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Abstract

Phenotypic sexual dimorphism often involves the hormonal regulation of sex-biased expression for underlying genes. However, it is generally un-
known whether the evolution of hormonally mediated sexual dimorphism occurs through upstream changes in tissue sensitivity to hormone sig-
nals, downstream changes in responsiveness of target genes, or both. Here, we use comparative transcriptomics to explore these possibilities
in 2 species of Sceloporus lizards exhibiting different patterns of sexual dichromatism. Sexually dimorphic S. undulatus develops blue and black
ventral coloration in response to testosterone, while sexually monomorphic S. virgatus does not, despite exhibiting similar sex differences in cir
culating testosterone levels. We administered testosterone implants to juveniles of each species and used RNAseq to quantify gene expression
in ventral skin. Transcriptome-wide responses to testosterone were stronger in S. undulatus than in S. virgatus, suggesting species differences
in tissue sensitivity to this hormone signal. Species differences in the expression of genes for androgen metabolism and sex hormone-binding
globulin were consistent with this idea, but expression of the androgen receptor gene was higher in S. virgatus, complicating this interpretation.
Downstream of androgen signaling, we found clear species differences in hormonal responsiveness of genes related to melanin synthesis,
which were upregulated by testosterone in S. undulatus, but not in S. virgatus. Collectively, our results indicate that hormonal regulation of
melanin synthesis pathways contributes to the development of sexual dimorphism in S. undulatus, and that changes in the hormonal respon-
siveness of these genes in S. virgatus contribute to the evolutionary loss of ventral coloration.
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et al. 2016). We use this framework to test whether the ev-
olutionary loss of hormonally regulated sexual dimorphism
occurs through upstream changes in tissue sensitivity to a
hormonal signal, downstream changes in the responsiveness
of specific genes and pathways to a hormonal signal, or a
combination of these mechanisms.

Fence and spiny lizards (genus Sceloporus) provide an ideal
comparative system because they exhibit repeated evolutionary
transitions in sexual dimorphism for traits such as body size
and coloration (Wiens 1999; John-Alder and Cox 2007; Ossip-
Drahos et al. 2016; Jiménez-Arcos et al. 2017). The effects of
testosterone on color and growth phenotypes are known to
differ across species with different patterns of dimorphism
(Quinn and Hews 2003; Cox and John-Alder 2005; Cox et al.
2005a,b, 2007, 2009). For example, S. undulatus males have
vibrant blue and black patches on their abdomens and throats,
whereas this coloration is absent or greatly reduced in females
(Fig. 1). These patches can be induced by exogenous androgens
in juveniles of both sexes, but they only develop naturally in
males due to organizational effects of rising testosterone levels
during maturation (Cox et al. 2005a; Pollock et al. 2017), and
activational effects of elevated testosterone during the breeding
season are required to maintain vibrant blue color in adults
(Cox et al. 2005a; Robinson and Gifford 2019). Conversely, S.
virgatus males do not develop abdominal coloration naturally
or in response to exogenous testosterone (Abell 1998b; Quinn
and Hews 2003) and their white abdomens are virtually in-
distinguishable from those of females (Fig. 1). Whereas many
Sceloporus species have independently evolved a derived state
of vibrant ventral coloration in females, suggesting cross-sexual
transfer (West-Eberhard 2003; Anderson and Falk 2023), S.
virgatus has instead lost the ancestral state of vibrant ventral
coloration in males that is retained by S. undulatus. These 2
species diverged approximately 12 million years ago (Wiens
1999; Ossip-Drahos et al. 2016) and adult males of both spe-
cies have similarly high levels of circulating testosterone during
the breeding season (Abell 1998a; Cox and John-Alder 2005,
2007; Cox et al. 2005a; John-Alder et al. 2009; Hews et al.
2012). Therefore, the evolutionary loss of blue ventral colora-
tion in S. virgatus males is due to the loss of color production,
either generally or specifically in response to testosterone, rather
than a change in circulating testosterone as a signal mediating
sexual dichromatism. However, it is unknown whether this
loss of color production in S. virgatus has occurred via the up-
stream loss of tissue sensitivity to testosterone, via downstream
changes in the responsiveness of specific genes and pathways
that underlie color production, or both.

In Sceloporus and other lizards, blue abdominal coloration
is produced through the organization of 2 distinct pigment
cells. In the dermis, a layer of iridophores sits superficial to
a layer of melanophores (Taylor and Hadley 1970; McLean
et al. 2017; Nicolai et al. 2021), the ectotherm homologs of
mammalian melanocytes. The iridophores contain orderly
stacks of guanine platelets that reflect different wavelengths
of light depending upon their orientation, and the underlying
melanophores produce melanin granules that absorb any light
that is not reflected by the iridophores (Morrison et al. 1995).
This cellular arrangement is exemplified by the blue skin of
adult S. undulatus males, which results from both the reflec-
tion of blue light by iridophores and the absorption of other
wavelengths by underlying melanophores (Fig. 1A-C). The
presence of a similar iridophore layer in S. undulatus juveniles
(C. D. Robinson, personal observation) and adult females
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(Fig. 1D-F), as well as in S. virgatus adults of either sex (Fig.
1G-L), suggests that elevated testosterone is not necessary
for iridophore development, and that iridophores alone are
insufficient for the expression of blue color. In S. undulatus
and closely related S. consobrinus (previously S. undulatus
consobrinus), as well as other phrynosomatid lizards in which
males develop blue ventral coloration, testosterone stimulates
melanin production in the dermis (Kimball and Erpino 1971;
Quinn and Hews 2003; Cox et al. 2005, 2008). Consequently,
the evolutionary loss of sexually dimorphic coloration in S.
virgatus likely occurred primarily through the loss of mel-
anin synthesis in ventral skin, rather than through changes
in the iridophore layer (Fig. 2A and B). Therefore, we focus
our a priori tests (see below) on genes and pathways that are
involved in melanocortin production and melanin synthesis
(Table 1 and Fig. 2C) as likely candidates for the evolutionary
loss of responsiveness to androgen signaling. In addition to
these specific downstream genes and pathways involved in
melanin synthesis, we also focus on upstream pathways re-
lated to androgen metabolism, androgen availability, and an-
drogen receptor expression (Table 1 and Fig. 2C).

