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A Censoring Scheme for Multiclassification
in Wireless Sensor Networks
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AbstractÐCensoring has been widely applied in wireless
sensor networks (WSNs) as an effective method to achieve a
balance between energy consumption and the quality of the
observed signals. However, most recent studies focus on the
censoring schemes applied in binary hypothesis problems
(i.e., binary classification and detection problems). To expand
the application of censoring in WSNs, we propose a censor-
ing scheme for multiclassification problems in this article.
Sensors in this scheme only transmit observations deemed
informative enough for classification, where the decision
region of whether to transmit is derived based on log likeli-
hood ratios (LLRs). By analyzing the relationship between the
communication rate of the WSN and the censoring threshold,
we design an adaptive strategy in the censoring scheme so that the censoring threshold can be adjusted according to the
communication rate. We further derive the theoretical lower bound of the classification accuracy, which is formulated via
the Chernoff distance among different signals. The performance superiority of the censored signals compared with the
original ones without censoring is revealed in the form of the theoretical lower bound, verified by experimental results on
WSN applications where our proposed censoring scheme allows significant communication saving without the sacrifice
of performance.

Index TermsÐ Censoring strategy, compressive sensing (CS), multiclassification, performance bound, wireless sensor
networks (WSNs).

NOMENCLATURE

Notation Description

i, N Scalar.

s, v Vector.

H Matrix.

L,D Set.

[a, b) Interval, which means {x | a ≤ x < b}.
Hi Hypothesis.

N (µ, σ 2) Gaussian distribution with mean µ and variance

σ 2. C Chernoff distance.

p(·) Probability density function (pdf) of a variable.

P(·) Probability of an event.
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|a| Absolute value of a.

|6| Determinant of the square matrix 6.

I. INTRODUCTION

R
ECENTLY, people witness an obvious growth of wireless

sensor networks (WSNs) owing to the proliferation of the

Internet of Things (IoT) in many applications, e.g., environ-

ment, industry, military, and health [1], [2], [3], [4]. WSNs can

be generally divided into centralized WSNs and decentralized

WSNs according to the presence or absence of the fusion

center (FC). Decentralized WSNs are usually deployed in

target tracking scenarios, where the signal source moves in

different sensing ranges of the sensors [5], [6]. By contrast,

centralized WSNs are common in traditional signal processing

scenarios, e.g., signal detection [7], [8], classification [9],

[10], and reconstruction [11], [12]. This article focuses on the

centralized WSN, which consists of a group of sensor nodes

(SNs) and an FC. These spatially distributed SNs observe

signals and transmit these observations to FC by wireless

communication, and they are required to be as small and

lightweight as possible with a simple structure in order to

facilitate the deployment.

However, sensors in many practical applications sample sig-

nals at high sampling rates and generate large volumes of data,
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which causes a great burden on the communication resources

of the sensors. To avoid excessive consumption of commu-

nication resources caused by directly transmitting originally

observed signals, compressive sensing (CS) has been adopted

in WSNs owing to the inherent sparsity in the data collected

by sensors [13], [14], [15]. With a properly designed sensing

matrix and reconstruction algorithm, sensors efficiently sample

signals with much lower sampling rates than the Nyquist

sampling rate, and FC can still obtain accurate reconstructions.

In such a way, transmitting compressed signals acquired by CS

reduces the consumption of communication resources between

the FC and SNs.

To further improve the communication efficiency, apart

from applying CS in signal transmission, some methods

have emerged to transmit only a part of the compressed

observations on the premise of ensuring as little performance

loss as possible. The existing improved schemes can be

divided into two categories, i.e., sensor selection and sensor

censoring. The former is a technology that FC determines

which sensors can transmit data at a given time [16], [17],

whereas in the latter one, the sensor censoring technol-

ogy hands over the selection task to the sensor to decide

whether the observed signal is informative to be transmitted

to the FC. Comparatively, sensor censoring is more flexible

since sensors can determine their own communication states,

i.e., transmitting observations to FC or keeping silent based

on the current state, and the extra feedback from FC is

avoided [18], [19], [20].

