such understanding can have serious
consequences, including loss of trust [2] in a robotic system
or even disuse of it [3]. Our work aims to understand how
we might leverage people’s experience with everyday apps
to improve their ability to reason about robotic systems.

In this research, we focus on computer vision because it is
widely used in robots that need to operate in the real world,
and people have some experience with it through apps that
they already use in their daily lives. Our research questions
are: (RQ.1) What features within the image do participants
believe that these apps use to do their tasks?; (RQ.2) How
well can participants reason about the capabilities and limi-
tations of these apps?; (RQ.3) Can participants identify the
same technology when it is embodied in a robotic system?

Our study measures participants’ experiential understand-
ing (can they predict when the app will succeed/fail, and
what might cause those failures) as well as what types of
features (eg, noses, hair color) these apps might use. We
show that participants can effectively do this prediction, but
they tend to ascribe human-type knowledge (the app “knows”
there is a face) to the algorithm. Interestingly, they have not
made the connection that this type of technology is what
robots might use to perform their tasks.

II. RELATED WORK
We discuss work in interactive machine learning and
explainable artificial intelligence.
A. Interactive Machine Learning

The term Interactive Machine Learning (IML) was first
introduced in 2003 [4] to address the key limitations of
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APP TYPE | DESCRIPTION

EXAMPLE

Filter * identifies a face and places virtual face or background filters on or around the face. | Instagram, Snapchat, Zoom, Skype
Tag recognizes and tags people in images. Facebook, Google Photos

Lock * recognizes a face to unlock the device. Smartphones, smart door locks
Text * scans a word to get an instant translation in a different language. Google Translate

Check * scans a check to deposit it to a bank account. Online banking apps

Food scans a plate of food to return the corresponding calorie of the items on the plate. Calorie counting apps

Finger-lock | scans a fingerprint to unlock a device.

Smartphones, smart door locks

Barcode

or find nutrition information.

scans a barcode of a product to find the product information on a retailer website

Amazon Barcode Scanner, MyFitnessPal

TABLE I: List of all apps initially considered for this study. The four marked with a * are the ones selected for this paper.

Classical Machine Learning (CML) Models. These limita-
tions include slow training time and the absence of corrective
feedback from users during the training process. The IML
approach [4], [5] incorporates quick train-feedback-correct
cycles that enable users with no machine learning back-
ground to rapidly correct the mistakes made by Machine
Learning systems. The IML approach also allows users to
adapt their own feedback behavior based on the system
behavior and even learn from it. IML research is relevant to
our study in that gaining understanding of Machine Learning
systems through interaction with them (i.e., experiential
knowledge), especially for end users, is a key component
in that area of research. In our work, we focus on everyday
apps that use computer vision. Unlike the IML literature, we
investigate the impact of experiential knowledge on users’
ability to reason about the system functionality, capabilities,
and limitations, not to improve the system’s performance.

The study by Kulesza et al. [6] is perhaps the most relevant
to our work because they investigate the impact of interaction
with IML systems on people’s ability to build useful mental
models [7] of such systems. In their research, their main
measure is the users’ ability to personalize the system. In
our research, we instead measure the users’ ability to predict
system behavior.

B. Explainable Artificial Intelligence (XAI)

XAI can be defined as a self-explanatory intelligent system
that describes the reasoning behind its decisions and predic-
tions [8]. The concept of XAI can be applied to any specific
sub-field of Al, including computer vision. For instance,
eXplainable Face Recognition (XFR) focuses on explaining
why a face-matching system matches faces. Studies in this
area introduced comprehensive benchmark evaluation for
XFR, providing ground truth in order to quantify the image
regions that contribute to face matching [9], and proposed
approaches such as using visual psychophysics to make face
recognition algorithms more explainable [10].

XAI literature studies several key topics concerning XAl,
such as metrics to evaluate XAlI, and design guidelines for
XAI [8]. However, to date, users’ understanding obtained
through their prior experience (i.e., experiential knowledge)
with Al applications has not been considered a key factor in
the design of XAI

XAI also suggests various criteria for explanations to
effectively communicate the characteristics of Al systems.
For instance, several researchers [11], [12], [13] believe that

explanations should be contrastive, that is they should explain
the “Why”, the “Why not”, and the “What-if” of systems.
Contrastive explanations are more effective than full causal
analysis because they focus on emphasizing the differences
between events [12].