To examine species differences in responsiveness to an-
drogen signaling, we manipulated circulating testosterone
levels in S. undulatus and S. virgatus juveniles and then used
bulk RNAseq of ventral skin to compare gene expression be-
tween controls and individuals with experimentally elevated
testosterone within each species. We conducted this experi-
ment in juveniles to test for effects on gene expression prior
to sexual divergence in circulating testosterone, which avoids
any confounding effects of endogenous testosterone and
allows us to assess the development of coloration prior to
any natural induction by testosterone. We first characterized
genes and pathways responsive to testosterone in S. undulatus
to identify those that potentially contribute to the develop-
ment of vibrant coloration in this sexually dimorphic spe-
cies. We then explored which of these genes and pathways
have different expression patterns or fail to respond to tes-
tosterone in S. virgatus, potentially explaining the loss of vi-
brant ventral color in this sexually monomorphic species. We
approached this comparison using a combination of unbiased
analyses across the entire skin transcriptome and targeted
analyses of specific genes selected a priori to test several po-
tential mechanisms for the evolutionary loss of hormonally
mediated ventral coloration (Table 1 and Fig. 2C). Specifically,
we tested whether these 2 closely related species differ in the
expression of 1) upstream genes that mediate tissue sensitivity
to androgens, 2) genes downstream from androgen signaling
that regulate the production of melanin pigment, and 3)
marker genes that indicate the presence of melanophores or
melanophore precursors. Collectively, these analyses allow us
to address an issue of general significance in evolutionary en-
docrinology (Cox et al. 2022): whether evolutionary changes
in hormonally mediated phenotypes occur via upstream
changes in tissue sensitivity to hormonal signals, downstream
changes in hormonal responsiveness of target genes, or a com-
bination of these mechanisms.

Methods

Experimental design and sample collection

We collected wild juvenile Eastern Fence Lizards (S.
undulatus; sexually dichromatic) and Striped Plateau Lizards
(S. virgatus; sexually monochromatic) at approximately 1
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Fig. 1. Photographs and transmission electron micrographs of ventral skin in (A-C) S. undulatus males, (D-F) S. undulatus females, (G-I) S. virgatus
males, and (J-L) S. virgatus females. Blue skin in S. undulatus males results from reflection of blue light by organized guanine platelets (G) within
iridophores, and from absorption of other wavelengths by an underlying layer of melanin-filled melanosomes (M) within melanophores. Organized
guanine platelets are present within iridophores of all 4 groups, but a pronounced melanophore layer of melanin-filed melanosomes is only present
in S. undulatus males. Images from panels A and D were originally published in Cox et al. (2005a) by the American Society of Ichthyologists and
Herpetologists. They are being used under a Creative Commons CC BY license.
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Fig. 2. Proposed model of ventral skin in (A) S. undulatus and (B) S. virgatus. Adult S. undulatus males have a layer of melanized melanophores deep
to the iridophore layer, whereas S. virgatus males do not. Melanophores in S. virgatus are illustrated with dashed lines to indicate that it is unknown
whether S. virgatus retains unpigmented melanophores in its ventral skin. (C) In S. undulatus, we hypothesize that free androgens bind the androgen
receptor (AR) to induce melanin synthesis via production of proopiomelanocortin (POMC), which is processed into a-melanocyte stimulating hormone
(a-MSH) that binds the melanocortin-1 receptor (MC1R) on the surface of melanophores to stimulate melanin synthesis.

mo of age and transported them to the University of Virginia,
where they were housed individually in small terraria. After
a 1-mo acclimation period, we split individuals of each spe-
cies and sex into 2 size-matched treatment groups: one re-
ceiving a small intraperitoneal implant filled with 100 pg
crystalline testosterone and one receiving an empty implant
as a control. Implant construction and surgical procedures
followed previous studies (Cox et al. 2015, 2017; Wittman
et al. 2021) and were designed to elevate circulating tes-
tosterone to levels typical of breeding adult males of each
species (Cox and John-Alder 2005; Cox et al. 2005a; John-
Alder et al. 2009; Hews et al. 2012). Further details about
sample collection, animal care, environmental conditions in
captivity, methods for implant design, and protocols for sur-
gery are provided as Supplementary Materials. Eight weeks
after treatment, we quantified color development by taking
ventral photographs of each animal and using Fiji (Image]
1.52v) software (Schindelin et al. 2012) and R v4.2.1 (R
Core Team 2022) to estimate hue, saturation, and bright-
ness. Hue represents the dominant wavelength, saturation
represents a metric of color purity, and brightness represents
closeness to white. For further details about color quanti-
fication, see the Supplementary Materials. The following
day, we euthanized each animal via decapitation and im-
mediately collected blood to confirm treatment effects on
circulating testosterone levels via radioimmunoassay (see
Supplementary Materials). We also immediately collected
ventral skin from areas in which colorful abdominal patches
develop in adult S. undulatus males (abdominal patches are
absent in S. virgatus and in unmanipulated S. undulatus
juveniles) into RNAlater (ThermoFisher Scientific) on ice,

then refrigerated them for 24 h at 4 °C and stored them at
-80 °C until RNA extraction.

We extracted RNA from skin of 48 juvenile lizards (17 = 6 per
treatment, per sex, per species) using Illustra RNAspin Mini
RNA Isolation Kit (GE Healthcare) following manufacturer
specifications with minor modifications (see Supplementary
Materials). RNA quality was assessed using a Nanodrop
spectrophotometer  (ThermoFisher  Scientific, Waltham
Massachusetts) and Agilent 2100 BioAnalyzer (RNA 600
Pico; Agilent Biotechnologies, Santa Clara, California).
Library preparation and sequencing were carried out by the
Georgia Genomics and Bioinformatics Core (University of
Georgia, Athens, Georgia). Two libraries (one S. undulatus
control male, one S. virgatus testosterone male) were not
sequenced due to low RNA concentrations. cDNA libraries
were prepared from total RNA (~500 ng per sample) using
KAPA Biosystems (Wilmington, Massachusetts) RNA li-
brary preparation chemistry with poly(A) selection. Libraries
were sequenced on an Illumina NextSeq 2000 (2 x 100 bp
paired-end sequencing) using P3 high-output flow cells. We
assessed read quality and trimmed reads using Fastp (Chen
et al. 2018) with paired-end base correction, low complexity
filtering, 3" end tail quality trimming (average phred threshold
= 20; window size = §), and poly(g) and poly(x) trimming
enabled. We also applied an overall minimum length filter
of 36 bp and minimum phred score threshold of 25, then
aligned reads to the S. undulatus genome (Westfall et al.
2021; GCA_019175285.1, SceUnd_v1.1) using subread-align
(Liao et al. 2013), with S. undulatus transcripts used as an
alignment guide (GCF_019175285.1). Following alignment,
we assigned both uniquely mapped fragments and singleton
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Table 1. Genes selected a priori to test hypotheses for species differences in “Tissue sensitivity to testosterone,
mediation of melanin synthesis,” and “presence of melanophores. “Tissue sensitivity” includes genes with products that influence

"o

signaling,

641

"o

melanocortin production and

androgen metabolism, androgen availability, and androgen receptor availability. “Melanocortin production and signalling” includes genes with products
that produce and detect a-melanocyte stimulating hormone. “Mediation of melanin synthesis"” includes genes with products that influence melanin
synthesis. “"Presence of melanophores” includes genes commonly used as molecular markers of melanophores and their cellular precursors. Bolded

gene names and predictions indicate instances in which we find statistical support for our predictions.

