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Abstract—We consider the problem of private distributed multi-
party computation. It is well-established that coding strategies
can enable perfect information-theoretic privacy in distributed
computation (e.g., the BGW protocol). However, perfect privacy
comes at a high computational overhead cost, requiring 2¢ + 1
compute nodes to ensure privacy against any ¢ colluding nodes.
By allowing for approximate computation and operations over
the real numbers, we demonstrate that noise can be added to
data shared with computing nodes in order to ensure differential
privacy instead of perfect privacy. Specifically, the signal-to-noise
ratio of the data received by colluding nodes can be mapped
to differential privacy guarantees. We precisely characterize the
trade-off between differential privacy and accuracy in this setting,
and prove that a degree of differential privacy against ¢ colluding
nodes can always be ensured whenever there are more than ¢ 4 1
computing node—a reduction of ¢{ nodes compared to perfect
privacy. A particularly novel technical aspect is an achievable
scheme that carefully encodes the data and noise at different
magnitude levels. This coding scheme ensures that the adversary’s
input appears to be layers of noise, whereas the legitimate decoder
is able to uncover the desired computation by ‘“peeling” off the
noise layers.

I. INTRODUCTION

Ensuring privacy in distributed data processing is a cen-
tral engineering challenge in modern machine learning. Two
common privacy definitions in distributed computation meth-
ods are information-theoretic (perfect) privacy and differential
privacy [1], [2]. Perfect information-theoretic privacy is the
most stringent definition, requiring that no private information
is revealed to non-colluding computing nodes regardless of their
computational resources. Differential privacy, in turn, allows a
tunable level of privacy and ensures that an adversary cannot
distinguish inputs that differ by a small perturbation (i.e.,
“neighboring” inputs).

Coding strategies have a decades-long history of enabling
perfect information-theoretic privacy in distributed computing.
The most celebrated is the Ben-Or, Goldwasser and Wigderson
(BGW) protocol [3], which ensures information-theoretically
private distributed computations for a wide class of functions.
Because of its universality, the BGW algorithm forms the basis
of several secure distributed computing protocols. However,
perfect privacy comes at a cost. For example, when computing
secure matrix multiplication, the BGW protocol requires N =
2t + 1 computing nodes in order to ensure privacy against any
t colluding nodes. In other words, the BGW protocol requires
an overhead of an additional ¢ 4+ 1 nodes compared to its non-
private counterpart. This overhead cannot be improved if perfect
privacy is to be achieved.

When some information leakage is allowed, differential pri-
vacy has become the standard privacy metric to quantify infor-
mation leakage [4]. In single-user computation, where a user
queries a database in order to compute a desired function over
sensitive data, differential privacy can be ensured by adding
noise to the computation output [1]. In distributed settings,
such as federated learning, several protocols have been recently
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proposed to ensure privacy (e.g., [5], [6]). Coded computing
has been utilized to develop coding schemes to complement
protocols such as BGW, especially to incorporate memory and
straggler tolerance constraints [7]-[13].

Recently, the connection between the BGW protocol and
differential privacy was made in [14]. Inspired by results in
approximate coded computing [15], the authors demonstrated
that, for the special case of ¢ = 1, the (¢ + 1)-node overhead
required by the BGW protocol for distributed multiplication
can be significantly reduced at the expense of perfect privacy
and increased precision. Specifically, by requiring differential
instead of perfect privacy, and approximate instead of exact
computations, [14] proved that a certain amount of privacy
(measured by the differential privacy metric) can be ensured
with just 2 nodes, rather than 2¢{+1 = 3 compute nodes required
by the BGW protocol. Note, however, that the approach and
results of [14] hold only for ¢ = 1, i.e., when there are no
colluding compute nodes.

