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Abstract—We consider the problem of private distributed multi-

party computation. It is well-established that coding strategies

can enable perfect information-theoretic privacy in distributed

computation (e.g., the BGW protocol). However, perfect privacy

comes at a high computational overhead cost, requiring 2t + 1
compute nodes to ensure privacy against any t colluding nodes.

By allowing for approximate computation and operations over

the real numbers, we demonstrate that noise can be added to

data shared with computing nodes in order to ensure differential
privacy instead of perfect privacy. Specifically, the signal-to-noise

ratio of the data received by colluding nodes can be mapped

to differential privacy guarantees. We precisely characterize the

trade-off between differential privacy and accuracy in this setting,

and prove that a degree of differential privacy against t colluding

nodes can always be ensured whenever there are more than t+1
computing node—a reduction of t nodes compared to perfect

privacy. A particularly novel technical aspect is an achievable

scheme that carefully encodes the data and noise at different

magnitude levels. This coding scheme ensures that the adversary’s

input appears to be layers of noise, whereas the legitimate decoder

is able to uncover the desired computation by “peeling” off the

noise layers.

I. INTRODUCTION

Ensuring privacy in distributed data processing is a cen-
tral engineering challenge in modern machine learning. Two
common privacy definitions in distributed computation meth-
ods are information-theoretic (perfect) privacy and differential
privacy [1], [2]. Perfect information-theoretic privacy is the
most stringent definition, requiring that no private information
is revealed to non-colluding computing nodes regardless of their
computational resources. Differential privacy, in turn, allows a
tunable level of privacy and ensures that an adversary cannot
distinguish inputs that differ by a small perturbation (i.e.,
“neighboring” inputs).

Coding strategies have a decades-long history of enabling
perfect information-theoretic privacy in distributed computing.
The most celebrated is the Ben-Or, Goldwasser and Wigderson
(BGW) protocol [3], which ensures information-theoretically
private distributed computations for a wide class of functions.
Because of its universality, the BGW algorithm forms the basis
of several secure distributed computing protocols. However,
perfect privacy comes at a cost. For example, when computing
secure matrix multiplication, the BGW protocol requires N =
2t+ 1 computing nodes in order to ensure privacy against any
t colluding nodes. In other words, the BGW protocol requires
an overhead of an additional t+ 1 nodes compared to its non-
private counterpart. This overhead cannot be improved if perfect
privacy is to be achieved.

When some information leakage is allowed, differential pri-
vacy has become the standard privacy metric to quantify infor-
mation leakage [4]. In single-user computation, where a user
queries a database in order to compute a desired function over
sensitive data, differential privacy can be ensured by adding
noise to the computation output [1]. In distributed settings,
such as federated learning, several protocols have been recently

proposed to ensure privacy (e.g., [5], [6]). Coded computing
has been utilized to develop coding schemes to complement
protocols such as BGW, especially to incorporate memory and
straggler tolerance constraints [7]–[13].

Recently, the connection between the BGW protocol and
differential privacy was made in [14]. Inspired by results in
approximate coded computing [15], the authors demonstrated
that, for the special case of t = 1, the (t + 1)-node overhead
required by the BGW protocol for distributed multiplication
can be significantly reduced at the expense of perfect privacy
and increased precision. Specifically, by requiring differential

instead of perfect privacy, and approximate instead of exact
computations, [14] proved that a certain amount of privacy
(measured by the differential privacy metric) can be ensured
with just 2 nodes, rather than 2t+1 = 3 compute nodes required
by the BGW protocol. Note, however, that the approach and
results of [14] hold only for t = 1, i.e., when there are no
colluding compute nodes.

