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ABSTRACT 

Plastic waste has become a major environmental crisis, with majority of plastic being produced 

ending up in open landfills and water ways every year. Solvent-based recycling approaches offer 

an effective means of recovering high-quality plastic material from waste by use of a solvent to 

selectively dissolve the plastic waste and recover specific polymers. In this work, we report on the 

properties of 9587 potential glycerol-based solvents that can be synthesized from biomass-derived 

glycerol. We predict the density and dipole moment using quantum mechanical calculations, while 

the LogS, LogP, and the melting point are predicted using machine learning that outperforms other 

prediction methods such as Hansen Solubility Parameters in Practice (HSPiP). Additionally, we 

analyze the ability of the solvents to dissolve common plastic materials (polyethylene (PE), 

polyethylene terephthalate (PET), polyether sulfone (PES), polypropylene (PP), polystyrene (PS), 



and polyvinyl chloride (PVC)) based on a comparison of their Hansen Solubility Parameters 

(HSPs). Our results show that functionalization of glycerol can significantly alter its properties, 

and based on the HSPs and melting point, we recommend selective solvents for PE, PET, and 

PVC, while for PES, PP and PS, we suggest using a combination of solvents in a 

solvent/antisolvent setup for solvent-based plastic waste recycling. Finally, based on stricter 

solvent selection criteria we also propose a strategy that may help reduce costs of sorting waste 

plastic whereby the waste feedstock is first separated into polar and non-polar fractions. 

1. INTRODUCTION 

Plastics have transformed society, allowing us to make a variety of household and industrial 

materials on which modern society is now highly dependent. Since industrial scale plastic 

production started in the 1950s, plastic production has been steadily rising reaching approximately 

400 million tons in 2021 and is estimated to surpass 1.1 billion tons by 2050 as manufacturing 

becomes more efficient and the feedstocks cheaper.1, 2 However, the plastic waste associated with 

plastic production and use is mostly non-biodegradable and is typically mismanaged. A recent 

report shows that only around 14% of plastics are recycled and around 85% end up in landfills or 

are incinerated, while the rest end up in water bodies.3 These waste plastics that end up in landfills 

and water bodies ultimately mechanically degrade and create microplastics that harm marine life 

and as a consequence human life since microplastics can end up in food and drinking water.4 

Because of this, many countries have started implementing policies to incentivize plastics 

recycling and cleanup initiatives, however recycling rates vary wildly with the US recycling 10%, 

the EU 31%, and most of the developing world not recycling at measurable scale.5 Despite the 

problems posed by plastic waste, plastic recycling remains challenging for a number of reasons 

including: (1) varying compositions of plastics, (2) high capital investment required, and (3) 



difficulty of sorting different plastic materials and contaminants.6 These limitations mainly apply 

to the most common method of plastic waste recycling, known as mechanical recycling which 

involves breaking down of sorted and cleaned plastic waste into smaller flakes which are then 

processed into new material. In addition to the aforementioned limitations, the majority of new 

plastic material produced via mechanical recycling is ‘down-cycled’ which means that the new 

material is of less quality than the virgin plastic material.6  

To overcome limitations associated with mechanical recycling, chemical recycling which either 

involves a solvent-based7, 8 or reaction-based9, 10 approach offers a viable alternate for ‘recycling’ 

waste plastic that can be competitive with virgin plastic materials.7, 11 Solvent-based recycling 

involves recovery of plastic material without chemically altering the structure of the material and 

follows a simple workflow. First the target plastic is selectively dissolved in the solvent at a 

specific temperature. This is followed by filtration of the resulting mixture to recover the liquid 

phase which contains the solvated plastic. Finally, the dissolved polymer is recovered by either the 

addition of an antisolvent (i.e. solvent in which plastic is insoluble) or by temperature swing  (i.e. 

change in temperature causing solvated plastic to precipitate out of solution).12, 13 

The key challenge of the solvent-based approach is the selection of an appropriate solvent(s), 

which ideally selectively dissolves only the target polymer while keeping out unwanted materials 

such as additives and plasticizers. The solvent-based approach, however, is not a new idea as 

dissolution and separation of polymeric materials has been demonstrated experimentally and 

disclosed in patents from various companies since the 1930s.6, 7 For example, Sändig demonstrated 

the dissolution and separation of condensation products, mostly polyesters, using ethyl alcohol as 

a solvent in 1936.14 In another patent received by the Standard Oil Development Company in 1945, 

researchers developed a method for the separation of polyesters using paraffin mineral oils as a 



solvent.15 These initial studies demonstrated the use of solvents in purification of polymerization 

products and gave way to the eventual use of solvents for dissolution of plastic materials beginning 

in the 1970s. Wainer et al., demonstrated a method for the dissolution of polyvinyl chloride 

(PVC),16 while Mizumoto et al., showed a general method to selectively separate an individual 

polymer from a mixture of polymers.17 Seymour and Stahl demonstrated the dissolution and 

separation of polyethylene (PE), PVC, polystyrene (PS), polyvinyl acetate (PVAC), and 

polymethyl methacrylate (PMMA) using a series of common solvents such as methanol, petroleum 

ether, and toluene based on their solubility parameters.18 

As a field, solvent-based plastic recycling has been industry-driven with developments mainly 

being disclosed in the form of patents. However, nowadays solvent-based recycling is also gaining 

interest in scientific literature.19-25 For instance, Achilias and co-authors demonstrated high 

polymer recovery rates (>90%) in several studies, for the recycling of various polymers obtained 

from waste electric equipment,21 and packaging materials,19, 20 using solvents such as toluene, 

xylene, n-hexane, acetone, chloroform, and methanol. Kartalis et al., also reported the selective 

dissolution and recovery of polycaprolactam and poly(hexamethylene adipamide) from polymer 

mixtures using dimethyl sulfide (DMSO), and formic acid as solvents for each polymer.22 Walker, 

et al.,12 demonstrated a computationally-guided strategy, called solvent-targeted recovery and 

precipitation (STRAP), to deconstruct multi-layer plastic materials (three or more layers) into their 

component resins (polyethylene (PE), polyethylene terephthalate (PET), and ethylene vinyl 

alcohol (EVOH)) via a series of solvent washes. In another study by Sánchez-Rivera, et al., the 

STRAP process was further analyzed by comparing different polymer precipitation techniques – 

precipitation by antisolvent addition (STRAP-A), and precipitation by decreasing the solvent 

temperature (STRAP-B).26 In addition, the authors also demonstrated that the STRAP process is 



applicable to more complex multilayer systems by use of antisolvent for precipitation of certain 

resins and reduction of temperature for precipitation of other resins in a process called STRAP-

C.26 In these studies, the solvents used to dissolve the studied plastics included common solvents 

such as toluene, DMSO, and acetone. These solvents pose potential industrial safety hazards as 

well as harm to the environment, human, and wildlife due to their volatility and toxicity which 

may limit the applicability of these solvents to large-scale industrial operation. These limitations 

necessitate the use of safe, environmentally friendly solvents for large-scale solvent-based plastic 

recycling operations. However, only few studies are present in literature which report dissolution 

of plastics using ‘green’ solvents produced from sustainable sources.27-31 For example, Hattori et 

al., demonstrated the dissolution of polystyrene (PS) in p-cymene and similar compounds present 

in tree leaf oils. In their study, they achieved a solubility of 212.0 ± 0.2 (g PS/100g solvent) and a 

recovery rate of 96.3 ± 0.4 % using p-cymene. Due to heterogeneous nature of plastic waste, 

however, the unavailability of a database of green solvents with a wide range of properties 

represents a major challenge to the rapid development of solvent-based plastic recycling 

technology. Design of such solvents must follow certain design rules to be viable industrially 

including: (1) low viscosity, (2) low density, (3) low vapor pressure, (5) non-toxic, and (6) cheap 

to produce in addition to favorable solubility of different plastic materials.  

In this work, we report a library of solvents which were designed using glycerol as a platform 

molecule that can be obtained from renewable biomass at affordable cost.32-34 Previous studies 

have shown that through a simple synthesis procedure using epichlorohydrin, glycerol can be 

functionalized to produce solvents with a wide array of physical properties depending on the 

functional group.32-41 Additionally, synthesis of glycerol derivatives has been shown to exhibit at 

least seven advantages within the twelve rules of green chemistry, such as waste prevention, atom 



economy, solvent safety, energy efficiency, renewable feedstock, reduced derivatization, and real-

time analysis.33 These compounds have been shown to have low viscosities compared to glycerol, 

and are compatible with common organic solvents.38, 39 Furthermore, they have also been shown 

to be non-toxic.42 Here, we report four classes of glycerol-derived solvents, namely glycerol-

derived alcohols (GDAs), glycerol-derived ketones (GDKs), glycerol-derived ethers (GDEs), and 

glycerol-derived deoxygenates (GDDs), along with their thermophysical properties such as 

density, water solubility (LogS), lipophilicity (LogP), melting point as well as their Hansen 

Solubility Parameters (HSPs). We have chosen these classes of glycerol-derivatives in order to 

obtain a large library of potential environmentally friendly alternatives to conventional solvents 

for plastic recycling applications. Furthermore, as demonstrated in previous works,37, 40, 41 these 

solvents can be efficiently produced using a variety of polar, non-polar, and aromatic ‘R’ groups 

shown in Scheme 1. By changing the functional groups in different ether sites, properties such as 

density, dipole moment, water solubility, hydrophobicity, and so on, can be altered to meet 

requirements for different applications. For example, Qian et al., showed that the density of 

glycerol-derivates functionalized with alkyl groups was lower than that of glycerol, while the 

density of glycerol-derivatives functionalized with trifluoromethyl groups had a higher density 

regardless of arrangement (i.e. symmetric vs asymmetric).33 In addition, they have also shown that 

depending on the functional group and arrangement, the miscibility in various polar and non-polar 

solvents can be tuned.32, 33, 36 These studies, however, have been limited to alkyl/alkyl ether, and 

trifluoromethyl groups and consequently we extend these studies by considering a wider array of 

functionalization with groups such as cyclics (cyclopropyl, cyclobutyl, and cyclohexyl), amine, 

cyano, phenyl-nitrile, biphenyl-nitrile, halides, and methyl halides. In addition, most work on 

glycerol derivates has been done with GDAs, GDKs, and GDEs, therefore, we have also 



considered deoxygenates of glycerol (GDDs in Scheme 1) where the central ether site has been 

replaced with a halide, cyano, or amine group or saturated with a hydrogen atom. This enables the 

study of a variety solvents with a wide range of physical properties. Accordingly, we catalogue 

9587 potential solvents and their physicochemical properties. We have also evaluated the solvents 

as candidates for dissolution of polar plastics such as polyvinyl chloride (PVC), polyethylene 

teraphthalate (PET), polyether sulfone (PES), and non-polar plastics such as polyethylene (PE), 

polypropylene (PP), and polystyrene (PS) using HSPs. Thus, this work can serve as a reference for 

future computational and experimental studies of glycerol-derivatives for solvent-based plastic 

recycling. 

 

Scheme 1. Basic structure for a) glycerol-derived alcohols (GDA), b) glycerol-derived ketones 

(GDKs), c) glycerol-derived ethers (GDEs), and d) glycerol-derived deoxygenates (GDDs). Below 

each structure is the number of compounds in that category with the entire dataset totaling 9587 

molecules. Note that CyB, CyP, and CyH represent cyclobutane, cyclopropane, and cyclohexane, 

respectively. 

From our work, we show that the properties of glycerol derivatives are highly tunable depending 

on the functional groups attached. We also show glycerol derivates outperform glycerol in ability 

to dissolve polar (PET, PES, PVC) and non-polar plastic materials (PE, PP, PS). Additionally, we 



provide potential glycerol-derived solvents which are predicted to carry out selective plastic 

dissolution based on their melting point and HSPs. 

