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Abstract— This paper introduces a novel interactive ap-
proach —Exploratory Experiences— that aims to improve the
ability of people to reason about the capabilities and limitations
of robotic technology. We focus on two areas: robot navigation
and object detection. We evaluate the Exploratory Experiences
with a novel approach that measures the participant’s ability
to predict when the robot will fail, following up with asking
the reason and a possible fix. We show that our approach is
effective at improving participants’ understanding of potential
robot navigation failures and that they already have the skills
to detect potential object detection failures when presented with
the correct stimuli.

I. INTRODUCTION

Robots are appearing in public and semi-public places.
Safely and effectively integrating these robots depends on a
mix of factors, from robot engineering design to laws and
policies that shape human-robot interactions, and how the
public experiences and responds to them. It is unreasonable
to expect all of the involved parties to have a deep technical
understanding of how robots work. However, the lack of
technical knowledge can lead to laws and policies that do
not “make sense” in terms of what robots can (and cannot)
do. In this paper, we take a first step towards a lightweight,
interactive method for improving the ability of participants
to reason properly about robotic capabilities and potential
for failure. The goal is not to “teach” robot technology, but
rather to let participants explore the technology “in action”
by actively guiding them through where it succeeds and fails.

A fundamental challenge in understanding robotic capabil-
ities is that people (even engineers) tend to anthropomorphize
robots, in part because that is the closest mental model they
have for characterizing robots [1]. Unfortunately, this leads
people to believe that robots will sense, perceive, and take
actions the same way that humans do. This tendency has
been identified as “The Android Fallacy” [2], and it has deep
implications for how robots (and their designers) are treated
by the law. There are good reasons why robots/Al should
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not be treated as independent agents (e.g., humans) in most
legal contexts [3]. The long-term goal of this work is to
provide a lightweight approach to improving the ability of
the law and policy community to reason properly about the
capabilities (and limitations) of robots. By de-emphasizing
the anthropomorphic aspects of the robot and focusing on
specific failure modes, we can reduce the tendency to assume
robots operate as people do.

In this paper, we focus on two areas of robotics (object
detection and robot navigation — see Figure 1) that form the
core of many robot applications. Within each area we provide
just enough explanation of how the technology works for
the participant to understand where (and how) it will fail —
and guide them to produce those failures. The key to our
approach is to provide interactive experiences that let the
participant actually cause failures themselves. For example,
the participant actually moves the camera to odd angles to in-
teractively experience how object recognition often fails with
those unusual angles. We call these combined explanations
with interactive activities Exploratory Experiences (EEs).

To evaluate our Exploratory Experiences, we introduce
a novel approach that measures a participant’s ability to
reason about a robot’s capabilities and failures. Specifically,
we provide stimuli (in the form of images — see Figure 2)
and ask participants to choose which scenario(s) will cause
a failure. For the predicted failures we follow up by asking
the participants to pick the reason(s) for the failure, and then
how to fix that failure (a form of data triangulation).

Our Exploratory Experiences are designed to be hands-
on and interactive. In order to evaluate if interactivity is
important (and also to provide web-based training materials),
we replicate, as best as possible, the interactive sessions with
videos, and organize the content into a website '.

In summary, we develop novel reasoning-based interac-
tive material and evaluate it with respect to the following
hypotheses:

« HI: Exploratory Experiences can enhance people’s abil-
ity to reason about the capabilities and limitations of
robots.

« H2: Hands-on Exploratory Experiences are more effec-
tive than video-based ones in enhancing people’s ability
to reason about the capabilities and limitations of robots.

"Link to the Exploratory Experiences:
Object Detection: https://tinyurl.com/3u3xzs23
Robot Navigation: https://tinyurl.com/ms6hr2c4
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Hospital model
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Fig. 1: Left: Hospital model (black) with a movable robot (pink with QR code at top) and IPad AR overlay (laser scan). As
the robot is moved around the model, the IPad displays the laser plot (middle top) and (optionally) the laser beams. Right:
Object detection — participant manipulates a web camera, objects, and lighting, to cause object detection (the yellow box

around the wet floor sign) to fail.

Although not formalized as a hypothesis, we expect the
learning gains to be greater for navigation (laser and external
camera-based localization) than object recognition because
people are broadly familiar with computer vision failures
through, e.g., phone apps like Snapchat.

