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ABSTRACT

Plastic waste has become a major environmental crisis, with majority of plastic being produced
ending up in open landfills and water ways every year. Solvent-based recycling approaches offer
an effective means of recovering high-quality plastic material from waste by use of a solvent to
selectively dissolve the plastic waste and recover specific polymers. In this work, we report on the
properties of 9587 potential glycerol-based solvents that can be synthesized from biomass-derived
glycerol. We predict the density and dipole moment using quantum mechanical calculations, while
the LogS, LogP, and the melting point are predicted using machine learning that outperforms other
prediction methods such as Hansen Solubility Parameters in Practice (HSPiP). Additionally, we
analyze the ability of the solvents to dissolve common plastic materials (polyethylene (PE),

polyethylene terephthalate (PET), polyether sulfone (PES), polypropylene (PP), polystyrene (PS),



and polyvinyl chloride (PVC)) based on a comparison of their Hansen Solubility Parameters
(HSPs). Our results show that functionalization of glycerol can significantly alter its properties,
and based on the HSPs and melting point, we recommend selective solvents for PE, PET, and
PVC, while for PES, PP and PS, we suggest using a combination of solvents in a
solvent/antisolvent setup for solvent-based plastic waste recycling. Finally, based on stricter
solvent selection criteria we also propose a strategy that may help reduce costs of sorting waste

plastic whereby the waste feedstock is first separated into polar and non-polar fractions.

1. INTRODUCTION

Plastics have transformed society, allowing us to make a variety of household and industrial
materials on which modern society is now highly dependent. Since industrial scale plastic
production started in the 1950s, plastic production has been steadily rising reaching approximately
400 million tons in 2021 and is estimated to surpass 1.1 billion tons by 2050 as manufacturing
becomes more efficient and the feedstocks cheaper.':> However, the plastic waste associated with
plastic production and use is mostly non-biodegradable and is typically mismanaged. A recent
report shows that only around 14% of plastics are recycled and around 85% end up in landfills or
are incinerated, while the rest end up in water bodies.> These waste plastics that end up in landfills
and water bodies ultimately mechanically degrade and create microplastics that harm marine life
and as a consequence human life since microplastics can end up in food and drinking water.*
Because of this, many countries have started implementing policies to incentivize plastics
recycling and cleanup initiatives, however recycling rates vary wildly with the US recycling 10%,
the EU 31%, and most of the developing world not recycling at measurable scale.> Despite the

problems posed by plastic waste, plastic recycling remains challenging for a number of reasons

including: (1) varying compositions of plastics, (2) high capital investment required, and (3)



difficulty of sorting different plastic materials and contaminants.® These limitations mainly apply
to the most common method of plastic waste recycling, known as mechanical recycling which
involves breaking down of sorted and cleaned plastic waste into smaller flakes which are then
processed into new material. In addition to the aforementioned limitations, the majority of new
plastic material produced via mechanical recycling is ‘down-cycled’ which means that the new
material is of less quality than the virgin plastic material.®

To overcome limitations associated with mechanical recycling, chemical recycling which either

d* 19 approach offers a viable alternate for ‘recycling’

involves a solvent-based” ® or reaction-base
waste plastic that can be competitive with virgin plastic materials.” ! Solvent-based recycling
involves recovery of plastic material without chemically altering the structure of the material and
follows a simple workflow. First the target plastic is selectively dissolved in the solvent at a
specific temperature. This is followed by filtration of the resulting mixture to recover the liquid
phase which contains the solvated plastic. Finally, the dissolved polymer is recovered by either the
addition of an antisolvent (i.e. solvent in which plastic is insoluble) or by temperature swing (i.e.
change in temperature causing solvated plastic to precipitate out of solution).'? 13

The key challenge of the solvent-based approach is the selection of an appropriate solvent(s),
which ideally selectively dissolves only the target polymer while keeping out unwanted materials
such as additives and plasticizers. The solvent-based approach, however, is not a new idea as
dissolution and separation of polymeric materials has been demonstrated experimentally and
disclosed in patents from various companies since the 1930s.%7 For example, Séndig demonstrated
the dissolution and separation of condensation products, mostly polyesters, using ethyl alcohol as

a solvent in 1936.* In another patent received by the Standard Oil Development Company in 1945,

researchers developed a method for the separation of polyesters using paraffin mineral oils as a



solvent.!> These initial studies demonstrated the use of solvents in purification of polymerization
products and gave way to the eventual use of solvents for dissolution of plastic materials beginning
in the 1970s. Wainer et al., demonstrated a method for the dissolution of polyvinyl chloride
(PVC),'® while Mizumoto et al., showed a general method to selectively separate an individual
polymer from a mixture of polymers.!” Seymour and Stahl demonstrated the dissolution and
separation of polyethylene (PE), PVC, polystyrene (PS), polyvinyl acetate (PVAC), and
polymethyl methacrylate (PMMA) using a series of common solvents such as methanol, petroleum
ether, and toluene based on their solubility parameters.'®

As a field, solvent-based plastic recycling has been industry-driven with developments mainly
being disclosed in the form of patents. However, nowadays solvent-based recycling is also gaining
interest in scientific literature.!®? For instance, Achilias and co-authors demonstrated high
polymer recovery rates (>90%) in several studies, for the recycling of various polymers obtained

19:20 ysing solvents such as toluene,

from waste electric equipment,?! and packaging materials,
xylene, n-hexane, acetone, chloroform, and methanol. Kartalis et al., also reported the selective
dissolution and recovery of polycaprolactam and poly(hexamethylene adipamide) from polymer
mixtures using dimethyl sulfide (DMSO), and formic acid as solvents for each polymer.??> Walker,
et al.,'* demonstrated a computationally-guided strategy, called solvent-targeted recovery and
precipitation (STRAP), to deconstruct multi-layer plastic materials (three or more layers) into their
component resins (polyethylene (PE), polyethylene terephthalate (PET), and ethylene vinyl
alcohol (EVOH)) via a series of solvent washes. In another study by Sanchez-Rivera, et al., the
STRAP process was further analyzed by comparing different polymer precipitation techniques —

precipitation by antisolvent addition (STRAP-A), and precipitation by decreasing the solvent

temperature (STRAP-B).?® In addition, the authors also demonstrated that the STRAP process is



applicable to more complex multilayer systems by use of antisolvent for precipitation of certain
resins and reduction of temperature for precipitation of other resins in a process called STRAP-
C.2% In these studies, the solvents used to dissolve the studied plastics included common solvents
such as toluene, DMSO, and acetone. These solvents pose potential industrial safety hazards as
well as harm to the environment, human, and wildlife due to their volatility and toxicity which
may limit the applicability of these solvents to large-scale industrial operation. These limitations
necessitate the use of safe, environmentally friendly solvents for large-scale solvent-based plastic
recycling operations. However, only few studies are present in literature which report dissolution
of plastics using ‘green’ solvents produced from sustainable sources.?’! For example, Hattori et
al., demonstrated the dissolution of polystyrene (PS) in p-cymene and similar compounds present
in tree leaf oils. In their study, they achieved a solubility of 212.0 &+ 0.2 (g PS/100g solvent) and a
recovery rate of 96.3 + 0.4 % using p-cymene. Due to heterogeneous nature of plastic waste,
however, the unavailability of a database of green solvents with a wide range of properties
represents a major challenge to the rapid development of solvent-based plastic recycling
technology. Design of such solvents must follow certain design rules to be viable industrially
including: (1) low viscosity, (2) low density, (3) low vapor pressure, (5) non-toxic, and (6) cheap
to produce in addition to favorable solubility of different plastic materials.