In this work, we extend the privacy-accuracy trade-off anal-
ysis in [14] for a general t > 1. The goal is to distributedly
compute the product AB with private inputs A and B. For
ease of presentation, we assume that A and B are scalars,
but our results can be directly extended to the matrix multi-
plication case (see Section III-D. For any t > 1, we provide a
tight characterization of the privacy-accuracy trade-off for any
N � t+1. While our results provide a characterization in terms
of differential privacy, they yield an intuitive description when
presented in terms of signal-to-noise ratios, for both privacy and
accuracy with signal-to-noise ratio (SNR). Privacy SNR (SNRp)
describes how well t colluding nodes can extract the private
inputs A, B, i.e., higher privacy SNR means poor privacy, and
accuracy SNR (SNRa) shows how well N nodes can recover
the computation output AB. Our converse proves:

(1 + SNRa)  (1 + SNRp)
2. (1)

We provide an achievable scheme that meets the converse bound
arbitrarily closely.

The technique of [14] can be interpreted as a direct em-
bedding of polynomial-type codes (e.g., Reed-Solomon codes),
which are the building blocks of the BGW scheme, into real
numbers with careful choice of evaluation points. However, this
approach does not suffice for achievable schemes for t > 1.
Instead, we propose a novel code construction that adds two
different types of noise: one that roughly controls SNRa and
SNRp, and the other with an arbitrarily small magnitude that
controls the gap in the bound (1) and numerical stability.

Our results show that new phenomena occur in multi-user
privacy in approximate computing. Recall that, in order to
achieve perfect privacy when distributed computations are over
finite fields (such as in the BGW protocol), distributed multi-
plication requires (linear) independence between data received
by computing nodes. In contrast, by allowing for approximate
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computation and operations over R, we can leverage differences
in magnitude as an additional dimension for ensuring privacy.
Here, a decrease in signal-to-noise ratio (SNR) via the addition
of noise to data shared with a computing node can be mapped
into a differential privacy guarantee against colluding nodes. We
demonstrate that differentially-private distributed multiplication
can significantly reduce the infrastrcutural overheads associated
with redundant computation nodes. Careful analysis on the
numerical stability and precision overhead of the proposed
scheme is an important future work.

II. SYSTEM MODEL

A. System Model

We present a system model that essentially mirrors [14].
We consider a computation system with N computation nodes.
A,B 2 R are random variables, and node i 2 {1, 2, . . . , N}
receives:

Ãi = aiA+Ri, B̃i = biB + Si (2)

where Ri, Si 2 R are random variables such that
(R1, R2, . . . , RN , S1, S2, . . . , SN ) is statistically independent
of (A,B), and ai, bi 2 R are constants. In this paper,
we assume no shared randomness between (R1, R2, . . . , RN )
and (S1, S2, . . . , SN ) i.e., they are statistically independent:
PR1,R2,...,RN ,S1,S2,...,SN = PR1,R2,...,RNPS1,S2,...,SN . We as-
sume without loss of generality that E[Ri] = E[Si] = 0, 8i 2
{1, 2, . . . , N}. For i 2 {1, 2, . . . , N}, computation node i
outputs:

C̃i = ÃiB̃i. (3)

A decoder receives the computation output from all N nodes
and performs a map: d : RN ! R that is affine over R. That
is, the decoder produces:

eC = d(C̃1, . . . , C̃N ) =
NX

i=1

wiC̃i + w0 (4)

where the coefficients wi 2 R, specify the linear map d.
A N -node secure multiplication coding scheme con-

sists of the joint distributions of (R1, R2, . . . , RN ) and
(S1, S2, . . . , SN ), scalars a1, a2, . . . , aN , b1, b2, . . . , bN 1 and
the decoding map d : RN ! R. A secure multiplication coding
scheme is said to satisfy t-node ✏-differential privacy (DP) if it
satisfies the following.