In this work, we extend the privacy-accuracy trade-off anal-
ysis in [14] for a general ¢ > 1. The goal is to distributedly
compute the product AB with private inputs A and B. For
ease of presentation, we assume that A and B are scalars,
but our results can be directly extended to the matrix multi-
plication case (see Section III-D. For any ¢ > 1, we provide a
tight characterization of the privacy-accuracy trade-off for any
N > t+1. While our results provide a characterization in terms
of differential privacy, they yield an intuitive description when
presented in terms of signal-to-noise ratios, for both privacy and
accuracy with signal-to-noise ratio (SNR). Privacy SNR (SNR,)
describes how well ¢ colluding nodes can extract the private
inputs A, B, i.e., higher privacy SNR means poor privacy, and
accuracy SNR (SNR,) shows how well N nodes can recover
the computation output AB. Our converse proves:

e))

We provide an achievable scheme that meets the converse bound
arbitrarily closely.

The technique of [14] can be interpreted as a direct em-
bedding of polynomial-type codes (e.g., Reed-Solomon codes),
which are the building blocks of the BGW scheme, into real
numbers with careful choice of evaluation points. However, this
approach does not suffice for achievable schemes for ¢ > 1.
Instead, we propose a novel code construction that adds two
different types of noise: one that roughly controls SNR, and
SNR,,, and the other with an arbitrarily small magnitude that
controls the gap in the bound (1) and numerical stability.

Our results show that new phenomena occur in multi-user
privacy in approximate computing. Recall that, in order to
achieve perfect privacy when distributed computations are over
finite fields (such as in the BGW protocol), distributed multi-
plication requires (linear) independence between data received
by computing nodes. In contrast, by allowing for approximate

(1+SNR,) < (1 + SNR,)?%.
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computation and operations over R, we can leverage differences
in magnitude as an additional dimension for ensuring privacy.
Here, a decrease in signal-to-noise ratio (SNR) via the addition
of noise to data shared with a computing node can be mapped
into a differential privacy guarantee against colluding nodes. We
demonstrate that differentially-private distributed multiplication
can significantly reduce the infrastrcutural overheads associated
with redundant computation nodes. Careful analysis on the
numerical stability and precision overhead of the proposed
scheme is an important future work.

II. SYSTEM MODEL
A. System Model

We present a system model that essentially mirrors [14].
We consider a computation system with N computation nodes.

A, B € R are random variables, and node i € {1,2,..., N}
receives: _ ~
where R;,S; € R are random variables such that

(Ry,Ro,...,RN,S1,S2,...,SN) is statistically independent
of (A,B), and a;,b; € R are constants. In this paper,
we assume no shared randomness between (Ri, Ro, ..., Ry)
and (S1,S9,...,SN) ie., they are statistically independent:
PRr.,Rs,....RN,S1,52,....58n = PRi,Ro,....RnPS1,S0,...,.Sn- WE aS-
sume without loss of generality that E[R;] = E[S;] = 0,Vi €
{1,2,...,N}. For i € {1,2,...,N}, computation node i
outputs:

C; = AiB;. 3

A decoder receives the computation output from all N nodes
and performs a map: d : RN — R that is affine over R. That
is, the decoder produces:

N

C:d(él,-n,éN):Zwiéi"'wO 4
i=1

where the coefficients w; € R, specify the linear map d.

A N-node secure multiplication coding scheme con-
sists of the joint distributions of (Ry,Rs,...,Ry) and
(S1,82,...,SN), scalars ay,as,...,an,by,bs,...,by" and
the decoding map d : RV — R. A secure multiplication coding
scheme is said to satisfy ¢-node e-differential privacy (DP) if it
satisfies the following.

