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Abstract— This paper introduces a novel interactive ap-
proach —Exploratory Experiences— that aims to improve the
ability of people to reason about the capabilities and limitations
of robotic technology. We focus on two areas: robot navigation
and object detection. We evaluate the Exploratory Experiences
with a novel approach that measures the participant’s ability
to predict when the robot will fail, following up with asking
the reason and a possible fix. We show that our approach is
effective at improving participants’ understanding of potential
robot navigation failures and that they already have the skills
to detect potential object detection failures when presented with
the correct stimuli.

I. INTRODUCTION

Robots are appearing in public and semi-public places.

Safely and effectively integrating these robots depends on a

mix of factors, from robot engineering design to laws and

policies that shape human-robot interactions, and how the

public experiences and responds to them. It is unreasonable

to expect all of the involved parties to have a deep technical

understanding of how robots work. However, the lack of

technical knowledge can lead to laws and policies that do

not “make sense” in terms of what robots can (and cannot)

do. In this paper, we take a first step towards a lightweight,

interactive method for improving the ability of participants

to reason properly about robotic capabilities and potential

for failure. The goal is not to “teach” robot technology, but

rather to let participants explore the technology “in action”

by actively guiding them through where it succeeds and fails.

A fundamental challenge in understanding robotic capabil-

ities is that people (even engineers) tend to anthropomorphize

robots, in part because that is the closest mental model they

have for characterizing robots [1]. Unfortunately, this leads

people to believe that robots will sense, perceive, and take

actions the same way that humans do. This tendency has

been identified as “The Android Fallacy” [2], and it has deep

implications for how robots (and their designers) are treated

by the law. There are good reasons why robots/AI should
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not be treated as independent agents (e.g., humans) in most

legal contexts [3]. The long-term goal of this work is to

provide a lightweight approach to improving the ability of

the law and policy community to reason properly about the

capabilities (and limitations) of robots. By de-emphasizing

the anthropomorphic aspects of the robot and focusing on

specific failure modes, we can reduce the tendency to assume

robots operate as people do.

In this paper, we focus on two areas of robotics (object

detection and robot navigation — see Figure 1) that form the

core of many robot applications. Within each area we provide

just enough explanation of how the technology works for

the participant to understand where (and how) it will fail —

and guide them to produce those failures. The key to our

approach is to provide interactive experiences that let the

participant actually cause failures themselves. For example,

the participant actually moves the camera to odd angles to in-

teractively experience how object recognition often fails with

those unusual angles. We call these combined explanations

with interactive activities Exploratory Experiences (EEs).

To evaluate our Exploratory Experiences, we introduce

a novel approach that measures a participant’s ability to

reason about a robot’s capabilities and failures. Specifically,

we provide stimuli (in the form of images — see Figure 2)

and ask participants to choose which scenario(s) will cause

a failure. For the predicted failures we follow up by asking

the participants to pick the reason(s) for the failure, and then

how to fix that failure (a form of data triangulation).

Our Exploratory Experiences are designed to be hands-

on and interactive. In order to evaluate if interactivity is

important (and also to provide web-based training materials),

we replicate, as best as possible, the interactive sessions with

videos, and organize the content into a website 1.

In summary, we develop novel reasoning-based interac-

tive material and evaluate it with respect to the following

hypotheses:

• H1: Exploratory Experiences can enhance people’s abil-

ity to reason about the capabilities and limitations of

robots.

• H2: Hands-on Exploratory Experiences are more effec-

tive than video-based ones in enhancing people’s ability

to reason about the capabilities and limitations of robots.

1Link to the Exploratory Experiences:
Object Detection: https://tinyurl.com/3u3xzs23
Robot Navigation: https://tinyurl.com/ms6hr2c4
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Fig. 2: Example Predict, Reason, Fix (PRF) questions for Object Detection (top) and Robot Navigation (bottom). Left:

Participant selects one (or more) images that might fail. Middle: They select one (or more) reasons for the failure. Right:

They select one best fix.

solution identification [14] are the most closely related ones

to this work. This work introduces a new measure that

considers not only a learner’s ability to identify failures and

fixes but also their ability to predict a failure.

To evaluate the effectiveness of different educational ap-

proaches, prior studies have collected learners’ understanding

of a subject before and after training through pre and post-

tests [15], [18] or an assessment instrument known as concept

inventory [19], [20]. Sands et al. [21] proposed a measure

that evaluates the overall acquisition of new concepts after

training, while Bristow et al. [22] introduce several measures

that assess various aspects of a training approach, such as

the areas where the training was ineffective and the extent

to which it may have contributed to the development of

misconceptions. In this work, we chose to use pre and

post-tests to measure overall knowledge gain and targeted

questions between each sub-task.

