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Abstract— This paper explores whether experiential knowl-
edge of computer vision from interacting with daily apps (e.g.,
Instagram, Zoom, etc.) can be leveraged to improve users’
expectations of robotic capabilities. We evaluate users’ ability
to predict when computer vision apps might fail and if they
can apply their experience to reason about computer vision
in robotic systems. We show that although users can reliably
predict computer vision app capabilities and functionality, they
tend to ascribe human-level knowledge to those apps and do
not reliably correlate app functionality with similar robotic
tasks. We propose that experiential knowledge gained through
interaction with software apps is a potential way to “calibrate”
user expectations of the function and failure states of complex
systems.

I. INTRODUCTION

Intelligent robotic systems employ fundamentally differ-

ent sensors, actuators, and algorithms than people do, yet

the distinction between human intelligence and intelligent

systems is often blurred by anthropomorphization. This mis-

match causes problems because we (researchers, developers,

application designers, and policy makers) blithely assume

that the two systems will succeed (and fail) in the same way

and for the same reasons. As an example, robots do not “see

humans”. They have laser and camera sensors that result in

a set of measurements that are then compared to previously

seen data that has been labeled as “person”, and combined

with a set of (often implicit) assumptions. If the match

is “close enough” (in mathematical terms) a box is drawn

around the area in the image and labeled as “person”. This

mathematical calculation can fail, leading to not detecting a

person (or detecting one where there isn’t) — in situations

no human would fail at the same task.

In this study, we explore whether interaction with daily

software applications (e.g., Instagram, Zoom) that use Com-

puter Vision (CV), can enable users to reason properly

about the functionality, capabilities, and limitations of such

systems. Moreover, we investigate if this knowledge can be

used to identify the same technology when embodied in a

robotic system.

To explore participants’ understanding of everyday soft-

ware applications, we ask them questions about the func-

tionality, capabilities, and limitations of several widely-used
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CV software applications. We assess whether the nuanced

differences between the apps are reflected in participants’

responses. We also measure how well they can predict

when an app might fail, and how well they can identify

the cause(s) of, and solution to, the failure. We ask them

questions about functionality to determine if they understand

the difference between how a human might do the task versus

what the algorithm does. To learn whether their experiential

knowledge of everyday software applications helps them

recognize the same technology in robots, we ask them to rate

the extent to which they believe a task-specific robot (e.g.,

receptionist robot) uses a technology similar to the ones used

in the everyday app.

This topic is important because prior literature maintains

that the understanding that people develop through inter-

action with robots about their capabilities and limitations

may be inaccurate, reductive, or involve potentially harmful

simplifications [1]. Such understanding can have serious

consequences, including loss of trust [2] in a robotic system

or even disuse of it [3]. Our work aims to understand how

we might leverage people’s experience with everyday apps

to improve their ability to reason about robotic systems.

In this research, we focus on computer vision because it is

widely used in robots that need to operate in the real world,

and people have some experience with it through apps that

they already use in their daily lives. Our research questions

are: (RQ.1) What features within the image do participants

believe that these apps use to do their tasks?; (RQ.2) How

well can participants reason about the capabilities and limi-

tations of these apps?; (RQ.3) Can participants identify the

same technology when it is embodied in a robotic system?

Our study measures participants’ experiential understand-

ing (can they predict when the app will succeed/fail, and

what might cause those failures) as well as what types of

features (eg, noses, hair color) these apps might use. We

show that participants can effectively do this prediction, but

they tend to ascribe human-type knowledge (the app “knows”

there is a face) to the algorithm. Interestingly, they have not

made the connection that this type of technology is what

robots might use to perform their tasks.

II. RELATED WORK

We discuss work in interactive machine learning and

explainable artificial intelligence.

A. Interactive Machine Learning

The term Interactive Machine Learning (IML) was first

introduced in 2003 [4] to address the key limitations of
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APP TYPE DESCRIPTION EXAMPLE

Filter * identifies a face and places virtual face or background filters on or around the face. Instagram, Snapchat, Zoom, Skype

Tag recognizes and tags people in images. Facebook, Google Photos

Lock * recognizes a face to unlock the device. Smartphones, smart door locks

Text * scans a word to get an instant translation in a different language. Google Translate

Check * scans a check to deposit it to a bank account. Online banking apps

Food scans a plate of food to return the corresponding calorie of the items on the plate. Calorie counting apps

Finger-lock scans a fingerprint to unlock a device. Smartphones, smart door locks

Barcode
scans a barcode of a product to find the product information on a retailer website
or find nutrition information.