Censoring schemes have been applied in many scenarios in

WSNs [21], [22], [23]. In various schemes, local likelihood

ratios (LRs) and log likelihood ratios (LLRs) are usually

calculated to measure the signal quality. For example, [24]

proposes a censoring-based change-point-detection scheme

based on LLR, which is utilized to measure the probability

that a system is abnormal. Wu et al. [25] propose a ternary

censoring rule with three states: directly transmitting the

observed signal, transmitting a one-bit hard decision, and

keeping silent. Rago et al. [26] propose a simple LR-based

censoring rule for the signal detection problem, which

establishes a relationship between the censoring threshold

and the communication rate of WSNs. However, the above-

mentioned works are formulated and solved as simple binary

hypothesis problems for either on±off signal detection or

binary classification tasks, where the decision region reduces

to a simplified single interval and, thus, can be calculated

easily [27]. They cannot be straightforwardly extended

to the practical but more complicated multihypotheses

scenarios. To fill such a gap, we are motivated to design a

censoring scheme for multiclassification problems. The main

contributions of this article are summarized as follows.

1) We propose a WSN censoring scheme for practical

multiclassification problems, in which sensors decide

locally whether to transmit observations. This scheme

provides the censoring rule, which is determined in the

offline stage based on a censoring threshold to avoid the

energy consumption of calculating LLRs online for each

signal. In addition, we design a binary search scheme to

find a suitable censoring threshold corresponding to the

preset communication rate, which is determined by the

actual transmission ability of the WSN.

2) To evaluate the effectiveness of the proposed scheme,

we analyze the theoretical performance of the proposed

scheme in terms of the lower bound of the classification

accuracy. By comparing the theoretical lower bound of

the originally observed signals and censored signals,

we prove the performance advantage of our censoring

scheme.

3) We provide the experiments of our proposed scheme in

both the binary classification scenario and the multiclas-

sification scenario. The results show that when compared

with the conventional schemes, the proposed censoring

scheme effectively reduces the communication costs

without compromising the classification performance.

The rest of this article is organized as follows. Section II

illustrates the system model and the definition of LLR. Our

censoring scheme is proposed afterward in Section III. The

theoretical analysis, i.e., the theoretical lower bound of the

classification accuracy, is provided in Section IV. Simulation

results are shown in Section V to verify our analysis. Finally,

Section VI draws a conclusion to this article.

The notations used in this article are listed in the Nomen-

clature for the convenience of the following description.

II. SIGNAL MODEL AND LLR

This section is devoted to describing the signal model and

the definition of LLR.

A. Signal Model

The multiclassification problem in the WSN aims to classify

an observed signal that belongs to one of the L hypotheses,

where the probability of the i th hypothesis is denoted as

Pi . The original signal x ∈ R
N×1 under each hypothesis is

formulated as follows:

H1 : x = s1 + v

H2 : x = s2 + v

...

HL : x = sL + v (1)

where si ∈ R
N×1 is the source signal under the i th hypothesis,

i belongs to the index set of hypotheses L = {1, 2, . . . , L},
and v ∈ R

N×1 is the additive white Gaussian noise (AWGN).

Suppose that the WSN consists of M sensors and an FC.

The signal observation of the mth sensor is formulated as

ym = hT
mx = hT

m(si + v) (2)

where ym is the compressed signal and hm ∈ R
N×1 is the

sensing vector of the mth sensor.