2. COMPUTATIONAL METHODS 

To build a library of glycerol-based solvents, we have defined four subcategories with glycerol as 

the backbone, namely i) glycerol-derived alcohols (GDAs), ii) glycerol-derived ketones (GDKs), 

iii) glycerol-derived ethers (GDEs), and iv) glycerol-derived deoxygenates (GDDs) shown in 

Scheme 1. Scheme 1 also shows a list of functional groups used to create a variety of potential 

solvent candidates. Based on these functional groups, we combinatorically created a SMILES-

based43 list of 9587 solvent candidates (see Scheme 1 for population of each subcategory). The 

SMILES43 representation of each molecule was canonicalized and converted into XYZ coordinates 

using OpenBabel (version 2.4.0)44 and used for further calculation of physical properties as 

detailed in the sections below. 

2.1. Calculation of Solvent Physical Properties 

2.1.1. Dipole Moment Prediction 

The dipole moments of the solvent compounds in the gas phase were calculated using a combined 

semi-empirical and first principles quantum chemical approach. An initial search of stable 

conformations of each solvent molecule was performed using the GFN-FF force field45 in 

CREST46 as implemented in the xTB program.47 This was followed by a geometry optimization 

of each conformation using the GFN2-xTB semi-empirical method,48 also implemented in the xTB 

program, which has been shown to produce good geometries and dipole moments.49 From this, the 

ten most stable conformations were selected for further calculations. The dipole moment of the ten 

most stable conformations were then computed at Density Functional Theory (DFT) level using 

the GAUSSIAN 16 program50 by performing single point energy calculations with the B3LYP 



functional51 and the D3 empirical dispersion scheme,52 together with the def2-SVP basis set.53 

Finally, the average dipole moment of each solvent molecule was then computed as the 

Boltzmann-average of the studied ten most stable conformations.  

2.1.2. Density Prediction 

The thermophysical properties of the solvent molecules were calculated using the COSMOtherm 

software package (BIOVIA COSMOtherm, Release 2020)54 which has been shown to be a 

practical method of predicting physical properties of similar solvent molecules.36, 41 The density 

was  obtained for each solvent molecule over a temperature range of 20 °C to 80 °C. The required 

COSMO files needed for property calculation in COSMOtherm were generated based on DFT 

calculations performed using the GAUSSIAN 16 program. The most stable conformation of each 

solvent molecule (based on GFN2-xTB geometry optimization) was further optimized using the 

BP86 functional55, 56 and the TZVP basis set57 except for iodine-containing compounds since the 

TZVP basis set was not parameterized with for iodine atoms. Thus, optimized structures for iodine-

containing compounds were obtained using the def2-TZVP basis set53 on the iodine atom, and the 

TZVP basis set for all other atoms. Single point energy calculations were then performed with the 

BP86 functional together with the TZVP basis set and the COSMO-RS solvation58, 59 model to 

obtain the necessary COSMO files following previous studies that had predicted physical 

properties of liquid-phase compounds.35, 60, 61 Similarly for iodine-containing molecules, single 

point energy calculations were carried out using the BP86 functional and the def2-TZVP basis set 

defined for the iodine atom (TZVP basis set defined for all other atoms) together with the COSMO-

RS solvation model. Finally, we performed COSMO calculations in the COSMOtherm software 

package (BIOVIA COSMOtherm, Release 2020) at the TZVP level. 

2.1.3. Calculation of Hansen Solubility Parameters (HSPs) 



We assessed the solubility of polar and non-polar plastic materials, namely polyvinyl chloride 

(PVC), polyethylene terephthalate (PET), polyether sulfone (PES), polyethylene (PE), 

polypropylene (PP), and polystyrene (PS), which are commonly found in plastic waste streams,62 

using the HSPs of the solvent molecules and polymers. HSPs are empirical parameters for solvents 

which are used as a measure to identify solvents that are capable of dissolving target polymer 

materials.63-65 Each compound (solvent or polymer) are characterized by three HSPs that describe 

the strength of dispersion interactions (𝛿𝐷), polar or dipole-dipole interactions (𝛿𝑃), and hydrogen-

bonding interactions (𝛿𝐻).63, 64 These parameters define the coordinates of each compound within 

the Hansen space. Each polymer has an additional parameter known as the radius parameter (𝑅0), 

determined by experimentally quantifying the solubility of the polymer in various solvent 

systems,64, 65 which defines the Hansen sphere of each polymer such that solvents capable of 

dissolving the polymer will fall within the sphere. Solvents that can dissolve the polymer of interest 

are then identified by calculating the geometric distance (𝑅𝑎)63, 64 between the HSP values of the 

solvent and the polymer in Hansen space as shown in Equation 1 below. 

𝑅𝑎
2 =  4(𝛿𝐷1

−  𝛿𝐷2
)2 + (𝛿𝑃1

−  𝛿𝑃2
)2 +  (𝛿𝐻1

− 𝛿𝐻2
)2            (1) 

Where 𝑅𝑎 is the geometric distance between solvent and solute in Hansen space,  𝛿𝐷1
 and 𝛿𝐷2

 

are the dispersion interaction HSPs for the solvent and solute, respectively, 𝛿𝑃1
 and  𝛿𝑃2

 are the 

polar interaction HSPs for the solvent and solute, respectively, and 𝛿𝐻1
 and  𝛿𝐻2

 are the hydrogen-

bonding interaction HSPs for the solvent and solute, respectively. 

Solvents with an 𝑅𝑎/ 𝑅0 ratio, known as the Relative Energy Difference (RED), less than one 

are expected to be able to dissolve the target polymer while solvents with a RED greater than one 

are expected to not be capable of dissolving the target polymer. Thus, potential solvents might be 

selected based on HSPs while those predicted to be incompatible may still be useful as antisolvents. 



However, we emphasize that HSPs only provide an estimate of solubility of a target polymer in a 

given solvent, but generally the lower the RED the better. HSPs of the solvent compounds as well 

as selected polymers (calculated at 25 °C) were obtained using the HSPiP software (version 

5.4.03).64 It should also be noted that the HSPs of the selected polymers are only general 

approximations as actual results are resin-dependent for example low-density PE and high-density 

PE. 

In addition to the calculation of HSPs, the HSPiP software also provides predictions for physical 

properties such as boiling point, water solubility (LogS), lipophilicity (LogP), critical properties, 

and Henry law constant as well as other quantities (a total of 55 properties). The LogS and LogP 

of the solvents are two of the important properties of a solvent when considering applications that 

involve dissolution and later precipitation of a solute. Thus, we sought to quantify the accuracy of 

HSPiP’s LogS and LogP predictions against experimental data. For LogS, three datasets were used 

to validate HSPiP predictions, namely the ADME dataset,66 the AqSolDB dataset,67 and a LogS 

dataset curated by Zang et al.,68 containing 1,290, 9,100 and 2,100 molecules along with their 

corresponding experimental LogS values, respectively. For LogP, two datasets were used to 

validate HSPiP predictions, namely, a LogP dataset curated by Zang et al.,68 and a LogP dataset 

curated by Alshehri et al., 69 containing 14,208 and 12,194 molecules and their corresponding 

experimental LogP values, respectively.  

2.1.4. Machine Learning (ML) prediction of LogS and LogP 

Due to the poor prediction of the LogS and LogP (See Figure S1-S2), we have built neural 

network (NN) models to predict the LogS and LogP values of the studied potential solvent 

molecules, using fully connected dense layers and descriptors produced by the HSPiP software. 

For prediction of LogS, the ADME,66 AqSolDB,67 and Zang68 datasets were used to train and 



validate our model. Similarly, for the prediction of LogP, the Zang,68 and Alshehri69 datasets to 

train and validate the NN. 

2.1.4.1. Data Preparation and Model Training 

NN models typically require the input data be preprocessed in various ways, for example the 

removal of missing values, normalization of inputs, and feature selection, in order to prevent 

biasing of the model towards descriptors with large values in addition to making model training 

more efficient.70 To preprocess the raw HSPiP descriptor data, first we removed rows which 

contained “NaN” values. NaN values were present for compounds in the training data for which 

HSPiP was unable to process due to either having a metal, having a complex SMILES string, or 

for compounds with dotted SMILES representations such as salts (e.g. [Na+].[Cl-]). Next, the 

HSPiP descriptors were converted into array format and scaled using the standard scaler function 

of the sklearn package in python.71 This is used to resize the distribution of values for each 

descriptor such that the mean is zero and the standard deviation is one. Next, we performed 

Principal Component Analysis (PCA)72 on the training data to reduce dimensionality of the data, 

followed by a random train/test splitting of the data. In this work, we have also considered the 

effect of training set size on the performance of the model and consequently tested an 80/20 and 

90/10 train/test split (Table S3-S8). In order to find an optimal architecture, we have tested six 

different architectures described below, and compared their performance in predicting LogS and 

LogP values against experimental data. For the training of these models, we used the stochastic 

gradient descent (SGD)73 optimizer as implemented in Tensorflow,74 while reserving 10% of the 

training set as a validation set. To prevent over-fitting, we defined an early-stopping criterion 

which stopped the training of the model if the validation loss did not improve for 5 epochs, and 

because of this none of the models were trained for more than 500 epochs. After the training of 



each model was complete, the best models were saved, and their performance were evaluated on 

the test set using metrics previously defined. Building, training, and evaluation of models were 

performed using Tensorflow74 on Google Colab75 which is a free Google service linked to Google 

Drive account. (Scripts used in this work are provided in our GitLab repository: 

https://gitlab.com/szilvasi-group/logs_logp-prediction). 

2.1.4.2. Model Architecture 

In this work, we developed neural network models which have been shown to be capable of 

predicting properties of organic molecules.76-79 We trained a number of different models in which 

we varied the number and type of hidden layers as well as type of activation function in their 

architecture so as to obtain a relatively optimal model.  

Model 1 consists of six dense layers, with 512, 512, 256, 256, 128, and 1 neuron(s) each. Model 

2 is made up of ten layers, with six dense layers with the ReLU activation function,80 and four 

dropout layers, which zero out the output of a certain fraction of neurons of the preceding layer to 

prevent overfitting.81 For Model 2, the first eight layers are made of alternating dense (with the 

ReLU activation function) and dropout layers with 512 neurons, 30% dropout, 512 neurons, 30% 

dropout, 256 neurons, 20% dropout, 256 neurons, and 20% dropout, respectively. The final two 

dense layers contain 128, and 1, neuron(s), respectively. Model 3 is built up from ten layers, with 

six dense layers (using the ReLU activation function), and four batch normalization layers, which 

standardizes the output of the preceding layer. For Model 3, the first eight layers are made of 

alternating dense and batch normalization layers with the dense layers (using the ReLu activation 

function) containing 512 neurons, 512 neurons, 256 neurons, 256 neurons, respectively. The final 

two dense layers contain 128, and 1, neuron(s), respectively. Model 4 has fourteen layers, with six 

dense layers (using the ReLU activation function), four batch normalization layers, and four 

https://gitlab.com/szilvasi-group/logs_logp-prediction


dropout layers in total. For Model 4, the first twelve layers are divided into four blocks each 

consisting of three layers – a dense layer, followed by a batch normalization layer, and finally a 

dropout layer. In the first block, the dense layer contains 512 neurons, followed by the dropout 

layer with 30% dropout. In the first and second blocks, the dense layers contain 512 neurons each 

while the dropout layers perform 30% dropout. The dense layers in the third and fourth blocks 

contain 256 neurons each, while the dropout layers perform 20% dropout. The final two dense 

layers contain 128, and 1, neuron(s), respectively. Model 5 has the same architecture as Model 4 

but uses the LeakyReLU activation function.82 Finally, Model 6 has the same architecture as Model 

5 but with an additional block of dense (1024 neurons), batch normalization, and dropout (40% 

dropout) layers as the first 3 layers of the model in addition to a 5% dropout layer preceding the 

final dense layer (1 neuron). 