Amazon Barcode Scanner, MyFitnessPal

TABLE I: List of all apps initially considered for this study. The four marked with a * are the ones selected for this paper.

Classical Machine Learning (CML) Models. These limita-

tions include slow training time and the absence of corrective

feedback from users during the training process. The IML

approach [4], [5] incorporates quick train-feedback-correct

cycles that enable users with no machine learning back-

ground to rapidly correct the mistakes made by Machine

Learning systems. The IML approach also allows users to

adapt their own feedback behavior based on the system

behavior and even learn from it. IML research is relevant to

our study in that gaining understanding of Machine Learning

systems through interaction with them (i.e., experiential

knowledge), especially for end users, is a key component

in that area of research. In our work, we focus on everyday

apps that use computer vision. Unlike the IML literature, we

investigate the impact of experiential knowledge on users’

ability to reason about the system functionality, capabilities,

and limitations, not to improve the system’s performance.

The study by Kulesza et al. [6] is perhaps the most relevant

to our work because they investigate the impact of interaction

with IML systems on people’s ability to build useful mental

models [7] of such systems. In their research, their main

measure is the users’ ability to personalize the system. In

our research, we instead measure the users’ ability to predict

system behavior.

B. Explainable Artificial Intelligence (XAI)

XAI can be defined as a self-explanatory intelligent system

that describes the reasoning behind its decisions and predic-

tions [8]. The concept of XAI can be applied to any specific

sub-field of AI, including computer vision. For instance,

eXplainable Face Recognition (XFR) focuses on explaining

why a face-matching system matches faces. Studies in this

area introduced comprehensive benchmark evaluation for

XFR, providing ground truth in order to quantify the image

regions that contribute to face matching [9], and proposed

approaches such as using visual psychophysics to make face

recognition algorithms more explainable [10].

XAI literature studies several key topics concerning XAI,

such as metrics to evaluate XAI, and design guidelines for

XAI [8]. However, to date, users’ understanding obtained

through their prior experience (i.e., experiential knowledge)

with AI applications has not been considered a key factor in

the design of XAI.

XAI also suggests various criteria for explanations to

effectively communicate the characteristics of AI systems.

For instance, several researchers [11], [12], [13] believe that

explanations should be contrastive, that is they should explain

the “Why”, the “Why not”, and the “What-if” of systems.

Contrastive explanations are more effective than full causal

analysis because they focus on emphasizing the differences

between events [12].

Explanations also should be sound, engaging, and correc-

tive to address users’ reductive or oversimplified understand-

ings of AI systems [6]. Explanations must enrich mental

models but also correct user misunderstandings [1]. The

findings of this study provide a base-level understanding of

users’ mental models that can be used to develop corrective

and contrastive explanations in XAI more effectively.

III. METHODS

We designed an online survey 1 to evaluate the effec-

tiveness of experiential knowledge in enabling people to

reason about the functionality, capabilities, and limitations

of everyday software applications that use computer vision

technology. We distributed the survey using Amazon Me-

chanical Turk in order to recruit participants from a relatively

large population with different levels of familiarity with these

applications.

We started with 8 widely-used software applications (see

Table I). After pilot testing, we narrowed this list down to

4 apps that differ in two dimensions: face (i.e., apps using

facial features) versus text (i.e., apps using features of texts),

and class (e.g., detecting any face) versus instance (e.g.,

detecting a specific face). We refer to these 4 apps as Filter,

Lock, Text, and Check (marked with * in Table I).

More specifically, we used the following criteria to pick

the 4 applications: 1) Familiarity: apps that the general public

is likely to be highly familiar with and/or use regularly. 2)

Interactivity: apps that allow users to interact actively and

make live changes (e.g., change the lighting or the camera’s

orientation) to improve the app’s performance.