Hypothesis

Gene

Product and function

Prediction for expression

Tissue sensitivity to testos-
terone
Conclusion: Partial support

CYP19A1

SRDSA1 SRDSA2
SRDSA3

Aromatase—converts testosterone (T) to estradiol,
which cannot bind AR

Sa-Reductase—converts T to more potent andro-
gen Sa-dihydrotestosterone (5a-DHT), which also
binds AR

Sex hormone-binding globulin—binds T and

Androgen receptor (AR)—mediates gene expression

Proopiomelanocortin (POMC)—precursor to
adrenocorticotropic hormone (ACTH) and
a-melanocyte stimulating hormone (a-MSH)

Prohormone convertase 1 (PC1)—cleaves POMC

Prohormone convertase 2—cleaves ACTH into
Melanocortin-1 receptor—binds ACTH and
Tyrosinase—converts tyrosine into melanin
Tyrosinase-related protein 1—stabilizes tyrosinase
P protein—regulates melanosome pH to facilitate
Dopachrome tautomerase—regulates melanophore

KIT protein—facilitates signaling to regulate cellu-

SHBG
prevents androgen signaling
AR
when bound by T or 5a-DHT
Melanocortin production and POMC
signaling
Conclusion: Partial support
PCSK1
into ACTH
PCSKIN proSAAS—inhibits PC1
PCSK2
a-MSH
MCIR
0-MSH to regulate melanin synthesis
Mediation of melanin syn- TYR
thesis precursors
Conclusion: Strong support TYRP1
in melanosomal membranes
OCA2
melanin synthesis
Presence of melanophores DCT
Conclusion: No support survival
KIT
lar processes in melanophores
MITF

Microphthalmia-associated transcription factor—
regulates melanophore processes

Higher in S. virgatus

Higher in S. undulatus

Higher in S. virgatus
Higher in S. undulatus

Higher in S. undulatus and/or
upregulated by T in S. undulatus

Higher in S. undulatus and/or
upregulated by T in S. undulatus

Lower in S. undulatus and/or

downregulated by T in S. undulatus

Higher in S. undulatus and/or
upregulated by T in S. undulatus

Higher in S. undulatus and/or
upregulated by T in S. undulatus

Higher in S. undulatus and/or
upregulated by T in S. undulatus

Higher in S. undulatus and/or
upregulated by T in S. undulatus

Higher in S. undulatus and/or
upregulated by T in S. undulatus
Not expressed in S. virgatus

Not expressed in S. virgatus

Not expressed in S. virgatus

reads to annotated S. undulatus genes using featureCounts
(Liao et al. 2014) to generate a matrix of read counts.

Identification and functional characterization of
testosterone-responsive genes

All statistical analyses were run in R v4.2.1 (R Core Team
2022). To characterize transcriptome-wide responses to tes-
tosterone in each species and identify testosterone-responsive
genes with an unbiased approach, we conducted differential
gene expression analysis on read counts from both species
using the package edgeR v3.30.3 (Robinson et al. 2010). Prior
to analysis, 2 libraries were removed due to low read counts
(316k reads for a S. undulatus control female and 4.3 M
reads for a S. virgatus control male). We removed genes with
low expression using filterByExpr in edgeR, which retained
18,017 genes. We then conducted principal components
analysis using robpca within rospca v1.0.4 (Reynkens 2018)
to test for outlier libraries. Three S. virgatus libraries (one
control female, one testosterone female, and one control
male) were subsequently removed. In total, 41 libraries were

included in differential expression analyses, with 7 = 4 to
6 libraries per treatment, per sex, per species (Table 2) and
an average library size of 19.9 M reads in S. undulatus and
19.5 M reads in S. virgatus. We normalized read counts using
trimmed mean of M-values (TMM) normalization and used
glmQLFit in edgeR to fit a negative binomial model to our
data, specifying robust = TRUE to reduce the influence of
hypervariable genes (see Phipson et al. 2016). Finally, we
used the function glmQLFTest to calculate quasi-likelihood
F-tests for paired contrasts between treatment groups (tes-
tosterone vs. control) within each species, retaining the effect
of sex in each species comparison. We conducted these same
analyses without the effect of sex, and results were largely
similar. We chose to present results from analyses including
sex because an additional 787 genes pass filtering with this
added biological information. Genes were considered signifi-
cantly differentially expressed genes (hereafter, DEGs) if their
P-value was less than 0.05 following Benjamini-Hochberg
correction for false discovery (Benjamini and Hochberg
1995).

€202 Joquiadaq B} Uo Josn Areiqr eIuIBIIA Jo ANSISAIUN AQ 61L2ECL/2€9/9/7 | L/RIOIHE/PRISY[/WOD dNO ILSPEDE//:SANY WOI) POPEOJUMOQ



642 Journal of Heredity, 2023, Vol. 114, No. 6

Table 2. Sample sizes for each species, sex, and treatment group. We extracted RNA from skin from 6 individuals per treatment, per sex, per species
(48 total). Values here represent the numbers used in analysis after libraries were removed due to low RNA concentrations, low read counts, and visual

examination of robustPCA plots.