2.1.5. ML prediction of Melting Point 

Due to the poor prediction of the melting point (see Figure S3), the melting point of compounds 

have been calculated using the directed message parsing neural network (D-MPNN) model, which 

is a 2D graph convolutional model that has been shown to shown to perform well on various 

tasks.83-85 The D-MPNN was used to learn the contribution of each atom in the molecule to the 

melting point of the molecule. The implementation of the D-MPNN model as well as atom and 

bond features in this work followed the original Chemprop model developed by Yang et al.,83 

details for which can be found in the original paper by Yang et al.86 The Chemprop model encodes 

the atomic features such as atom type, number of bonds, formal charge, chirality, number of 

hydrogens, hybridization, aromaticity, and atomic mass.87 Two datasets were used to train the 

Chemprop model, namely the Bradley dataset,88 and an melting point dataset collected by Zang et 

al.,68 containing  3,041, and 8,648 molecules along with their experimental melting point values, 



respectively. After removing duplicates, the final dataset contained 11,324 molecules. We also 

considered the effect of the training set size on the model performance and considered an 80/10/10, 

and 90/5/5 train/validation/test split (see Table S13). Default settings for the Chemprop model 

were used and training was done for 30 epochs. To find glycerol-like molecules on which to 

evaluate the reliability of our trained model to give accurate predictions for our catalogue of 

glycerol-derived solvents, we first collected a small set of glycerol-like molecules (See Supporting 

Information). Next, we collected a diverse dataset containing organic, and drug-like compounds 

curated by Tetko et al.89 from which we collected glycerol-like molecules. By using a similarity 

function provided with the Chemprop model based on Morgan fingerprint90 similarity, we 

extracted 232 glycerol-like molecules from the Tetko et al. dataset89 which was used as an external 

test set (See Figure S4 for performance of the final model in the external test set).  

In our analysis, we will use the following metrics and abbreviations: mean absolute error (MAE), 

maximum absolute error (MAD), and root-mean-square error (RMSE). The metrics are defined as 

follows: 

The error between predicted and experimental LogS/LogP values is defined as: 

𝐿𝑜𝑔𝑋′ = 𝐿𝑜𝑔𝑋𝑒𝑥𝑝𝑡 − 𝐿𝑜𝑔𝑋𝐻𝑆𝑃𝑖𝑃           (2a) 

where 𝐿𝑜𝑔𝑋′ is the error, 𝐿𝑜𝑔𝑋𝑒𝑥𝑝𝑡 is the experimental LogS or LogP value and 𝐿𝑜𝑔𝑋𝐻𝑆𝑃𝑖𝑃 is 

the LogS or LogP value predicted by HSPiP (X = S, P). 

The error between predicted and experimental melting point values is defined as: 

𝑀𝑃′ = 𝑀𝑃𝑒𝑥𝑝𝑡 − 𝑀𝑃𝑚𝑜𝑑𝑒𝑙           (2b) 

where 𝑀𝑃′ is the error, 𝑀𝑃𝑒𝑥𝑝𝑡 is the experimental melting point value and 𝑀𝑃𝑚𝑜𝑑𝑒𝑙 is the 

melting point predicted by the Chemprop model. 

The MAE is defined as: 



𝛴|𝐿𝑜𝑔𝑋′|

𝑁
           (3a) 

𝛴|𝑀𝑃′|

𝑁
           (3b) 

 

where N is the number of data points. 

The MAD is defined as: 

                                                                                𝑀𝑎𝑥(|𝐿𝑜𝑔𝑋′|)      (4a) 

                                                                                𝑀𝑎𝑥(|𝑀𝑃′|)      (4b) 

The RMSE is defined as: 

  √
𝛴(𝐿𝑜𝑔𝑋𝐻𝑆𝑃𝐼𝑃−𝐿𝑜𝑔𝑋𝑒𝑥𝑝𝑡)2

𝑁
            (5a) 

√
𝛴(𝑀𝑃𝑚𝑜𝑑𝑒𝑙−𝑀𝑃𝑒𝑥𝑝𝑡)2

𝑁
            (5b) 

For calculated physical properties we define the mean and range as follows: 

The mean is defined as: 

𝑌𝑚𝑒𝑎𝑛 =  
𝛴𝑌

𝑁
     (6) 

and the range is defined as: 

𝑌𝑟𝑎𝑛𝑔𝑒 =  𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛     (7) 

where Y represents the property under consideration. 

3. RESULTS AND DISCUSSION 

We have calculated several physicochemical properties of our glycerol-derived solvents such as 

density, dipole moment, LogS, LogP, and melting point, and analyzed their compatibility with 

different polymers using HSPs. Below we will first discuss the physicochemical properties of each 

category of glycerol-derived solvents and explore the effect of different functional groups on the 

properties. To analyze the effect of functional groups, we form four subcategories for our analysis 

based on molecules that contain halogens (nitriles excluded), nitriles (with and without halogens), 

rings i.e. compounds containing cyclic or aromatic groups (halogen- and nitrile- containing 



compounds excluded), and the last group named others encompasses all compounds without any 

of the aforementioned groups (i.e., contains hydrogen, amine, or  alkyl/alkyl ether groups). Next, 

we will discuss the solubility of different polymers as predicted using HSPs and the effect of 

functional groups on the solubility of different polymers. Lastly, we will provide recommendations 

on the best solvent candidates based on their melting point and their predicted ability to dissolve 

various plastic materials.  

3.1. Dipole Moment (μ) 

The dipole moment can serve as a simple measure of the polarity of a molecule and helps to 

rationalize bulk and molecular properties such as melting and boiling points,91 and have been 

shown to trend with the permittivity of glycerol-derivates.39, 92 Moreover, the polarity of a solvent 

can be used to predict what kind of solutes will be soluble in the solvent, for example, polar 

solvents dissolve polar solutes.93 Previous studies have demonstrated that functionalization of 

glycerol can produce molecules with a wide range of dipole moment values (both polar and non-

polar).32, 33, 35, 36, 39, 92 Figure 1a shows a probability density distribution for the dipole moment of 

each basic structure of glycerol-derivative, and from this we observe that a wide range of dipole 

moment is possible for each basic structure including polar and non-polar solvent candidates. GDA 

and GDK solvents have very similar distributions with a mean dipole moment of 2.75 D and 2.81 

D, respectively, and ranges of 8.37 D and 9.82 D, respectively. For the GDEs and GDDs, the dipole 

moment values are higher with mean dipole moments of 3.20 D and 2.88 D, respectively, and 

ranges of 14.54 D and 10.78 D, respectively.  



Figure 1. Probability density distribution of dipole moment for (a) GDA, GDK, GDD, GDE 

solvents and (b) glycerol-derived solvents based on subcategory. Vertical line indicates calculated 

dipole moment of glycerol.  

Based on the wide range of dipole moment values for the studied glycerol derivatives, it is 

necessary to put the dipole moment in the context of common solvents that have been used for 

plastic dissolution such as MEK (calculated μ = 2.63 D) and acetone (calculated μ = 2.78 D). We 

note that 46% of the glycerol derivates have a greater dipole moment than MEK while 41% of the 

glycerol derivatives have a greater dipole moment than acetone. Additionally, compared to 

glycerol (calculated μ = 1.21 D), 93% of the glycerol derivatives have a greater dipole moment. 

This means that there are numerous potential options for the dissolution of ionic, polar solutes or 

non-polar solutes in our catalogue of glycerol derivates. In addition, we also highlight that the 

GDE distribution has two peaks (2.04 D and 5.90 D). We find in Figure 1b that the peak at 5.90 D 

is the result of the nitriles subcategory while the peak at 2.04 D predominately consists of halogen 

containing molecules. Specifically, the bimodal nature of the distribution for the nitriles 

subcategory is related to the size of the cyano- containing moiety. By manually inspecting the data 

set, we find that molecules in the nitriles group with dipole moment around 2 D are typically those 

molecules which have a CH2CN group while solvents with dipole moment around 5.9 D are those 



molecules with PhCN and PhPhCN groups. This trend can be explained by the larger distance 

between the polar CN and the ether ends of the molecules94 and the larger polarizability of the 

phenyl rings that also increases the dipole moment.94-97 Overall, we find that the nitriles 

subcategory, on average, produces the most polar solvents (mean μ = 4.66 D), followed by the 

halogens subcategory (2.38 D), the others (2.41 D), and rings (2.20 D) subcategories, respectively. 

3.2. LogS and LogP Solubility 

The LogS and LogP are important properties to predict what solvation processes the solvents 

can be used for. LogS is a measure of the solubility of a compound in water and is defined as the 

maximum amount of solute a given volume of water can dissolve,67 meanwhile LogP, also known 

as octanol/water coefficient, represents the equilibrium ratio of a compound between an octanol 

and a water phase and is thus a measure of how hydrophilic or hydrophobic a compound is.98 LogS 

and LogP are measures that can indicate the behavior of a compound in various applications, for 

example in drug design or plastic waste degradation.67, 99 Based on the accuracy of our best NN 

for LogS prediction (MAE: 0.54, RMSE: 0.76) as shown in Figure S1and Table S1, we predicted 

the LogS value for each glycerol derived solvent. Figure 2a shows the probability density 

distribution of the LogS values of the glycerol derivates. From the NN generated LogS values, we 

find that majority of the glycerol-derivates are insoluble in water as seen for other studies of 

glycerol-derivaties previously.33-36 Molecules miscible in water (Logs > 0) contain -OH groups 

and thus the higher solubility can be attributed to higher propensity for hydrogen bonding. On 

average, the GDA and GDK solvents have the best solubility in water with mean LogS values of 

-1.45, and -1.40, respectively, while the GDE and GDD solvents are predicted to be much less 

soluble with mean LogS values of -2.62, and -2.24, respectively. To provide more insight into how 

the attached functional groups affect water solubility of the glycerol derivates, we also provide the 



probability density distribution of the LogS values of the glycerol derivatives based on subcategory 

in Figure 2b. Here, we observe that the molecules containing alkyl ethers (others category) are the 

most soluble in water with a mean LogS of -0.33, while the glycerol derivates containing halogens, 

nitriles, and rings are less water soluble on average with mean LogS value of -2.24, -3.37, and -

1.97, respectively. While previous studies have reported the general hydrophobicity of glycerol 

derivates, they have also demonstrated that the presence of hydrophilic alkyl ether or -OH groups 

tends to enhance the water solubility of glycerol derivatives32-34, 36 which we also observe here. 

Figure 2. Probability density distribution of LogS for (a) GDA, GDK, GDD, GDE solvents and 

(b) glycerol-derived solvents based on subcategory. 

Based on the accuracy of our best NN for LogP prediction (MAE: 0.25, RMSE: 0.37) as shown 

in Figure S2 and Table S2, we predicted the LogP value for each glycerol derived solvent. Figure 

3a shows the probability density distribution of the LogP values of the glycerol derivates. From 

the NN generated LogP values, we find that the majority of the glycerol-derivates are hydrophobic 

in nature as seen in other studies of glycerol-derivatives.32, 33, 36 Overall, the GDE and GDD 

solvents are most hydrophobic with mean LogP values of 2.90, and 2.36, respectively, while the 

GDA and GDK solvents are less hydrophobic with LogP values of 1.29, and 1.51, respectively. 

We also highlight the presence of two shoulders in the distribution of LogP values for the GDE 



solvents (4.2, and 6.8). In Figure 3b, we show the probability density distribution of the LogP 

values of the glycerol derivatives based on subcategory. Based Figure 3b, we can explain the 

shoulders in the distribution for the GDE solvents by the nitriles and halogens subcategories, 

specifically molecules containing one or more CF3 groups which are known to be hydrophobic.100, 

101 Overall, for the different subcategories we note the opposite trend compared to the LogS 

wherein the most hydrophobic category (nitriles) is the least water soluble i.e., others (mean LogP: 

0.55) < rings (mean LogP: 1.88) < halogens (mean LogP: 2.89)  < nitriles (mean LogP: 3.01). 

 

Figure 3. Probability density distribution of LogP for (a) GDA, GDK, GDD, GDE solvents and 

(b) glycerol-derived solvents based on subcategory.  

As we have seen, the hydrophobicity/philicity for glycerol derivates can be tuned based on the 

selection of fucntional groups. In addition to this, we were also interested in molecules which are 

both soluble in water  (LogS > 0) and lipophilic (LogP > 0). By manually filtering the dataset, we 

find 91 solvent candidates (See Table S9) which exhibit both solubility in water and lipophilicity 

with average LogS and LogP values of 0.22, and 0.56, respectively, in addition to ranges of 0.7, 

and 1.42. Figure 4 shows examples of molecules which exhibit this behaviour from each of the 

GDA, GDK, GDE, and GDD categories. We also note that 70 of the 91 molecules contain an 

amine group which is known to promote soulubility in water and organic phases alike.102, 103 



Considering the miscibility data, the studied glycerol derivates offer a broad range of options to 

choose from depending on requirements of hydrophilicity/hydrophobicity within the scope of the 

desired application. 