Each of the Face-based and Text-based categories con-

sists of one application that does detection (e.g., detecting

any face) and one application that does recognition (e.g.,

detecting a specific face). The goal is to see if participants

understand the nuanced differences between apps that appear

to have similar (e.g., processing facial features) but, in

essence, different functionality (e.g., one app detects any face

while the other app recognizes a specific person). Therefore,

the Face-based category consists of Filter (detection) and

1Survey questions are here: https://tinyurl.com/mpeetve9.
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Fig. 1: Example Predict, Reason, Fix questions for Filter and Lock (top) and Text (bottom). Left: Participant selects one (or

more) images that might fail. Middle: They select one (or more) reasons for the fail. Right: They select one best fix.

Lock (recognition), and Text-based category consists of Text

(detection) and Check (recognition).

A. Survey design

The survey has three sections: App familiarity (used to

ensure that the participants had actually used the app),

Application function/capability questions (9 questions for

each application), and a short demographic section. The

survey took, on average, 19.11 minutes. We included one

attention check question per application.

Each participant was randomly assigned to two apps of

the four (either the two Face-based or the two Text-based,

order randomized) to prevent fatigue. A participant was only

assigned to the apps they were familiar with. In a few cases

a participant was only familiar with one app in one of the

two categories; they only answered questions for that app.

9 application questions: Because we wanted to compare

responses across apps, these 9 questions were chosen to

be as similar as possible while reflecting the different apps

(e.g., the specific features we use differ — see Table II).

The specific questions we ask are: Q1) Knowledge source

where participants learned how the app functions (interac-

tion, reading documentation, other people), Q2) Features

what features the app uses to do its task (Table II), Q3-

Q7) Capabilities what capabilities the app has, expressed as

a level of agreement with statements (Table III), Q8) Predict

is a multi-part question that asks the participant to predict

which images might produce failures and why (Fig. 1), Q9)

Similar technology asks the participant which of several

robotic tasks might use similar computer vision technology.

Our Predict question (Q8) is a multi-part question de-

signed to capture prediction ability using stimuli that matches

what a participant would see in a typical use case. Fig. 1

shows the question flow and the types of images. We show

5 images and ask participants to pick the one(s) that depict

a potential failure. For each selected image, we follow up

with a Reason and a Fix question. The Reason question asks

the participant to pick the reason for the failure — e.g., too

dark, and the Fix to choose a way to fix the failure — e.g.,

turn a light on. The fixes were matched to the failures.

For the Predict question designed for each app, we created

multiple sets of 5 images and randomly assigned the partic-

ipant to 2 of those sets. Each set had 2 images that would

“fail” based on common criteria (too dark/light, bad camera

angle, too close/far, occluded, background clutter), and 3

that were “not fails”. The face images were selected from

well-known television series (e.g., Friends, Lost) and were

selected to have a diverse set of skin tones and face shapes,

but still be real-world images that contain human faces. The

text/check images were created by taking pictures ourselves

because it was easy to create diverse images by changing

different features of the image (e.g., changing backgrounds,

adding different objects).

For the Capability questions, we started with a set of

statements that expose typical anthropomorphic-based mis-

understandings of how current state-of-the-art computer vi-

sion algorithms function. Two investigators reviewed these

statements until they reached an agreement on the clarity of

each question and the “correct” answer (marked as Agree or

Disagree in Table III).

For the Similar technology question, we started with a list

of potential near-term robot applications/tasks, identifying

four that would require similar technology (see Table V).

We used a 5-point Likert scale for Q1, 3-7, and 9, which

were collapsed in the plots to a 3-point to improve readabil-

ity. Q2 (Feature) used a 3-point Likert scale. Q8 (Predict)

used multiple-choice for the Reason and Fix questions; both

had an optional “other” option with a text-box answer.

B. Participants

We recruited 68 participants in total. We excluded the

responses (Filter and Lock: 3, Text: 9,Check: 7 responses)

of participants who failed the attention check question. Table

IV shows the number of participants per application type and

their demographic information.

C. Data Analysis

For the Capability questions, we show the percentage

of participants agreeing, disagreeing, or neither for each

question and each app; the correct answers are marked with

check marks on Fig. 6.
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APP FEATURE EXAMPLE

Face-based

Unchangeable nose, eyes, lips, face shape
Changeable eyebrow shape, hairstyle, facial hair
Accessory glasses, make-up, piercings
Expression happiness, surprise, fear
Color skin tone, hair color

Text-based
Unchangeable

shape of letters, security features
and layout of checks

Changeable

font type, letter thickness,
amount of money and
recipient name on a check

Color Color of letters and checks

TABLE II: List of features and their examples included in

Feature questions.