Explanations also should be sound, engaging, and correc-
tive to address users’ reductive or oversimplified understand-
ings of Al systems [6]. Explanations must enrich mental
models but also correct user misunderstandings [1]. The
findings of this study provide a base-level understanding of
users’ mental models that can be used to develop corrective
and contrastive explanations in XAI more effectively.

III. METHODS

We designed an online survey ! to evaluate the effec-
tiveness of experiential knowledge in enabling people to
reason about the functionality, capabilities, and limitations
of everyday software applications that use computer vision
technology. We distributed the survey using Amazon Me-
chanical Turk in order to recruit participants from a relatively
large population with different levels of familiarity with these
applications.

We started with 8 widely-used software applications (see
Table I). After pilot testing, we narrowed this list down to
4 apps that differ in two dimensions: face (i.e., apps using
facial features) versus text (i.e., apps using features of texts),
and class (e.g., detecting any face) versus instance (e.g.,
detecting a specific face). We refer to these 4 apps as Filter,
Lock, Text, and Check (marked with * in Table I).

More specifically, we used the following criteria to pick
the 4 applications: 1) Familiarity: apps that the general public
is likely to be highly familiar with and/or use regularly. 2)
Interactivity: apps that allow users to interact actively and
make live changes (e.g., change the lighting or the camera’s
orientation) to improve the app’s performance.

Each of the Face-based and Text-based categories con-
sists of one application that does detection (e.g., detecting
any face) and one application that does recognition (e.g.,
detecting a specific face). The goal is to see if participants
understand the nuanced differences between apps that appear
to have similar (e.g., processing facial features) but, in
essence, different functionality (e.g., one app detects any face
while the other app recognizes a specific person). Therefore,
the Face-based category consists of Filter (detection) and

ISurvey questions are here: https://tinyurl.com/mpeetve9.
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Predict Reason Fix
v Pick the best way to change the image so
8 Select one (or more) reasons why that user’s face is detected
— 0 Theimage is very dark/very bright QO Adjust the lighting
h e} 0 The user is not facing the camera - QO Move the camera so that the
c [m] There is more than one person in person's face is facing the camera
© the image O Keep only one person in the image
b a Q
[}
=
s O
Pick the best way to change the image so

Select one (or more) reasons why that text is detected

0  Theimage is very dark/very bright 0 Adjust the lighting
% WHAT’'S | O Thetextis not facing the camera - 0O Move the camera so that the text
|2 NEXT? © O There are too many things in the is facing the camera

{ * background O Remove the objects in the
Q background
D a

Fig. 1: Example Predict, Reason, Fix questions for Filter and Lock (top) and Text (bottom). Left: Participant selects one (or
more) images that might fail. Middle: They select one (or more) reasons for the fail. Right: They select one best fix.

Lock (recognition), and Text-based category consists of Text
(detection) and Check (recognition).

A. Survey design

The survey has three sections: App familiarity (used to
ensure that the participants had actually used the app),
Application function/capability questions (9 questions for
each application), and a short demographic section. The
survey took, on average, 19.11 minutes. We included one
attention check question per application.

Each participant was randomly assigned to two apps of
the four (either the two Face-based or the two Text-based,
order randomized) to prevent fatigue. A participant was only
assigned to the apps they were familiar with. In a few cases
a participant was only familiar with one app in one of the
two categories; they only answered questions for that app.

9 application questions: Because we wanted to compare
responses across apps, these 9 questions were chosen to
be as similar as possible while reflecting the different apps
(e.g., the specific features we use differ — see Table II).
The specific questions we ask are: Q1) Knowledge source
where participants learned how the app functions (interac-
tion, reading documentation, other people), Q2) Features
what features the app uses to do its task (Table II), Q3-
Q7) Capabilities what capabilities the app has, expressed as
a level of agreement with statements (Table III), Q8) Predict
is a multi-part question that asks the participant to predict
which images might produce failures and why (Fig. 1), Q9)
Similar technology asks the participant which of several
robotic tasks might use similar computer vision technology.