Definition 2.1. (t-node ✏-DP) Let ✏ � 0. A coding scheme with
random noise variables (R1, R2, . . . , RN ), (S1, S2, . . . , SN )
and scalars ai, bi (i 2 {1, . . . , N}) satisfies t-node ✏-DP if, for

any A0, B0, A1, B1 2 R that satisfy
����

����


A0

B0

�
�

A1

B1

�����

����
1

 1,

max

0

@
P
⇣
Z(0)

T 2 A
⌘

P
⇣
Z(1)

T 2 A
⌘ ,

P
⇣
Y(0)

T 2 A
⌘

P
⇣
Y(1)

T 2 A
⌘

1

A  e✏ (5)

for all subsets T ✓ {1, 2, . . . , N}, |T | = t, for all subsets
A ⇢ R1⇥t in the Borel �-field, where, for ` = 0, 1,

Y(`)
T ,

⇥
ai1A` +Ri1 ai2A` +Ri2 . . . ai|T |A` +Ri|T |

⇤
,

Z(`)
T ,

⇥
bi1B` + Si1 bi2B` + Si2 . . . bi|T |B` + Si|T |

⇤
,

where T = {i1, i2, . . . , i|T |}.

While privacy guarantees must make minimal assumptions
on the data distribution, it is common to make assumptions

1It is instructive to note that there is no loss of generality in assuming that
ai, bi 2 {0, 1}.

on the data distribution and its parameters when quantifying
utility guarantees (e.g., accuracy) [8], [12], [16], [17]. We state
the conditions under which our accuracy guarantees hold.

Assumption 2.1. A and B are statistically independent random
variables that satisfy

E
⇥
A2

⇤
= E

⇥
B2

⇤
= 1.

It is worth noting that the above assumption implies that
E[A2B2] = 1. We measure the accuracy of a coding scheme
via the mean square error of the decoded output with respect
to the product AB. Specifically, we define:

Definition 2.2 (Linear Mean Square Error (LMSE)). For a
coding scheme C consisting of joint distribution PR,S decoding
map d : RN ! R, the LMSE is defined as:

LMSE(C) = E[|AB � eC|2]. (6)

where eC is defined in (4).

The expectation in the above definition is over the joint
distributions of the random variables A,B,Ri|Ni=1, Si|Ni=1.

B. Signal to Noise Ratios

We take a two step technical approach. First, we char-
acterize accuracy and privacy, respectively, in terms of the
privacy signal-to-noise ratio and the accuracy signal-to-noise
ratio (SNR). Second, we characterize the fundamental trade-offs
between privacy signal-to-noise ratios and accuracy signal-to-
noise ratios. Here, we define these metrics.

Definition 2.3. (Privacy signal to noise ratio.) Consider a
secure multiplication coding scheme C. For any set S =
{s1, s2, . . . , s|S|} ✓ {1, 2, . . . , N} of nodes, let KR

S and KS
S

represent the covariance matrices of Ri|i2S , Si|i2S . In partic-
ular, the (i, j)-th entry of KR

S ,KS
S are E[RsiRsj ],E[SsiSsj ]

respectively. Let KA
S ,K

B
S denote the matrices whose (i, j)-

th entries respectively are asiasj and bsibsj where ai, bi are
constants defined in (2). Then, the privacy signal-to-noise
ratios corresponding to inputs A,B denoted respectively as
SNRA

S , SNRB
S are defined as:

SNRA
S =

det(KA
S +KR

S )

det(KR
S )

� 1.

SNRB
S =

det(KB
S +KS

S)

det(KS
S)

� 1,

where ‘det’ denotes the determinant. For t  N , the t-
node privacy signal-to-noise of a N -node secure multiplication
coding scheme C, denoted as SNRp is defined to be:

SNRp = max
S✓{1,2,...,N},|S|=t

max(SNRA
S , SNRB

S ).

Standard linear mean square estimation theory dictates that,
a colluding adversary that has access to nodes in S can obtain
a linear combination of the inputs to these nodes to recover,
for example, A with a mean square error of 1

1+SNRA
S
. This is

an alternate metric – as compared to DP – for privacy leakage
that will be used as an intermediate step in deriving our results.

Next we define the accuracy signal-to-noise ratios. From the
definition of C̃i in (3), we observe that:

eCi = aibiAB + aiASi + biBRi +RiSi.