In this work, we report a library of solvents which were designed using glycerol as a platform
molecule that can be obtained from renewable biomass at affordable cost.*>** Previous studies
have shown that through a simple synthesis procedure using epichlorohydrin, glycerol can be
functionalized to produce solvents with a wide array of physical properties depending on the
functional group.’**! Additionally, synthesis of glycerol derivatives has been shown to exhibit at

least seven advantages within the twelve rules of green chemistry, such as waste prevention, atom



economy, solvent safety, energy efficiency, renewable feedstock, reduced derivatization, and real-
time analysis.>* These compounds have been shown to have low viscosities compared to glycerol,
and are compatible with common organic solvents.® 3 Furthermore, they have also been shown
to be non-toxic.*? Here, we report four classes of glycerol-derived solvents, namely glycerol-
derived alcohols (GDAs), glycerol-derived ketones (GDKs), glycerol-derived ethers (GDEs), and
glycerol-derived deoxygenates (GDDs), along with their thermophysical properties such as
density, water solubility (LogS), lipophilicity (LogP), melting point as well as their Hansen
Solubility Parameters (HSPs). We have chosen these classes of glycerol-derivatives in order to
obtain a large library of potential environmentally friendly alternatives to conventional solvents
for plastic recycling applications. Furthermore, as demonstrated in previous works,?” 4% 4! these
solvents can be efficiently produced using a variety of polar, non-polar, and aromatic ‘R’ groups
shown in Scheme 1. By changing the functional groups in different ether sites, properties such as
density, dipole moment, water solubility, hydrophobicity, and so on, can be altered to meet
requirements for different applications. For example, Qian et al., showed that the density of
glycerol-derivates functionalized with alkyl groups was lower than that of glycerol, while the
density of glycerol-derivatives functionalized with trifluoromethyl groups had a higher density
regardless of arrangement (i.e. symmetric vs asymmetric).** In addition, they have also shown that
depending on the functional group and arrangement, the miscibility in various polar and non-polar
solvents can be tuned.** ** 3¢ These studies, however, have been limited to alkyl/alkyl ether, and
trifluoromethyl groups and consequently we extend these studies by considering a wider array of
functionalization with groups such as cyclics (cyclopropyl, cyclobutyl, and cyclohexyl), amine,
cyano, phenyl-nitrile, biphenyl-nitrile, halides, and methyl halides. In addition, most work on

glycerol derivates has been done with GDAs, GDKs, and GDEs, therefore, we have also



considered deoxygenates of glycerol (GDDs in Scheme 1) where the central ether site has been
replaced with a halide, cyano, or amine group or saturated with a hydrogen atom. This enables the
study of a variety solvents with a wide range of physical properties. Accordingly, we catalogue
9587 potential solvents and their physicochemical properties. We have also evaluated the solvents
as candidates for dissolution of polar plastics such as polyvinyl chloride (PVC), polyethylene
teraphthalate (PET), polyether sulfone (PES), and non-polar plastics such as polyethylene (PE),
polypropylene (PP), and polystyrene (PS) using HSPs. Thus, this work can serve as a reference for

future computational and experimental studies of glycerol-derivatives for solvent-based plastic

recycling.
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Scheme 1. Basic structure for a) glycerol-derived alcohols (GDA), b) glycerol-derived ketones
(GDKs), ¢) glycerol-derived ethers (GDEs), and d) glycerol-derived deoxygenates (GDDs). Below
each structure is the number of compounds in that category with the entire dataset totaling 9587
molecules. Note that CyB, CyP, and CyH represent cyclobutane, cyclopropane, and cyclohexane,

respectively.

From our work, we show that the properties of glycerol derivatives are highly tunable depending
on the functional groups attached. We also show glycerol derivates outperform glycerol in ability

to dissolve polar (PET, PES, PVC) and non-polar plastic materials (PE, PP, PS). Additionally, we



provide potential glycerol-derived solvents which are predicted to carry out selective plastic
dissolution based on their melting point and HSPs.
2. COMPUTATIONAL METHODS
To build a library of glycerol-based solvents, we have defined four subcategories with glycerol as
the backbone, namely 1) glycerol-derived alcohols (GDAs), ii) glycerol-derived ketones (GDKs),
i1i1) glycerol-derived ethers (GDEs), and iv) glycerol-derived deoxygenates (GDDs) shown in
Scheme 1. Scheme 1 also shows a list of functional groups used to create a variety of potential
solvent candidates. Based on these functional groups, we combinatorically created a SMILES-
based*® list of 9587 solvent candidates (see Scheme 1 for population of each subcategory). The
SMILES* representation of each molecule was canonicalized and converted into XYZ coordinates
using OpenBabel (version 2.4.0)* and used for further calculation of physical properties as
detailed in the sections below.
2.1. Calculation of Solvent Physical Properties

2.1.1. Dipole Moment Prediction
The dipole moments of the solvent compounds in the gas phase were calculated using a combined
semi-empirical and first principles quantum chemical approach. An initial search of stable
conformations of each solvent molecule was performed using the GFN-FF force field® in
CREST*® as implemented in the XTB program.*’ This was followed by a geometry optimization
of each conformation using the GFN2-xTB semi-empirical method,* also implemented in the XTB
program, which has been shown to produce good geometries and dipole moments.*’ From this, the
ten most stable conformations were selected for further calculations. The dipole moment of the ten

most stable conformations were then computed at Density Functional Theory (DFT) level using

the GAUSSIAN 16 program®® by performing single point energy calculations with the B3LYP



functional®! and the D3 empirical dispersion scheme,*” together with the def2-SVP basis set.”
Finally, the average dipole moment of each solvent molecule was then computed as the
Boltzmann-average of the studied ten most stable conformations.
2.1.2. Density Prediction

The thermophysical properties of the solvent molecules were calculated using the COSMOtherm
software package (BIOVIA COSMOtherm, Release 2020)°* which has been shown to be a
practical method of predicting physical properties of similar solvent molecules.’® *! The density
was obtained for each solvent molecule over a temperature range of 20 °C to 80 °C. The required
COSMO files needed for property calculation in COSMOtherm were generated based on DFT
calculations performed using the GAUSSIAN 16 program. The most stable conformation of each
solvent molecule (based on GFN2-xTB geometry optimization) was further optimized using the
BP86 functional® >® and the TZVP basis set>’ except for iodine-containing compounds since the
TZVP basis set was not parameterized with for iodine atoms. Thus, optimized structures for iodine-

t>3 on the iodine atom, and the

containing compounds were obtained using the def2-TZVP basis se
TZVP basis set for all other atoms. Single point energy calculations were then performed with the
BP86 functional together with the TZVP basis set and the COSMO-RS solvation®® ** model to
obtain the necessary COSMO files following previous studies that had predicted physical
properties of liquid-phase compounds.®> %% ¢! Similarly for iodine-containing molecules, single
point energy calculations were carried out using the BP86 functional and the def2-TZVP basis set
defined for the iodine atom (TZVP basis set defined for all other atoms) together with the COSMO-
RS solvation model. Finally, we performed COSMO calculations in the COSMOtherm software

package (BIOVIA COSMOtherm, Release 2020) at the TZVP level.