II. RELATED WORK

The development of EEs is situated at the intersection of
multiple areas: design of explanations for eXplainable Arti-
ficial Intelligence (XAI) and explainable agency, interactive
engagement in learning, evaluation of explanations, and post-
training measures of change in understanding. We discuss
these in turn.

A. Characteristics of effective explanations

Recent work in XAl [4] and explainable agency [5] offers
criteria for explanations that effectively communicate the
characteristics of Al and robotic systems. Kass et al. [6]
propose basic principles for explanations of Al systems. We
follow their construction in our explanations, with a particu-
lar focus on appropriateness, which refers to the adaptation of
explanations based on the learners’ knowledge. This princi-
ple is crucial in developing explanations for the EEs because
the EEs are designed for, and need to be comprehensible to,
people who lack a deep technical understanding of robot
technology. We focus on describing causes for failure rather
than oversimplified technical explanations because being too
simple can result in lost trust in explanations [7].

Other works discuss various criteria for effective explana-
tions. Kulesza et al. [8] contend that explanations should
be sound, complete, and engage users’ attention, while
Mueller et al. [9] argue that explanations should correct
users’ oversimplified or reductive misunderstandings of Al
systems. Further, works such as [10], [11], [12] emphasized
the importance of contrastive explanations and maintained
that explanations should explain the “Why”, the “Why not”,
and the “What-if” of systems. Contrastive explanations are
effective because they build understanding by highlighting

the differences between events and are more easily com-
prehensible than a full causal analysis [13]. In this work,
we used contrastive language to differentiate how humans
perform tasks versus computer-based systems.

The work of [14] on producing effective explanations
is the most closely related to this study. Their aim is to
introduce explanations that enable people without technical
understanding to identify the cause of, and solution to, a
robot failure. They find that explanations should contain
contextual reasoning about the environment and the history
of a robot’s past successful actions in order to improve failure
and solution identification [14]. We follow a similar approach
but define broader categories a priori, then guide participants
through producing those failures.

B. Interactive engagement in learning

A limitation of lecture-based training is a lack of inter-
action and active participation in the process of learning,
leading to a less effective conceptual understanding of a
subject [15]. Wage et al. found that students in signals
and systems courses learned only about 20% of concepts
presented in a traditional lecture-based course format [16].
To address the limitations of traditional learning approaches
in science majors, Hake [15, pp. 65] proposes the “Inter-
active Engagement” (IE) approach and defines it as meth-
ods “designed at least in part to promote conceptual un-
derstanding through interactive engagement of students in
heads-on (always) and hands-on (usually) activities which
yield immediate feedback through discussion with peers
and/or instructors.” Hake found that IE results in greater
conceptual understanding and problem-solving skills [15].
Our EEs incorporate IE through interactive activities that
guide participants to generate failures and provide immediate
feedback demonstrating failure occurrence.

C. Measures to evaluate explanations and understanding

Researchers in the field of XAI and explainable agency
have developed several different measures for evaluating
explanations [17][14]. Among such measures, failure and
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Predict

Fix
Select one (or more) reasons why Pick the best way to change the
]

The image is very dark/very image so the stop sign is detected
bright Q Adjust the lighting

QO  The stop sign is not facing the- QO  Move the camera so that the
camera stop sign is facing the camera
] There are other objects around Q Remove the object(s)
. the stop sign [m} ..
[

Robot Navigation Object Detection

Select one (or more) reasons ... best solution to enable the robot

localization

a The laser ... which wall ... ] Increase the number of...
Q  Thelaser .... which corner ... Q Install the laser higher...
O  Thelaser ... t-junctionor ... Q Install external cameras...
Q Q

Fig. 2: Example Predict, Reason, Fix (PRF) questions for Object Detection (top) and Robot Navigation (bottom). Left:
Participant selects one (or more) images that might fail. Middle: They select one (or more) reasons for the failure. Right:

They select one best fix.

solution identification [14] are the most closely related ones
to this work. This work introduces a new measure that
considers not only a learner’s ability to identify failures and
fixes but also their ability to predict a failure.

To evaluate the effectiveness of different educational ap-
proaches, prior studies have collected learners’ understanding
of a subject before and after training through pre and post-
tests [15], [18] or an assessment instrument known as concept
inventory [19], [20]. Sands et al. [21] proposed a measure
that evaluates the overall acquisition of new concepts after
training, while Bristow et al. [22] introduce several measures
that assess various aspects of a training approach, such as
the areas where the training was ineffective and the extent
to which it may have contributed to the development of
misconceptions. In this work, we chose to use pre and
post-tests to measure overall knowledge gain and targeted
questions between each sub-task.