Definition 2.1. (t-node ¢-DP) Let ¢ > 0. A coding scheme with
random noise variables (Ri,Rs,...,Ryn),(S1,52,...,5nN)
and scalars a;,b; (1 € {1,..., N}) satisfies t-node e-DP if, for

any Ag, Bo, A1, B1 € R that satisfy 4o _ A
By By

P(z ea) P(YP e

Pz eA) P(YP en

Sla

’ oo

max

) < e )
)

for all subsets 7 C {1,2,...,N},|T| = t, for all subsets
A C RY** in the Borel o-field, where, for £ =0, 1,

Y 2 [a, Ag+ Ry, ai, Ac+ Ry, @i A+ Ry ],

Z(7€) £ [bi,Be+ Si, b, Be + S, biyr Be + Siyry ]

where T = {i1,42,...,47}.
While privacy guarantees must make minimal assumptions
on the data distribution, it is common to make assumptions

't is instructive to note that there is no loss of generality in assuming that
a;,b; € {0,1}.

on the data distribution and its parameters when quantifying
utility guarantees (e.g., accuracy) [8], [12], [16], [17]. We state
the conditions under which our accuracy guarantees hold.

Assumption 2.1. A and B are statistically independent random
variables that satisfy

E[A*] =E[B*] =1.

It is worth noting that the above assumption implies that
E[A%2B?] = 1. We measure the accuracy of a coding scheme
via the mean square error of the decoded output with respect
to the product AB. Specifically, we define:

Definition 2.2 (Linear Mean Square Error (LMSE)). For a
coding scheme C consisting of joint distribution Pr g decoding
map d : RN — R, the LMSE is defined as:

LMSE(C) = E[|AB — C|?). (6)

where C is defined in ).

The expectation in the above definition is over the joint
distributions of the random variables A, B, R;|.,, S;|¥ ;.

B. Signal to Noise Ratios

We take a two step technical approach. First, we char-
acterize accuracy and privacy, respectively, in terms of the
privacy signal-to-noise ratio and the accuracy signal-to-noise
ratio (SNR). Second, we characterize the fundamental trade-offs
between privacy signal-to-noise ratios and accuracy signal-to-
noise ratios. Here, we define these metrics.

Definition 2.3. (Privacy signal to noise ratio.) Consider a
secure multiplication coding scheme C. For any set S =
{s1,82,...,8s/} € {1,2,...,N} of nodes, let KE and K§
represent the covariance matrices of R;;cs,S;|ics. In partic-
ular, the (i,7)-th entry of K& K% are E[R,,R,,],E[S;,Ss,]
respectively. Let K4, KZ denote the matrices whose (i, 7)-
th entries respectively are as,as; and bsibsj where a;, b; are
constants defined in (2). Then, the privacy signal-to-noise
ratios corresponding to inputs A, B denoted respectively as
SNR#Z, SNRZ are defined as:
_ det(Kg + K%)

SNRA = /28 T 28/
s det(KE)

det(KZ + K%
sNRY = IUEs TKS)
det(K2)
where ‘det’ denotes the determinant. For ¢ < N, the t¢-
node privacy signal-to-noise of a N-node secure multiplication
coding scheme C, denoted as SN R, is defined to be:

SNR, =

= max max SNRA,SNRB .
SC{1,2,...N},|S|=t (SNRs s)

Standard linear mean square estimation theory dictates that,
a colluding adversary that has access to nodes in S can obtain
a linear combination of the inputs to these nodes to recover,
for example, A with a mean square error of m. This is
an alternate metric — as compared to DP — for privacy leakage
that will be used as an intermediate step in deriving our results.

Next we define the accuracy signal-to-noise ratios. From the
definition of C; in (3), we observe that:

To understand the following definition, it helps to note that in
E[C;C}], the “signal” component, E[AB], has the coefficient
aibiajbj.
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Definition 2.4. (Accuracy signal to noise ratio.) Consider a
secure multiplication coding scheme C over N nodes. Let K;
denote the N x N matrix whose (i, j)-th entry is E[C;C;] where
C’Z—, C’j are as defined in (3). Let K5 denote the matrix whose
(i, j)-th entry is a;b;a;b;, where a;,b;,a;,b; are constants as-
sociated with the coding scheme as per (2). Then, the accuracy
signal-to-noise of the coding scheme C, denoted as SNR,, is
defined as:

det(K1 + Kg)

SNR, =
det(Kl)

-1
The following lemma is derived from standard linear mean
square estimation theory.