2.1.3. Calculation of Hansen Solubility Parameters (HSPs)



We assessed the solubility of polar and non-polar plastic materials, namely polyvinyl chloride
(PVC), polyethylene terephthalate (PET), polyether sulfone (PES), polyethylene (PE),
polypropylene (PP), and polystyrene (PS), which are commonly found in plastic waste streams,
using the HSPs of the solvent molecules and polymers. HSPs are empirical parameters for solvents
which are used as a measure to identify solvents that are capable of dissolving target polymer
materials.®**%> Each compound (solvent or polymer) are characterized by three HSPs that describe
the strength of dispersion interactions (dp ), polar or dipole-dipole interactions (6p), and hydrogen-
bonding interactions (8y).%* % These parameters define the coordinates of each compound within
the Hansen space. Each polymer has an additional parameter known as the radius parameter (R),
determined by experimentally quantifying the solubility of the polymer in various solvent

systems,®* 6

which defines the Hansen sphere of each polymer such that solvents capable of
dissolving the polymer will fall within the sphere. Solvents that can dissolve the polymer of interest
are then identified by calculating the geometric distance (R,)%* ®* between the HSP values of the
solvent and the polymer in Hansen space as shown in Equation 1 below.

R: = 4(6p, — 6p,)* + (6p, — 6p,)* + (6u, — On,)* (1)

Where R, is the geometric distance between solvent and solute in Hansen space, 6, and &p,
are the dispersion interaction HSPs for the solvent and solute, respectively, 6p, and &p, are the
polar interaction HSPs for the solvent and solute, respectively, and 6y, and &y, are the hydrogen-
bonding interaction HSPs for the solvent and solute, respectively.

Solvents with an R,/ R, ratio, known as the Relative Energy Difference (RED), less than one
are expected to be able to dissolve the target polymer while solvents with a RED greater than one
are expected to not be capable of dissolving the target polymer. Thus, potential solvents might be

selected based on HSPs while those predicted to be incompatible may still be useful as antisolvents.



However, we emphasize that HSPs only provide an estimate of solubility of a target polymer in a
given solvent, but generally the lower the RED the better. HSPs of the solvent compounds as well
as selected polymers (calculated at 25 °C) were obtained using the HSPiP software (version
5.4.03).%% It should also be noted that the HSPs of the selected polymers are only general
approximations as actual results are resin-dependent for example low-density PE and high-density
PE.

In addition to the calculation of HSPs, the HSPiP software also provides predictions for physical
properties such as boiling point, water solubility (LogS), lipophilicity (LogP), critical properties,
and Henry law constant as well as other quantities (a total of 55 properties). The LogS and LogP
of the solvents are two of the important properties of a solvent when considering applications that
involve dissolution and later precipitation of a solute. Thus, we sought to quantify the accuracy of
HSPiP’s LogS and LogP predictions against experimental data. For LogS, three datasets were used
to validate HSPiP predictions, namely the ADME dataset,®® the AqSolDB dataset,” and a LogS

dataset curated by Zang et al.,®

containing 1,290, 9,100 and 2,100 molecules along with their
corresponding experimental LogS values, respectively. For LogP, two datasets were used to
validate HSPiP predictions, namely, a LogP dataset curated by Zang et al.,% and a LogP dataset
curated by Alshehri et al., ® containing 14,208 and 12,194 molecules and their corresponding
experimental LogP values, respectively.
2.1.4. Machine Learning (ML) prediction of LogS and LogP

Due to the poor prediction of the LogS and LogP (See Figure S1-S2), we have built neural

network (NN) models to predict the LogS and LogP values of the studied potential solvent

molecules, using fully connected dense layers and descriptors produced by the HSPiP software.

For prediction of LogS, the ADME,* AqSolDB,%” and Zang® datasets were used to train and



validate our model. Similarly, for the prediction of LogP, the Zang,®® and Alshehri®® datasets to
train and validate the NN.
2.1.4.1. Data Preparation and Model Training

NN models typically require the input data be preprocessed in various ways, for example the
removal of missing values, normalization of inputs, and feature selection, in order to prevent
biasing of the model towards descriptors with large values in addition to making model training
more efficient.”’ To preprocess the raw HSPiP descriptor data, first we removed rows which
contained “NaN” values. NaN values were present for compounds in the training data for which
HSPiP was unable to process due to either having a metal, having a complex SMILES string, or
for compounds with dotted SMILES representations such as salts (e.g. [Na+].[Cl-]). Next, the
HSPiP descriptors were converted into array format and scaled using the standard scaler function
of the sklearn package in python.”! This is used to resize the distribution of values for each
descriptor such that the mean is zero and the standard deviation is one. Next, we performed
Principal Component Analysis (PCA)’? on the training data to reduce dimensionality of the data,
followed by a random train/test splitting of the data. In this work, we have also considered the
effect of training set size on the performance of the model and consequently tested an 80/20 and
90/10 train/test split (Table S3-S8). In order to find an optimal architecture, we have tested six
different architectures described below, and compared their performance in predicting LogS and
LogP values against experimental data. For the training of these models, we used the stochastic
gradient descent (SGD)”® optimizer as implemented in Tensorflow,”* while reserving 10% of the
training set as a validation set. To prevent over-fitting, we defined an early-stopping criterion

which stopped the training of the model if the validation loss did not improve for 5 epochs, and

because of this none of the models were trained for more than 500 epochs. After the training of



each model was complete, the best models were saved, and their performance were evaluated on
the test set using metrics previously defined. Building, training, and evaluation of models were
performed using Tensorflow’* on Google Colab” which is a free Google service linked to Google
Drive account. (Scripts used in this work are provided in our GitLab repository:

https://gitlab.com/szilvasi-group/logs_logp-prediction).

2.1.4.2. Model Architecture

In this work, we developed neural network models which have been shown to be capable of
predicting properties of organic molecules.’s” We trained a number of different models in which
we varied the number and type of hidden layers as well as type of activation function in their
architecture so as to obtain a relatively optimal model.

Model 1 consists of six dense layers, with 512, 512, 256, 256, 128, and 1 neuron(s) each. Model
2 is made up of ten layers, with six dense layers with the ReLU activation function,®® and four
dropout layers, which zero out the output of a certain fraction of neurons of the preceding layer to
prevent overfitting.®! For Model 2, the first eight layers are made of alternating dense (with the
ReLU activation function) and dropout layers with 512 neurons, 30% dropout, 512 neurons, 30%
dropout, 256 neurons, 20% dropout, 256 neurons, and 20% dropout, respectively. The final two
dense layers contain 128, and 1, neuron(s), respectively. Model 3 is built up from ten layers, with
six dense layers (using the ReLLU activation function), and four batch normalization layers, which
standardizes the output of the preceding layer. For Model 3, the first eight layers are made of
alternating dense and batch normalization layers with the dense layers (using the ReLu activation
function) containing 512 neurons, 512 neurons, 256 neurons, 256 neurons, respectively. The final
two dense layers contain 128, and 1, neuron(s), respectively. Model 4 has fourteen layers, with six

dense layers (using the ReLU activation function), four batch normalization layers, and four


https://gitlab.com/szilvasi-group/logs_logp-prediction

dropout layers in total. For Model 4, the first twelve layers are divided into four blocks each
consisting of three layers — a dense layer, followed by a batch normalization layer, and finally a
dropout layer. In the first block, the dense layer contains 512 neurons, followed by the dropout
layer with 30% dropout. In the first and second blocks, the dense layers contain 512 neurons each
while the dropout layers perform 30% dropout. The dense layers in the third and fourth blocks
contain 256 neurons each, while the dropout layers perform 20% dropout. The final two dense
layers contain 128, and 1, neuron(s), respectively. Model 5 has the same architecture as Model 4
but uses the LeakyReLU activation function.®” Finally, Model 6 has the same architecture as Model
5 but with an additional block of dense (1024 neurons), batch normalization, and dropout (40%
dropout) layers as the first 3 layers of the model in addition to a 5% dropout layer preceding the
final dense layer (1 neuron).
2.1.5. ML prediction of Melting Point