Species Control Testosterone

Female Male Total Female Male Total
S. undulatus 5 5 10 6 6 12
S. virgatus N N 10

To infer functions of genes that were differentially
expressed in response to testosterone, we used gene on-
tology (GO) analysis (Ashburner et al. 2000; The Gene
Ontology Consortium 2021). Specifically, we used the
PANTHER Overrepresentation Test (PANTHER17.0; GO
Ontology database DOI: 10.5281/zenod0.6799722) with
Fisher’s exact test to examine GO biological processes and
cellular components. We tested for enrichment of biological
processes with DEGs using all protein-coding genes from
3 species: Homo sapiens (human) as the default GO ref-
erence species; Anolis carolinensis (green anole) as a com-
parison to another lizard; and Danio rerio (zebrafish) as a
comparison to a model organism for pigment cell develop-
ment (Parichy 2021). Green anoles and zebrafish both have
dermal iridophores, which are absent in mammals, so in-
cluding these species facilitates the identification of biolog-
ical processes and cellular components related to iridophore
development that would not be detectable using only the de-
fault human database. We used these GO analyses to charac-
terize genes and pathways that respond to testosterone in S.
undulatus and identify those likely to underlie the develop-
ment of ventral coloration in this sexually dimorphic species.
We predicted that any pathways related to color that were
enriched for DEGs in S. undulatus would not be enriched for
DEGs in sexually monomorphic S. virgatus, in which testos-
terone does not induce vibrant ventral color.

Species differences in transcriptome-wide
responsiveness to testosterone

To explore whether the loss of color in S. virgatus reflects
a tissue-wide loss of transcriptomic responsiveness to tes-
tosterone, we first tested whether the total number of DEGs
differed between species using a chi-square test with one de-
gree of freedom. Because of differences in our statistical power
to identify DEGs due to species differences in sample size (22
S. undulatus libraries, 19 S. virgatus libraries), we extended
this analysis by iteratively dropping 3 S. undulatus libraries
and recalculating the number of DEGs 1,540 times, covering
all possible combinations in which 3 out of 22 individuals
could be removed to achieve equal sample sizes between spe-
cies. For each iteration, we used a chi-square test to compare
the total number of DEGs between species, then calculated
the proportion of comparisons in which the number of DEGs
differed (P < 0.05) between species.

To assess the overall similarity of transcriptomic respon-
siveness to testosterone between species, we asked whether
DEGs that were significantly up- or downregulated by tes-
tosterone in one species had log,-fold change (log,FC) values
that were similarly different from zero in the other species.
Specifically, we used Wilcoxon signed-rank tests to determine

whether the median log,FC values of the DEGs upregulated
by testosterone in one species were significantly greater than
zero in the other species, and whether the median log,FC
values of the DEGs downregulated by testosterone in one spe-
cies were significantly less than zero in the other species. We
conducted these analyses reciprocally using the sets of DEGs
identified independently in each species. A significant P-value
with the same fold-change direction would indicate that many
of the genes that are responsive to testosterone in one species
are similarly responsive to testosterone in the other species.
When analyzing whether genes upregulated by testosterone in
S. undulatus were upregulated in S. virgatus, we excluded any
DEGs identified by GO analysis as residing within pigment-
related biological pathways (Table 3) because we were inter-
ested specifically in testing whether other DEGs unrelated to
melanin synthesis exhibited similar transcriptomic responses
between species.

Species differences in expression of a priori
candidate genes

To analyze effects of sex, species, and treatment on a gene-
by-gene basis for the candidate genes that we selected a priori
for their roles in tissue sensitivity to androgens, melanin syn-
thesis, and melanophore differentiation (Table 1), we con-
verted read counts to transcripts per million (TPM). We first
conducted separate ANOVAs on each gene (17 total genes) by
including effects of sex, species, and treatment, plus all pair-
wise and 3-way interactions. Because we were primarily in-
terested in the effects of treatment and species, we conducted
an additional analysis excluding sex and its interactions from
the model. We then used the function lrtest from the Imtest
package (Zeileis and Hothorn 2002) to test whether the full
(including sex) or reduced (excluding sex) model best fit our
data. We report results from the full model when the likeli-
hood ratio test was significant and results from the reduced
model when the likelihood ratio test was not significant.
Consequently, sex and its interactions were only retained in
analyses of expression for the genes SRD5SA3, POMC, and
PCSKI1N.

Although we selected these genes a priori, we conserva-
tively applied Bonferroni corrections to any P-values that
could be viewed as multiple tests of the same mechanistic
hypothesis (see below) when conducting these gene-specific
analyses. Unadjusted P-values are reported unless results are
no longer significant after Bonferroni correction, in which
case the adjusted value (Py) is also reported. First, we
used an adjusted critical value of a = 0.0083 (6 tests) when
assessing differences in the expression of 6 genes related to
upstream androgen availability and/or tissue responsiveness
to androgens. Second, we used an adjusted critical value of a
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Table 3. Results from GO enrichment analysis testing for enriched pathways from genes upregulated by testosterone in S. undulatus juveniles.
Analyses were conducted 3 times, examining over enrichment of protein-coding genes from 3 reference species (source of GO terms). Genes listed
include all genes represented within nested processes for a term. Genes in bold are represented in more than one biological process. FDR is the

P-value after correction for false discovery rate.

Source of GO terms  Biological process

Fold enrichment

Homo sapiens Eye pigment biosynthetic process  >100

Peptidoglycan transport >100
Melanin biosynthetic process >100
Melanocyte differentiation 80
Anolis carolinensis ~ Melanin biosynthetic process >100
Melanocyte differentiation >100
Cellular pigmentation 86
Danio rerio Melanin biosynthetic process >100
Melanocyte differentiation 93

Genes FDR

EDN3, OCA2, PMEL, RAB27A, SLC45A2, TYR, TYRP1 0.052
SLC15A2, SLC15A3 0.045
OCA2, PMEL, SLC45A2, TYR, TYRP1 <0.001
EDN3, OCA2, RAB27A, TYRP1 <0.001
OCA2, TYR, TYRP1 0.002
OCA2, PMEL, RAB27A, TYR, TYRP1 0.005
PMEL, RAB27A, TYRP1 0.014
OCA2, TYR 0.001
OCA2, SLC45A2, TYR <0.001

= 0.01 (5 tests) when assessing differences in the expression
of 5 genes related melanocortin production and signaling.
Third, we used an adjusted critical value of o = 0.016 (3
tests) when assessing differences in the expression of 3 genes
related to melanin synthesis and when assessing differences
in the expression of 3 other genes used as molecular markers
for melanophores.