To understand the following definition, it helps to note that in
E[ eCi

eCj ], the “signal” component, E[AB], has the coefficient
aibiajbj .
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Definition 2.4. (Accuracy signal to noise ratio.) Consider a
secure multiplication coding scheme C over N nodes. Let K1

denote the N⇥N matrix whose (i, j)-th entry is E[C̃iC̃j ] where
C̃i, C̃j are as defined in (3). Let K2 denote the matrix whose
(i, j)-th entry is aibiajbj , where ai, bi, aj , bj are constants as-
sociated with the coding scheme as per (2). Then, the accuracy
signal-to-noise of the coding scheme C, denoted as SNRa, is
defined as:

SNRa =
det(K1 +K2)

det(K1)
� 1.

The following lemma is derived from standard linear mean
square estimation theory.

Lemma 2.1. For a coding scheme C with accuracy signal-to-

noise ratio SNRa, we have:

LMSE(C) = 1

1 + SNRa
.

C. Statement of Main Results

The main result of this paper is a tight characterization of the
achievable accuracy signal-to-noise, SNRa, in terms of privacy
signal-to-noise, SNRp, for t < N < 2t + 1. In particular, we
show that the optimal trade-off between these two quantities is:

(1 + SNRa) = (1 + SNRp)
2

We state the results more formally below, starting with the
achievability result.

Theorem 2.2. Consider positive integers N, t with N > t. For

every � > 0, and for every strictly positive parameter SNRp >
0 there exists a N -node secure multiplication coding scheme C
with t-node privacy signal-to-noise, SNRp that satisfies:

SNRa � 2SNRp + SNR2
p � �.

Notably, it suffices to show the achievability for N = t+ 1.
If N > t+1, the (t+1)-node secure multiparty multiplication
scheme can be utilized for the first t+1 nodes and the remaining
nodes can simply receive 0. We now translate the achievability
result in terms of ✏-DP. In the next result, we denote by �⇤(✏) to
be the smallest noise variance that achieves differential privacy
parameter ✏.

Corollary 2.2.1. Consider positive integers N, t with N  2t.
Then, for every ✏, � > 0, there exists a coding scheme C that

achieves t-node ✏-DP,

LMSE(C)  (�⇤(✏))4

(1 + (�⇤(✏))2)2
+ �.

Theorem 2.2 and Corollary 2.2.1 are respectively shown in
Sec. III and Appendix ??. We next state the converse results.

Theorem 2.3. Consider positive integers N, t with N  2t.
For any N node secure multiplication coding scheme C with

accuracy signal-to-noise ratio SNRa and t-node privacy signal-

to-noise SNRp :

SNRa  2SNRp + SNR2
p.

Corollary 2.3.1. Consider positive integers N, t with N  2t.
For any coding scheme C that achieves t-node ✏-DP,

LMSE(C) � (�⇤(✏))4

(1 + (�⇤(✏))2)2
.

Theorem 2.3 and Corollary 2.3.1 are shown in Appendix ??.
By substituting bounds for �2(✏), one naturally obtains bounds
on the privacy-accuracy trade-offs. For instance [14] provides
the following bounds: ✏2

8  �⇤(✏)  e✏ � 1.

III. ACHIEVABILITY: PROOF OF THEOREM 2.2
To prove the theorem, it suffices to consider the case where

N = t + 1. In our achievable scheme, we assume that node i
receives:

�i = [A R1 R2 . . . Rt]~vi,

⇥i = [B S1 S2 . . . St]~wi.

where ~vi, ~wi are (t + 1) ⇥ 1 vectors. We assume that
A,B,Ri

��t
i=1

, Si

��t
i=1

are zero mean unit variance statistically
independent random variables. Node i performs the computa-
tion

⇤i = �i⇥i.

Our achievable coding scheme prescribes the choice of vec-
tors ~vi, ~wi. Then, we analyze the achieved privacy and accuracy.