Figure 4. Example of a (a) GDA, (b) GDK, (c) GDE, and (d) GDD solvent that exhibit both water 

solubility (LogS > 0) and lipophilicity (LogP > 0). 

3.3.Density (ρ) 

Figure 5a shows a probability density distribution for the density of each basic structure of 

glycerol-derivative. From Figure 5a, we see that each category of glycerol-derivate has similar 

distributions of density with mean densities of 1.20, 1.22, 1.19, and 1.27 g/cm3 and ranges of 2.40, 

1.19, 2.35, and 2.04 g/cm3 for the GDA, GDK, GDE, and GDD categories, respectively, compared 

to the density of glycerol (calculated ρ = 1.17 g/cm3). In general, density trends in order of GDD 

> GDK > GDA > GDE. The increase in density from GDAs to GDKs can be explained by liquid 

contraction resulting from the loss of the hydroxyl group33, 39 as indicated in the reduction of molar 

volume from GDA (mean molar volume: 191 cm3/mol) to GDK (mean molar volume: 189 

cm3/mol). Therefore, even though GDAs have stronger intermolecular forces (i.e., hydrogen 

bonds), the conformational freedom of the rotatable hydroxyl group causes GDAs to have larger 



free volume compared to GDKs. This means that for analogous GDAs and GDKs the reduced 

ability of GDKs to form hydrogen bonds is outweighed by the loss of free volume, hence GDKs 

are denser. However for GDEs, replacement of the hydroxyl group by an ether group leads to an 

increase in the molar volume  (mean molar volume: 254 cm3/mol) in addition to reduced dispersion 

interactions between molecules as a result of etherification which showed in the lower mean 𝛿𝑑 

value for GDEs (17.08 MPa0.5) compared to the other categories (GDAs: 17.26 MPa0.5, GDKs: 

17.35 MPa0.5, GDDs: 17.17 MPa0.5).  

Figure 5. Probability density distribution of density for (a) GDA, GDK, GDD, GDE solvents and 

(b) glycerol-derived solvents based on subcategory. Vertical line indicates calculated density of 

glycerol.  

For each category of glycerol derivate, the most dense compounds are those containing one or 

more -CH2I or -CH2Cl  groups, with the density of 3.30, 2.12, 2.63, and 2.43 g/cm3 for the most 

dense solvents in the GDA, GDK, GDE, and GDD categories, respectively, which is attributed to 

the high atomic mass of halogen atoms.  Thus, the large mean density of 1.27 g/cm3 for the GDDs 

is potentially due to the presence of heavy halogen atoms such as bromine and iodine. We also 

note that the long tails of the density distributions for each category in Figure 5a is also because 

of those solvents that contain halogen atoms such as F, Cl, and Br which due to their high atomic 



mass significantly increase the density of the solvents. Figure 5b shows probability density 

distributions for the studied solvents grouped in subcategories. Here, we observe that for solvents 

that contain either only rings or alkyl/alkyl ether groups (i.e., others subcategory), almost the entire 

range of densities (81% of rings, and 73% of others) fall below the density of glycerol (calculated 

ρ = 1.17 g/cm3) and have density similar to those of glycerol-derivates in literature, for example 

glycerol monoethers (0.96 – 1.36 g/cm3) and triethers (0.85 – 1.30 g/cm3).34, 36, 92 For the different 

subcategories we observe mean densities of 1.27, 1.20, 1.08, and 1.09 g/cm3, and ranges of 3.30, 

1.72, 0.87, and 1.13 g/cm3 for the halogens, nitriles, rings, and others subcategories, respectively. 

3.4. Melting Point 

The melting point is critical for solvent design as the predicted solvents should be in liquid state 

at room temperature for economic dissolution processes. We have calculated the melting point 

using the Chemprop code83 as described in the Computational Methods. Figure 6a shows a 

probability density distribution for the melting point of each basic structure of glycerol-derivative, 

and from this we observe that a wide range of melting points for the studied glycerol derivatives.  

On average, GDA, GDD, and GDE solvents are predicted to be liquid indicated by mean melting 

points of 14 °C, 2 °C, and 4 °C, respectively, while the GDK solvents are predicted to be solid with 

mean melting point of 56 °C. We also highlight the presence of a second peak for the GDE 

distribution (centered at 130 °C) as well as long tails for the GDA, GDK, and GDD categories. The 

second peak at 130 °C in the GDE distribution as well as the long tails for all categories are as a 

result of the nitriles subcategory (Figure 6b). Here, solvents containing the bulky PhPhCN groups 

have the highest predicted melting points resulting in an average melting point of 61 °C for the 

nitriles subcategory compared to -23 °C, -11 °C, and -25 °C for the halogens, rings, and the others 



subcategories, respectively. Overall, we find that 74% of the studied glycerol derivates (7131 

solvents) are predicted to be liquid at room temperature (25 °C). 

Figure 6. Probability density distribution of melting point for (a) GDA, GDK, GDD, GDE solvents 

and (b) glycerol-derived solvents based on subcategory. Vertical line indicates room temperature. 

3.5. RED Analysis 

The key to the successful implementation of a solvent-based plastic recycling process is the 

preselection of a solvent that is capable of selective dissolution of the target plastic material. 

However, given the variety of plastic materials and large number of solvent candidates presented 

in this study, solvent selection based on experimental screening alone is not possible. In this 

section, we show that glycerol-derived solvents can be found for polar and non-polar plastic 

materials based on the calculation of HSPs. 



Figure 7a shows probability density distributions of the RED values of the studied solvents for 

non-polar plastics – PE, PP, and PS. The studied glycerol derivates perform best for PS on average 

with a mean RED of 0.76 and 7941 solvents with an RED below 1. Interestingly, compared to p-

cymene (RED = 0.40) which is another green solvent for PS dissolution,27, 28 there are 850 glycerol 

derivates with RED values below that of p-cymene. For PE and PP, the glycerol derivates perform 

worse with average RED values of 0.99 and 1.20, respectively, and only 5491 and 2813 solvents, 

respectively, with an RED below 1. We also highlight that the studied glycerol derivates 

outperform glycerol in terms of the RED for non-polar plastics (REDPE = 3.48, REDPP = 3.71, 

REDPS = 3.28) and polar plastics (REDPES = 3.05, REDPET = 2.77, REDPVC = 2.73). 

Figure 7. Probability density distribution of RED for (a) non-polar plastics, and (b) polar plastics. 

Vertical black lines represent the threshold (RED = 1) above which solvents cannot dissolve the 

target plastic. 

For polar plastics (PES, PET, and PVC, Figure 7b), the RED analysis predicts numerous glycerol 

derivative candidates for the dissolution of PET and PVC. We observe an average RED of 0.54 

and 0.65 for PET and PVC, respectively. In addition, we have majority of the solvents with a RED 

below 1 (PVC: 8700 and PET: 9199) and a narrow range of RED values (PVC: 2.68 and PET: 

2.74). For PES, the glycerol derivatives are predicted to excel less with an average RED of 1.23 



and much wider range of 3.00. The relatively poor performance of the glycerol derivatives is due 

to the unique nature of PES in terms of its HSPs. Because of the presence of the benzene rings, 

ether, and sulfone groups in its structure, PES has high 𝛿𝑑, 𝛿𝑝, and 𝛿ℎ in addition to having a small 

Hansen radius. When compared to the HSPs of the other plastic materials considered here as shown 

in Table 1, finding appropriate solvents for PES that balance the HSPs will be more difficult and 

as such we only have 1595 solvents predicted to be able to dissolve PES based on RED.  

Table 1. Calculated HSPs of selected plastic materials. 

Plastic 𝛿𝑑 𝛿𝑝 𝛿ℎ 𝑅0 

PVC 18.8 9.2 6.3 8.0 

PES 19.6 10.8 9.2 6.2 

PP 18.0 0.0 1.0 8.0 

PET 18.2 6.4 6.6 8.0 

PE 16.9 0.8 2.8 8.0 

PS 18.5 4.5 2.9 8.0 

 

To provide more information on the effect of functional groups in dissolution of the selected 

plastic materials, Figure 8 show probability density distributions for the RED values of our 

solvents grouped by subcategory for the studied plastics. 



Figure 8. Probability density distribution of RED for (a) PES, (b) PET, (c) PVC (d) PE, (e) PP, 

and (f) PS for the studied glycerol-derived solvents based on subcategory. The distribution of the 

entire dataset is also disclosed. Vertical black lines represent the threshold (RED = 1) above which 

solvents cannot dissolve the target plastic. 

For the dissolution PES, the nitriles and halogens subcategories give the best performance (mean 

RED of 0.98 and 1.35, respectively) which we attribute to the presence of highly polarizable groups 

such as I, Br, PhCN or PhPhCN. We also note that the best solvents for PES usually contain a 

hydroxyl group in addition to one of the aforementioned groups which give a good combination 

of HSPs that are similar to that of PES. For example, the best overall glycerol derivative for PES 

(RED = 0.05) is a GDA solvent which contained a CH2I and a PhCN group (See Figure 9). For the 

rings subcategory, while having solvents with high 𝛿𝑑 and 𝛿ℎ in some cases, the absence of polar 

groups resulted in a mean RED of 1.33. Interestingly, there are two peaks centered at 1.04 and 

1.48 which indicate that certain groups of molecules in the subcategory perform better than others. 

Solvents clustered around 1.04 were again typically GDAs or other molecules containing a 

hydroxyl group, while the solvents clustered at 1.48 were generally GDEs and GDDs. By manually 



inspecting the dataset, we observe that the best solvents (RED < 1) for PES in the ring subcategory 

are GDA with either benzyl or cyclohexyl groups, and GDK molecules with hydroxyl or amine 

groups. While the worst performing molecules are GDK molecules without any additional polar 

groups or GDE and GDD molecules regardless of the attached groups. The poor performance of 

GDEs and GDDs can be rationalized by the reduction in the 𝛿𝑝 and 𝛿ℎ with etherification or 

deoxygenation. While for poorly performing GDAs and GDKs, their performance is explained by 

the lack of hydrogen bond donor ability and the presence of nonpolar cyclic groups which reduce 

the overall polarity of the molecule. 

Figure 9.  Glycerol-derived solvent with the lowest RED value for (a) PES, (b) PET, (c) PVC, (d) 

PE, (e) PP, and (f) PS.  

In the case of PET, all subcategories produce solvents which are predicted to dissolve PET with 

all subcategories having mean RED values below 1 (halogens: 0.55, nitriles: 0.53, rings: 0.45, and 

others: 0.72) and their distribution of RED clustered below 1. This can be attributed to the 

structural similarity between PET and the glycerol derivates in terms of the presence of ether and 

ketone groups such that the HSPs are close. Overall, PET has the largest proportion of possible 

solvents with 9,214 glycerol solvents having an RED less than 1, while the best solvent candidate 

for PET (RED = 0.03) is a GDE that contains a CH2I, a Ph group, and a CH2NH2 group (See Figure 

9). This is particularly promising since PET is abundant in post-consumer waste streams.104 



Likewise, for dissolving PVC we find potential solvents regardless of the attached functional 

group. Nonetheless, the nitriles subcategory provide the best performance with mean RED of 0.47 

and range of 2.14, followed by the rings subcategory with average RED of 0.71 and a range of 

1.09 while the halogens and others subcategories have average REDs of 0.73 and 0.90, 

respectively, and ranges of 2.09 and 2.14, respectively, with the best solvent for PVC (RED = 

0.05) being a GDE containing a CH2Cl, a PhCN, and a CH2CH2OCH2CH2OCH3 group (See Figure 

9). We also highlight that while glycerol derivates containing explicitly polar functional groups 

such as PhCN or PhPhCN may perform better for PVC dissolution, some glycerol derivates 

containing nominally non-polar functional groups such as benzyl groups may also be used as a 

result of dispersive and hydrogen bonding interactions. Thus, the good performance of molecules 

in the nitriles subcategory is largely because those molecules with PhCN or PhPhCN groups which 

maximize polar and dispersive interactions with PVC as a result of the polar cyano group, and 

large the Ph and PhPh groups that are involved in the dispersion interactions. 