III. METHODS

Each Exploratory Experience (EE) focuses on a specific

robot technology and consists of a mix of short, non-

anthropomorphic and non-technical explanations combined

with a sequence of activities. The explanations cover the

basic idea behind the technology and how it differs from

the way humans do the same task. The activities involve

manipulating the robot and/or its environment to produce

specific outcomes (both successes and failures). Because

driving a real robot around a real environment introduces

too many unknowns and logistical challenges, we opt for a

table-top scenario where the robot can be moved around a

simplified environment (see Figure 1). We use Augmented

Reality (AR) to show the participant what the robot’s sensors

are measuring.

To evaluate a participant’s ability to reason about robotic

capabilities, we present them with a set of scenarios and

ask them to predict which ones might fail. The stimuli for

these questions are a set of images that show the scenario

(see Figure 2). To further evaluate the participant’s ability

to reason about robotic failures, we ask follow-up questions

that ask them to pick the reason(s) for the failure and how

the failure could be fixed.

We develop Exploratory Experiences for two areas of

robotics: Object Detection (OD) and Robot Navigation (RN)

(laser and external camera) (Section III-A). We use a website

to organize the explanations and the guidance for each se-

quence of activities, along with the surveys. We also modify

the websites to create a second, stand-alone website that

replaces the interactive component with videos (Section III-

B). Our study design is between-subjects, with an entry and

exit survey and in-between surveys to capture participants’

understanding after each activity (Section III-C). We use our

novel Predict-Reason-Fix (PRF) measures to evaluate the

effectiveness of the interactive versus web-based versions

(Section III-E).

A. Exploratory Experiences: Content

Here we describe the technology each EE focuses on,

along with the explanations and the physical setup the

participant manipulates.

1) EE: Robot navigation: For robot navigation, we focus

on two forms of localization (laser-based and external cam-

eras) and object detection with lasers. Lasers are ubiquitous

in robotics and are a good stand-in for any distance-based

sensor (radar, lidar, optical flow). We include external camera

triangulation for two reasons. 1) The technology is similar to

GPS but at an interactive physical scale. 2) It introduces the

concept that robot sensors do not have to be on the robot.

This study primarily focuses on robot localization (where

is the robot on a given map?) and obstacle avoidance using

the laser. In a preliminary study conducted around knowledge

and understanding of navigation, it was clear that the public

is very familiar with path planning through the use of map

apps. For this reason, we excluded it from our sub-tasks for

this evaluation. We leave map creation for future work. We

next define the overall physical setup and the visualizations

we created for each task.

Our navigation scenario is a simplified version of a hos-

pital, with a couple of rooms with doors and windows (see

Fig. 1, left), sized to fit on top of a table. The robot is a
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EE CONCEPT SUB-TASK TIME (m) IN-BETWEEN ENTRY/EXIT TOTAL Qs TIME (m)

RN

Navigation Explanation 6 14 Q 2 Q

Laser

Tutorial 6 3 P - In-between:
Scan-location (I) 2.5 2 P - 28
Uniqueness (I) 2.2 1 P 1 PRF 43 ± 10
Limitations (I) 2.3 5 P 1 PRF Entry/
Obstacle (I) 1.6 1 P - Exit:

External Tutorial 3 - - 11 each
cameras Localization (I) 1 2 P 1 PRF

OD

Human vs computer Explanation 9 7 Q, 5 T/F 2 Q IB: 27
Create fail (I) Distance, angle, light,

2-4 5 RFP 5 PRF E/E: 17 ea. 40 ± 7
Occluded, clutter

TABLE I: EEs with sub-task type (I is interactive), time, and evaluation type: Q - Multiple choice, P - Predict, R - Reason,

F - Fix, T/F - True/False. Entry and exit surveys had the same number of questions and took approximately 9 and 10 min

each (half of experiment time).

3D-printed model that can be moved and tracked in AR

within the hospital. We use augmented reality to simulate

and visualize both the laser scan (the red lines in Fig. 3) and

the field of view of “cameras” that are placed in the model

(Fig. 4). For the AR view, we use a tablet that is held by

the participant so they can see the hospital model; the image

on the tablet is optionally shown on a monitor behind the

hospital model. The tablet tracks what part of the model it is

looking at in addition to where the robot is within the model.

In our preliminary study, we originally instructed the

participant to move the robot while holding the AR tablet.

This proved physically challenging; having the experimenter

move the robot both resolved this problem and simplified the

instructions.

Robot laser visualization: We have two modes for visu-

alizing the laser. The first mode shows the lasers as red lines

emanating from the robot in a 180-degree arc. The second

plots the distances in a bar graph (see Fig. 3). After an initial

explanation (once the participant indicates they understand

the relationship between the robot’s pose, the wall locations,

and the laser scans), we turn off the first mode and only

show the bar graph.

External camera visualization: We visualize the location

and field of view of each camera using a blue dot plus lines

(see Fig. 4). To emphasize that more cameras equals better

localization, we draw a “ring of uncertainty” around the

robot. The ring is bigger if fewer cameras see the robot,

and goes from red (one camera) to green (three cameras).

We now describe the explanations and guidance we give

for each of our three navigation EE.