Lemma 2.1. For a coding scheme C with accuracy signal-to-
noise ratio SNR,, we have:

1

LMSEC) = T oxR,-

C. Statement of Main Results

The main result of this paper is a tight characterization of the
achievable accuracy signal-to-noise, SNR,, in terms of privacy
signal-to-noise, SNR,,, for ¢t < N < 2¢ + 1. In particular, we
show that the optimal trade-off between these two quantities is:

(14 SNR,) = (1 + SNR,)?

We state the results more formally below, starting with the
achievability result.

Theorem 2.2. Consider positive integers N,t with N > t. For
every § > 0, and for every strictly positive parameter SNR,, >
0 there exists a N-node secure multiplication coding scheme C
with t-node privacy signal-to-noise, SNR,, that satisfies:

SNR, > 2SNR, + SNR2 — 4.

Notably, it suffices to show the achievability for N =t + 1.
If N >t+1, the (¢ + 1)-node secure multiparty multiplication
scheme can be utilized for the first £4-1 nodes and the remaining
nodes can simply receive 0. We now translate the achievability
result in terms of e-DP. In the next result, we denote by o*(¢) to
be the smallest noise variance that achieves differential privacy
parameter e.

Corollary 2.2.1. Consider positive integers N,t with N < 2t.
Then, for every €,5 > 0, there exists a coding scheme C that
achieves t-node e-DP,

(0*(e)*
LMSE(C) < 7

CHGIEA

Theorem 2.2 and Corollary 2.2.1 are respectively shown in
Sec. III and Appendix ??. We next state the converse results.

Theorem 2.3. Consider positive integers N,t with N < 2t.
For any N node secure multiplication coding scheme C with
accuracy signal-to-noise ratio SNR, and t-node privacy signal-
to-noise SNR, :

SNR, < 2SNR,, + SNR?.

Corollary 2.3.1. Consider positive integers N,t with N < 2t.
For any coding scheme C that achieves t-node e-DP,

(0% (e))*
LMSHC)ZZTIC;EﬁﬂE.

Theorem 2.3 and Corollary 2.3.1 are shown in Appendix ??.
By substituting bounds for o2 (¢€), one naturally obtains bounds
on the plrivacy-accuracy2 trade-offs. For instance [14] provides
the following bounds: & < o*(e) < e — 1.

III. ACHIEVABILITY: PROOF OF THEOREM 2.2

To prove the theorem, it suffices to consider the case where
N =t + 1. In our achievable scheme, we assume that node i
receives:

:[ARl R2

]-—"L' Rt]Uia
0,=[BSi S, ...

St]u'il

where U;,w; are (t + 1) x 1 vectors. We assume that
A B ’Ri|Z=1’Si‘:=1 are zero mean unit variance statistically
independent random variables. Node i performs the computa-
tion

Ai = Fi@i~

Our achievable coding scheme prescribes the choice of vec-
tors v;, ;. Then, we analyze the achieved privacy and accuracy.

A. Description of Coding Scheme

Let o{™., a{™ be be positive non-zero sequences such that:
(n) (n)  (n) (n)y2 (n)y2

lim U= gm0 gy 1) gy (2 )
n— oo ag“) n—00 ag”) n—oo ag” n—o00 a<1)

)

(") can be chosen to be an arbitrary sequence of

As an example, oy

positive real numbers that converge to 0, and we can set agn) =
1

agm log( (n))

1

Let G = [ﬁl go gﬂ be a (¢t — 1) x ¢ matrix such that:
(C1) every (¢t — 1) x (¢t — 1) sub-matrix is full rank,

to satisfy the above properties.

(C2) } 5 _1.} has a full rank of ¢.
g1 g2 gt

Our coding scheme sets:
1
z 0

Vg1 = Wiy1 = ,Up = Wi = Upg1 + Oé(ln) 1<t <t

: s g,
0

where z > 0 is a parameter whose role becomes clear next. A pictorial
description of our coding scheme is in Fig. 1.