A. Description of Coding Scheme

Let ↵(n)
1 ,↵(n)

2 be be positive non-zero sequences such that:

lim
n!1

↵
(n)
1

↵
(n)
2

= lim
n!1

↵
(n)
1 ↵

(n)
2

↵
(n)
1

= lim
n!1

(↵(n)
1 )2

↵
(n)
1

= lim
n!1

(↵(n)
2 )2

↵
(n)
1

= 0

(7)
As an example, ↵(n)

1 can be chosen to be an arbitrary sequence of
positive real numbers that converge to 0, and we can set ↵

(n)
2 =

↵
(n)
1 log

✓
1

↵
(n)
1

◆
to satisfy the above properties.

Let G =
⇥
~g1 ~g2 . . . ~gt

⇤
be a (t� 1)⇥ t matrix such that:

(C1) every (t� 1)⇥ (t� 1) sub-matrix is full rank,

(C2)

1 1 . . . 1
~g1 ~g2 . . . ~gt

�
has a full rank of t.

Our coding scheme sets:

~vt+1 = ~wt+1 =

2

66664

1
x

0
...
0

3

77775
,~vi = ~wi = ~vt+1 +

2

4
0

↵
(n)
1

↵
(n)
2 ~gi

3

5, 1  i  t

where x > 0 is a parameter whose role becomes clear next. A pictorial
description of our coding scheme is in Fig. 1.

B. Privacy Analysis

Informal privacy analysis: For expository purposes, we first provide
a coarse privacy analysis with informal reasoning. With the above
scheme, we claim that SNRp ⇡ 1/x2

, and so, it suffices to choose x ⇡
1p

SNRp
. An informal argument is as follows. Consider A’s privacy con-

straint, we require SNRA

S  SNRp for every S ⇢ {1, 2, . . . , N}, |S| =
t. First we consider the scenario where S = {1, 2, . . . , t}. Each node’s
input is of the form A+R1(x+↵

(n)
1 )+↵

(n)
2

⇥
R2 R3 . . . Rt

⇤
~gi.

Even if an adversary with access to the inputs to nodes in S happens
to know R2, R3, . . . , Rt, but not R1, the noise (x+↵

(n)
1 )R1 provides

enough privacy, that is the privacy signal to noise ratio for this set is
⇡ 1/x2

.

Now consider any set S of t colluding adversaries that includes
node t+1. In this case, the adversary has A+R1x from node t+1.
The other t� 1 colluding nodes have inputs of the form: A+R1(x+
↵
(n)
1 )+↵

(n)
2

⇥
R2 R3 . . . R3 . . . Rt

⇤
~gi. Informally, this can be

written as A+R1x+R1↵
(n)
1 +⌦(↵(n)

2 )Z, for some random variable
Z with variance ⇥(1).
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Fig. 1: Description of different types of noise in the achievable coding scheme for t = 2, N = 3, and G =
⇥
1 �1

⇤
.

On the one hand, observe that these t � 1 nodes contain a linear
combination of A,R1 that is linearly independent of the input to the
(t + 1)-th node (which is A + xR1). It might seem possible for the
adversary to increase its signal-to-noise ratio beyond 1

x2 by reducing
the effect of the R1 term by using these t�1 nodes, and combining it
appropriately with node t+1’s input. However, observe crucially that
|↵(n)

2 | � |↵(n)
1 |. In order to reduce/cancel the effect of R1, they have

to first be able to cancel the ⌦(↵(n)
2 ) terms. But these ⌦(↵(n)

2 ) are a
combination of t� 1 independent noise variables R2, R3, . . . , Rt that
are modulated by linearly independent vectors. Hence, any non-trivial
linear combination these t� 1 inputs necessarily contains a non-zero
⌦(↵(n)

2 ) additive noise term. So, their effect cannot be canceled and
the ↵(n)

1 R1 term is hidden from the decoder. Consequently, as n ! 1,
the adversary’s input from these t�1 nodes is a statistically degraded
version of A+xR1. Therefore, the SNRp cannot be increased beyond
1
x2 .