Conversely, even though the Hansen radius of PE and PP is comparable to that of the polar 

plastics (Table 1), the polar, and hydrogen bonding parameters do not play a significant role in 

determining which solvents can dissolve them. Thus, solvents with polar groups and an appreciable 

𝛿𝑝 and/or 𝛿ℎ value are likely to lie outside the Hansen sphere of the plastic material. This means 

that for PE and PP, glycerol derivates containing non-polar functional groups with high 𝛿𝑑 and 

low 𝛿𝑝 and 𝛿ℎ values will perform best. Consequently, glycerol derivates in the rings subcategory 

perform best with an average RED value of 0.77, while the halogens, others and nitriles 

subcategories have an average RED of 0.90, 1.11, and 1.17, respectively. In general, the best 

solvents for PE are the low dipole moment GDE and GDD solvents with cyclic/aromatic groups 

attached with the exception of a few GDKs which contain only cyclic functional groups. This 



indicates that high hydrogen bonding ability of the GDAs and GDKs negatively impacts the ability 

of the solvent to dissolve PE even if the solvent contains a cyclic or aromatic group. It should also 

be noted that the best glycerol derivate for PE (RED = 0.22) is a GDD that contains two CyH 

groups attached to the terminal ether positions, and a fluorine atom in the X position (See Figure 

9). Analogous to PE, the glycerol derivates predicted to dissolve PP are solvents in the rings 

subcategory, however the glycerol derivates perform slightly worse on average for PP compared 

to PE with an average RED values of 1.01, 1.15, 1.31, and 1.40 for the rings, halogens, nitriles, 

and others subcategories, respectively. In addition, the best glycerol derivates for PP dissolution 

are the low dipole moment GDEs and GDDs, in addition to a few GDKs, with cyclic/aromatic 

groups attached (See Figure 9). This again emphasizes the negative effect of the hydrogen bonding 

ability on the capacity of GDAs and GDKs to dissolve PP. For example, the best solvent for PP 

(RED = 0.52) which is a GDD solvent that contains two Ph groups attached to the terminal ether 

positions, and a fluorine atom in the X position (See Figure 9) 

In contrast to PE and PP, a variety of glycerol derivates with different functional groups (both 

polar and non-polar) are predicted to be able to dissolve PS. The glycerol derivates within the rings 

subcategory are on average the best for dissolving PS with mean RED values of 0.76, 0.75, 0.62, 

and 1.04 for the halogens, nitriles, rings, and others subcategories, respectively. Generally, the best 

glycerol derivatives for PS are GDEs, and GDDs that do not contain any -OH groups, in addition 

to a few GDKs that contain cyclic/aromatic functional groups which again emphasizes the negative 

effect of hydrogen bonding. For example, the best glycerol derivate for PS (RED = 0.13) is a GDD 

solvent that contains a PhPhCN and an isopropyl group in addition to a fluorine atom in the X 

position (See Figure 9).  

3.6. RECOMMENDATIONS 



Thus far, we have presented the physical properties of the glycerol-derived solvents as well as 

have analyzed their compatibility with selected polymers. To achieve selective plastic recovery, 

we recommend examples of solvents that are selective towards a specific polymer by considering 

the RED value and predicted melting point. We use the definition that a glycerol-derivative is 

selective for a particular plastic if the melting point is below 25 °C, the RED value for the particular 

plastic is below 1, the RED value for other plastics is above 1, and the difference between the RED 

value for that plastic (RED < 1) and the RED value for any other plastic (RED > 1) is at least 0.2. 

This definition is motivated by the simple rule of HSPs proposed by Hansen,63, 64 and recent plastic 

recycling studies12, 13 that have chosen solvents based the RED value (above or below 1) of the 

solvent for the target polymer. Our definition also considers the limitations of HSPs in predicting 

solvent/non-solvents for polymer dissolution by defining a spread of at least 0.2. It has been shown 

in a previous study by Venkatram et al., that HSP has a prediction accuracy of 67% ± 10% for 

solvents and 76% ± 12% for non-solvents.105 Prediction inaccuracy stems from the complex 

process of polymer solubility which involves swelling and diffusion in addition to being influenced 

by polymer structure, temperature and solvent concentration all of which are not captured by 

HSPs.106 Due to the limitations of HSPs in predicting solvent/non-solvent especially in close calls 

(i.e., where RED is between 0.9 and 1), we cannot make conclusive statements about the solvent’s 

ability to dissolve one plastic selectively over the other and thus we exclude them. Finally, the 

melting point criterion is introduced for practical reasons as economic plastic waste recycling 

should be done at room temperature. 

Based on the abovementioned definition of selective solvents, we identify 11 solvents for PVC, 

5 solvents for PET, and 32 solvents for PE (See Table S10-S12 for RED and melting point). To 



illustrate, Figure 10 shows the solvent with lowest RED for PE, PET, and PVC based on the RED, 

and melting point.  

Figure 10. Glycerol-derived solvent examples for the selective dissolution of (a) PE, (b) PET, and 

(c) PVC based on calculated RED and melting point criteria.  

For the dissolution of PES, PP, and PS, there were no solvents that satisfied our definition for 

selection considering all six plastics. However, there are 376 and 2496 solvents which are selective 

towards PES, and PS, respectively, for a mixed feedstock of only PES, PP, and PS. While no 

solvents satisfy our selection criteria for PP even when only PES, PP, and PS are considered, there 

are 2268 solvents predicted to be able to dissolve PP (RED < 1 for PP, melting point < 25 °C) after 

the PES and PS fractions have been separated. Finally, we note that there are also 125 solvents 

which are predicted to be unable to dissolve any of the plastics considered here and can act as 

potential general anti-solvents (i.e., RED > 1 for all plastics, see Supporting Information).  

Putting together our suggestions for solvents forms the basis for a process to separate a mixed 

feedstock containing PVC, PET, PE, PES, PP, and PS: 

1. Selectively dissolve PVC fraction in a PVC selective solvent, and then separating the 

dissolved fraction from the PET, PE, PES, PP, and PS. 

2. Selectively dissolve PET fraction in a PET selective solvent, and then separating the 

dissolved fraction from the PE, PES, PP and PS. 

3. Selectively dissolve PE fraction in a PE selective solvent, and then separating the 

dissolved fraction from the PES, PP, and PS. 



4. Selectively dissolve PES fraction in a PES selective solvent, and then separating the 

dissolved fraction from the PP, and PS. 

5. Selectively dissolve PS fraction in a PS selective solvent, and then separating the 

dissolved fraction from the PP. 

6. The remaining PP can then be dissolved in a non-selective solvent (RED < 1 for PP and 

one or more plastics). All the dissolved polymers can then be recovered by addition of 

antisolvent to the respective solutions. 

Due to the complexity of plastic waste feedstocks, separating different polymers one after the other 

as described above may not be feasible. Consequently, first separating the feedstock into polar and 

non-polar fractions can be more tractable and may help reduce costs associated with sorting the 

waste plastic. Thus, we also devise an alternative plan for plastic waste recycling starting from that 

idea. To have greater reliability in the HSP-based predictions, we only consider solvents that have 

an RED < 0.6 for the target plastic(s) and RED > 0.9 all other plastics, in addition to having a 

melting point below 25 °C. Based on this, 7 solvents are predicted to dissolve the polar fraction 

(RED < 0.6 for PET, PES, PVC, and RED > 0.9 for PE, PP, and PS). Upon separating the polar 

and non-polar fractions, the polar fraction (PET, PES, and PVC) can be further used to recover 

PVC and PET simultaneously (RED < 0.6 for PET and PVC, RED > 0.9 for PES) before a further 

round of selective dissolution to recover each kind of polymer. For this, there are 1345 solvents 

that can dissolve PVC and PET simultaneously and separate them from PES, 7 solvents that can 

selectively dissolve PET from a mixture of PET and PVC (RED < 0.6 for PET, RED > 0.9 for 

PVC), and 52 solvents that can dissolve the remaining PES fraction (RED < 0.6 for PES). 

Similarly, for the non-polar fraction, there are 149 solvents that can dissolve PS (RED < 0.6 for 

PS, RED > 0.9 for PE and PP) from the non-polar fraction, 18 solvents to dissolve PE (RED < 0.6 



for PS, RED > 0.9 for PP) from a mixture of PE and PP, and 14 solvents that can dissolve the 

remaining PP fraction. 

A procedure to separate a mixed feedstock containing PVC, PET, PE, PES, PP, and PS first into 

polar and non-polar fractions, followed by recovery of each type of polymer, is thus based on 

combining our suggestions for solvents as outlined below: 

1. Selectively dissolve polar fraction (PET, PES, PVC) in a solvent selective to only polar 

plastics, and then separating the dissolved polar fraction from the non-polar fraction (PE, 

PP, and PS). 

2. Dissolve PET and PVC fraction in a PET and PVC selective solvent, and then separating 

the dissolved fraction from the PES. 

3. Selectively dissolve PET fraction in a PET selective solvent, and then separating the 

dissolved fraction from the PVC. This is followed by the recovery of all the dissolved 

fractions by addition of anti-solvent to precipitate the polymers out of solution. 

For the non-polar fraction: 

1. Selectively dissolve PS fraction in a PS selective solvent, and then separating the 

dissolved fraction from the PE and PP. 

2. Selectively dissolve PE fraction in a PE selective solvent, and then separating the 

dissolved fraction from the PP. Recovery of the dissolved PE, and PS fractions by 

addition of anti-solvent to the precipitate the polymers out of solution. 

3. The remaining PP can then be dissolved in any non-selective solvent. The PE, PP, and 

PS polymers can then be recovered by addition of antisolvent to the respective solutions. 

Our computational high-throughput screening framework can serve as a starting point for solvent 

development for plastic waste recycling, and as we have shown, the large catalogue of solvents 



enables us to quickly preselect potential solvents for the target plastic(s) and devise plans for 

selective plastic waste recycling. To help the interested reader quickly filter through the glycerol-

derived solvents to design their own recycling plan using additional user-defined selection criteria, 

for example excluding halogenated solvents or including metrics for toxicity and biodegradability, 

we provide the RED values of each solvent for each plastic as well as the predicted melting point 

in the Supporting Information in a format that facilitate such a selection process.  

4. CONCLUSIONS 

In this work, we have calculated the physicochemical properties (density, dipole moment, melting 

point, LogS, and LogP) of a catalogue of 9587 glycerol-derived solvents, in addition to evaluating 

their ability to dissolve different plastic materials namely PE, PET, PES, PP, PS, and PVC based 

on HSPs. In general, functionalization of glycerol produces glycerol-derivates provides with a 

wide range of properties for potential solvents for dissolving a variety of plastics. We have also 

provided examples of selective solvents for PE, PET, and PVC based on the RED and melting 

point, while we proposed a multi-step process for separating a mixed feedstock containing PES, 

PP, and PS.  Additionally, we suggest a stricter solvent selection criterion based on RED, which 

formed the basis of a strategy to reduce costs associated with sorting waste plastics, whereby we 

separate the feedstock into polar and nonpolar fractions first before carrying out selective 

dissolution. 

Traditional means of developing new solvents for plastic recycling are typically based on trial-

and-error experimentation. Future work should focus on experimental validation of predicted 

physicochemical properties and solubilities of waste plastic materials for the most promising 

glycerol-derivate candidates. Additionally, our computational framework can be easily applied for 

new solvent systems that are based on other platform molecules as well as other plastic materials 



not studied in this work. Moreover, computationally exploring large catalogues of solvent 

candidates will allow for the rational design of new solvent systems that can be used to process 

complex multicomponent plastic waste of almost any composition. 

 

ASSOCIATED CONTENT 

The data underlying this paper are available in the Supporting Information. The Supporting 

Information is available free of charge at the SI link. 