We selected 6 genes to test for species differences in up-
stream androgen metabolism, androgen availability, and
tissue sensitivity to androgens (Table 1 and Fig. 2C). First,
because testosterone can be locally converted to either es-
tradiol (which does not activate the androgen receptor) or
the more potent androgen So-dihydrotestosterone (DHT),
we analyzed the expression of genes encoding aromatase
(CYP19A1) and Sa-reductase (SRDSAI1, SRDSA2, and
SRDS5A3), the enzymes that respectively mediate these steps
in steroid metabolism. Second, because androgen signaling
cannot be initiated when steroids are bound by globulins, we
analyzed the expression of the gene encoding sex hormone-
binding globulin (SHBG). Third, we assessed tissue sensi-
tivity by analyzing the expression of the gene encoding
androgen receptor (AR), which mediates the genomic
effects of androgens on downstream genes. Analogous tests
for the genes encoding estrogen receptor-a (ESR1) and es-
trogen receptor-f3 (ESR2) are reported in the Supplementary
Materials. If changes to the regulation of any of these genes
contribute to the evolutionary loss of color, we predicted that
S. virgatus would exhibit 1) higher CYP19A1 expression, 2)
lower SRD5A1-3 expression, 3) higher SHBG expression,
and 4) lower AR expression, relative to S. undulatus (Table
1).

Next, we tested for species differences in hormonal re-
sponsiveness of key color genes downstream from androgen
signaling. First, we tested for differences in 5 genes whose
products contribute to the production, regulation, and de-
tection of a-melanocyte stimulating hormone (a-MSH).
Specifically, we examined expression patterns of the
proopiomelanocortin gene (POMC) and genes encoding
enzymes that contribute to the conversion of POMC to
a-MSH (PCSK1, PCSK2, and PCSK1N). While POMC is
expressed primarily in the pituitary, it can also be locally
produced by keratinocytes and melanocytes in the skin
(Schauer et al. 1994; Chakraborty et al. 1996; Wintzen et
al. 1996; Rousseau et al. 2007). POMC is cleaved into its

peptide derivatives adrenocorticotropic hormone (ACTH)
and a-MSH by prohormone convertases 1 (PCSK1) and
2 (PCSK2), respectively (reviewed in Harno et al. 2018).
Because a-MSH then binds to the melanocortin-1 receptor
(MC1R) on the surface of melanophores to stimulate mel-
anin synthesis, we also tested for differences in expression
of MCIR, which encodes the MC1R receptor. Next, we
tested for differences in the expression of 3 downstream
genes involved in melanin synthesis within melanophores
(TYR, TYRP1, and OCA2). The products of these genes
play critical roles in converting tyrosine into melanin
precursors (TYR; Raper 1928), stabilizing tyrosinase in the
melanosomal membrane and contributing to melanosome
biosynthesis (TYRP1; Boissy et al. 1996; Kobayashi et al.
1998), and regulating pH within the melanosome at op-
timal levels for melanin synthesis (the P protein, encoded
by OCA2; Bellono et al. 2014). For most of these genes, we
predicted that expression would be higher in S. undulatus
than in S. wirgatus and/or that testosterone would
upregulate expression in S. undulatus, but not in S. virgatus
(Table 1). However, because PCSK1N encodes an inhibitor
of prohormone convertase 1 (Fricker et al. 2000; Qian et
al. 2000), we predicted that expression would be lower in
S. undulatus than in S. virgatus and/or that testosterone
would downregulate expression in S. undulatus, but not in
S. virgatus (Table 1).

Finally, we tested for expression of 3 genes used as mo-
lecular markers of melanophores: DCT, KIT, and MITF. In
the context of melanophores, DCT, encoding dopachrome
tautomerase, contributes to the regulation of melanophore
survival, KIT, encoding a tyrosine kinase called the KIT pro-
tein, facilitates signaling that regulates cellular processes,
and MITE, encoding microphthalmia-associated transcrip-
tion factor, regulates melanophore processes. If these genes
are not expressed in the skin of S. virgatus, this might sug-
gest that any observed differences between these 2 species
are due to the loss of this cell type in the ventral dermis.
However, expression of these 3 genes would suggest that
the cell type necessary for melanin synthesis is present, but
does not attain a fully melanized state in S. virgatus. If the
evolutionary loss of color is due to a loss of melanophore
development in the skin, we would expect reduced or unde-
tectable expression of these 3 genes in S. virgatus, relative to
S. undulatus (Table 1).
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Results

Confirming treatment effects on circulating
testosterone and coloration

Our implants consistently elevated plasma testosterone
concentrations measured at the end of the 8-wk experiment,
regardless of species or sex (Fig. 3). For S. undulatus, there
was a significant increase in circulating testosterone in the
treatment group (F, = 74.23, P < 0.0001), with no sex effect
(F1,1s =0.31, P = 0.589) or treatment x sex interaction (FLM =
0.15, P = 0.7085). Similarly, for S. virgatus, there was a signif-
icant increase in testosterone in the treatment group (F s =
75.51, P < 0.0001), with no sex effect (F, ,; = 1.19, P = 0.393)
or treatment x sex interaction (FI’]S =0.27,P = 0.614). In an
omnibus model including sex, species, treatment, and all 2-
and 3-way interactions, only treatment was significant (F
149.87, P < 0.0001; all other P > 0.44).

In the sexually dichromatic S. wundulatus, testosterone
treatment significantly decreased brightness (closeness to
white; F s = 34.60, P < 0.001; Fig. 4A) and decreased
hue (dominant wavelength; F = 4.875, P = 0.041; Fig.
4B), yet had no effect on saturation (color purity; F, =
2.73, P = 0.116; Fig. 4C) of the lateral areas of ventral skin
where patches develop. There were no sex effects or treat-
ment x sex interactions for any aspect of skin coloration
(all P > 0.14). In the sexually monochromatic S. virgatus,
there were no treatment effects, sex effects, or treatment x
sex interactions for any aspect of coloration (all P > 0.17,;
Fig. 4D-F). Lateral areas of melanized skin with faint blue
color were evident on the abdomens of most S. undulatus
juveniles that received testosterone implants, whereas the
abdomens of all other groups were essentially white with
little evidence of ventral patch formation (Supplementary
Fig. S1).
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Fig. 3. Circulating levels of plasma testosterone for S. undulatus and S.
virgatus at the time of tissue collection, 8 wk after implantation. Each
circle is an individual, with boxplots illustrating the median (horizontal
line), first and third quartiles (box), and 1.5 times the intraquartile range
(whiskers) for each treatment group. Hormone implants significantly
raised (P < 0.05, asterisks) circulating testosterone to similar levels in
both species.
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Identification and functional characterization of
testosterone-responsive genes

In S. undulatus, the species in which maturing males de-
velop vibrant blue and black ventral coloration, 278 genes
were differentially expressed in the skin in response to tes-
tosterone (Fig. 5A), with 74 upregulated by testosterone
(Supplementary Table S1) and 204 downregulated by tes-
tosterone (Supplementary Table S2). For S. virgatus, the
species in which neither sex develops blue or black ven-
tral coloration, only 55 genes were differentially expressed
in the skin (Fig. 5B), with 30 upregulated by testosterone
(Supplementary Table S3) and 25 downregulated by tes-
tosterone (Supplementary Table S4). Among the 74 genes
that were significantly upregulated by testosterone in S.
undulatus, GO enrichment revealed that pathways related
to the melanin biosynthetic process and melanocyte (i.e.
melanophore) differentiation were significantly enriched.
Among the 5 total biological processes enriched across H.
sapiens, D. rerio, and A. carolinensis, these 2 were the only
shared processes across all 3 reference species (Table 3).
Additionally, all but one of the other enriched processes (pep-
tidoglycan transport) were related to pigmentation (Table
3). Among the 204 genes downregulated by testosterone in
S. undulatus, enriched pathways included spermine biosyn-
thesis process, mitotic spindle midzone assembly, and pos-
itive regulation of ubiquitin protein ligase activity, among
others (Supplementary Table S5). There were no enriched
pathways in S. virgatus.