Formal privacy analysis: We now present a formal privacy analysis.
We show that for any � > 0, by taking n sufficiently large, we can
ensure that:

SNR(A)
S , SNR(B)

S  1
x2

+ �

for every subset S of t nodes. Because of symmetry of the coding
scheme, it suffices to show that SNR(A)

S satisfies the above relation. In
our analysis, we will repeatedly use the fact that any linear combinationP

i2S �iÃi of the inputs to the adversary satisfies:

E
"  

X

i2S

�iÃi

!
�A

!2#
� 1

1 + SNR(A)
S

First consider the case where t+ 1 /2 S. For each i 2 S, the input
Ãi is of the form A + (x + ↵

(n)
1 )R1 + Zi, where Zi is zero mean

random variable that is statistically independent of R1. Therefore, we
have:

inf
�i2R,i2S

E
"  

X

i2S

�iÃi

!
�A

!2#

� inf
�2R

E
⇣

�(A+ (x+ ↵
(n)
i

))�A

⌘2�

=
1

1 + 1

(x+↵
(n)
i )2

� 1

1 + 1
x2

.

Consequently: SNR(A)
S  1

x2 .

Now consider the case: t+ 1 2 S . Consider a linear estimator:

Â = �t+1(A+ xR1)+
X

i2S\{t+1}

�i

⇣
A+R1(x+ ↵

(n)
1 ) + ↵

(n)
2

⇥
R2 R3 . . . Rt

⇤
~gi

⌘

= A

 
X

i2S

�i

!
+R1

0

@x

X

i2S

�i + ↵
(n)
1

X

i2S\{t+1}

�i

1

A

+ ↵
(n)
2

⇥
R2 R3 . . . Rt

⇤
0

@
X

i2S\{t+1}

�i~gi

1

A

Because of property (C1), there are only two possibilities: (i) �i =

0, for all i 2 S\{t+1}, or (ii)
⇣P

i2S\{t+1} �i~gi

⌘
6= 0. In the former

case, the linear combination is Â = �t+1(At+1 + xR1) from which,

the best linear estimator has signal to noise ratio 1/x2 as desired.
Consider the latter case, let ⇢ > 0 be the smallest singular value
among the singular values of all the (t� 1)⇥ (t� 1) sub-matrices of
G. We bound the noise power of Â below; in these calculations, we
use the fact that Ri are zero-mean unit variance uncorrelated random
variables for i = 1, 2, . . . , t.
0

@x

X

i2S

�i + ↵
(n)
1

X

i2S\{t+1}

�i

1

A
2

+ (↵(n)
2 )2E

2

4

0

@⇥R2 R3 . . . Rt

⇤ X

i2S\{t+1}

�i~gi

1

A
23

5

=

0

@x

X

i2S

�i + ↵
(n)
1

X

i2S\{t+1}

�i

1

A
2

+ (↵(n)
2 )2

������

������

X

i2S\{t+1}

�i~gi

������

������

2

�

0

@x

X

i2S

�i + ↵
(n)
1

X

i2S\{t+1}

�i

1

A
2

+ (↵(n)
2 )2⇢2

X

i2S\{t+1}

�
2
i

Denote

⌫1 =

P
i2S\{t+1} �i

P
i2S �i

, ⌫2 =

r���
���
P

i2S\{t+1} �
2
i

���
���
2

P
i2S �i

.

We now upper-bound the signal-to-noise ratio of the adversary
aiming to estimate Â in the inequalities at the top of the next page.

The upper bound of (a) holds because we have replaced the
denominator by a smaller quantity. In (b), we have used the fact that
⌫
2
1  t⌫

2
2 and consequently �

p
t⌫2  ⌫1 

p
t⌫2. (c) holds because

inf
⌫2

(↵(n)
2 )2⇢2⌫2

2 � 2x↵(n)
1

p
t⌫2 = �x

2(↵(n)
1 )2t

(↵(n)
2 )2⇢2

.