Laser-based localization: After a brief explanation of

what localization is, the participant watches a short video that

explains how lasers work. The participant is then asked to

watch how the bar graph changes as the experimenter: moves

the robot forward and backward, rotates it in a hallway,

and follows by a corner and a t-junction. The participant

is asked to identify the differences between a bar graph at

an intersection versus a hallway (Fig. 5, top row) to check

that they understand before moving on. The participant next

reads an explanation about how the robot can identify unique

locations (the bar graphs are different). The experimenter

then places the robot in two different locations that have the

same bar graph (e.g., two hallways) to emphasize that those

two locations look the “same” to the robot (e.g., corners,

Fig. 5, bottom row).

Camera-based localization: The participant watches a

short video that explains how one (or more) cameras can be

used to locate an object using triangulation. The participant

is then guided through placing the robot where it was well-

localized (visible by all three cameras) versus not (one or

zero cameras).

Object avoidance: After a brief explanation of how a

robot could use the laser scanners to avoid running into

an object, and how the laser could miss the object (e.g.,

wrong height, too skinny), the participant is guided through

several cases where the lasers might “miss” the object. For

these examples, the robot was placed in the model and

moved toward the object in question (e.g., table with skinny

legs, glass door) with the laser visualization turned on (see

Figure 6).

2) EE: Object detection using a camera: In this EE, the

participant interacts with a small “scene” consisting of a

wet floor sign (the object to detect) along with potentially

confounding objects, some of which are a similar color

(see Fig. 1). We chose a wet floor sign because it has

a 3D shape that changes based on viewpoint but is still

“recognizable” from many viewpoints. The participant can

move the camera, an optional light source (flashlight), and/or

change the arrangement of the scene objects. A monitor

shows the current camera image along with a labeled box

if the sign is detected (no box means the wet floor sign is

not detected).

The explanatory text first defines object detection (pixel

values match pixel values from similar images, “detection”

is the drawn box), then compares computer vision to human

vision. The participant is next guided through five ways to

make detection fail, with a short explanation of why that

causes the failure (object too close/far, camera angle too

far to the left/right/up/down, light too bright/dark, object

occluded, clutter/confounding objects).

B. Websites and web-only versions

We use two Google Sites for organizing and presenting

the Exploratory Experiences. The activities are ordered, with

each activity consisting of the explanatory text followed by
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Object Detection participants agreed (as compared to 38 who

said they were unfamiliar with object detection technology

in the entry survey). For Robot Navigation, this was 27 and

32, respectively.

V. DISCUSSION

Our goal was to determine if interactively engaging with

robotic technology — in particular, deliberately causing it to

fail — is an effective method for improving the ability of

participants to reason about capabilities and potential fail-

ures. Our results for Robot Navigation showed that this form

of failure-based explanation was effective. More intriguing

is how well participants did on the entry surveys — even

the Robot Navigation, which does not have an equivalent

app (like face recognition) that participants are exposed to in

daily life. It is clear that participants have a pretty intuitive

understanding of how object recognition might fail if you

show them stimuli (images) that exhibit common failures.

Similarly, we think that participants — knowing nothing

about how laser scans or external camera localization works

— can similarly reason from physical scenarios, such as

a robot pointed at two similar corners. This suggests that

grounding robot capabilities in physical scenarios may work

better than generic questions such as “when do you think a

robot might get lost?”

It was clear from the evaluations (and participants’ com-

ments) that in-person, interactive was more effective, even

for exploratory content that was largely delivered via text

on the webpages (the non-PRF in-between questions). This

might, in part, be attributed to the physical presence of

the experimenter (as opposed to a virtual Zoom presence),

which caused them to pay more attention to the content.

However, the effect for Robot Navigation was sufficiently

strong to suggest that physically causing the failures (rather

than passively observing them) is more effective. The decline

in scores for the web-only Object Detection condition (but

not the in-person) could also have been caused by boredom

and general fatigue.

Based on the success of the hands-on exploratory experi-

ences in the controlled experiment presented in this paper,

we brought the demos to two conferences (We Robot 2022

in Seattle and Science Writers 2022 in Memphis) to try them

out in a more realistic, informal setting. In both cases, we

were set up in an exhibit hall where conference attendees

could stop by for a few minutes during breaks and try

one or both of the EEs. The different conferences gave

us access to two different audiences. We Robot attendees

tend to be lawyers and policymakers in the technology

space. The Science Writers attendees are journalists who

specialize in writing about science. While both groups are

highly educated professionals, neither has particular technical

training in robotics. While the informal nature of this setting

made it difficult to collect robust data, the feedback that

we received was overwhelmingly positive. People enjoyed

the hands-on exploratory experiences, and we have now had

over one hundred people interact with them. We did ask

people to voluntarily complete a brief two-question survey

on a clipboard after the EE, and the results from this indicate

that people were able to successfully identify failure cases

after just a brief interaction with the EE.

Improving reasoning ability is the first step toward our

long-term goal. In future work, we plan to study if interacting

with these EEs changes how people evaluate potential laws

and policies, particularly around technology such as sidewalk

robots.
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