B. Privacy Analysis

Informal privacy analysis: For expository purposes, we first provide
a coarse privacy analysis with informal reasoning. With the above
scheme, we claim that SNR,, ~ 1/ ;v2, and so, it suffices to choose = =~
\/S;T,,' An informal argument is as follows. Consider A’s privacy con-
straint, we require SNRA < SNR,, forevery S € {1,2,...,N},|S| =
t. First we consider the scenario where S = {1,2,...,¢}. Each node’s
input is of the form A+ Ry (z+a{)+al” [R2 Rs Ri]gi.
Even if an adversary with access to the inputs to nodes in S happens
to know Ra, Rs, ..., R, but not Ry, the noise (az+a§"))R1 provides
enough2 privacy, that is the privacy signal to noise ratio for this set is
~1/x.

Now consider any set S of ¢ colluding adversaries that includes
node ¢ + 1. In this case, the adversary has A + Rix from node ¢ + 1.
The other ¢t — 1 colluding nodes have inputs of the form: A+ Ry (x +
a{)+ay[R2 Rs ...Rs R:] . Informally, this can be
written as A+ Riz + Ria{™ 4+ Q(al™)Z, for some random variable
Z with variance ©(1).
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Leaked to Leaked to
colluding nodes colluding nodes
Prevents noise Enables noise cancellation
cancellation for colluding of R, for decoding the
Hidden from nodes so long as output so long as Hidden from
colluding nodes + xR + uf”)/az('” -0 + a®/(@®y? > 0 colluding nodes + xR,

2 1

mp 17T, W R
a, R, I al R, s
At node 1 and 2 At node 3

Fig. 1: Description of different types of noise in the achievable coding scheme for t = 2, N = 3, and G = [1

On the one hand, observe that these ¢ — 1 nodes contain a linear
combination of A, R; that is linearly independent of the input to the
(t + 1)-th node (which is A + zR;). It might seem possible for the
adversary to increase its s1gnal -to-noise ratio beyond - -z by reducing
the effect of the R1 term by using these ¢t — 1 nodes, and combining it

%)roprlately with node ¢ + 1’s input. However, observe crucially that

)1 > |a{™]. In order to reduce/cancel the effect of Ry, they have
to ﬁrst be able to cancel the Q( ) terms. But these Q( ) are a
combination of ¢ — 1 independent noise variables Ra, R3, ..., R; that
are modulated by linearly independent vectors. Hence, any non-trivial
linear combination these ¢ — 1 inputs necessarily contains a non-zero
Q(a;")) additive noise term. So, their effect cannot be canceled and
the agn)Rl term is hidden from the decoder. Consequently, as n — oo,
the adversary’s input from these ¢ — 1 nodes is a statistically degraded
Vlersion of A+ xR;. Therefore, the SNR,, cannot be increased beyond

.

* Formal privacy analysis: We now present a formal privacy analysis.
We show that for any 6 > 0, by taking n sufficiently large, we can
ensure that:

SNRYY SNRY? < % +6

for every subset S of ¢ nodes. Because of symmetry of the coding
scheme, it suffices to show that SNR‘(SA) satisfies the above relation. In
our analysis, we will repeatedly use the fact that any linear combination
Zie s BiA; of the inputs to the adversary satisfies:

((ze)-)

First consider the case where ¢t + 1 ¢ S. For each ¢ € S, the input
A; is of the form A + (z + ozln))Rl + Z;, where Z; is zero mean
random variable that is statistically independent of R;. Therefore, we

' (o))

> gréﬁm{(,ﬁm +@+a™)) - A)z]
1 1
1+ 5

z2

1
~ 1+ SNRYY

inf
BiERIES

= 1
1+ (a:+a(.n))2

Consequently: SNR(A %
Now consider the case: t + 1 € S. Consider a linear estimator:

A= Be+1(A+ xR1)+

> A+ Ri@+al”
ieS\{t+1}

~a(xs)

—+ agn) [RQ Rs3

) —+ a(") [RQ Rs3

+ Rl T Z /87, + 05(n)
i€ES

> A

i€S\{t+1}

> Bigs

ieS\{t+1}

Ri]