We assume that the entries of si are independent random

Gaussian variables, i.e., si ∼ N (µi , 6i ) and the noise v ∼
N (0, σ 2

v IN ), where IN is the N × N identity matrix. Then,

we obtain the distribution of the observed signal ym and the

vector y = (y1, y2, . . . , yM )T consisting of all observations
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under the i th hypothesis as follows:

ym |Hi ∼ N (hT
mµi , hT

m(6i + σ 2
v IN )hm)

y|Hi ∼ N (HT µi , HT (6i + σ 2
v IN )H) (3)

where H ≜ (h1, . . . , hM )T is the equivalent sensing matrix

of the whole WSN. For the convenience of illustration, the

mean hT
mµi and the variance hT

m(6i + σ 2
v IN )hm of the mth

signal in (3) are denoted as µmi and σ 2
mi , respectively. Besides,

we denote the mean vector of y|Hi as µyi ≜ HT µi and the

covariance matrix as 6yi ≜ HT (6i + σ 2
v IN )H.

B. Log Likelihood Ratio

The LLR is usually employed to measure the difference

between two pdfs, which is defined as follows:

LLRi j (ym) = ln

(
p(ym |Hi )

p(ym |H j )

)
(4)

where p(ym |Hi ) is the conditional pdf of the observed signal

ym under the Hi hypothesis. According to (3), the LLR is

given by

LLRi j (ym) = ln

(
σmj

σmi

)
+

(
ym − µmj

)2

2σ 2
mj

− (ym − µmi )
2

2σ 2
mi

.

(5)

III. PROPOSED SCHEME

In this section, we present a censoring scheme for multi-

classification. We illustrate the censoring rule of our scheme,

the decision region of discarding less informative observations,

the selection of the censoring threshold, and the improvement

of the classifier in FC.

A. Censoring Rule for Multiclassification

The communication state of sensors is denoted as u =
(u1, u2, . . . , uM ), where um ∈ {0, 1} represents the state of

the mth sensor, such that
{

um = 1, transmitting

um = 0, keeping silent.
(6)

The purpose of censoring is to transmit informative obser-

vations and discard less informative ones, where the latter

contributes less to the classification. Most existing censoring

schemes [19], [24], [25], [26] first define the uninformative

decision region of each SN and then adopt the following

general rule:
{

um = 0, ym ∈ Dm

um = 1, ym /∈ Dm

(7)

where Dm is the uninformative decision region of the mth SN.

To guarantee efficient censoring, the first important step is to

calculate suitable decision regions. Though recent works have

made some achievements in this aspect [19], [26], [27], they

only focus on the binary classification problem. For example,

[27, Th. 1] shows that the optimal uninformative decision

region at each SN of the binary classification problem is in

the form of

Dm = {ym | t1 ≤ L R(ym) ≤ t2} (8)

where L R(ym) = (p(ym |H1))/(p(ym |H0)); H0 and H1 rep-

resent the absence and presence of the source signal, respec-

tively; and t1 and t2 are the lower and upper thresholds of

this single interval, respectively. In addition, [19, Th. 2.2]

further shows t1 can be simplified to zero when P0, i.e., the

prior probability of H0, is larger than a special value. This

condition is usually satisfied in the detection problem (i.e.,

a specific binary classification problem, where P0 is generally

larger than P1), and t1 = 0 is set by [26]. However, this

condition cannot be always satisfied in the general binary

classification problem. In this case, a more feasible censoring

decision region is still the one in (8) with t1 ̸= 0. To fairly

constrain the conditional probability of ym under either H0 or

H1, a feasible simplification of (8) is to set t1 = (1/t2). Then,

we obtain the following simplified decision region:

Dm = {ym | |L L R01(ym)| ≤ t} (9)

where t = | ln t2| = | ln t1|. By doing so, the region with two

thresholds is reduced to the one with only one threshold t .