Our Predict question (Q8) is a multi-part question de-
signed to capture prediction ability using stimuli that matches
what a participant would see in a typical use case. Fig. 1
shows the question flow and the types of images. We show
5 images and ask participants to pick the one(s) that depict
a potential failure. For each selected image, we follow up
with a Reason and a Fix question. The Reason question asks
the participant to pick the reason for the failure — e.g., too
dark, and the Fix to choose a way to fix the failure — e.g.,
turn a light on. The fixes were matched to the failures.

For the Predict question designed for each app, we created
multiple sets of 5 images and randomly assigned the partic-
ipant to 2 of those sets. Each set had 2 images that would
“fail” based on common criteria (too dark/light, bad camera
angle, too close/far, occluded, background clutter), and 3
that were “not fails”. The face images were selected from
well-known television series (e.g., Friends, Lost) and were
selected to have a diverse set of skin tones and face shapes,
but still be real-world images that contain human faces. The
text/check images were created by taking pictures ourselves
because it was easy to create diverse images by changing
different features of the image (e.g., changing backgrounds,
adding different objects).

For the Capability questions, we started with a set of
statements that expose typical anthropomorphic-based mis-
understandings of how current state-of-the-art computer vi-
sion algorithms function. Two investigators reviewed these
statements until they reached an agreement on the clarity of
each question and the “correct” answer (marked as Agree or
Disagree in Table III).

For the Similar technology question, we started with a list
of potential near-term robot applications/tasks, identifying
four that would require similar technology (see Table V).

We used a 5-point Likert scale for QI1, 3-7, and 9, which
were collapsed in the plots to a 3-point to improve readabil-
ity. Q2 (Feature) used a 3-point Likert scale. Q8 (Predict)
used multiple-choice for the Reason and Fix questions; both
had an optional “other” option with a text-box answer.

B. Participants

We recruited 68 participants in total. We excluded the
responses (Filter and Lock: 3, Text: 9,Check: 7 responses)
of participants who failed the attention check question. Table
IV shows the number of participants per application type and
their demographic information.

C. Data Analysis

For the Capability questions, we show the percentage
of participants agreeing, disagreeing, or neither for each
question and each app; the correct answers are marked with
check marks on Fig. 6.
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APP FEATURE EXAMPLE
Unchangeable | nose, eyes, lips, face shape
Changeable eyebrow shape, hairstyle, facial hair
Face-based | Accessory glasses, make-up, piercings
Expression happiness, surprise, fear
Color skin tone, hair color
Unchangeable shape of letters, security features
Text-based and layout of cheqks
font type, letter thickness,
Changeable amount of money and
recipient name on a check
Color Color of letters and checks

TABLE II: List of features and their examples included in
Feature questions.

For the Similar technology question, we similarly specified
the correct answers with check marks (Fig. 7) and collapsed
the 5-point Likert scale to 3 for clarity.

Scoring Predict-Reason-Fix questions: We calculate a sin-
gle 0-1 score for each image the participant sees (10 total —
2 sets of 5). A correct “not fail” prediction scores a 1. For
the “fail” images we use a modified multi-class F1 score for
the Reason and Fix portions, where only the primary reason
should be selected. We do not penalize for selecting correct
secondary reasons. However, we do penalize for selecting
incorrect ones. Fix: we assign a score of 1 (correct) if the
fix matches a selected failure and the reason for failure is
correct. We assign 0.5 (semi-correct) if the fix matches the
selected failure, but the failure is incorrect. Otherwise, we
assign O (incorrect).

After calculating the above scores for each image we
average them (see Fig. 5).

IV. RESULTS

Recall that all participants only saw questions they marked
as ones they were familiar with. Our Knowledge source
question (Fig. 2) confirms that most of the participants’
understanding of the app came from interaction with it —
i.e., experiential learning.

Next, we present results for our three research questions,
which explore how this experiential knowledge enables peo-
ple to reason about: the features (within an image) these
apps use (RQ.1: Image Features), their capabilities and lim-
itations (RQ.2: Capabilities and Limitations), and recognize
the technology in robots (RQ.3: Similar Technology).