As n ! 1, (7) implies that (↵
(n)
1 )2

(↵
(n)
2 )2

! 0, and consequently, for any
� > 0, we can choose a sufficiently large n to ensure that the right
hand side of (c) can be made smaller than 1

x2 +�. Thus, for sufficiently
large n, SNRp  1

x2 + � for any � > 0.

C. Accuracy Analysis

To show the theorem statement, it suffices to show that for any
� > 0, we can achieve SNRa >

1
x4 +

2
x2 �� for a sufficiently large n.

We do this next by constructing a specific linear combination of the
observations that achieves the desired signal to noise ratio. Observe
that with our coding scheme, the nodes compute:

�t+1⇥t+1 = (A+R1x)(B + S1x)

and, for i = 1, . . . , t:

�i⇥i = (A+R1(x+ ↵
(n)
1 ))(B + S1(x+ ↵

(n)
1 ))

+ ↵
(n)
2

✓
(A+R1(x+ ↵

(n)
1 ))

⇥
S2 . . . St

⇤

+ (B + S1(x+ ↵
(n)
1 ))

⇥
R2 . . . Rt

⇤◆
~gi +O((↵(n)

2 )2)

Let �1, �2, . . . , �t be scalars, not all equal to zero, such thatP
t

i=1 �i~gi = 0. Because ~gi are t � 1 dimensional vectors, they are
linearly dependent, and such scalars indeed do exist. Condition (C2)
implies that

P
t

i=1 �i 6= 0. Without loss of generality, we assume
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�P
i2S �i

�2
⇣
x
P

i2S �i + ↵
(n)
1

P
i2S\{t+1} �i

⌘2
+ (↵(n)

2 )2⇢2
P

i2S\{t+1} �
2
i

(a)


�P

i2S �i

�2

x2
�P

i2S �i

�2
+ 2x↵(n)

1

⇣P
i2S\{t+1} �i

⌘�P
i2S �i

�
+ (↵(n)

2 )2⇢2
P

i2S\{t+1} �
2
i

=
1

x2 + 2x↵(n)
1 ⌫1 + (↵(n)

2 )2⇢2⌫2
2

(b)

 1

x2 � 2x↵(n)
1

p
t⌫2 + (↵(n)

2 )2⇢2⌫2
2

(c)

 1

x2 � (↵
(n)
1 )2

(↵
(n)
2 )2

x2t

⇢2

SNRa �

�����
1 + 2x2 + x

4 1 + 2x(x+ ↵
(n)
1 ) + x

2(x+ ↵
(n)
1 )2

1 + 2x(x+ ↵
(n)
1 ) + x

2(x+ ↵
(n)
1 )2 1 + 2(x+ ↵

(n)
1 )2 + (x+ ↵

(n)
1 )4 +O((↵(n)

2 )4)

�����
�����

2x2 + x
4 2x(x+ ↵

(n)
1 ) + x

2(x+ ↵
(n)
1 )2

2x(x+ ↵
(n)
1 ) + x

2(x+ ↵
(n)
1 )2 2(x+ ↵

(n)
1 )2 + (x+ ↵

(n)
1 )4 +O((↵(n)

2 )4)

�����

� 1 (8)

=
(↵(n)

1 )4(2x2 + 1) + 4(↵(n)
1 )3(x+ x

3) + 2(↵(n)
1 )2(x2 + 1)2 +O((↵(n)

2 )4)

2x2
⇣
(↵(n)

1 )4 + 2(↵(n)
1 )3x+ (↵(n)

1 )2x2 +O((↵(n)
2 )4))

⌘ � 1 (9)

=
(↵(n)

1 )2(2x2 + 1) + 4(↵(n)
1 )(x+ x

3) + 2(x2 + 1)2 +
O((↵

(n)
2 )4)

(↵
(n)
1 )2

2x2

✓
(↵(n)

1 )2 + 2(↵(n)
1 )x+ x2 +

O((↵
(n)
2 )4)

(↵
(n)
1 )2

◆ � 1 (10)

Fig. 2: Plotting the gap between 1 + SNRa and (1 + SNRp)
2 for the achievable scheme for t = 2, 3, 4 and N = t+ 1. We vary n from 10

to 10,000 and we observe that as n grows the gap reduces.