III. METHODS

Each Exploratory Experience (EE) focuses on a specific
robot technology and consists of a mix of short, non-
anthropomorphic and non-technical explanations combined
with a sequence of activities. The explanations cover the
basic idea behind the technology and how it differs from
the way humans do the same task. The activities involve
manipulating the robot and/or its environment to produce
specific outcomes (both successes and failures). Because
driving a real robot around a real environment introduces
too many unknowns and logistical challenges, we opt for a
table-top scenario where the robot can be moved around a
simplified environment (see Figure 1). We use Augmented
Reality (AR) to show the participant what the robot’s sensors
are measuring.

To evaluate a participant’s ability to reason about robotic
capabilities, we present them with a set of scenarios and
ask them to predict which ones might fail. The stimuli for
these questions are a set of images that show the scenario
(see Figure 2). To further evaluate the participant’s ability
to reason about robotic failures, we ask follow-up questions

that ask them to pick the reason(s) for the failure and how
the failure could be fixed.

We develop Exploratory Experiences for two areas of
robotics: Object Detection (OD) and Robot Navigation (RN)
(laser and external camera) (Section III-A). We use a website
to organize the explanations and the guidance for each se-
quence of activities, along with the surveys. We also modify
the websites to create a second, stand-alone website that
replaces the interactive component with videos (Section III-
B). Our study design is between-subjects, with an entry and
exit survey and in-between surveys to capture participants’
understanding after each activity (Section III-C). We use our
novel Predict-Reason-Fix (PRF) measures to evaluate the
effectiveness of the interactive versus web-based versions
(Section III-E).

A. Exploratory Experiences: Content

Here we describe the technology each EE focuses on,
along with the explanations and the physical setup the
participant manipulates.

1) EE: Robot navigation: For robot navigation, we focus
on two forms of localization (laser-based and external cam-
eras) and object detection with lasers. Lasers are ubiquitous
in robotics and are a good stand-in for any distance-based
sensor (radar, lidar, optical flow). We include external camera
triangulation for two reasons. 1) The technology is similar to
GPS but at an interactive physical scale. 2) It introduces the
concept that robot sensors do not have to be on the robot.

This study primarily focuses on robot localization (where
is the robot on a given map?) and obstacle avoidance using
the laser. In a preliminary study conducted around knowledge
and understanding of navigation, it was clear that the public
is very familiar with path planning through the use of map
apps. For this reason, we excluded it from our sub-tasks for
this evaluation. We leave map creation for future work. We
next define the overall physical setup and the visualizations
we created for each task.

Our navigation scenario is a simplified version of a hos-
pital, with a couple of rooms with doors and windows (see
Fig. 1, left), sized to fit on top of a table. The robot is a
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EE | CONCEPT SUB-TASK TIME (m) IN-BETWEEN ENTRY/EXIT | TOTAL Qs | TIME (m)
Navigation Explanation 6 14 Q 2Q
Tutorial 6 3P - In-between:
Scan-location (I) 2.5 2P - 28
RN | Laser Uniqueness (I) 2.2 1P 1 PRF 43 + 10
Limitations (I) 2.3 5P 1 PRF Entry/
Obstacle (I) 1.6 1P - Exit:
External Tutorial 3 - - 11 each
cameras Localization (I) 1 2P 1 PRF
Human vs computer | Explanation 9 7Q,5T/F 2Q 1B: 27
oD Create fail (I) Distance, angle, light, 94 5 REP 5 PRF E/E: 17 ca. 40 + 7
Occluded, clutter

TABLE I: EEs with sub-task type (I is interactive), time, and evaluation type: Q - Multiple choice, P - Predict, R - Reason,
F - Fix, T/F - True/False. Entry and exit surveys had the same number of questions and took approximately 9 and 10 min

each (half of experiment time).

3D-printed model that can be moved and tracked in AR
within the hospital. We use augmented reality to simulate
and visualize both the laser scan (the red lines in Fig. 3) and
the field of view of “cameras” that are placed in the model
(Fig. 4). For the AR view, we use a tablet that is held by
the participant so they can see the hospital model; the image
on the tablet is optionally shown on a monitor behind the
hospital model. The tablet tracks what part of the model it is
looking at in addition to where the robot is within the model.