Species differences in transcriptome-wide
responsiveness to testosterone

The number of testosterone-responsive DEGs in the sex-
ually dichromatic S. undulatus was significantly greater
than in the sexually monochromatic S. virgatus whether
we compared all DEGs (278 vs. 55 genes; x> = 161.88, P
< 0.001) or the subsets that were upregulated (74 vs. 30;
x? = 18.615, P < 0.001) or downregulated (204 vs. 25; ¥* =
139.92, P < 0.001) by testosterone (Fig. SA and B). When
we iteratively excluded every possible combination of 3
S. undulatus libraries to ensure equal statistical power in
each species, we found that the number of DEGs was signif-
icantly (P < 0.05) higher in S. undulatus than in S. virgatus
for 1,487 of 1,540 iterations (96.6%), and that the mean
(= 1 SD) number of DEGs was 3.71 + 1.93 times greater
in S. undulatus (x =153.7 +£96.1) than in S. wvirgatus
(x =40.4 + 8.3). There were no cases in which S. virgatus
had significantly more DEGs than S. undulatus. Therefore,
species differences in transcriptome-wide responsiveness to
testosterone are robust to the minor difference in sample
size between species (Supplementary Fig. S2).

Seven of the genes that were significantly upregulated by
testosterone in the sexually dichromatic S. undulatus are re-
lated to pigmentation and melanin synthesis pathways (Table
3), and these 7 genes were completely unresponsive to testos-
terone in the sexually monochromatic S. virgatus (Fig. SA and
B, red symbols). When excluding these 7 genes, the remaining
67 genes that were significantly upregulated by testosterone
in S. undulatus had log,FC values that were significantly
greater than zero in S. virgatus (V = 1442, P = 0.016; Fig.
5C). Likewise, genes that were significantly downregulated by
testosterone in S. undulatus had log FC values that were sig-
nificantly less than zero in S. virgatus (V = 7276, P < 0.001;
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Fig. 5C). Reciprocally, genes that were significantly up- or
downregulated by testosterone in S. virgatus also displayed
similar patterns of upregulation (V = 388, P < 0.001; Fig.
5C) or downregulation (V = 59, P = 0.004; Fig. 5C) in S.
undulatus. A total of 95 genes were upregulated by testos-
terone in either species, with 9 genes significantly upregulated
by testosterone in both species (Fig. 5D). A total of 225 genes
were downregulated by testosterone in either species, with
4 of these genes were significantly downregulated by testos-
terone in both species (Fig. 5D). While the overall trend was
for genes to respond similarly to testosterone in both species
(Fig. 5C), many genes were responsive in one species yet unre-
sponsive in the other (Fig. 5C and D).

Species differences in genes mediating androgen
availability and tissue sensitivity

SRDSA2, one of the 3 genes encoding the 5o-reductase en-
zyme that converts testosterone to the more potent androgen
5a-DHT, was expressed at higher levels in the sexually di-
chromatic S. undulatus than in the sexually monochromatic
S. virgatus (F ,, = 17.11, P < 0.001), was downregulated
by testosterone (F 5, = 24.75, P < 0.001), and had no treat-
ment x species interaction (F1,37 =1.29, P = 0.263; Fig. 6B).
Neither SRDS5SAT nor SRDS5A3 exhibited a significant treat-
ment effect, species effect, or treatment x species interaction
(all P > 0.089), although males exhibited higher expression
of SRDSA3 than females (F, |, = 9.34, P = 0.004). CYP19A1,
which encodes the aromatase enzyme that converts testos-
terone to estradiol, was not expressed at detectable levels in

the skin of either species. SHBG, which encodes sex hormone-
binding globulin, was expressed at higher levels in S. virgatus
than in S. undulatus (F, , = 20.72, P < 0.001), with no effect
of testosterone (F1,37 =0.86, P =0.359) or treatment x species
interaction (F, , = 0.07, P . = 1; Fig. 6A). AR, which encodes
the androgen receptor, was expressed at higher levels in S.
virgatus than in S. undulatus (F,,, = 14.65, P < 0.001) and
was downregulated by testosterone (F, ;. = 10.86, P = 0.002)
similarly in both species (treatment x species interaction: F, ;.
=1.44, P = 0.238; Fig. 6C).

Species differences in genes mediating

melanocortin production and signaling

Our expression data collectively suggest that the production
of POMC and its conversion to a-MSH are both stimulated
by testosterone in the sexually dichromatic S. undulatus, but
not in the sexually monochromatic S. virgatus, and that the
o-MSH signal is more likely to be detected in S. undulatus
due to relatively higher expression of the gene for its MC1R
receptor. POMC, which encodes proopiomelanocortin, was
expressed at much higher levels in S. undulatus than in S.
virgatus, in which its expression was barely detectable in
control animals (F1,33 =43.15, P < 0.001). POMC expression
was significantly increased by testosterone (F, ,; = 7.92, P =
0.008) in both species (treatment x species interaction: F, ;; =
3.60, P = 0.066), although its expression was much lower in
S. virgatus than in S. undulatus even in the presence of exog-
enous testosterone (Fig. 6D). PCSK1, which encodes the en-
zyme that converts POMC to adrenocorticotrophic hormone
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between S. undulatus and S. virgatus.