Because of property (C1), there are only two possibilities: (i) 5; =
0, for all ¢ € S\{¢t+1}, or (ii) (Zies\{tﬂ} Blg'l) # 0. In the former

case, the linear combination is A = Bt+1(At+1 + xR1) from which,

1]

the best linear estimator has signal to noise ratio 1/z> as desired.
Consider the latter case, let p > 0 be the smallest singular value
among the singular values of all the (¢ — 1) x (¢ — 1) sub-matrices of
G. We bound the noise power of A below; in these calculations, we
use the fact that R; are zero-mean unit variance uncorrelated random
variables for : = 1,2,...,t.

37251 + a(")

2

> b

€S €S\ {t+1}
2
+ (aén))QE [R2 R3 Rt} Z Bigi
i€S\{t+1}
2 2
= (2> 8+ > 8|+ > B
ies i€S\{t+1} i€eS\{t+1}
2
> (2d B+l DT 8| 4@V > B
€S ieS\{t+1} i€S\{t+1}
Denote
v = ZiES\{t+1} Bi Uy = \/HZ
Zies 57‘ ' Z’LGS /81

We now upper-bound the signal-to-noise ratio of the adversary
aiming to estimate A in the inequalities at the top of the next page.

The upper bound of (a) holds because we have replaced the
denominator by a smaller quantity. In (b), we have used the fact that
yf < tu22 and consequently —Vive <11 < Vivs. (c) holds because

2 (ad)
(af")20?

— 0, and consequently, for any

SRRV

inf(a;n))2p2u22 e
v2

(n))
(n))

0 > 0, we can choose a sufﬁ01ently large n to ensure that the right
hand side of (c) can be made smaller than —5 +4. Thus, for sufficiently
large n, SNR,, < 2 + ¢ for any 6 > 0.

C. Accuracy Analyszs

As n — oo, (7) implies that ¢

To show the theorem statement, it suffices to show that for any
6 > 0, we can achieve SNR, > —r + 2% — § for a sufficiently large n.
We do this next by constructing a specific linear combination of the
observations that achieves the desired signal to noise ratio. Observe

that with our coding scheme, the nodes compute:
41041 = (A+ Riz)(B + S12)
and, fori =1,...,¢:
[0, = (A+ Ri(z + ")) (B + Si(z + o))

+ ol ((A + Ri(z + af™))[S S:]

+B+ SR o R+ O(0))
Let VL V2oV be scalars, not all equal to zero, such that
Z i—17:gi = 0. Because g; are ¢ — 1 dimensional vectors, they are
linearly dependent, and such scalars indeed do exist. Condition (C2)
implies that 22:1 ~v; # 0. Without loss of generality, we assume
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2
(ZiGS 51)
2
(x YiesBital " Viesvern ﬂi) + (ag")2p? Cies\gerny B
2
(2 (Zies fBZ)

1 (b)

22(Cies B:)° + 2wa™ (ZiES\{t-‘rl} ﬂi) (Cies Bi) + (o

)?p? ZieS\{t+1} B;
1 (c) 1

22 + 220y + (ai™)2p212

< < = @
22 — 220\ Vs + (al™)?p202 22— (@17 )2 22t

(oé"))2 p?

1+22% + 2t
1+ 2z(z + ™) + 22 (2 + al™)?

SNR, >

L+ 2(@+ai")? + (2 + )" + O((af")")

1+ 2z(x + oe(n>) +x (as + ag"))Q

222 4 2*
2z(z 4+ o) + 2% (z + al™)?

2w+ i) + (@ + i)' + O((ad")")
(a5")'(22% + 1) +4(a]”) (@ +2°) + 2(a]”)*(2* + 1)* + O((a5")")

-1 ®)
2z(z + ™) + 22 (2 + a{™)?