In our preliminary study, we originally instructed the
participant to move the robot while holding the AR tablet.
This proved physically challenging; having the experimenter
move the robot both resolved this problem and simplified the
instructions.

Robot laser visualization: We have two modes for visu-
alizing the laser. The first mode shows the lasers as red lines
emanating from the robot in a 180-degree arc. The second
plots the distances in a bar graph (see Fig. 3). After an initial
explanation (once the participant indicates they understand
the relationship between the robot’s pose, the wall locations,
and the laser scans), we turn off the first mode and only
show the bar graph.

External camera visualization: We visualize the location
and field of view of each camera using a blue dot plus lines
(see Fig. 4). To emphasize that more cameras equals better
localization, we draw a “ring of uncertainty” around the
robot. The ring is bigger if fewer cameras see the robot,
and goes from red (one camera) to green (three cameras).

We now describe the explanations and guidance we give
for each of our three navigation EE.

Laser-based localization: After a brief explanation of
what localization is, the participant watches a short video that
explains how lasers work. The participant is then asked to
watch how the bar graph changes as the experimenter: moves
the robot forward and backward, rotates it in a hallway,
and follows by a corner and a t-junction. The participant
is asked to identify the differences between a bar graph at
an intersection versus a hallway (Fig. 5, top row) to check
that they understand before moving on. The participant next
reads an explanation about how the robot can identify unique
locations (the bar graphs are different). The experimenter
then places the robot in two different locations that have the

same bar graph (e.g., two hallways) to emphasize that those
two locations look the “same” to the robot (e.g., corners,
Fig. 5, bottom row).

Camera-based localization: The participant watches a
short video that explains how one (or more) cameras can be
used to locate an object using triangulation. The participant
is then guided through placing the robot where it was well-
localized (visible by all three cameras) versus not (one or
ZEero cameras).

Object avoidance: After a brief explanation of how a
robot could use the laser scanners to avoid running into
an object, and how the laser could miss the object (e.g.,
wrong height, too skinny), the participant is guided through
several cases where the lasers might “miss” the object. For
these examples, the robot was placed in the model and
moved toward the object in question (e.g., table with skinny
legs, glass door) with the laser visualization turned on (see
Figure 6).

2) EE: Object detection using a camera: In this EE, the
participant interacts with a small “scene” consisting of a
wet floor sign (the object to detect) along with potentially
confounding objects, some of which are a similar color
(see Fig. 1). We chose a wet floor sign because it has
a 3D shape that changes based on viewpoint but is still
“recognizable” from many viewpoints. The participant can
move the camera, an optional light source (flashlight), and/or
change the arrangement of the scene objects. A monitor
shows the current camera image along with a labeled box
if the sign is detected (no box means the wet floor sign is
not detected).

The explanatory text first defines object detection (pixel
values match pixel values from similar images, “detection”
is the drawn box), then compares computer vision to human
vision. The participant is next guided through five ways to
make detection fail, with a short explanation of why that
causes the failure (object too close/far, camera angle too
far to the left/right/up/down, light too bright/dark, object
occluded, clutter/confounding objects).

B. Websites and web-only versions

We use two Google Sites for organizing and presenting
the Exploratory Experiences. The activities are ordered, with
each activity consisting of the explanatory text followed by
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Fig. 3: Explaining the laser plot to participants. Left: We
first show both the actual laser scans in the environment
(red lines, one green to show left-right ordering) and the
resulting distance plot (top middle). The laser scans move
as the robot moves. Right: All subsequent interactions show
only the laser plot.

the activity guidance, followed by one prediction and/or rea-
soning question. The first “activity” is the overall explanation
of what that technology is. Bracketing the activities are the
entry and exit surveys. Table I summarizes the activities in
each.

To create our web-only versions, we replaced the guided
activity instructions with a short video of a user performing
that activity.