Physical properties for all 9587 glycerol-derived solvents, and subcategories, HSPiP generated 

features for Log training data, HSPiP generated features for LogP dataset, HSPiP generated 

features for all 9587 glycerol-derived solvents, and glycerol-like molecules used to obtain test 

molecules RED and melting point for all 9587 solvents (XLSX) 

RED and melting point for all 9587 solvents, selective solvents for each plastic using two 

different solvent selection criteria based on RED and melting point (XLSX) 

Supplementary discussion on neural network prediction of Logs and LogP, supplementary table 

showing glycerol-derived solvents which are both lipophilic and water soluble, supplementary 

tables showing recommended solvents, parity plots showing predictive power of Chemprop model 

against HSPiP, and parity plot showing prediction of melting point for a set of glycerol-like 

molecules (PDF) 

AUTHOR INFORMATION 

Corresponding Author 



*Tibor Szilvási – Department of Chemical and Biological Engineering, University of Alabama, 

Tuscaloosa, Alabama 35487, United States; Email: tibor.szilvasi@ua.edu 

Author 

Ademola Soyemi - Department of Chemical and Biological Engineering, University of Alabama, 

Tuscaloosa, Alabama 35487, United States 

Author Contributions 

The manuscript was written through the contributions of all authors. All authors have given 

approval to the final version of the manuscript. 

Notes 

The authors declare no competing financial interest. 

Acknowledgements 

A.S and T.S would like to acknowledge the financial support of the National Science Foundation 

(NSF) under grant number EFMA-2029387. Any opinions, findings, conclusions, and/or 

recommendations expressed in this material are those of the authors(s) and do not necessarily 

reflect the views of the NSF. A.S and T.S would also like to thank the University of Alabama and 

the Office of Information Technology for providing high-performance computing resources and 

support that has contributed to these research results. This work was also made possible in part by 

a grant of high-performance computing resources and technical support from the Alabama 

Supercomputer Authority. 

 



REFERENCES 

(1) Geyer, R.; Jambeck, J. R.; Law, K. L. Production, use, and fate of all plastics ever made. Sci 

Adv 2017, 3 (7), e1700782. DOI: 10.1126/sciadv.1700782  From NLM. 

(2) Geyer, R. Production, Use and Fate of Synthetic Polymers. in Plastic Waste and Recycling; 

Academic Press, Cambridge MA, USA. 2020, pp 13-32. 

(3) Foundation, E. M. Plastics and the Circular Economy; 

https://archive.ellenmacarthurfoundation.org/explore/plastics-and-the-circular-economy 

(accessed 09/30/2022). 

(4) Lim, X. Microplastics are everywhere - but are they harmful? Nature 2021, 593 (7857), 22-

25. DOI: 10.1038/d41586-021-01143-3  From NLM. 

(5) Ragauskas, A. J.; Huber, G. W.; Wang, J.; Guss, A.; O'Neill, H. M.; Lin, C. S. K.; Wang, Y.; 

Wurm, F. R.; Meng, X. New Technologies are Needed to Improve the Recycling and Upcycling 

of Waste Plastics. ChemSusChem 2021, 14 (19), 3982-3984, 

https://doi.org/10.1002/cssc.202101872. DOI: https://doi.org/10.1002/cssc.202101872 (acccessed 

2022/09/30). 

(6) Li, H.; Aguirre-Villegas, H. A.; Allen, R. D.; Bai, X.; Benson, C. H.; Beckham, G. T.; 

Bradshaw, S. L.; Brown, J. L.; Brown, R. C.; Cecon, V. S.; et al. Expanding plastics recycling 

technologies: chemical aspects, technology status and challenges. Green Chemistry 2022, 24, 

8899-9002, 10.1039/D2GC02588D. DOI: 10.1039/D2GC02588D. 

https://archive.ellenmacarthurfoundation.org/explore/plastics-and-the-circular-economy
https://doi.org/10.1002/cssc.202101872
https://doi.org/10.1002/cssc.202101872


(7) Triebert, D.; Hanel, H.; Bundt, M.; Wohnig, K. Solvent-Based Recycling. In Circular 

Economy of Polymers: Topics in Recycling Technologies, ACS Symposium Series, Vol. 1391; 

American Chemical Society, Washington DC, USA. 2021; pp 33-59. 

(8) Sherwood, J. Closed-loop recycling of polymers using solvents. Johnson Matthey 

Technology Review 2020, 4-15. 

(9) Goto, M. Chemical recycling of plastics using sub- and supercritical fluids. The Journal of 

Supercritical Fluids 2009, 47 (3), 500-507. DOI: https://doi.org/10.1016/j.supflu.2008.10.011. 

(10) Rahimi, A.; García, J. M. Chemical recycling of waste plastics for new materials production. 

Nature Reviews Chemistry 2017, 1 (6), 0046. DOI: 10.1038/s41570-017-0046. 

(11) Pappa, G.; Boukouvalas, C.; Giannaris, C.; Ntaras, N.; Zografos, V.; Magoulas, K.; 

Lygeros, A.; Tassios, D. The selective dissolution/precipitation technique for polymer recycling: 

a pilot unit application. Resources, Conservation and Recycling 2001, 34 (1), 33-44. DOI: 

https://doi.org/10.1016/S0921-3449(01)00092-1. 

(12) Walker, T. W.; Frelka, N.; Shen, Z.; Chew, A. K.; Banick, J.; Grey, S.; Kim, M. S.; Dumesic, 

J. A.; Van Lehn, R. C.; Huber, G. W. Recycling of multilayer plastic packaging materials by 

solvent-targeted recovery and precipitation. Sci Adv 2020, 6 (47), eaba759. DOI: 

10.1126/sciadv.aba7599  From NLM. 

(13) Sánchez-Rivera, K. L.; Zhou, P.; Kim, M. S.; González Chávez, L. D.; Grey, S.; Nelson, 

K.; Wang, S.-C.; Hermans, I.; Zavala, V. M.; Van Lehn, R. C.; et al. Reducing Antisolvent Use in 

the STRAP Process by Enabling a Temperature-Controlled Polymer Dissolution and Precipitation 

for the Recycling of Multilayer Plastic Films. ChemSusChem 2021, 14 (19), 4317-4329, 

https://doi.org/10.1016/j.supflu.2008.10.011
https://doi.org/10.1016/S0921-3449(01)00092-1


https://doi.org/10.1002/cssc.202101128. DOI: https://doi.org/10.1002/cssc.202101128 (acccessed 

2022/10/01). 

(14) Sändig, K. Process for producing particularly stable condensation products, US2061635A, 

USA 1936. 

(15) Young, D. W. S., W. J. Preparation of purified polyesters, US2491350, USA 1945. 

(16) Wainer, E. Verfahren Zur Wiedergewinnung von Polyvinylchloridmaterialien Aus Abfall, 

DE2537297A1, DE, 1976. 

(17) Mizumoto, Y. H., S. Process for processing disposed polymer mixture. JPS5229879A, JP, 

1977. 

(18) Seymour, R. B.; Stahl, G. A. Separation of waste plastics. An experiment in solvent 

fractionation. Journal of Chemical Education 1976, 53 (10), 653. DOI: 10.1021/ed053p653. 

(19) Achilias, D. S.; Giannoulis, A.; Papageorgiou, G. Z. Recycling of polymers from plastic 

packaging materials using the dissolution–reprecipitation technique. Polymer Bulletin 2009, 63 

(3), 449-465. DOI: 10.1007/s00289-009-0104-5. 

(20) Achilias, D. S.; Roupakias, C.; Megalokonomos, P.; Lappas, A. A.; Antonakou, Ε. V. 

Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and 

polypropylene (PP). Journal of Hazardous Materials 2007, 149 (3), 536-542. DOI: 

https://doi.org/10.1016/j.jhazmat.2007.06.076. 

(21) Achilias, D. S.; Antonakou, E. V.; Koutsokosta, E.; Lappas, A. A. Chemical recycling of 

polymers from Waste Electric and Electronic Equipment. Journal of Applied Polymer Science 

https://doi.org/10.1002/cssc.202101128
https://doi.org/10.1002/cssc.202101128
https://doi.org/10.1016/j.jhazmat.2007.06.076


2009, 114 (1), 212-221, https://doi.org/10.1002/app.30533. DOI: 

https://doi.org/10.1002/app.30533 (acccessed 2022/10/05). 

(22) Kartalis, C. N.; Poulakis, J. G.; Tsenoglou, C. J.; Papaspyrides, C. D. Pure component 

recovery from polyamide 6/6 6 mixtures by selective dissolution and reprecipitation. Journal of 

Applied Polymer Science 2002, 86 (8), 1924-1930, https://doi.org/10.1002/app.11147. DOI: 

https://doi.org/10.1002/app.11147 (acccessed 2023/02/14). 

(23) Mohan, M.; Keasling, J. D.; Simmons, B. A.; Singh, S. In silico COSMO-RS predictive 

screening of ionic liquids for the dissolution of plastic. Green Chemistry 2022, 24 (10), 4140-4152, 

10.1039/D1GC03464B. DOI: 10.1039/D1GC03464B. 

(24) Zhou, P.; Sánchez-Rivera, K. L.; Huber, G. W.; Van Lehn, R. C. Computational Approach 

for Rapidly Predicting Temperature-Dependent Polymer Solubilities Using Molecular-Scale 

Models. ChemSusChem 2021, 14 (19), 4307-4316, https://doi.org/10.1002/cssc.202101137. DOI: 

https://doi.org/10.1002/cssc.202101137 (acccessed 2023/02/14). 

(25) Chandrasekaran, A.; Kim, C.; Venkatram, S.; Ramprasad, R. A Deep Learning Solvent-

Selection Paradigm Powered by a Massive Solvent/Nonsolvent Database for Polymers. 

Macromolecules 2020, 53 (12), 4764-4769. DOI: 10.1021/acs.macromol.0c00251. 

(26) Sánchez-Rivera, K. L.; Zhou, P.; Kim, M. S.; González Chávez, L. D.; Grey, S.; Nelson, 

K.; Wang, S.-C.; Hermans, I.; Zavala, V. M.; Van Lehn, R. C.; et al. Reducing Antisolvent Use in 

the STRAP Process by Enabling a Temperature-Controlled Polymer Dissolution and Precipitation 

for the Recycling of Multilayer Plastic Films. ChemSusChem 2021, 14 (19), 4317-4329, 

https://doi.org/10.1002/cssc.202101128. DOI: https://doi.org/10.1002/cssc.202101128 (acccessed 

2022/10/01). 

https://doi.org/10.1002/app.30533
https://doi.org/10.1002/app.30533
https://doi.org/10.1002/app.11147
https://doi.org/10.1002/app.11147
https://doi.org/10.1002/cssc.202101137
https://doi.org/10.1002/cssc.202101137
https://doi.org/10.1002/cssc.202101128
https://doi.org/10.1002/cssc.202101128


(27) Hattori, K.; Shikata, S.; Maekawa, R.; Aoyama, M. Dissolution of polystyrene into p-

cymene and related substances in tree leaf oils. Journal of Wood Science 2010, 56 (2), 169-171. 

DOI: 10.1007/s10086-009-1073-x. 

(28) Shikata, S.; Watanabe, T.; Hattori, K.; Aoyama, M.; Miyakoshi, T. Dissolution of 

polystyrene into cyclic monoterpenes present in tree essential oils. Journal of Material Cycles and 

Waste Management 2011, 13 (2), 127-130. DOI: 10.1007/s10163-011-0005-1. 

(29) Gutiérrez, C.; García, M. T.; Gracia, I.; de Lucas, A.; Rodríguez, J. F. Recycling of extruded 

polystyrene wastes by dissolution and supercritical CO2 technology. Journal of Material Cycles 

and Waste Management 2012, 14 (4), 308-316. DOI: 10.1007/s10163-012-0074-9. 

(30) Noguchi, T.; Miyashita, M.; Inagaki, Y.; Watanabe, H. A new recycling system for 

expanded polystyrene using a natural solvent. Part 1. A new recycling technique. Packaging 

Technology and Science 1998, 11 (1), 19-27, https://doi.org/10.1002/(SICI)1099-

1522(199802)11:1<19::AID-PTS414>3.0.CO;2-5. DOI: https://doi.org/10.1002/(SICI)1099-

1522(199802)11:1<19::AID-PTS414>3.0.CO;2-5 (acccessed 2022/10/02). 