Due to the poor prediction of the melting point (see Figure S3), the melting point of compounds
have been calculated using the directed message parsing neural network (D-MPNN) model, which
is a 2D graph convolutional model that has been shown to shown to perform well on various
tasks.®3#> The D-MPNN was used to learn the contribution of each atom in the molecule to the
melting point of the molecule. The implementation of the D-MPNN model as well as atom and
bond features in this work followed the original Chemprop model developed by Yang et al.,®
details for which can be found in the original paper by Yang et al.®¢ The Chemprop model encodes
the atomic features such as atom type, number of bonds, formal charge, chirality, number of
hydrogens, hybridization, aromaticity, and atomic mass.’” Two datasets were used to train the

t,88

Chemprop model, namely the Bradley dataset,*® and an melting point dataset collected by Zang et

al.,®® containing 3,041, and 8,648 molecules along with their experimental melting point values,



respectively. After removing duplicates, the final dataset contained 11,324 molecules. We also
considered the effect of the training set size on the model performance and considered an 80/10/10,
and 90/5/5 train/validation/test split (see Table S13). Default settings for the Chemprop model
were used and training was done for 30 epochs. To find glycerol-like molecules on which to
evaluate the reliability of our trained model to give accurate predictions for our catalogue of
glycerol-derived solvents, we first collected a small set of glycerol-like molecules (See Supporting
Information). Next, we collected a diverse dataset containing organic, and drug-like compounds
curated by Tetko et al.** from which we collected glycerol-like molecules. By using a similarity
function provided with the Chemprop model based on Morgan fingerprint® similarity, we

3 which was used as an external

extracted 232 glycerol-like molecules from the Tetko et al. datase
test set (See Figure S4 for performance of the final model in the external test set).

In our analysis, we will use the following metrics and abbreviations: mean absolute error (MAE),
maximum absolute error (MAD), and root-mean-square error (RMSE). The metrics are defined as
follows:

The error between predicted and experimental LogS/LogP values is defined as:

LogX' = LogXexp: — LogXuspip (2a)

where LogX' is the error, LogX,; is the experimental LogS or LogP value and LogXysp;p is
the LogS or LogP value predicted by HSPiP (X =S, P).

The error between predicted and experimental melting point values is defined as:

MP" = MPeyxpe — MPpoger (2b)
where MP' is the error, MP,,,, is the experimental melting point value and MP,,,4; is the

melting point predicted by the Chemprop model.

The MAE is defined as:
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where N is the number of data points.
The MAD is defined as:

Max(|LogX'|]) (4a)
Max(|MP'|)  (4b)
The RMSE is defined as:

Z(LogXyspip—LogXexpt)?
2 (52)

(5b)
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For calculated physical properties we define the mean and range as follows:
The mean is defined as:

Yimean = N (6)

and the range is defined as:

Yrange = Ymax — Ymin  (7)

where Y represents the property under consideration.

3. RESULTS AND DISCUSSION

We have calculated several physicochemical properties of our glycerol-derived solvents such as
density, dipole moment, LogS, LogP, and melting point, and analyzed their compatibility with
different polymers using HSPs. Below we will first discuss the physicochemical properties of each
category of glycerol-derived solvents and explore the effect of different functional groups on the
properties. To analyze the effect of functional groups, we form four subcategories for our analysis
based on molecules that contain halogens (nitriles excluded), nitriles (with and without halogens),

rings i.e. compounds containing cyclic or aromatic groups (halogen- and nitrile- containing



compounds excluded), and the last group named others encompasses all compounds without any
of the aforementioned groups (i.e., contains hydrogen, amine, or alkyl/alkyl ether groups). Next,
we will discuss the solubility of different polymers as predicted using HSPs and the effect of
functional groups on the solubility of different polymers. Lastly, we will provide recommendations
on the best solvent candidates based on their melting point and their predicted ability to dissolve
various plastic materials.

3.1. Dipole Moment ()

The dipole moment can serve as a simple measure of the polarity of a molecule and helps to
rationalize bulk and molecular properties such as melting and boiling points,”! and have been
shown to trend with the permittivity of glycerol-derivates.>*: > Moreover, the polarity of a solvent
can be used to predict what kind of solutes will be soluble in the solvent, for example, polar
solvents dissolve polar solutes.”® Previous studies have demonstrated that functionalization of
glycerol can produce molecules with a wide range of dipole moment values (both polar and non-
polar).3233:35.36.39.92 Fioyre 1a shows a probability density distribution for the dipole moment of
each basic structure of glycerol-derivative, and from this we observe that a wide range of dipole
moment is possible for each basic structure including polar and non-polar solvent candidates. GDA
and GDK solvents have very similar distributions with a mean dipole moment of 2.75 D and 2.81
D, respectively, and ranges of 8.37 D and 9.82 D, respectively. For the GDEs and GDDs, the dipole
moment values are higher with mean dipole moments of 3.20 D and 2.88 D, respectively, and

ranges of 14.54 D and 10.78 D, respectively.
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Figure 1. Probability density distribution of dipole moment for (a) GDA, GDK, GDD, GDE
solvents and (b) glycerol-derived solvents based on subcategory. Vertical line indicates calculated

dipole moment of glycerol.

Based on the wide range of dipole moment values for the studied glycerol derivatives, it is
necessary to put the dipole moment in the context of common solvents that have been used for
plastic dissolution such as MEK (calculated p = 2.63 D) and acetone (calculated p =2.78 D). We
note that 46% of the glycerol derivates have a greater dipole moment than MEK while 41% of the
glycerol derivatives have a greater dipole moment than acetone. Additionally, compared to
glycerol (calculated p = 1.21 D), 93% of the glycerol derivatives have a greater dipole moment.
This means that there are numerous potential options for the dissolution of ionic, polar solutes or
non-polar solutes in our catalogue of glycerol derivates. In addition, we also highlight that the
GDE distribution has two peaks (2.04 D and 5.90 D). We find in Figure 1b that the peak at 5.90 D
is the result of the nitriles subcategory while the peak at 2.04 D predominately consists of halogen
containing molecules. Specifically, the bimodal nature of the distribution for the nitriles
subcategory is related to the size of the cyano- containing moiety. By manually inspecting the data
set, we find that molecules in the nitriles group with dipole moment around 2 D are typically those

molecules which have a CH2CN group while solvents with dipole moment around 5.9 D are those



molecules with PhCN and PhPhCN groups. This trend can be explained by the larger distance
between the polar CN and the ether ends of the molecules® and the larger polarizability of the
phenyl rings that also increases the dipole moment.”*®7 Overall, we find that the nitriles
subcategory, on average, produces the most polar solvents (mean p = 4.66 D), followed by the
halogens subcategory (2.38 D), the others (2.41 D), and rings (2.20 D) subcategories, respectively.
3.2. LogS and LogP Solubility