To extend the censoring rule to the multiclassification sce-

nario, it is obvious that the transmitted observations should be

informative for all hypotheses. Thus, the decision region of

censoring should consider all LLRs, i.e., LLRi j (ym), ∀i, j ∈
L, i ̸= j . Each LLR corresponds to a decision subregion

D(m; i, j), so the whole decision region of the mth SN should

be the union of all the decision subregions

Dm =
⋃

i ̸= j

∀i, j∈L

D(m; i, j)

D(m; i, j) ≜ {ym | |L L Ri j (ym)| ≤ t}. (10)

B. Calculation of Decision Region

Note that the LLR in (5) means that we have to calculate

the LLR for each observation. However, it is inappropriate to

implement such tedious calculations on each sensor, owing to

the high complexity and limited energy. Therefore, it is more

desirable to determine the decision region in the offline stage.

Combining (5) and (10), the decision region is calculated by

the following inequation:
∣∣∣∣∣ln

(
σmj

σmi

)
+

(
ym − µmj

)2

2σ 2
mj

− (ym − µmi )
2

2σ 2
mi

∣∣∣∣∣ < t. (11)

The left-hand side of this inequation is denoted as |G(ym)|.
To determine whether ym should be discarded, we discuss (11)

in the following three cases.

The first case corresponds to σ 2
mi = σ 2

mj , and G(ym) can

be reduced to an affine function, i.e., G(ym) = ((2y − µmi −
µmj )(µmi − µmj ))/(2σ 2

mi ). We denote this case as Case 1,

which is illustrated in Fig. 1(a) with the settings shown in the

figure. The solution of inequation (11) in Case 1 is given by

ym ∈ [−a1 − b1, −a1 + b1] (12)
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Fig. 1. Three cases of calculating decision regions.

where a1 = (µmi + µmj )/(2) and b1 = (σ 2
mi t)/(µmj − µmi ).

When σ 2
mi ̸= σ 2

mj , the solution of inequation (11) can be

further divided into two cases, which are shown, respectively,

in Fig. 1(b) and (c). Case 2 occurs when t is less than the

extreme value of G(ym), denoted as G(y0) given by

G(y0) =
∣∣∣∣∣−

(µmi − µmj )
2

2(σ 2
mi − σ 2

mj )
+ ln

(
σmi

σmj

)∣∣∣∣∣ (13)

where y0 is the corresponding extreme point. As shown

in Fig. 1(b), the solution of (11) in this case contains two

intervals, which is formulated in (14), as shown at the bottom

of the next page, where a2, b2, and b3 are given in the

equation (14).





a2 = −
µmjσ

2
mi − µmiσ

2
mj

σ 2
mj − σ 2

mi

b2 =
σ 2

miσ
2
mj

(
µmi − µmj

)2

(
σ 2

mj − σ 2
mi

)2
+

2σ 2
miσ

2
mj

σ 2
mj − σ 2

mi

(
ln

σmj

σmi

− t

)

b3 =
σ 2

miσ
2
mj

(
µmi − µmj

)2

(
σ 2

mj − σ 2
mi

)2
+

2σ 2
miσ

2
mj

σ 2
mj − σ 2

mi

(
ln

σmj

σmi

+ t

)
.

(15)

The last case, i.e., Case 3, where t is larger than G(y0),

is shown in Fig. 1(c). It is obvious that the solution of (11) in

this case is a single interval, which is formulated as follows:
{

ym ∈ [a2 −
√

b2, a2 +
√

b2], σ 2
mi > σ 2

mj

ym ∈ [a2 −
√

b3, a2 +
√

b3], σ 2
mi < σ 2

mj .
(16)

According to the above arguments, we conclude the solution

cases of (11) as follows:




σ 2
mi = σ 2

mj , Case 1

σ 2
mi ̸= σ 2

mj and t < G(y0), Case 2

σ 2
mi ̸= σ 2

mj and t ≥ G(y0), Case 3

(17)

and the decision regions of censoring are expressed, respec-

tively, in (12), (14), and (16). Based on the above illustrations,

the steps of calculating the decision region of one SN are

summarized in Scheme 1.