(31) Milescu, R. A.; Zhenova, A.; Vastano, M.; Gammons, R.; Lin, S.; Lau, C. H.; Clark, J. H.; 

McElroy, C. R.; Pellis, A. Polymer Chemistry Applications of Cyrene and its Derivative Cygnet 

0.0 as Safer Replacements for Polar Aprotic Solvents. ChemSusChem 2021, 14 (16), 3367-3381, 

https://doi.org/10.1002/cssc.202101125. DOI: https://doi.org/10.1002/cssc.202101125 (acccessed 

2022/10/02). 

(32) Qian, S.; Liu, X.; Dennis, G. P.; Turner, C. H.; Bara, J. E. Properties of symmetric 1,3-

diethers based on glycerol skeletons for CO2 absorption. Fluid Phase Equilibria 2020, 521, 

112718. DOI: https://doi.org/10.1016/j.fluid.2020.112718. 

https://doi.org/10.1002/(SICI)1099-1522(199802)11:1
https://doi.org/10.1002/(SICI)1099-1522(199802)11:1
https://doi.org/10.1002/(SICI)1099-1522(199802)11:1
https://doi.org/10.1002/(SICI)1099-1522(199802)11:1
https://doi.org/10.1002/cssc.202101125
https://doi.org/10.1002/cssc.202101125
https://doi.org/10.1016/j.fluid.2020.112718


(33) Qian, S.; Liu, X.; Turner, C. H.; Bara, J. E. Glycerol-derived solvents containing two or 

three distinct functional groups enabled by trifluoroethyl glycidyl ether. AIChE Journal 2022, 68 

(3), e17533, https://doi.org/10.1002/aic.17533. DOI: https://doi.org/10.1002/aic.17533 (acccessed 

2022/10/02). 

(34) García, J. I.; García-Marín, H.; Mayoral, J. A.; Pérez, P. Green solvents from glycerol. 

Synthesis and physico-chemical properties of alkyl glycerol ethers. Green Chemistry 2010, 12 (3), 

426-434, 10.1039/B923631G. DOI: 10.1039/B923631G. 

(35) Qian, S.; Liu, X.; Emel’yanenko, V. N.; Sikorski, P.; Kammakakam, I.; Flowers, B. S.; 

Jones, T. A.; Turner, C. H.; Verevkin, S. P.; Bara, J. E. Synthesis and Properties of 1,2,3-

Triethoxypropane: A Glycerol-Derived Green Solvent Candidate. Industrial & Engineering 

Chemistry Research 2020, 59 (45), 20190-20200. DOI: 10.1021/acs.iecr.0c03789. 

(36) Qian, S.; Liu, X.; Turner, C. H.; Bara, J. E. Synthesis and properties of symmetric glycerol-

derived 1,2,3-triethers and 1,3-diether-2-ketones for CO2 absorption. Chemical Engineering 

Science 2022, 248, 117150. DOI: https://doi.org/10.1016/j.ces.2021.117150. 

(37) Andreeva, I. V.; Zaitsau, D. H.; Qian, S.; Turovtzev, V. V.; Pimerzin, A. A.; Bara, J. E.; 

Verevkin, S. P. Glycerol valorisation towards biofuel additivities: Thermodynamic studies of 

glycerol ethers. Chemical Engineering Science 2022, 247, 117032. DOI: 

https://doi.org/10.1016/j.ces.2021.117032. 

(38) García, J. I.; García-Marín, H.; Pires, E. Glycerol based solvents: synthesis, properties and 

applications. Green Chemistry 2014, 16 (3), 1007-1033, 10.1039/C3GC41857J. DOI: 

10.1039/C3GC41857J. 

https://doi.org/10.1002/aic.17533
https://doi.org/10.1002/aic.17533
https://doi.org/10.1016/j.ces.2021.117150
https://doi.org/10.1016/j.ces.2021.117032


(39) Leal-Duaso, A.; Pérez, P.; Mayoral, J. A.; García, J. I.; Pires, E. Glycerol-Derived Solvents: 

Synthesis and Properties of Symmetric Glyceryl Diethers. ACS Sustainable Chemistry & 

Engineering 2019, 7 (15), 13004-13014. DOI: 10.1021/acssuschemeng.9b02105. 

(40) Andreeva, I. V.; Turovtsev, V. V.; Qian, S.; Bara, J. E.; Verevkin, S. P. Biofuel Additives: 

Thermodynamic Studies of Glycerol Ethers. Industrial & Engineering Chemistry Research 2022, 

61, 15407-15413. DOI: 10.1021/acs.iecr.2c02351. 

(41) Flowers, B. S.; Mittenthal, M. S.; Jenkins, A. H.; Wallace, D. A.; Whitley, J. W.; Dennis, 

G. P.; Wang, M.; Turner, C. H.; Emel’yanenko, V. N.; Verevkin, S. P.; et al. 1,2,3-

Trimethoxypropane: A Glycerol-Derived Physical Solvent for CO2 Absorption. ACS Sustainable 

Chemistry & Engineering 2017, 5 (1), 911-921. DOI: 10.1021/acssuschemeng.6b02231. 

(42) Sutter, M.; Pehlivan, L.; Lafon, R.; Dayoub, W.; Raoul, Y.; Métay, E.; Lemaire, M. 1,2,3-

Trimethoxypropane, a glycerol-based solvent with low toxicity: new utilization for the reduction 

of nitrile, nitro, ester, and acid functional groups with TMDS and a metal catalyst. Green 

Chemistry 2013, 15 (11), 3020-3026, 10.1039/C3GC41082J. DOI: 10.1039/C3GC41082J. 

(43) Weininger, D. SMILES, a chemical language and information system. 1. Introduction to 

methodology and encoding rules. Journal of Chemical Information and Computer Sciences 1988, 

28 (1), 31-36. DOI: 10.1021/ci00057a005. 

(44) O'Boyle, N. M.; Banck, M.; James, C. A.; Morley, C.; Vandermeersch, T.; Hutchison, G. 

R. Open Babel: An open chemical toolbox. Journal of Cheminformatics 2011, 3 (1), 33. DOI: 

10.1186/1758-2946-3-33. 



(45) Spicher, S.; Grimme, S. Robust Atomistic Modeling of Materials, Organometallic, and 

Biochemical Systems. Angewandte Chemie International Edition 2020, 59 (36), 15665-15673. 

DOI: https://doi.org/10.1002/anie.202004239. 

(46) Grimme, S. Exploration of Chemical Compound, Conformer, and Reaction Space with 

Meta-Dynamics Simulations Based on Tight-Binding Quantum Chemical Calculations. Journal of 

Chemical Theory and Computation 2019, 15 (5), 2847-2862. DOI: 10.1021/acs.jctc.9b00143. 

(47) Semiempirical extended tight-binding program xtb; https://github.com/grimme-lab/xtb 

(accessed February, 2021). 

(48) Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-xTB—An Accurate and Broadly Parametrized 

Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and 

Density-Dependent Dispersion Contributions. Journal of Chemical Theory and Computation 

2019, 15 (3), 1652-1671. DOI: 10.1021/acs.jctc.8b01176. 

(49) Soyemi, A.; Szilvási, T. Benchmarking Semiempirical QM Methods for Calculating the 

Dipole Moment of Organic Molecules. The Journal of Physical Chemistry A 2022, 126 (11), 1905-

1921. DOI: 10.1021/acs.jpca.1c10144. 

(50) Gaussian 16 Rev. C.01; Wallingford, CT, 2016. 

(51) Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. The 

Journal of Chemical Physics 1993, 98 (7), 5648-5652. DOI: 10.1063/1.464913. 

(52) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected 

density functional theory. Journal of Computational Chemistry 2011, 32 (7), 1456-1465. DOI: 

https://doi.org/10.1002/jcc.21759. 

https://doi.org/10.1002/anie.202004239
https://github.com/grimme-lab/xtb
https://doi.org/10.1002/jcc.21759


(53) Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and 

quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. physical chemistry 

chemical physics 2005, 7 (18), 3297-3305. DOI: 10.1039/B508541A. 

(54) BIOVIA COSMOtherm; Dassault Systèmes: http://www.3ds.com (accessed  2022/07/01).. 

(55) Perdew, J. P. Density-functional approximation for the correlation energy of the 

inhomogeneous electron gas. Physical Review B 1986, 33 (12), 8822-8824. DOI: 

10.1103/PhysRevB.33.8822. 

(56) Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic 

behavior. Physical Review A 1988, 38 (6), 3098-3100. DOI: 10.1103/PhysRevA.38.3098. 

(57) Schäfer, A.; Huber, C.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets of triple 

zeta valence quality for atoms Li to Kr. The Journal of Chemical Physics 1994, 100 (8), 5829-

5835. DOI: 10.1063/1.467146 (acccessed 2021/05/22). 

(58) Eckert, F.; Klamt, A. Fast solvent screening via quantum chemistry: COSMO-RS approach. 

AIChE Journal 2002, 48 (2), 369-385, https://doi.org/10.1002/aic.690480220. DOI: 

https://doi.org/10.1002/aic.690480220 (acccessed 2021/05/22). 

(59) Klamt, A.; Eckert, F. COSMO-RS: a novel and efficient method for the a priori prediction 

of thermophysical data of liquids. Fluid Phase Equilibria 2000, 172 (1), 43-72. DOI: 

10.1016/S0378-3812(00)00357-5. 

(60) Qian, S.; Mileski, P.; Irvin, A. C.; Soyemi, A.; Szilvási, T.; Bara, J. E. Experimental and 

Computational Study of the Properties of Imidazole Compounds with Branched and Cycloalkyl 

Substituents. In Liquids, 2022; Vol. 2, pp 14-25. 

http://www.3ds.com/
https://doi.org/10.1002/aic.690480220
https://doi.org/10.1002/aic.690480220


(61) Klamt, A.; Eckert, F.; Arlt, W. COSMO-RS: An Alternative to Simulation for Calculating 

Thermodynamic Properties of Liquid Mixtures. Annual Review of Chemical and Biomolecular 

Engineering 2010, 1 (1), 101-122. DOI: 10.1146/annurev-chembioeng-073009-100903 (acccessed 

2021/11/10). 

(62) Lahtela, V.; Hyvärinen, M.; Kärki, T. Composition of Plastic Fractions in Waste Streams: 

Toward More Efficient Recycling and Utilization. Polymers, 2019, 11 (1), 69. DOI: 

https://doi.org/10.3390/polym11010069 . 

(63) Hansen, C. M. Hansen Solubility Parameters: A User's Handbook; CRC Press, Boca Raton 

FL, USA. 2007. 

(64) Abbott, S. H., C.M; Yamamoto, H. Hansen Solubility Parameters in Practice - Complete 

with software, data, and examples, 2nd ed.; www.hansen-solubility.com, 2009 (accessed 

2022/05/2). 

(65) Hansen, C. M. The three dimensional solubility parameter - key to paint component 

affinities: I. Solvents, plasticizers, polymers, and resins. 1967. 

(66) Hou, T. J.; Xia, K.; Zhang, W.; Xu, X. J. ADME evaluation in drug discovery. 4. Prediction 

of aqueous solubility based on atom contribution approach. J Chem Inf Comput Sci 2004, 44 (1), 

266-275. DOI: 10.1021/ci034184n. From NLM. 

(67) Sorkun, M. C.; Khetan, A.; Er, S. AqSolDB, a curated reference set of aqueous solubility 

and 2D descriptors for a diverse set of compounds. Scientific Data 2019, 6 (1), 143. DOI: 

10.1038/s41597-019-0151-1. 



(68) Zang, Q.; Mansouri, K.; Williams, A. J.; Judson, R. S.; Allen, D. G.; Casey, W. M.; 

Kleinstreuer, N. C. In Silico Prediction of Physicochemical Properties of Environmental 

Chemicals Using Molecular Fingerprints and Machine Learning. Journal of Chemical Information 

and Modeling 2017, 57 (1), 36-49. DOI: 10.1021/acs.jcim.6b00625. 