-1 )

222 ((a{")* + 2(a{")3z + (a{")222 + O((af")1)))

()220 + 1) + 4(ai™) (z + 2°) + 2(a? + 1) +

o((ad™)h)
(a{™)2

2 <(a§"))2 +2(af™)z + 22 +

-1 (10)

o((af™)Y)
( ("))2

t=2

t=3

t=4

475 — 14SNR
(1+SNRp)~2

404

— 1+SNR
(1+SNRp)~2 5.50

—— 1+SNR
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n

Fig. 2: Plotting the gap between 1 + SNR, and (1 4+ SNR,,)? for the achievable scheme for ¢t = 2,3,4 and N = ¢ 4+ 1. We vary n from 10

to 10,000 and we observe that as n grows the gap reduces.

>, 7 = 1. The decoder computes: ré 2 St 7iT4©;, which is
equal to:

(A+ Ri(z + ") (B + S1(z + i) + O((ad™)?).

Then, the signal to noise ratio achieved is at least that obtained by
using the signal and noise covariance matrices of

Ft+1@t+1 = AB + I(AS1 —+ BRl) =+ R1511}2,
I'6 = AB+(2+a\™)(AS14+BR1 )+ (z+a{™)*R1 51 +0((aS)?).
The analysis is done in equations (8)-(10) at the top of the page. As

(n)y2
n — oo, observe that o™, (02( )
Q

— 0. Using this in (10), for any

0 > 0, there exists a sufﬁc1ently large n to ensure that SNR, >

2
% 1-0= %4 + ?2 — §. This completes the proof.

D. Extension to the matrix case

Finally, we give an informal explanation on how the proposed
coding scheme can be applied to matrix multiplication. We now assume
that A and B are matrices of dimensions M X L and L X K, and we
compute the product C = AB. Furthermore, let us assume that As-
sumption 2.1 holds for each entry of A, B, i.e, E[A} ;] =E[B},] =1
fori=1,...,M,5=1,...,L,k=,1,..., K. We encode each entry
of A and B using the coding scheme given in Section III-A. We
extend our privacy definition by saying that a coding scheme for matrix
multiplication achieves t-node e-DP if each element in the matrix
achieves t-node e-DP as defined in Definition 2.1.

Under this problem setting, the privacy analysis given in Sec-
tion III-B remains the same as we are applying the same coding
procedure on each element in the matrix. It only remains to show that
the accuracy argument holds. In this case, each element in C is not

a scalar product, but a vector dot product, i.e., C; ; = A[i,:]B[:, ]%.
The core part of the accuracy argument is constructing the noise
covariance matrices of ['1+10;41 and I'© and then obtaining their
determinants. We now show that when we compute the covariance of
(%,7)-th element of the matrix product I't11®;41, each entry in the
covariance matrix is simply scaled lj}y L from the scalar version shown
in (8). Let a = A[4,:], b= B[;,j]*, r = Ri[i,:], and s = S1[;, 5]7.

E[Tt+10¢+1[i, 5]%] :E[(a-b+x(a~s+r-b)—|—x r-s)’]
=E[(a-b)’] + 2°E[(a-s+r-b)’]
+ 2*E[(r - s)?].

Further, note that E[(a - b)?] = Zk \E[A7.B; ;] = L. Similarly,
we can show that E[(a-s+r-b)?*] = 2L and E[(r-s)?] = L. We can
show the same for the covariance matrix of I';yq @Hl[i, j]. Hence,
both determinants will have a L? factor, which will cancel each other
out. We thus obtain the same SNR, for each element in C.

IV. SIMULATION AND CONCLUSION

We generated the coding scheme described in III-A for t = 2, 3, 4.
To satisfy (7), we set a1 = % and o = a1 * log(o%). The results of
the simulation are given in Fig. 2. As we expect from the theory, as n
grows, the gap between 14 SNR, and (14 SNR,)* becomes smaller.
However, for t = 3 and ¢t = 4, there remains a gap of ~ 4.5 when
n = 10, 000. Finding an optimal choice of a;; and a2 that could bring
this gap closer to 0 is an open question.
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