(ACTH), was expressed at higher levels in S. virgatus than
in S. undulatus (F 5, = 9.44, P = 0.004), but exhibited no
treatment effect (F;, = 0.51, P = 0.482) or treatment x
species interaction (F, .. = 0.94, P = 0.338). PCSK2, which
encodes the enzyme that subsequently converts ACTH to
a-MSH, did not differ in expression by species (F, ,, = 0.57,
P = 0.454) or treatment (F ,, = 2.68, P = 0.110), but had

a significant treatment x species interaction (F, . = 8.59, P

= 0.006; Fig. 6E), such that testosterone increased PCSK2
expression in S. undulatus but not in S. virgatus. PCSKIN,
which encodes proSAAS, an inhibitor of the conversion of
POMC to ACTH, was expressed at higher levels in S. virgatus
than in S. undulatus (F, ; = 13.26, P < 0.001), but was only
weakly affected by testosterone (Fy;,=5.60,P=0.024,P =
0.114) and exhibited no treatment x species interaction (Fy 5
=2.06, P = 0.160). MCI1R, which encodes the melanocortin-1
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receptor, was expressed at higher levels in S. undulatus than
in S. virgatus (F, . = 19.46, P < 0.001; Fig. 6F), with no treat-
ment effect (F ,, = 0.04, P = 0.846) or treatment x species
interaction (F, .. = 0.04, P = 0.840).

1,37

Species differences in genes mediating melanin
synthesis

Our expression data collectively suggest that melanin syn-
thesis is stimulated at the transcriptional level by testosterone
in the sexually dichromatic S. undulatus, but not in the sexu-
ally monochromatic S. virgatus. TYR, which encodes tyrosi-
nase, was expressed at higher levels in S. undulatus than in S.
virgatus (F, ,,=14.73,P <0.001), upregulated by testosterone
(F,;, = 10.24, P = 0.003), and upregulated more strongly in
S. undulatus than in S. virgatus (treatment x species interac-
tion: F ;. = 8.80, P = 0.005; Fig. 6G). We observed similar
patterns for TYRP1, which encodes tyrosinase-related protein
1, such that it was expressed higher in S. undulatus (F ., =
8.54, P = 0.006), upregulated by testosterone (F,, = 6.88,P
=0.013), and upregulated more strongly in S. undulatus than
in S. virgatus (treatment x species interaction: F|,37 = 6.85,
P = 0.013; Fig. 6H). OCA2, which encodes the P protein,
exhibited a significant treatment x species interaction (F
= 8.28, P = 0.007; Fig. 6I), but no significant species (F
2.32, P = 0.137) or treatment (F
0.038) effects.

1,37
137 =

=4.61,P=0.111,P =

1,37

Expression of marker genes for melanophores and
their precursors

Genes selected as markers for melanophores or melanophore
precursors were expressed in both species and were unrespon-
sive to testosterone in either species. DCT, which encodes
dopachrome tautomerase, was expressed similarly in both
species (F1,37 =4.14, P = 0.049, Padj = 0.127), with no treat-
ment effect (F,,,=1.84,P = 0.183) or treatment x species in-
teraction (F, ;. = 0.01, P = 0.939; Fig. 6]). KIT, which encodes
a tyrosine kinase called the KIT protein, was expressed sim-
ilarly in both species (F, ,, = 4.33, P = 0.044, P, = 0.127),
with no treatment effect (F 5, = 0.17, P = 0.686) or treat-
ment x species interaction (F1,37 = 0.76, P = 0.388; Fig. 6K).
MITF, which encodes the melanocyte-inducing transcription
factor (also known as microphthalmia-associated transcrip-

tion factor), was expressed similarly in both species (F, ., =

1.03, P = 0.318), with no treatment effect (Fis, = 0.51,P =
0.480) or treatment x species interaction (F1,37 = 0.68, P =
0.415; Fig. 6L).

Discussion

We found that the evolutionary loss of hormonally mediated
ventral coloration is associated with the loss of transcrip-
tional responsiveness to testosterone by genes putatively
involved in the production of ventral coloration. Whereas
several key melanin synthesis genes were upregulated in re-
sponse to testosterone in sexually dichromatic S. undulatus,
these same genes were unresponsive to exogenous testos-
terone in sexually monochromatic S. virgatus. This does
not appear to be due to the absence of melanophores in the
skin of S. virgatus, given that we detected the expression of
genes characteristic of melanophores at similar levels in the
skin of both species. Nor does it appear to be because the
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ventral skin of S. virgatus is insensitive to androgens, given
that we detected higher relative expression of the androgen
receptor in S. virgatus and that transcriptome-wide patterns
of up- and downregulation by testosterone were direction-
ally similar in both species. However, we did find some evi-
dence for lower transcriptional sensitivity to testosterone in
the skin of S. virgatus than in S. undulatus. In particular, we
found 3.7 times fewer genes that were differentially expressed
in response to exogenous testosterone in S. virgatus relative
to S. undulatus. We also found that S. virgatus skin expressed
significantly less SRDSA2, which encodes the enzyme that
converts testosterone into the more potent DHT, and signif-
icantly more SHBG, which encodes a binding globulin that
prevents androgen signaling, relative to S. undulatus. Below,
we discuss these mechanisms in greater detail and integrate
them with recent theory and empirical work on the evolution
of hormonally mediated sexual dimorphism.

The expression of genes that mediate melanin synthesis
within melanophores (i.e. TYR, TYRP1, and OCA) was gen-
erally stimulated by testosterone in the sexually dichromatic
S. undulatus, but was low and unresponsive to testosterone
in the sexually monochromatic S. virgatus. These genes are
critical for the production of melanin, and mutations in these
genes are associated with atypical melanin-based phenotypes
across taxa, including clinical abnormalities in humans
(Yokoyama et al. 1990; Kelsh et al. 1996; Passmore et al.
1999; Toyofuku et al. 2001; King et al. 2003; Lyons et al.
2005a,b; Oetting et al. 2005; Klaassen et al. 2018; Li et al.
2019). However, coding sequence mutations typically result
in systemic pigmentation effects rather than localized changes
like those observed between S. undulatus and S. virgatus. In
contrast, regulatory changes in gene expression can result in
the evolution of morphology (Carroll 1995; Prud’homme
et al. 2007; Wittkopp and Kalay 2012; Horton et al. 2014;
Sackton et al. 2019; Merritt et al. 2020; Huang et al. 2022;
Luecke et al. 2022), including phenotypes dependent upon
melanin production (Gompel et al. 2005; Prud’homme et al.
2006; Werner et al. 2010; Koshikawa et al. 2015; Kratochwil
et al. 2018; Koshikawa 2020; Hughes et al. 2023). Our results
therefore suggest that the loss of ventral color in S. virgatus
is at least partially due to the loss of androgen-dependent ex-
pression of these key melanin synthesis genes in the ventral
skin. However, the mechanisms that underlie this loss of an-
drogen responsiveness are less clear.