(69) Alshehri, A. S.; Tula, A. K.; You, F.; Gani, R. Next generation pure component property 

estimation models: With and without machine learning techniques. AIChE Journal 2022, 68 (6), 

e17469, https://doi.org/10.1002/aic.17469. DOI: https://doi.org/10.1002/aic.17469 (acccessed 

2022/09/28). 

(70) Goodfellow, I.; Bengio, Y.; Courville, A. Deep learning; MIT press, Cambrigde MA, USA, 

2016. 

(71) Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, 

M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-learn: Machine learning in Python. the Journal 

of machine Learning research 2011, 12, 2825-2830. 

(72) Jolliffe, I. Principal Component Analysis. In Encyclopedia of Statistics in Behavioral 

Science, Wiley, New York, USA, 2005. 

(73) Ruder, S. An overview of gradient descent optimization algorithms. ArXiv 2016, September 

15, 2016, DOI: https://doi.org/10.48550/arXiv.1609.04747 (accessed 2022/10/13). 

(74) Martín Abadi, A. A., Paul Barham, Eugene Brevdo,; Zhifeng Chen, C. C., Greg S. Corrado, 

Andy Davis,; Jeffrey Dean, M. D., Sanjay Ghemawat, Ian Goodfellow,; Andrew Harp, G. I., 

Michael Isard, Rafal Jozefowicz, Yangqing Jia,; Lukasz Kaiser, M. K., Josh Levenberg, Dan 

Mané, Mike Schuster,; Rajat Monga, S. M., Derek Murray, Chris Olah, Jonathon Shlens,; Benoit 

https://doi.org/10.1002/aic.17469
https://doi.org/10.1002/aic.17469


Steiner, I. S., Kunal Talwar, Paul Tucker,; Vincent Vanhoucke, V. V., Fernanda Viégas,; Oriol 

Vinyals, P. W., Martin Wattenberg, Martin Wicke,; Yuan Yu, a. X. Z. TensorFlow: Large-scale 

machine learning on heterogeneous systems. In 12th USENIX Symposium on Operating Systems 

Design and Implementation, Savannah, GA, USA, 2016. 

(75) Google. Welcome to Colaboratory!. 

https://colab.research.google.com/gist/lzhou1110/2a30a81cb8c175514ed627bc18016774/hello-

colaboratory.ipynb (accessed 2022/08/10). 

(76) Prasad, S.; Brooks, B. R. A deep learning approach for the blind logP prediction in SAMPL6 

challenge. Journal of Computer-Aided Molecular Design 2020, 34 (5), 535-542. DOI: 

10.1007/s10822-020-00292-3. 

(77) Ma, J.; Sheridan, R. P.; Liaw, A.; Dahl, G. E.; Svetnik, V. Deep Neural Nets as a Method 

for Quantitative Structure–Activity Relationships. Journal of Chemical Information and Modeling 

2015, 55 (2), 263-274. DOI: 10.1021/ci500747n. 

(78) Ghasemi, F.; Mehridehnavi, A.; Fassihi, A.; Pérez-Sánchez, H. Deep neural network in 

QSAR studies using deep belief network. Applied Soft Computing 2018, 62, 251-258. DOI: 

https://doi.org/10.1016/j.asoc.2017.09.040. 

(79) Lusci, A.; Pollastri, G.; Baldi, P. Deep Architectures and Deep Learning in 

Chemoinformatics: The Prediction of Aqueous Solubility for Drug-Like Molecules. Journal of 

Chemical Information and Modeling 2013, 53 (7), 1563-1575. DOI: 10.1021/ci400187y. 

(80) Agarap, A. F. Deep Learning using Rectified Linear Units (ReLU). ArXiv 2018, March 22, 

2018, DOI:  

https://colab.research.google.com/gist/lzhou1110/2a30a81cb8c175514ed627bc18016774/hello-colaboratory.ipynb
https://colab.research.google.com/gist/lzhou1110/2a30a81cb8c175514ed627bc18016774/hello-colaboratory.ipynb
https://doi.org/10.1016/j.asoc.2017.09.040


https://doi.org/10.48550/arXiv.1803.08375 (accessed 2022/10/13). 

(81) Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: a 

simple way to prevent neural networks from overfitting. The journal of machine learning research 

2014, 15 (1), 1929-1958. 

(82) Xu, B.; Wang, N.; Chen, T.; Li, M. Empirical Evaluation of Rectified Activations in 

Convolutional Network. ArXiv 2015, May 5, 2015, DOI: 

https://doi.org/10.48550/arXiv.1505.00853 (accessed 2022/10/13). 

(83) Yang, K.; Swanson, K.; Jin, W.; Coley, C.; Eiden, P.; Gao, H.; Guzman-Perez, A.; Hopper, 

T.; Kelley, B.; Mathea, M.; et al. Analyzing Learned Molecular Representations for Property 

Prediction. Journal of Chemical Information and Modeling 2019, 59 (8), 3370-3388. DOI: 

10.1021/acs.jcim.9b00237. 

(84) Chen, L.-Y.; Hsu, T.-W.; Hsiung, T.-C.; Li, Y.-P. Deep Learning-Based Increment Theory 

for Formation Enthalpy Predictions. The Journal of Physical Chemistry A 2022, 126 (41), 7548-

7556. DOI: 10.1021/acs.jpca.2c04848. 

(85) Li, L.; Lu, Z.; Liu, G.; Tang, Y.; Li, W. In Silico Prediction of Human and Rat Liver 

Microsomal Stability via Machine Learning Methods. Chemical Research in Toxicology 2022, 35 

(9), 1614-1624. DOI: 10.1021/acs.chemrestox.2c00207. 

(86) Yang, K.; Swanson, K.; Jin, W.; Coley, C.; Eiden, P.; Gao, H.; Guzman-Perez, A.; Hopper, 

T.; Kelley, B.; Mathea, M.; et al. Analyzing Learned Molecular Representations for Property 

Prediction. Journal of Chemical Information and Modeling 2019, 59 (8), 3370-3388. DOI: 

10.1021/acs.jcim.9b00237. 



(87) Molecular Property Prediction https://github.com/chemprop/chemprop (accessed 

November 17, 2022). 

(88) Bradley, J.-C.; Lang, A.; Williams, A. Jean-Claude Bradley double plus good (highly 

curated and validated) melting point dataset. Figshare 2014, 10, m9, DOI: 

http://dx.doi.org/10.6084/m9.figshare.1031637. 

(89) Tetko, I. V.; M. Lowe, D.; Williams, A. J. The development of models to predict melting 

and pyrolysis point data associated with several hundred thousand compounds mined from 

PATENTS. Journal of Cheminformatics 2016, 8 (1), 2. DOI: 10.1186/s13321-016-0113-y. 

(90) Morgan, H. L. The Generation of a Unique Machine Description for Chemical Structures-

A Technique Developed at Chemical Abstracts Service. Journal of Chemical Documentation 

1965, 5 (2), 107-113. DOI: 10.1021/c160017a018. 

(91) Moldoveanu, S. C.; David., V. Intermolecular Interactions. In Essentials in Modern HPLC 

Separations, 2nd ed. Elsevier, 2013, pp 147-176 

(92) Leal-Duaso, A.; Pérez, P.; Mayoral, J. A.; Pires, E.; García, J. I. Glycerol as a source of 

designer solvents: physicochemical properties of low melting mixtures containing glycerol ethers 

and ammonium salts. Physical Chemistry Chemical Physics 2017, 19 (41), 28302-28312, 

10.1039/C7CP04987K. DOI: 10.1039/C7CP04987K. 

(93) Petrucci, R. H., F. Geoffrey Herring, Jeffrey D. Madura, Carey Bissonnette. General 

Chemistry: Principles and Modern Applications; Pearson Education, New York, USA, 2011. 

https://github.com/chemprop/chemprop


(94) Wang, K.; Jirka, M.; Rai, P.; Twieg, R. J.; Szilvási, T.; Yu, H.; Abbott, N. L.; Mavrikakis, 

M. Synthesis and properties of hydroxy tail-terminated cyanobiphenyl liquid crystals. Liquid 

Crystals 2019, 46 (3), 397-407. DOI: 10.1080/02678292.2018.1502373. 

(95) Wang, K.; Szilvási, T.; Gold, J.; Yu, H.; Bao, N.; Rai, P.; Mavrikakis, M.; Abbott, N. L.; 

Twieg, R. J. New room temperature nematogens by cyano tail termination of alkoxy and 

alkylcyanobiphenyls and their anchoring behavior on metal salt-decorated surface. Liquid Crystals 

2020, 47 (4), 540-556. DOI: 10.1080/02678292.2019.1662116. 

(96) Wang, K.; Rahman, M. S.; Szilvási, T.; Gold, J. I.; Bao, N.; Yu, H.; Abbott, N. L.; 

Mavrikakis, M.; Twieg, R. J. Influence of multifluorophenyloxy terminus on the mesomorphism 

of the alkoxy and alkyl cyanobiphenyl compounds in search of new ambient nematic liquid crystals 

and mixtures. Liquid Crystals 2021, 48 (5), 672-688. DOI: 10.1080/02678292.2020.1810792. 

(97) Wang, K.; Rai, P.; Fernando, A.; Szilvási, T.; Yu, H.; Abbott, N. L.; Mavrikakis, M.; Twieg, 

R. J. Synthesis and properties of fluorine tail-terminated cyanobiphenyls and terphenyls for 

chemoresponsive liquid crystals. Liquid Crystals 2020, 47 (1), 3-16. DOI: 

10.1080/02678292.2019.1616228. 

(98) Hermens, J. L. M.; de Bruijn, J. H. M.; Brooke, D. N. The octanol–water partition 

coefficient: Strengths and limitations. Environmental Toxicology and Chemistry 2013, 32 (4), 732-

733, https://doi.org/10.1002/etc.2141. DOI: https://doi.org/10.1002/etc.2141 (acccessed 

2023/02/07). 

(99) Min, K.; Cuiffi, J. D.; Mathers, R. T. Ranking environmental degradation trends of plastic 

marine debris based on physical properties and molecular structure. Nature Communications 2020, 

11 (1), 727. DOI: 10.1038/s41467-020-14538-z. 

https://doi.org/10.1002/etc.2141
https://doi.org/10.1002/etc.2141


(100) Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. 

The Halogen Bond. Chemical Reviews 2016, 116 (4), 2478-2601. DOI: 

10.1021/acs.chemrev.5b00484. 

(101) Müller, K. 2 - Fluorination patterns in small alkyl groups: their impact on properties 

relevant to drug discovery. In Fluorine in Life Sciences: Pharmaceuticals, Medicinal Diagnostics, 

and Agrochemicals, Haufe, G., Leroux, F. R. Eds.; Academic Press, Cambridge MA, USA, 2019; 

pp 91-139. 

(102) Copley, M. J.; Ginsberg, E.; Zellhoefer, G. F.; Marvel, C. S. Hydrogen Bonding and the 

Solubility of Alcohols and Amines in Organic Solvents. XIII. Journal of the American Chemical 

Society 1941, 63 (1), 254-256. DOI: 10.1021/ja01846a059. 

(103) Stephenson, R. M. Mutual solubility of water and aliphatic amines. Journal of Chemical 

& Engineering Data 1993, 38 (4), 625-629. DOI: 10.1021/je00012a039. 

(104) Petcore. Post consumer PET recycling in Europe; 2010.  (accessed 10/21/2022). 

(105) Venkatram, S.; Kim, C.; Chandrasekaran, A.; Ramprasad, R. Critical Assessment of the 

Hildebrand and Hansen Solubility Parameters for Polymers. Journal of Chemical Information and 

Modeling 2019, 59 (10), 4188-4194. DOI: 10.1021/acs.jcim.9b00656. 

(106) Miller-Chou, B. A.; Koenig, J. L. A review of polymer dissolution. Progress in Polymer 

Science 2003, 28 (8), 1223-1270. DOI: https://doi.org/10.1016/S0079-6700(03)00045-5. 

 

  

https://doi.org/10.1016/S0079-6700(03)00045-5


TOC: 

 