C. Overall study setup

Following pilot testing, we determined that an entire run-
through of the Object Detection (OD) or Robot Navigation
(RN) EE took around an hour (in-person or web-based). To
prevent fatigue, each participant was randomly assigned to
one of four conditions (in-person/web-based x OD/RN). The
web-based versions were conducted remotely over Zoom to
reduce the risk of COVID exposure. The in-person version
was conducted in the lab, with the website on one monitor
and the activities on a separate device. In all cases, following
the consent process, participants began with an entry survey
that collected familiarity with the given robot technology and
asked a set of predict/reason questions, one for each activity
in the EE. Following each activity, the participants answered
an in-between survey before continuing to the next activity.
The predict/reason questions from the entry survey were
repeated in the exit survey, along with basic demographic
questions and additional questions that asked the participants
to evaluate the material and the effort it took to do the
activities. A summary of all EE activities and questions is
given in Table I. All questions are publicly available 2.

D. Participants

We recruited a total of 81 subjects (twenty for each
condition), largely from university undergraduates and staff.
Because of survey response failures, we had to exclude two,
leaving 21 (OD, in-person), 19 (OD, web-only), 19 (RN, in-
person), 20 (RN, web-only). Participants ranged in age from
18 to 50 years, with 74 participants in the 18-30 range, and

2Survey questions are here: https://tinyurl.com/2p98jnes

Fig. 4: Explaining localization using external cameras. From
left to right: As the robot enters the camera’s field of view
(the blue circles with lines), a large red circle appears around
the robot, illustrating the localization uncertainty. As more
cameras see the robot (two then three), the circle shrinks and
goes from yellow to green.

were approximately evenly split by gender across conditions
(33 male, 42 female, 4 non-binary/declined). 38/40 (OD) and
32/39 (RN) were unfamiliar with the respective technology.

E. Measures and stimuli

Our primary method of measuring participants’ ability
to reason correctly is our predict, reason, and fix (PRF)
score. Specifically, we show participants five images and ask
them to select the ones that depict a potential failure (the
Predict question). For the selected failure images, we ask a
Reasoning follow-up question (select one or more reasons
for the failure). This is followed by a Fix question (pick a
single, best fix to address the problem). Both of the latter
have an “other” option with a text box. For each of the
five images, we calculate a score between O and 1, O being
incorrect (specifics given below). The five images in each
Predict question always consist of two “fail” images and
three “not fail”, with the images in random order.

In addition to the PRF score, we use traditional multiple
choice questions (Q’s) for conceptual questions such as
“which tasks require navigation?”. The question types are
summarized in Table I.

In-between stimuli: We created one Predict question (no
RF follow-up questions) for each sub-task in the Exploratory
Experiences to serve as our evaluation for that sub-task’s
material (our in-between surveys). Because we were inter-
ested in reasoning, for Object Detection we also include one
reasoning-plus-fix question for a (different) failure image.
These images were made using the visuals in the EE (eg,
with the wet floor sign in OD and the same viewpoint as the
AR overlay in RN).

Entry-exit stimuli: For each sub-task, we created a dif-
ferent PRF to use in the entry/exit survey. For RN, these
were also made using the AR overlay, but with an abstract
picture of the robot (a yellow circle with an arrow indicating
the direction it faced). For OD, we wanted to use real-world
images (pictures of a stop sign) in order to see if participants
could generalize. Although every effort was made to take
two “fail” images for each failure type, and multiple, unique
“not fail” images, several of the “not fail” images could be
interpreted as “fail”, and some of the “failure” images also
had additional reasons they might fail.

Creating the code book/RF answers: We began by creating
a list of common reasons why object detection and robot
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Fig. 5: Examples of location types and their corresponding
laser plot. The robot’s location and orientation are shown
with a yellow circle and arrow. Bottom row: An example of
demonstrating that pointing the robot into a corner produces
the “same” laser plot.

navigation might fail. We use these to both select and design
the EE sub-tasks and as the list of possible failure reasons.
The fixes are actions that fix a specific failure case (e.g.,
fix the lighting, move the robot). After pilot testing, we
collapsed a few of the reasons (e.g., clutter/graffiti, hallway
versus corner localization) to reduce the overall study time.
Three of the investigators reviewed the stimuli images to
reach a consensus on the primary and secondary reasons to
score failure images. This review confirmed that in Robot
Navigation, only a few ambiguous images existed, and those
show external camera localization (a robot seen by only 1 or
2 cameras).

Scoring a PRF question: Each Predict question has five
images; we score each image individually and average the
results. For each image, we calculate a prediction, reason,
and fix score. The PRF score is the average of the three.

o Predict: 1 (correct) or O (incorrect).