The LogS and LogP are important properties to predict what solvation processes the solvents
can be used for. LogS is a measure of the solubility of a compound in water and is defined as the
maximum amount of solute a given volume of water can dissolve,®” meanwhile LogP, also known
as octanol/water coefficient, represents the equilibrium ratio of a compound between an octanol
and a water phase and is thus a measure of how hydrophilic or hydrophobic a compound is.”® LogS
and LogP are measures that can indicate the behavior of a compound in various applications, for
example in drug design or plastic waste degradation.®”*® Based on the accuracy of our best NN
for LogS prediction (MAE: 0.54, RMSE: 0.76) as shown in Figure Sland Table S1, we predicted
the LogS value for each glycerol derived solvent. Figure 2a shows the probability density
distribution of the LogS values of the glycerol derivates. From the NN generated LogS values, we
find that majority of the glycerol-derivates are insoluble in water as seen for other studies of
glycerol-derivaties previously.***® Molecules miscible in water (Logs > 0) contain -OH groups
and thus the higher solubility can be attributed to higher propensity for hydrogen bonding. On
average, the GDA and GDK solvents have the best solubility in water with mean LogS values of
-1.45, and -1.40, respectively, while the GDE and GDD solvents are predicted to be much less
soluble with mean LogS values of -2.62, and -2.24, respectively. To provide more insight into how

the attached functional groups affect water solubility of the glycerol derivates, we also provide the



probability density distribution of the LogS values of the glycerol derivatives based on subcategory
in Figure 2b. Here, we observe that the molecules containing alkyl ethers (others category) are the
most soluble in water with a mean LogS of -0.33, while the glycerol derivates containing halogens,
nitriles, and rings are less water soluble on average with mean LogS value of -2.24, -3.37, and -
1.97, respectively. While previous studies have reported the general hydrophobicity of glycerol
derivates, they have also demonstrated that the presence of hydrophilic alkyl ether or -OH groups

32-34, 36

tends to enhance the water solubility of glycerol derivatives which we also observe here.
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Figure 2. Probability density distribution of LogS for (a) GDA, GDK, GDD, GDE solvents and

(b) glycerol-derived solvents based on subcategory.

Based on the accuracy of our best NN for LogP prediction (MAE: 0.25, RMSE: 0.37) as shown
in Figure S2 and Table S2, we predicted the LogP value for each glycerol derived solvent. Figure
3a shows the probability density distribution of the LogP values of the glycerol derivates. From
the NN generated LogP values, we find that the majority of the glycerol-derivates are hydrophobic
in nature as seen in other studies of glycerol-derivatives.> 3% 3¢ Overall, the GDE and GDD
solvents are most hydrophobic with mean LogP values of 2.90, and 2.36, respectively, while the
GDA and GDK solvents are less hydrophobic with LogP values of 1.29, and 1.51, respectively.

We also highlight the presence of two shoulders in the distribution of LogP values for the GDE



solvents (4.2, and 6.8). In Figure 3b, we show the probability density distribution of the LogP
values of the glycerol derivatives based on subcategory. Based Figure 3b, we can explain the
shoulders in the distribution for the GDE solvents by the nitriles and halogens subcategories,
specifically molecules containing one or more CF3 groups which are known to be hydrophobic. '
191 Overall, for the different subcategories we note the opposite trend compared to the LogS
wherein the most hydrophobic category (nitriles) is the least water soluble i.e., others (mean LogP:

0.55) <rings (mean LogP: 1.88) < halogens (mean LogP: 2.89) < nitriles (mean LogP: 3.01).

1800 1800
B —— Total
1500 1500 1 H.alggens
— Nitriles
——Rings
1200 1200+
——— Others
5 IS
3 900 2 900
o (3]
600 600+
300 300+
0 0+
2 0 2 4 6 8 10
LogP LogP

Figure 3. Probability density distribution of LogP for (a) GDA, GDK, GDD, GDE solvents and

(b) glycerol-derived solvents based on subcategory.

As we have seen, the hydrophobicity/philicity for glycerol derivates can be tuned based on the
selection of fucntional groups. In addition to this, we were also interested in molecules which are
both soluble in water (LogS > 0) and lipophilic (LogP > 0). By manually filtering the dataset, we
find 91 solvent candidates (See Table S9) which exhibit both solubility in water and lipophilicity
with average LogS and LogP values of 0.22, and 0.56, respectively, in addition to ranges of 0.7,
and 1.42. Figure 4 shows examples of molecules which exhibit this behaviour from each of the
GDA, GDK, GDE, and GDD categories. We also note that 70 of the 91 molecules contain an

amine group which is known to promote soulubility in water and organic phases alike.'%> 193



Considering the miscibility data, the studied glycerol derivates offer a broad range of options to
choose from depending on requirements of hydrophilicity/hydrophobicity within the scope of the

desired application.

H3CH200\/bOCH3 3COHZCHQCO\)-bOCH3

LogS = 0.02 LogS = 0.16
LogP =0.33 LogP 0.45
OCHg4
H,NH,CO VJ\/OCHZCHZCHs H5CH,CH,CO \/J\/OCHZNHQ
LogS = 0.13 LogS= 0.25
LogP =1.43 LogP = 1.03

Figure 4. Example of a (a) GDA, (b) GDK, (c) GDE, and (d) GDD solvent that exhibit both water

solubility (LogS > 0) and lipophilicity (LogP > 0).

3.3.Density (p)

Figure 5a shows a probability density distribution for the density of each basic structure of
glycerol-derivative. From Figure 5a, we see that each category of glycerol-derivate has similar
distributions of density with mean densities of 1.20, 1.22, 1.19, and 1.27 g/cm?® and ranges of 2.40,
1.19, 2.35, and 2.04 g/cm? for the GDA, GDK, GDE, and GDD categories, respectively, compared
to the density of glycerol (calculated p = 1.17 g/cm?). In general, density trends in order of GDD
> GDK > GDA > GDE. The increase in density from GDAs to GDKs can be explained by liquid

33,39 35 indicated in the reduction of molar

contraction resulting from the loss of the hydroxyl group
volume from GDA (mean molar volume: 191 cm?®/mol) to GDK (mean molar volume: 189

cm?®/mol). Therefore, even though GDAs have stronger intermolecular forces (i.e., hydrogen

bonds), the conformational freedom of the rotatable hydroxyl group causes GDAs to have larger



free volume compared to GDKs. This means that for analogous GDAs and GDKs the reduced
ability of GDKs to form hydrogen bonds is outweighed by the loss of free volume, hence GDKs
are denser. However for GDEs, replacement of the hydroxyl group by an ether group leads to an
increase in the molar volume (mean molar volume: 254 cm?/mol) in addition to reduced dispersion
interactions between molecules as a result of etherification which showed in the lower mean &,
value for GDEs (17.08 MPa%?) compared to the other categories (GDAs: 17.26 MPa’>, GDKs:

17.35 MPa’3, GDDs: 17.17 MPa’?).
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Figure 5. Probability density distribution of density for (a) GDA, GDK, GDD, GDE solvents and
(b) glycerol-derived solvents based on subcategory. Vertical line indicates calculated density of

glycerol.