For the Similar technology question, we similarly specified

the correct answers with check marks (Fig. 7) and collapsed

the 5-point Likert scale to 3 for clarity.

Scoring Predict-Reason-Fix questions: We calculate a sin-

gle 0-1 score for each image the participant sees (10 total —

2 sets of 5). A correct “not fail” prediction scores a 1. For

the “fail” images we use a modified multi-class F1 score for

the Reason and Fix portions, where only the primary reason

should be selected. We do not penalize for selecting correct

secondary reasons. However, we do penalize for selecting

incorrect ones. Fix: we assign a score of 1 (correct) if the

fix matches a selected failure and the reason for failure is

correct. We assign 0.5 (semi-correct) if the fix matches the

selected failure, but the failure is incorrect. Otherwise, we

assign 0 (incorrect).

After calculating the above scores for each image we

average them (see Fig. 5).

IV. RESULTS

Recall that all participants only saw questions they marked

as ones they were familiar with. Our Knowledge source

question (Fig. 2) confirms that most of the participants’

understanding of the app came from interaction with it —

i.e., experiential learning.

Next, we present results for our three research questions,

which explore how this experiential knowledge enables peo-

ple to reason about: the features (within an image) these

apps use (RQ.1: Image Features), their capabilities and lim-

itations (RQ.2: Capabilities and Limitations), and recognize

the technology in robots (RQ.3: Similar Technology).

A. RQ 1: Image Features

In Face-based apps, participants reported almost the same

level of importance for various image features, except for the

“Unchangeable” ones (Fig. 3). This feature is reported to

be significantly more important in Lock than in Filter. This

indicates that participants have the awareness that Lock apps

need to recognize a person; and for that, they are required

to use/process “Unchangeable” features of the person’s face.

In Text-based apps, “Color” was reported to be the least

important feature for both Text and Check (Fig. 4). This again

shows that participants correctly understand that the color of

checks or texts would not impact these apps’ performance

in performing their tasks.

Fig. 2: Source of participants’ understanding of how the

apps work. Participants gained most of their understanding

through interaction with the app.

Fig. 3: Summary of the importance of image features for

Face-based apps reported by participants. Filter and Lock

were similar except for “Unchangeable”. “Unchangeable” is

reported to be significantly more important for Lock than for

Filter.

B. RQ 2: Capabilities and Limitations

We separate these results into 1) how well the participants

could predict the app failure and identify the cause(s) of that

failure and 2) what types of capabilities participants assumed

these algorithms have.

Predict-Reason-Fix: Overall, participants scored high for

all four apps (Filter: 0.878, Lock: 0.858, Text: 0.828, Check:

0.841) (see Fig. 5). This indicates that participants were

aware both of when the apps fail and what image charac-

teristics caused those failures.

Capability: Participants’ responses mostly agreed with

our expected answers, indicating that participants’ under-

standing of the capabilities and limitations of the apps are

mostly correct. However, there are a couple of notable

exceptions (refer to Fig. 6).

First, participants largely disagreed with the “Know”

statement, revealing their inclination to use anthropomorphic

terms to describe the capabilities of the apps. This was

especially true for the Face-based ones.

The second exception is concerned with “Distinguish” and

“Recognize” statements for Filter. These statements expose

participants’ misconceptions that Filter apps can differentiate

a specific face from others and recognize a person based on

their facial features.
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CATEGORY STATEMENTS FILTER LOCK TEXT CHECK

Drawing These apps can distinguish between a real [X] and a cartoon or drawing of one. A A A A

Know These apps do not “know” if there is a [X] there - they just look for anything “[X]-like”. A A A A

Distinguish These apps can distinguish a specific [X] from other [X]s. D A A A

Recognize These apps can recognize a specific [X] and know what it looks like. D A A A

Number These apps can identify the number of [X]s in the frame. A A A A

TABLE III: Statements used in the Capability question to evaluate participants’ understanding of the four apps. The correct

answers are specified with A (i.e., Agree) and D (i.e., Disagree). ([X] = face for Filter and Lock, [X] = text and check for

Text and Check, respectively.)

Fig. 4: Summary of the importance of image features for

Text-based apps reported by participants. “Color” is reported

to be of least importance for both apps.