« Reason: We use a modified multi-class F1 score, where
only the primary reason must be selected; selecting
correct secondary reasons is not penalized, but selecting
incorrect ones are.

o Fix: 1 (correct) if the fix matched a selected failure
and the failure was correct. 0.5 (semi-correct) if the fix
matched a selected failure but the failure was incorrect.
0 (incorrect) otherwise.

The PRF scores are averaged to yield a score between 0
and 1 for each image. For each question, we average the
PRF scores for each image.

Fig. 6: Demonstrating that the laser scanner cannot detect
transparent (glass door) and skinny (gurney legs) objects
because the laser beams go through them.

IV. RESULTS

We present results for each of our hypotheses (HI:
effectiveness, H2: interactivity matters) for each type of
Exploratory Experience, followed by demographics analysis
and participant observations.

A. Effectiveness

We evaluate effectiveness both by comparing the entry

and exit survey scores (Fig. 7) and by the in-between scores
(Fig. 9). Overall, we saw significant improvement for Robot
Navigation and high scores on the exit survey for both EEs.
Robot Navigation: There was a significant improvement
from the entry to the exit survey for both the in-person and
the web-only versions (PRF mean 0.75 to 0.9 for in-person,
0.78 to 0.82 for web-only). There were 28 questions total
for the in-between surveys (14 multiple choice, 14 Predict,
see Table I); the majority of the in-person participants
missed 4 or fewer questions, while most of the web-only
participants missed 5-6. Of the 14 Predict questions, the in-
person participants missed an average of 1.2 questions while
the web-only missed 2.7.
Object Detection: There were no significant differences
between the entry and the exit surveys, largely because the
participants scored high on the entry survey (0.86 mean both
in-person and web-only). The exit survey scores declined
slightly for the web-only condition (0.82 mean) but remained
the same for the in-person.

There were 27 questions total for the in-between surveys
(12 multiple choice or True/False, 5 RPF = 15 questions).
Here, again, most in-person participants missed 5 or fewer
questions, while most web-only participants missed 5 or
more. Of the PRF questions, 15 people each in both con-
ditions missed none of the RPF questions, with only one
person in the online condition missing more than 2.

We hypothesize that the participants were already familiar
with how well object detection works in practice through
interaction with apps that use computer vision. Since the
Reason and Predict scores were largely answered correctly in
the in-between surveys, we performed an additional analysis
on the entry/exit surveys to show the number of images
participants selected as “failures” in the Predict questions
(see Fig. 8). From this data we see that participants selected
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Fig. 7: PRF scores before and after the EE (Robot Nav-
igation, 3 PRF questions total, Object Detection, 5 total).
(xp < 0.05, xxp <0.01, xxxp < 0.001).
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Fig. 8: Number of images predicted to be failures in the
Object Detection prediction questions. Two of the 5 images
were “fails”. For both in-person and online, more participants
selected more images per question after the EE (Total: 5
prediction questions per participant).

more failure images in the exit survey; this was particularly
pronounced for the web-only participants, who shifted from
selecting 1 failure image to 3 (the “correct” number was 2).
We hypothesize that the EE resulted in participants being
hypersensitive to potential failures. Note that we used real-
world images for the entry and exit surveys, so some of
them could be interpreted as, e.g., “too dark”. Although we
do not include the analysis here because of space, we did
re-code the “successful” images using a lower bar for failure
and discovered that participants were, indeed, marking these
potential fails with the reasons we assigned to the images.

B. Interactivity

The web-only participants performed worse both in the
exit surveys (Fig. 7) and the in-between surveys (Fig. 9). For
Object Detection, the web-only participants did worse on the
exit survey (although this was not statistically significant).

C. Demographics and follow-up questions

In the exit survey, we collected demographic information
(age, gender, attitude towards technology), a 6 question
workload survey, and 6 questions about course content.
While our participant pool was roughly evenly split by
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Fig. 9: Number of incorrect answers for the in-between
surveys by EE.

gender, our participant pool skewed young (nearly all in
the 18-30 range). Because of this, we did not run age-based
correlations.

We saw no statistically significant difference between the
male and female participants on any of the entry surveys in
any of the conditions. We did see a gender difference in
the Robot Navigation web-only condition (males performed
better), both in the exit survey (males: mean PRF 0.90,
females: mean PRF 0.75, p-value 0.031) and in the in-
between surveys (males: missed 4.7 questions on average,
females 8.9, p-value 0.008). This was not, however, the case
for the in-person Robot Navigation, where there was no
statistically significant difference between the scores in the
exit or in-between surveys. We also saw a gender difference
in the Object Detection in-person condition, but in the
other direction (females performed better) in the in-between
surveys (males: missed 6.12 questions on average, females
4.2, p-value 0.041). Altogether, this indicates that the in-
person training was more effective for females than males.