P
t

i=1 �i = 1. The decoder computes: �̃⇥̃ �
=
P

t

i=1 �i�i⇥i, which is
equal to:

(A+R1(x+ ↵
(n)
1 ))(B + S1(x+ ↵

(n)
1 )) +O((↵(n)

2 )2).

Then, the signal to noise ratio achieved is at least that obtained by
using the signal and noise covariance matrices of

�t+1⇥t+1 = AB + x(AS1 +BR1) +R1S1x
2
,

�̃⇥̃ = AB+(x+↵
(n)
1 )(AS1+BR1)+(x+↵

(n)
1 )2R1S1+O((↵(n)

2 )2).

The analysis is done in equations (8)-(10) at the top of the page. As
n ! 1, observe that ↵(n)

1 ,
(↵

(n)
2 )2

↵
(n)
1

! 0. Using this in (10), for any
� > 0, there exists a sufficiently large n to ensure that SNRa �
2(x2+1)2

2x4 � 1� � = 1
x4 + 2

x2 � �. This completes the proof.

D. Extension to the matrix case

Finally, we give an informal explanation on how the proposed
coding scheme can be applied to matrix multiplication. We now assume
that A and B are matrices of dimensions M ⇥L and L⇥K, and we
compute the product C = AB. Furthermore, let us assume that As-
sumption 2.1 holds for each entry of A, B, i.e., E[A2

i,j ] = E[B2
j,k] = 1

for i = 1, . . . ,M, j = 1, . . . , L, k =, 1, . . . ,K. We encode each entry
of A and B using the coding scheme given in Section III-A. We
extend our privacy definition by saying that a coding scheme for matrix
multiplication achieves t-node ✏-DP if each element in the matrix
achieves t-node ✏-DP as defined in Definition 2.1.

Under this problem setting, the privacy analysis given in Sec-
tion III-B remains the same as we are applying the same coding
procedure on each element in the matrix. It only remains to show that
the accuracy argument holds. In this case, each element in C is not

a scalar product, but a vector dot product, i.e., Ci,j = A[i, :]B[:, j]T .
The core part of the accuracy argument is constructing the noise
covariance matrices of �t+1⇥t+1 and �̃⇥̃ and then obtaining their
determinants. We now show that when we compute the covariance of
(i, j)-th element of the matrix product �t+1⇥t+1, each entry in the
covariance matrix is simply scaled by L from the scalar version shown
in (8). Let a = A[i, :], b = B[:, j]T , r = R1[i, :], and s = S1[:, j]

T .

E[�t+1⇥t+1[i, j]
2] = E[(a · b+ x(a · s+ r · b) + x

2r · s)2]
= E[(a · b)2] + x

2E[(a · s+ r · b)2]
+ x

4E[(r · s)2].

Further, note that E[(a · b)2] =
P

L

k=1 E[A
2
i,kB

2
k,j ] = L. Similarly,

we can show that E[(a ·s+r ·b)2] = 2L and E[(r ·s)2] = L. We can
show the same for the covariance matrix of �̃t+1⇥̃t+1[i, j]. Hence,
both determinants will have a L

2 factor, which will cancel each other
out. We thus obtain the same SNRa for each element in C.

IV. SIMULATION AND CONCLUSION
We generated the coding scheme described in III-A for t = 2, 3, 4.

To satisfy (7), we set ↵1 = 1
n

and ↵2 = ↵1 ⇤ log( 1
↵1

). The results of
the simulation are given in Fig. 2. As we expect from the theory, as n

grows, the gap between 1+SNRa and (1+SNRp)
2 becomes smaller.

However, for t = 3 and t = 4, there remains a gap of ⇠ 4.5 when
n = 10, 000. Finding an optimal choice of ↵1 and ↵2 that could bring
this gap closer to 0 is an open question.
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