For each category of glycerol derivate, the most dense compounds are those containing one or
more -CHzl or -CH2Cl groups, with the density of 3.30, 2.12, 2.63, and 2.43 g/cm?® for the most
dense solvents in the GDA, GDK, GDE, and GDD categories, respectively, which is attributed to
the high atomic mass of halogen atoms. Thus, the large mean density of 1.27 g/cm?® for the GDDs
is potentially due to the presence of heavy halogen atoms such as bromine and iodine. We also
note that the long tails of the density distributions for each category in Figure 5a is also because

of those solvents that contain halogen atoms such as F, Cl, and Br which due to their high atomic



mass significantly increase the density of the solvents. Figure 5b shows probability density
distributions for the studied solvents grouped in subcategories. Here, we observe that for solvents
that contain either only rings or alkyl/alkyl ether groups (i.e., others subcategory), almost the entire
range of densities (81% of rings, and 73% of others) fall below the density of glycerol (calculated
p =1.17 g/cm?) and have density similar to those of glycerol-derivates in literature, for example
glycerol monoethers (0.96 — 1.36 g/cm?) and triethers (0.85 — 1.30 g/cm?).3* 3% 2 For the different
subcategories we observe mean densities of 1.27, 1.20, 1.08, and 1.09 g/cm?, and ranges of 3.30,
1.72, 0.87, and 1.13 g/cm? for the halogens, nitriles, rings, and others subcategories, respectively.
3.4. Melting Point

The melting point is critical for solvent design as the predicted solvents should be in liquid state
at room temperature for economic dissolution processes. We have calculated the melting point
using the Chemprop code® as described in the Computational Methods. Figure 6a shows a
probability density distribution for the melting point of each basic structure of glycerol-derivative,
and from this we observe that a wide range of melting points for the studied glycerol derivatives.
On average, GDA, GDD, and GDE solvents are predicted to be liquid indicated by mean melting
points of 14 ‘C,2°C,and 4 C, respectively, while the GDK solvents are predicted to be solid with
mean melting point of 56 ‘C. We also highlight the presence of a second peak for the GDE
distribution (centered at 130 °C) as well as long tails for the GDA, GDK, and GDD categories. The
second peak at 130 “C in the GDE distribution as well as the long tails for all categories are as a
result of the nitriles subcategory (Figure 6b). Here, solvents containing the bulky PhPhCN groups
have the highest predicted melting points resulting in an average melting point of 61 °C for the

nitriles subcategory compared to -23 °C, -11 °C, and -25 °C for the halogens, rings, and the others



subcategories, respectively. Overall, we find that 74% of the studied glycerol derivates (7131

solvents) are predicted to be liquid at room temperature (25 ‘C).
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Figure 6. Probability density distribution of melting point for (a) GDA, GDK, GDD, GDE solvents

and (b) glycerol-derived solvents based on subcategory. Vertical line indicates room temperature.

3.5. RED Analysis

The key to the successful implementation of a solvent-based plastic recycling process is the
preselection of a solvent that is capable of selective dissolution of the target plastic material.
However, given the variety of plastic materials and large number of solvent candidates presented
in this study, solvent selection based on experimental screening alone is not possible. In this
section, we show that glycerol-derived solvents can be found for polar and non-polar plastic

materials based on the calculation of HSPs.



Figure 7a shows probability density distributions of the RED values of the studied solvents for
non-polar plastics — PE, PP, and PS. The studied glycerol derivates perform best for PS on average
with a mean RED of 0.76 and 7941 solvents with an RED below 1. Interestingly, compared to p-
cymene (RED = 0.40) which is another green solvent for PS dissolution,?”28 there are 850 glycerol
derivates with RED values below that of p-cymene. For PE and PP, the glycerol derivates perform
worse with average RED values of 0.99 and 1.20, respectively, and only 5491 and 2813 solvents,
respectively, with an RED below 1. We also highlight that the studied glycerol derivates
outperform glycerol in terms of the RED for non-polar plastics (REDpg = 3.48, REDpp = 3.71,

REDps = 3.28) and polar plastics (REDpgs = 3.05, REDper = 2.77, REDpvc = 2.73).
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Figure 7. Probability density distribution of RED for (a) non-polar plastics, and (b) polar plastics.
Vertical black lines represent the threshold (RED = 1) above which solvents cannot dissolve the

target plastic.

For polar plastics (PES, PET, and PVC, Figure 7b), the RED analysis predicts numerous glycerol
derivative candidates for the dissolution of PET and PVC. We observe an average RED of 0.54
and 0.65 for PET and PVC, respectively. In addition, we have majority of the solvents with a RED
below 1 (PVC: 8700 and PET: 9199) and a narrow range of RED values (PVC: 2.68 and PET:

2.74). For PES, the glycerol derivatives are predicted to excel less with an average RED of 1.23



and much wider range of 3.00. The relatively poor performance of the glycerol derivatives is due
to the unique nature of PES in terms of its HSPs. Because of the presence of the benzene rings,
ether, and sulfone groups in its structure, PES has high 4, §,,, and 8}, in addition to having a small
Hansen radius. When compared to the HSPs of the other plastic materials considered here as shown
in Table 1, finding appropriate solvents for PES that balance the HSPs will be more difficult and
as such we only have 1595 solvents predicted to be able to dissolve PES based on RED.

Table 1. Calculated HSPs of selected plastic materials.

Plastic 84 5, On Ry
PVC 18.8 9.2 6.3 8.0
PES 19.6 10.8 9.2 6.2
PP 18.0 0.0 1.0 8.0
PET 18.2 6.4 6.6 8.0
PE 16.9 0.8 2.8 8.0
PS 18.5 4.5 2.9 8.0

To provide more information on the effect of functional groups in dissolution of the selected
plastic materials, Figure 8 show probability density distributions for the RED values of our

solvents grouped by subcategory for the studied plastics.
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Figure 8. Probability density distribution of RED for (a) PES, (b) PET, (¢) PVC (d) PE, (e) PP,
and (f) PS for the studied glycerol-derived solvents based on subcategory. The distribution of the
entire dataset is also disclosed. Vertical black lines represent the threshold (RED = 1) above which

solvents cannot dissolve the target plastic.

For the dissolution PES, the nitriles and halogens subcategories give the best performance (mean
RED 0f0.98 and 1.35, respectively) which we attribute to the presence of highly polarizable groups
such as I, Br, PhCN or PhPhCN. We also note that the best solvents for PES usually contain a
hydroxyl group in addition to one of the aforementioned groups which give a good combination
of HSPs that are similar to that of PES. For example, the best overall glycerol derivative for PES
(RED =0.05) is a GDA solvent which contained a CHzI and a PhCN group (See Figure 9). For the
rings subcategory, while having solvents with high 6, and §; in some cases, the absence of polar
groups resulted in a mean RED of 1.33. Interestingly, there are two peaks centered at 1.04 and
1.48 which indicate that certain groups of molecules in the subcategory perform better than others.
Solvents clustered around 1.04 were again typically GDAs or other molecules containing a

hydroxyl group, while the solvents clustered at 1.48 were generally GDEs and GDDs. By manually



inspecting the dataset, we observe that the best solvents (RED < 1) for PES in the ring subcategory
are GDA with either benzyl or cyclohexyl groups, and GDK molecules with hydroxyl or amine
groups. While the worst performing molecules are GDK molecules without any additional polar
groups or GDE and GDD molecules regardless of the attached groups. The poor performance of
GDEs and GDDs can be rationalized by the reduction in the &, and &, with etherification or
deoxygenation. While for poorly performing GDAs and GDKs, their performance is explained by
the lack of hydrogen bond donor ability and the presence of nonpolar cyclic groups which reduce

the overall polarity of the molecule.