We asked the NASA TLX questions (paper version, 7
questions, 21-point Likert scale, 1-low, 21-high) at the end of
the experiment to evaluate perceived effort and performance.
Scores were very similar across all conditions. The exception
was temporal demand (feeling rushed), which was noticeably
higher for the web-only Robot Navigation than the in-person
(avg. 3.3 vs. 0.95, p-value 0.03). Overall, participants felt
they were successful (avg. 15.6) with higher mental demand
(avg. 4.7) than physical (avg. 1.1), with low effort (avg.
4.4) and frustration (avg. 1.7). This correlates with their
responses to the course content, where the majority of the
participants found the content useful (avg. 4.5/5, std. 0.90),
sufficient (avg. 4.5/5, std. 0.92), and easy to understand (avg.
4.4/5, std 0.95). The testing questions were also easy to
understand (avg. 0.45/5, std. 0.88). The Robot Navigation,
versus the Object Detection, scores were slightly higher (0.3
on average), indicating that the Robot Navigation experiences
were slightly more engaging.

We found no correlations between performance and our
two technology questions (comfort with technology, whether
or not they like to tinker). Our participants did skew towards
being comfortable with technology and willing to tinker with
it. When asked if the content in the course was new, 26 of the
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Object Detection participants agreed (as compared to 38 who
said they were unfamiliar with object detection technology
in the entry survey). For Robot Navigation, this was 27 and
32, respectively.

V. DISCUSSION

Our goal was to determine if interactively engaging with
robotic technology — in particular, deliberately causing it to
fail — is an effective method for improving the ability of
participants to reason about capabilities and potential fail-
ures. Our results for Robot Navigation showed that this form
of failure-based explanation was effective. More intriguing
is how well participants did on the entry surveys — even
the Robot Navigation, which does not have an equivalent
app (like face recognition) that participants are exposed to in
daily life. It is clear that participants have a pretty intuitive
understanding of how object recognition might fail if you
show them stimuli (images) that exhibit common failures.
Similarly, we think that participants — knowing nothing
about how laser scans or external camera localization works
— can similarly reason from physical scenarios, such as
a robot pointed at two similar corners. This suggests that
grounding robot capabilities in physical scenarios may work
better than generic questions such as “when do you think a
robot might get lost?”

It was clear from the evaluations (and participants’ com-
ments) that in-person, interactive was more effective, even
for exploratory content that was largely delivered via text
on the webpages (the non-PRF in-between questions). This
might, in part, be attributed to the physical presence of
the experimenter (as opposed to a virtual Zoom presence),
which caused them to pay more attention to the content.
However, the effect for Robot Navigation was sufficiently
strong to suggest that physically causing the failures (rather
than passively observing them) is more effective. The decline
in scores for the web-only Object Detection condition (but
not the in-person) could also have been caused by boredom
and general fatigue.

Based on the success of the hands-on exploratory experi-
ences in the controlled experiment presented in this paper,
we brought the demos to two conferences (We Robot 2022
in Seattle and Science Writers 2022 in Memphis) to try them
out in a more realistic, informal setting. In both cases, we
were set up in an exhibit hall where conference attendees
could stop by for a few minutes during breaks and try
one or both of the EEs. The different conferences gave
us access to two different audiences. We Robot attendees
tend to be lawyers and policymakers in the technology
space. The Science Writers attendees are journalists who
specialize in writing about science. While both groups are
highly educated professionals, neither has particular technical
training in robotics. While the informal nature of this setting
made it difficult to collect robust data, the feedback that
we received was overwhelmingly positive. People enjoyed
the hands-on exploratory experiences, and we have now had
over one hundred people interact with them. We did ask
people to voluntarily complete a brief two-question survey

on a clipboard after the EE, and the results from this indicate
that people were able to successfully identify failure cases
after just a brief interaction with the EE.

Improving reasoning ability is the first step toward our
long-term goal. In future work, we plan to study if interacting
with these EEs changes how people evaluate potential laws
and policies, particularly around technology such as sidewalk
robots.
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