Fig. 5: Predict-Reason-Fix scores for Filter, Lock, Text,

and Check apps (2 Predict-Reason-Fix questions for each

application type). Overall, participants received high scores

for all four apps.

Fig. 6: Summary of participants’ level of agreement to

the statements in the Capability question. Check marks

indicate the expected answers. Participants’ answers were

mostly in agreement with the expected answer except for

the “Distinguish” and “Recognize” statements for Filter apps

and the “Know” statement.

APP
NO. OF
PARTICIPANTS

GENDER AGE
FAMILIAR
WITH CV?

Filter 22
Men: 11
Women: 11

18-30: 7
30-50: 10
50+: 5

Yes: 3
No: 19

Lock 17
Men: 8
Women: 9

18-30: 6
30-50: 8
50+: 3

Yes: 2
No: 15

Text 24
Men: 15
Women: 9

18-30: 7
30-50: 9
50+: 8

Yes: 8
No: 16

Check 28
Men: 20
Women: 8

18-30: 9
30-50: 8
50+: 11

Yes: 9
No: 19

TABLE IV: Number of participants per application type and

the corresponding demographic information.

Fig. 7: Summary of the extent to which participants believed

a type of robot uses a similar technology to the app.

Check marks indicate the expected answers. Only the Lock

technology was associated with a robotic application.

C. RQ 3: Similar Technology

Participants mostly did not associate the computer vision

technology in the app with a similar robotic application (Fig.

7). The strongest association was with the Lock application,

perhaps because of its use in identifying a patient in a

hospital (refer to Table V).

V. DISCUSSION

Our overarching goal is to determine if experiential knowl-

edge gained from use of everyday software apps that utilize

computer vision might enable the public to reason about the

same technology when embodied in robotic systems.

Our results show that participants reliably predicted the

function, failures, and capabilities of software applications

incorporating computer vision that they use routinely. Ad-

ditionally, participants effectively identified image features

central to the function of these algorithms. Unfortunately, our
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APP SIMILAR ROBOT TECHNOLOGY CORRECT ANSWER

Filter Receptionist robots that greet guests at hotels once they detect a person is looking at them. Very similar

Lock Hospital assistant robots that deliver medicines to patients (for patient identification). Very similar

Text Room service robots that scan wayfinding signs to navigate in a hotel. Very similar

Check Hospital assistant robots that deliver medicines to rooms (for room number identification). Very similar

TABLE V: List of similar robot technology for each application type and their expected answer.

findings also show that participants do not naturally associate

this everyday technology with related computer vision tasks

a robot needs to do. Our findings also show that participants

ascribed “knowing” to these apps, reaffirming the tendency

of people to anthropomorphize this type of technology.

An interesting follow-up research direction would be to

more directly ask participants to clarify what the algorithm

“knows” and link what it “knows” to observed capabili-

ties/failures.

We propose that experiential knowledge gained through

interactive experiences with everyday software applications

is an effective way to “calibrate” user expectations of the

function and failure states of complex systems. An open

question is how to help people link their experience(s) with

these common apps to components of more complicated

systems, such as a robot.

Our work has implications for AI educators, AI application

designers, robot designers, scientists in the field of XAI,

and explainable agency. Our results provide insights for AI

educators to improve the efficacy of their training approaches

and accelerate the learning process by incorporating learners’

pre-existing knowledge about the capabilities and limitations

of AI apps developed through interacting with them. More-

over, AI educators can highlight and address the miscon-

ceptions that learners have developed over the years when

using these apps. For instance, this study uncovered two

misconceptions specific to Filter apps (i.e., Filter apps can

distinguish a specific face from other faces; Filter apps can

recognize a person based on their facial features). Identifying

and addressing such misconceptions would allow learners to

unlearn the misconceptions and learn the concepts that the

training material intends to teach more effectively. Designers

could also use the findings of this study to improve users’

interaction with AI apps and robots by designing various

cues in AI apps (e.g., explanatory texts, visual stimuli)

and robots (e.g., verbal and non-verbal) to help the users

understand the actual capabilities and limitations of such

devices and correct their misconceptions. For scientists in

the fields of XAI and explainable agency, this study suggests

considering the experiential knowledge of users and their

misconceptions, especially AI novices, of AI daily apps and

avoiding the use of anthropomorphic terms such as “Know”

in the design of explanations to prevent the formation of

inaccurate expectation of AI systems.
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