A. RQ I: Image Features

In Face-based apps, participants reported almost the same
level of importance for various image features, except for the
“Unchangeable” ones (Fig. 3). This feature is reported to
be significantly more important in Lock than in Filter. This
indicates that participants have the awareness that Lock apps
need to recognize a person; and for that, they are required
to use/process “Unchangeable” features of the person’s face.

In Text-based apps, “Color” was reported to be the least
important feature for both Text and Check (Fig. 4). This again
shows that participants correctly understand that the color of
checks or texts would not impact these apps’ performance
in performing their tasks.

Knowledge Source
@ 100%
2 . -
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2
3 60%
8 40%
8
S 20%
2
9 0%
o 2 2
FEL & S &
C & < & 5 2 & ¢ 2 ,bé' < <
L9 R L9 R T 9 R L 9 K
& & & & & & N &
N o¢s N o,& & :s & 0@

D \:lAllttIe l:”:lSome ., .Alot

Fig. 2: Source of participants’ understanding of how the
apps work. Participants gained most of their understanding
through interaction with the app.

Feature: Face-based apps
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Fig. 3: Summary of the importance of image features for
Face-based apps reported by participants. Filter and Lock
were similar except for “Unchangeable”. “Unchangeable” is
reported to be significantly more important for Lock than for
Filter.

B. RQ 2: Capabilities and Limitations

We separate these results into 1) how well the participants
could predict the app failure and identify the cause(s) of that
failure and 2) what types of capabilities participants assumed
these algorithms have.

Predict-Reason-Fix: Overall, participants scored high for
all four apps (Filter: 0.878, Lock: 0.858, Text: 0.828, Check:
0.841) (see Fig. 5). This indicates that participants were
aware both of when the apps fail and what image charac-
teristics caused those failures.

Capability: Participants’ responses mostly agreed with
our expected answers, indicating that participants’ under-
standing of the capabilities and limitations of the apps are
mostly correct. However, there are a couple of notable
exceptions (refer to Fig. 6).

First, participants largely disagreed with the “Know”
statement, revealing their inclination to use anthropomorphic
terms to describe the capabilities of the apps. This was
especially true for the Face-based ones.

The second exception is concerned with “Distinguish” and
“Recognize” statements for Filter. These statements expose
participants’ misconceptions that Filter apps can differentiate
a specific face from others and recognize a person based on
their facial features.
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CATEGORY | STATEMENTS FILTER | LOCK | TEXT | CHECK
Drawing These apps can distinguish between a real [X] and a cartoon or drawing of one. A A A A
Know These apps do not “know” if there is a [X] there - they just look for anything “[X]-like”. A A A A
Distinguish These apps can distinguish a specific [X] from other [X]s. D A A A
Recognize These apps can recognize a specific [X] and know what it looks like. D A A A
Number These apps can identify the number of [X]s in the frame. A A A A

TABLE III: Statements used in the Capability question to evaluate participants’ understanding of the four apps. The correct
answers are specified with A (i.e., Agree) and D (i.e., Disagree). ([X] = face for Filter and Lock, [X] = text and check for

Text and Check, respectively.)

Feature: Text-based apps
Unchangeable  Changeable Color

100% . -
80%
60%

40%
20%
0%

Percentage Responses

Text Check Text Check Text Check

|:| Not at all I:’ Somewhat . To a great extent
Fig. 4: Summary of the importance of image features for
Text-based apps reported by participants. “Color” is reported

to be of least importance for both apps.
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Fig. 5: Predict-Reason-Fix scores for Filter, Lock, Text,
and Check apps (2 Predict-Reason-Fix questions for each
application type). Overall, participants received high scores
for all four apps.
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Fig. 6: Summary of participants’ level of agreement to
the statements in the Capability question. Check marks
indicate the expected answers. Participants’ answers were
mostly in agreement with the expected answer except for
the “Distinguish” and “Recognize” statements for Filter apps
and the “Know” statement.