OCH,NH, OPhCN
IHZCOJ\/OPhCN PthCO\/J\/OCH2 CIHzCO\)\/gﬁHzCHZOCHQ
2
RED,., = 0.05 RED,., = 0.03 RED,,. = 0.05
HCyO\)\/OCyH PhHZCOQvOCHﬂDh NCPhPhO\/KVOCHCH3CH3
RED,. = 0.22 RED,, = 0.52 RED_; = 0.13

Figure 9. Glycerol-derived solvent with the lowest RED value for (a) PES, (b) PET, (c) PVC, (d)

PE, (e) PP, and (f) PS.

In the case of PET, all subcategories produce solvents which are predicted to dissolve PET with
all subcategories having mean RED values below 1 (halogens: 0.55, nitriles: 0.53, rings: 0.45, and
others: 0.72) and their distribution of RED clustered below 1. This can be attributed to the
structural similarity between PET and the glycerol derivates in terms of the presence of ether and
ketone groups such that the HSPs are close. Overall, PET has the largest proportion of possible
solvents with 9,214 glycerol solvents having an RED less than 1, while the best solvent candidate
for PET (RED =0.03) is a GDE that contains a CHzI, a Ph group, and a CH>NH> group (See Figure

9). This is particularly promising since PET is abundant in post-consumer waste streams.!%



Likewise, for dissolving PVC we find potential solvents regardless of the attached functional
group. Nonetheless, the nitriles subcategory provide the best performance with mean RED of 0.47
and range of 2.14, followed by the rings subcategory with average RED of 0.71 and a range of
1.09 while the halogens and others subcategories have average REDs of 0.73 and 0.90,
respectively, and ranges of 2.09 and 2.14, respectively, with the best solvent for PVC (RED =
0.05) being a GDE containing a CH>Cl, a PhCN, and a CH.CH,OCH>CH>OCHj3 group (See Figure
9). We also highlight that while glycerol derivates containing explicitly polar functional groups
such as PhCN or PhPhCN may perform better for PVC dissolution, some glycerol derivates
containing nominally non-polar functional groups such as benzyl groups may also be used as a
result of dispersive and hydrogen bonding interactions. Thus, the good performance of molecules
in the nitriles subcategory is largely because those molecules with PhCN or PhPhCN groups which
maximize polar and dispersive interactions with PVC as a result of the polar cyano group, and
large the Ph and PhPh groups that are involved in the dispersion interactions.

Conversely, even though the Hansen radius of PE and PP is comparable to that of the polar
plastics (Table 1), the polar, and hydrogen bonding parameters do not play a significant role in
determining which solvents can dissolve them. Thus, solvents with polar groups and an appreciable
8, and/or &y, value are likely to lie outside the Hansen sphere of the plastic material. This means
that for PE and PP, glycerol derivates containing non-polar functional groups with high 6, and
low &, and &, values will perform best. Consequently, glycerol derivates in the rings subcategory
perform best with an average RED value of 0.77, while the halogens, others and nitriles
subcategories have an average RED of 0.90, 1.11, and 1.17, respectively. In general, the best
solvents for PE are the low dipole moment GDE and GDD solvents with cyclic/aromatic groups

attached with the exception of a few GDKs which contain only cyclic functional groups. This



indicates that high hydrogen bonding ability of the GDAs and GDKs negatively impacts the ability
of the solvent to dissolve PE even if the solvent contains a cyclic or aromatic group. It should also
be noted that the best glycerol derivate for PE (RED = 0.22) is a GDD that contains two CyH
groups attached to the terminal ether positions, and a fluorine atom in the X position (See Figure
9). Analogous to PE, the glycerol derivates predicted to dissolve PP are solvents in the rings
subcategory, however the glycerol derivates perform slightly worse on average for PP compared
to PE with an average RED values of 1.01, 1.15, 1.31, and 1.40 for the rings, halogens, nitriles,
and others subcategories, respectively. In addition, the best glycerol derivates for PP dissolution
are the low dipole moment GDEs and GDDs, in addition to a few GDKs, with cyclic/aromatic
groups attached (See Figure 9). This again emphasizes the negative effect of the hydrogen bonding
ability on the capacity of GDAs and GDKs to dissolve PP. For example, the best solvent for PP
(RED = 0.52) which is a GDD solvent that contains two Ph groups attached to the terminal ether
positions, and a fluorine atom in the X position (See Figure 9)

In contrast to PE and PP, a variety of glycerol derivates with different functional groups (both
polar and non-polar) are predicted to be able to dissolve PS. The glycerol derivates within the rings
subcategory are on average the best for dissolving PS with mean RED values of 0.76, 0.75, 0.62,
and 1.04 for the halogens, nitriles, rings, and others subcategories, respectively. Generally, the best
glycerol derivatives for PS are GDEs, and GDDs that do not contain any -OH groups, in addition
to a few GDKSs that contain cyclic/aromatic functional groups which again emphasizes the negative
effect of hydrogen bonding. For example, the best glycerol derivate for PS (RED =0.13) is a GDD
solvent that contains a PhPhCN and an isopropyl group in addition to a fluorine atom in the X
position (See Figure 9).

3.6. RECOMMENDATIONS



Thus far, we have presented the physical properties of the glycerol-derived solvents as well as
have analyzed their compatibility with selected polymers. To achieve selective plastic recovery,
we recommend examples of solvents that are selective towards a specific polymer by considering
the RED value and predicted melting point. We use the definition that a glycerol-derivative is
selective for a particular plastic if the melting point is below 25 °C, the RED value for the particular
plastic is below 1, the RED value for other plastics is above 1, and the difference between the RED
value for that plastic (RED < 1) and the RED value for any other plastic (RED > 1) is at least 0.2.

This definition is motivated by the simple rule of HSPs proposed by Hansen,:

and recent plastic
recycling studies'> 13 that have chosen solvents based the RED value (above or below 1) of the
solvent for the target polymer. Our definition also considers the limitations of HSPs in predicting
solvent/non-solvents for polymer dissolution by defining a spread of at least 0.2. It has been shown
in a previous study by Venkatram et al., that HSP has a prediction accuracy of 67% =+ 10% for
solvents and 76% + 12% for non-solvents.!® Prediction inaccuracy stems from the complex
process of polymer solubility which involves swelling and diffusion in addition to being influenced
by polymer structure, temperature and solvent concentration all of which are not captured by
HSPs.!% Due to the limitations of HSPs in predicting solvent/non-solvent especially in close calls
(i.e., where RED is between 0.9 and 1), we cannot make conclusive statements about the solvent’s
ability to dissolve one plastic selectively over the other and thus we exclude them. Finally, the
melting point criterion is introduced for practical reasons as economic plastic waste recycling
should be done at room temperature.