One hypothetical mechanism for the loss of androgen
responsiveness by melanin synthesis genes is that mature
melanophores are absent from the ventral skin of sexually
monochromatic S. virgatus. The loss of this cell type may
alter the transcriptomic profile of the skin and therefore ex-
plain both the low expression of individual melanin synthesis
genes and the overall reduction in androgen responsiveness
of the skin transcriptome in S. virgatus, relative to sexually
dichromatic S. undulatus. However, contrary to this hypoth-
esis, we detected expression of 3 melanophore-specific lin-
eage markers at comparable levels in the skin of both species
(DCT, KIT, and MITF; Steel et al. 1992; Parichy et al. 1999;
Bondurand et al. 2000; Kelsh et al. 2000; Quigley et al. 2004;
Mort et al. 2015; Schartl et al. 2016). This result suggests that
melanophores or their melanoblast precursors are present in
the skin of S. virgatus, although we cannot determine their
developmental stage. The reduced expression of both POMC
and MCIR in S. virgatus, relative to S. undulatus, could in-
dicate that melanophores are in an immature state and
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therefore unable to produce (POMC) and receive (MC1R) the
necessary melanocortin signals to promote melanin synthesis.
However, the location of POMC synthesis is unknown in our
system and could occur in keratinocytes or melanophores
(Schauer et al. 1994; Chakraborty et al. 1996; Wintzen et al.
1996; Rousseau et al. 2007), such that the use of POMC ex-
pression for inferences about melanophore development is
tenuous. Nonetheless, our data indicate that melanophores
are present in the skin of S. virgatus, but do not receive the
necessary signals to mature or to initiate melanin production.

The reduced expression of MCIR that we observed in
the skin of S. virgatus is one potential mechanism for the
failure of melanophores to express melanin synthesis genes.
Generally, MC1R binds a-MSH, which induces a cAMP cas-
cade, resulting in increased expression of MITF and down-
stream melanin synthesis pathways (reviewed in Park et al.
2009). Therefore, the reduction in MCIR expression that we
observed in S. virgatus could explain some of the observed spe-
cies differences in the expression of TYR, TYRP1,and OCA2.
Coding sequence mutations in MCIR have been shown to
underlie whole-body color evolution in several vertebrates
(Nachman et al. 2003; Rosenblum et al. 2004, 2010; Mundy
20035; Jin et al. 2020). Upstream from MCIR, reductions in
the production and processing of POMC into a-MSH, which
binds MCIR to initiate melanin synthesis, could also ex-
plain the low expression of TYR, TYRP1, and OCA2 in S.
virgatus. Our data support this possibility in that the expres-
sion of POMC is extremely low in S. virgatus relative to S.
undulatus, and is stimulated by testosterone in S. undulatus,
but not S. virgatus. Moreover, some genes whose products are
involved in the processing of POMC into a-MSH are only re-
sponsive to androgens in S. undulatus. For example, PCSK2
is upregulated by testosterone in S. undulatus, but it is not
responsive to testosterone in S. virgatus. Therefore, the pro-
duction of a-MSH in response to testosterone is likely greater
in S. undulatus, increasing activation of the MC1R receptor
and promoting melanin synthesis. Collectively, our data sug-
gest that the loss of ventral coloration in S. virgatus occurs
partly through the loss of POMC expression and processing
in response to androgens, and partly through reductions in
MCIR expression, resulting in the failure of testosterone to
induce expression of melanin synthesis genes.

Finally, the question remains of whether and how overall
sensitivity to androgens is reduced in the skin of the sexually
monochromatic S. virgatus. Our data indicate that this is not
due to the wholesale loss of androgen receptor expression in
the skin, as AR was expressed robustly in both species, with
slightly elevated expression in S. virgatus. However, we cannot
eliminate the possibility of cell-specific changes in the expres-
sion of androgen receptor that are not captured by our bulk
RNAseq approach. For example, AR could be expressed in S.
virgatus keratinocytes and iridophores, but not in S. virgatus
melanophores, preventing their maturation and subsequent
melanization in response to androgen signaling (Schartl et al.
1982) while maintaining transcriptome-wide expression of
AR. Rigorously addressing this possibility would require a
more targeted approach, such as AR staining and localization
via immunohistochemistry, in situ hybridization, or single-cell
RNAseq. Support for this hypothesis would represent a case
of a single-cell type within a tissue “unplugging” from hor-
monal control (Hau 2007; Ketterson et al. 2009). Although
our data do not provide any evidence of reduced AR expres-
sion in S. virgatus, they do suggest that testosterone may be
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more readily converted to the more potent androgen Sa-DHT
in S. undulatus, based on higher expression of SRDSA2 (but
not of SRDSA1 or SRDS5A3). Differences in the conversion
of testosterone to 5Sa-DHT could lead to species-specific
patterns of gene expression (Lin and Chang 1997; Dadras et
al. 2001). Additionally, SHBG was expressed at higher levels
in S. virgatus than in S. undulatus, potentially reducing the
local availability of free androgens in the skin of S. virgatus
(Anderson 1974; Breuner and Orchinik 2002).

The evolution of hormonally mediated sexual dimor-
phism proceeds not only through changes in circulating hor-
mone levels (e.g. Husak and Lovern 2014), but also through
changes in hormone-phenotype couplings (Cox 2020; Cox
et al. 2022). For example, evolutionary changes in tissue-
specific expression of the androgen receptor in manakins
(Fuxjager et al. 2015) and anole lizards (Johnson et al. 2018)
correspond to evolutionary changes in male-typical behaviors
across species. Likewise, changes in the genomic distribution
of hormone response elements may contribute to the evo-
lution of sex-specific songs and display behaviors in birds
(Frankl-Vilches et al. 2015; Fuxjager and Schuppe 2018)
and sexual size dimorphism in primates (Anderson and Jones
2022). Having genomes for both Sceloporus species would
permit similar comparisons of hormone response elements in
this system, but currently there is no genome available for S.
virgatus. We contribute to this emerging perspective in evolu-
tionary endocrinology by showing that the evolution of sex-
ually dimorphic coloration is associated with 1) pronounced
changes in the hormonal responsiveness of downstream genes
that mediate coloration, and 2) potential upstream changes
in tissue sensitivity to a hormonal cue. Further exploration of
these mechanisms will help clarify how phenotypes become
evolutionarily decoupled from their hormonal regulators,
facilitating the evolution of hormone—phenotype couplings
and sexual dimorphism.
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