NO. OF FAMILIAR
APP | parTicIPANTS | GENDER | AGE WITH CV?
- 18-30: 7 ,
Filer | 22 Men: 111 30,50 10 | Yes: 3
Women: 11 No: 19
504+: 5
) 18-30: 6 _
Lock | 17 Men: 8 30-50: 8 | Yes: 2
‘Women: 9 No: 15
50+: 3
] 18-30: 7 ,
Text | 24 Men: 15 | 30 5). g | Yes: 8
Women: 9 No: 16
50+: 8
] 18-30: 9 _
Check | 28 Men: 20 30-50- 8 | Yes:9
‘Women: 8 No: 19
50+: 11

TABLE IV: Number of participants per application type and
the corresponding demographic information.

Similar Tech

y o e
60%

40%
20%
0%

Percentage Respons

Filter Lock Text Check
D D Alittle D I:‘ Somewhat . . Very

Fig. 7: Summary of the extent to which participants believed
a type of robot uses a similar technology to the app.
Check marks indicate the expected answers. Only the Lock
technology was associated with a robotic application.

C. RQ 3: Similar Technology

Participants mostly did not associate the computer vision
technology in the app with a similar robotic application (Fig.
7). The strongest association was with the Lock application,
perhaps because of its use in identifying a patient in a
hospital (refer to Table V).

V. DISCUSSION

Our overarching goal is to determine if experiential knowl-
edge gained from use of everyday software apps that utilize
computer vision might enable the public to reason about the
same technology when embodied in robotic systems.

Our results show that participants reliably predicted the
function, failures, and capabilities of software applications
incorporating computer vision that they use routinely. Ad-
ditionally, participants effectively identified image features
central to the function of these algorithms. Unfortunately, our

2230
Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2023 at 22:23:20 UTC from IEEE Xplore. Restrictions apply.



APP SIMILAR ROBOT TECHNOLOGY

CORRECT ANSWER

Filter

Receptionist robots that greet guests at hotels once they detect a person is looking at them.

Very similar

Lock

Hospital assistant robots that deliver medicines to patients (for patient identification).

Very similar

Text Room service robots that scan wayfinding signs to navigate in a hotel.

Very similar

Check

Hospital assistant robots that deliver medicines to rooms (for room number identification).

Very similar

TABLE V: List of similar robot technology for each application type and their expected answer.

findings also show that participants do not naturally associate
this everyday technology with related computer vision tasks
a robot needs to do. Our findings also show that participants
ascribed “knowing” to these apps, reaffirming the tendency
of people to anthropomorphize this type of technology.

An interesting follow-up research direction would be to
more directly ask participants to clarify what the algorithm
“knows” and link what it “knows” to observed capabili-
ties/failures.

We propose that experiential knowledge gained through
interactive experiences with everyday software applications
is an effective way to “calibrate” user expectations of the
function and failure states of complex systems. An open
question is how to help people link their experience(s) with
these common apps to components of more complicated
systems, such as a robot.

Our work has implications for Al educators, Al application
designers, robot designers, scientists in the field of XAlI,
and explainable agency. Our results provide insights for Al
educators to improve the efficacy of their training approaches
and accelerate the learning process by incorporating learners’
pre-existing knowledge about the capabilities and limitations
of Al apps developed through interacting with them. More-
over, Al educators can highlight and address the miscon-
ceptions that learners have developed over the years when
using these apps. For instance, this study uncovered two
misconceptions specific to Filter apps (i.e., Filter apps can
distinguish a specific face from other faces; Filter apps can
recognize a person based on their facial features). Identifying
and addressing such misconceptions would allow learners to
unlearn the misconceptions and learn the concepts that the
training material intends to teach more effectively. Designers
could also use the findings of this study to improve users’
interaction with AI apps and robots by designing various
cues in Al apps (e.g., explanatory texts, visual stimuli)
and robots (e.g., verbal and non-verbal) to help the users
understand the actual capabilities and limitations of such
devices and correct their misconceptions. For scientists in
the fields of XAI and explainable agency, this study suggests
considering the experiential knowledge of users and their
misconceptions, especially Al novices, of Al daily apps and
avoiding the use of anthropomorphic terms such as “Know”
in the design of explanations to prevent the formation of
inaccurate expectation of Al systems.
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