Based on the abovementioned definition of selective solvents, we identify 11 solvents for PVC,

5 solvents for PET, and 32 solvents for PE (See Table S10-S12 for RED and melting point). To



illustrate, Figure 10 shows the solvent with lowest RED for PE, PET, and PVC based on the RED,

and melting point.

(a) F (b) F (c) CN
F3CF30H2COV}\/OCHQCF3 F3CHZCO\/K/OH HSCOHZCHZCO\)VOCHZCN
RED,. = 0.71 RED,, = 0.81 RED,,. = 0.81
Melting Point = -60 °C Melting Point = -10°C Melting Point = -20 °C

Figure 10. Glycerol-derived solvent examples for the selective dissolution of (a) PE, (b) PET, and

(c) PVC based on calculated RED and melting point criteria.

For the dissolution of PES, PP, and PS, there were no solvents that satisfied our definition for
selection considering all six plastics. However, there are 376 and 2496 solvents which are selective
towards PES, and PS, respectively, for a mixed feedstock of only PES, PP, and PS. While no
solvents satisfy our selection criteria for PP even when only PES, PP, and PS are considered, there
are 2268 solvents predicted to be able to dissolve PP (RED <1 for PP, melting point <25 °C) after
the PES and PS fractions have been separated. Finally, we note that there are also 125 solvents
which are predicted to be unable to dissolve any of the plastics considered here and can act as
potential general anti-solvents (i.e., RED > 1 for all plastics, see Supporting Information).

Putting together our suggestions for solvents forms the basis for a process to separate a mixed
feedstock containing PVC, PET, PE, PES, PP, and PS:

1. Selectively dissolve PVC fraction in a PVC selective solvent, and then separating the
dissolved fraction from the PET, PE, PES, PP, and PS.

2. Selectively dissolve PET fraction in a PET selective solvent, and then separating the
dissolved fraction from the PE, PES, PP and PS.

3. Selectively dissolve PE fraction in a PE selective solvent, and then separating the

dissolved fraction from the PES, PP, and PS.



4. Selectively dissolve PES fraction in a PES selective solvent, and then separating the
dissolved fraction from the PP, and PS.

5. Selectively dissolve PS fraction in a PS selective solvent, and then separating the
dissolved fraction from the PP.

6. The remaining PP can then be dissolved in a non-selective solvent (RED < 1 for PP and
one or more plastics). All the dissolved polymers can then be recovered by addition of
antisolvent to the respective solutions.

Due to the complexity of plastic waste feedstocks, separating different polymers one after the other
as described above may not be feasible. Consequently, first separating the feedstock into polar and
non-polar fractions can be more tractable and may help reduce costs associated with sorting the
waste plastic. Thus, we also devise an alternative plan for plastic waste recycling starting from that
idea. To have greater reliability in the HSP-based predictions, we only consider solvents that have
an RED < 0.6 for the target plastic(s) and RED > 0.9 all other plastics, in addition to having a
melting point below 25 °C. Based on this, 7 solvents are predicted to dissolve the polar fraction
(RED < 0.6 for PET, PES, PVC, and RED > 0.9 for PE, PP, and PS). Upon separating the polar
and non-polar fractions, the polar fraction (PET, PES, and PVC) can be further used to recover
PVC and PET simultaneously (RED < 0.6 for PET and PVC, RED > 0.9 for PES) before a further
round of selective dissolution to recover each kind of polymer. For this, there are 1345 solvents
that can dissolve PVC and PET simultaneously and separate them from PES, 7 solvents that can
selectively dissolve PET from a mixture of PET and PVC (RED < 0.6 for PET, RED > 0.9 for
PVC), and 52 solvents that can dissolve the remaining PES fraction (RED < 0.6 for PES).
Similarly, for the non-polar fraction, there are 149 solvents that can dissolve PS (RED < 0.6 for

PS, RED > 0.9 for PE and PP) from the non-polar fraction, 18 solvents to dissolve PE (RED < 0.6



for PS, RED > 0.9 for PP) from a mixture of PE and PP, and 14 solvents that can dissolve the

remaining PP fraction.

A procedure to separate a mixed feedstock containing PVC, PET, PE, PES, PP, and PS first into

polar and non-polar fractions, followed by recovery of each type of polymer, is thus based on

combining our suggestions for solvents as outlined below:

1.

Selectively dissolve polar fraction (PET, PES, PVC) in a solvent selective to only polar
plastics, and then separating the dissolved polar fraction from the non-polar fraction (PE,
PP, and PS).

Dissolve PET and PVC fraction in a PET and PVC selective solvent, and then separating
the dissolved fraction from the PES.

Selectively dissolve PET fraction in a PET selective solvent, and then separating the
dissolved fraction from the PVC. This is followed by the recovery of all the dissolved

fractions by addition of anti-solvent to precipitate the polymers out of solution.

For the non-polar fraction:

1.

Selectively dissolve PS fraction in a PS selective solvent, and then separating the
dissolved fraction from the PE and PP.

Selectively dissolve PE fraction in a PE selective solvent, and then separating the
dissolved fraction from the PP. Recovery of the dissolved PE, and PS fractions by
addition of anti-solvent to the precipitate the polymers out of solution.

The remaining PP can then be dissolved in any non-selective solvent. The PE, PP, and

PS polymers can then be recovered by addition of antisolvent to the respective solutions.

Our computational high-throughput screening framework can serve as a starting point for solvent

development for plastic waste recycling, and as we have shown, the large catalogue of solvents



enables us to quickly preselect potential solvents for the target plastic(s) and devise plans for
selective plastic waste recycling. To help the interested reader quickly filter through the glycerol-
derived solvents to design their own recycling plan using additional user-defined selection criteria,
for example excluding halogenated solvents or including metrics for toxicity and biodegradability,
we provide the RED values of each solvent for each plastic as well as the predicted melting point
in the Supporting Information in a format that facilitate such a selection process.

4. CONCLUSIONS

In this work, we have calculated the physicochemical properties (density, dipole moment, melting
point, LogS, and LogP) of a catalogue of 9587 glycerol-derived solvents, in addition to evaluating
their ability to dissolve different plastic materials namely PE, PET, PES, PP, PS, and PVC based
on HSPs. In general, functionalization of glycerol produces glycerol-derivates provides with a
wide range of properties for potential solvents for dissolving a variety of plastics. We have also
provided examples of selective solvents for PE, PET, and PVC based on the RED and melting
point, while we proposed a multi-step process for separating a mixed feedstock containing PES,
PP, and PS. Additionally, we suggest a stricter solvent selection criterion based on RED, which
formed the basis of a strategy to reduce costs associated with sorting waste plastics, whereby we
separate the feedstock into polar and nonpolar fractions first before carrying out selective
dissolution.

Traditional means of developing new solvents for plastic recycling are typically based on trial-
and-error experimentation. Future work should focus on experimental validation of predicted
physicochemical properties and solubilities of waste plastic materials for the most promising
glycerol-derivate candidates. Additionally, our computational framework can be easily applied for

new solvent systems that are based on other platform molecules as well as other plastic materials



not studied in this work. Moreover, computationally exploring large catalogues of solvent
candidates will allow for the rational design of new solvent systems that can be used to process

complex multicomponent plastic waste of almost any composition.
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