Scheme 1 Computing the Decision Region

Require: µyi , 6yi and the censoring threshold t

Ensure: decision regions of all SNs

1: for i = 1 to L − 1 do

2: for j = i + 1 to L do

3: switch case based on (17)

4: case 1: Compute D(m; i, j) from (12)

5: case 2: Compute D(m; i, j) from (14)

6: case 3: Compute D(m; i, j) from (16)

7: end switch

8: end for

9: end for

10: Dm =
⋃

i ̸= j

∀i, j∈L
D(m; i, j)

11: return Dm

For the convenience of the following description, we rewrite

the decision region of the mth sensor as the union of Nm single

intervals: Dm,1, . . . ,Dm,Nm , which have no intersections with

each other

Dm =
Nm⋃

i=1

Dm,i

∀i, j ∈ {1, . . . , Nm}, Dm,i ∩ Dm, j = ∅. (18)

In the above equation, each single interval is denoted as

Dm,i = [cmi , dmi ], where cmi and dmi are the lower and upper

bounds of this interval, respectively.

C. Relationship Between the Censoring Threshold and

the Communication Rate
It is noted that the decision region derived in Section III-B

depends on the censoring threshold t . In this section, we deter-

mine the censoring threshold t according to the communica-

tion rate ε, which is defined as the ratio of sensors maintaining

communications with FC in a unit time interval. Following the

definition in [26], the communication rate of the whole WSN

system is given by

ε = 1

M

M∑

m=1

P (um = 1)

= 1

M

M∑

m=1

{
L∑

i=1

Pi P (um = 1|Hi )

}
. (19)
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The conditional probability of the mth sensor transmitting

signals under the i th hypothesis is given in (20), as shown

at the bottom of the next page. Observing from (12), (14),

and (16), the lower bound cmj and the upper bound dmj of

the decision regions are the functions of t . Thus, we express

them as cmj (t) and dmj (t), respectively. Combining (19) and

(20), we derive the expression for the communication rate with

respect to t in (21), as shown at the bottom of the next page.

It is difficult to derive the inverse function of t with

respect to ε from (21) owing to the summation in this

equation. We adopt the binary search scheme to search for

t corresponding to a preset communication rate ε0 and then

give the determined decision region, as shown in Scheme 2.

Specifically, this scheme aims to search for t within a possible

search space [tleft, tright] and stops if |εmid − ε0| ≤ δ, where

εmid is the communication rate corresponding to the midpoint

tmid between tleft and tright, and δ is the searching precision.

It is obvious that ε = 1|t=0 and lim
t→∞

ε = 0. Thus, tleft and

tright can be initialized to 0 and a large value, respectively.

However, a too-large value of tright affects the convergence of

the searching scheme, so we introduce an iterative step with

a given search step length ts to initialize tright. That is, tright

is first set to 0 and then increases by ts in each iteration,

until εright ≤ ε0, as shown in steps 2±6. In iteration search

steps 7±18, the scheme iteratively computes εmid and updates

the search space by comparing the values of εmid and ε0.

By such iteration steps, εmid keeps approaching the preset

ε0 until the iteration stops when the difference between them

is smaller than δ.

D. Enhanced Classifier

With the censoring scheme proposed in Section III-B, only

informative observations are retained and transmitted to FC.

As a result, the distribution of observations received by FC

is different from (3), which corresponds to the case that all

observations are transmitted without censoring. Thus, it is

essential to redesign the classifier to fit the new distribution.

Note that the censored observations contain those that are not

in the decision region Dm . The distribution of the censored

observations for the i th hypothesis, which is denoted as

pc(ym |Hi ), is given by

pc(ym |Hi ) =





po(ym |Hi )

P(um = 1|Hi )
, ym /∈ Dm

0, ym ∈ Dm

(22)

where po(ym |Hi ) is the pdf of the original observations,

which is given by (3). When the sensing matrix is fixed and

the distribution of signals is known, the optimal classifier

minimizing the classification error is the maximum a posteriori

(MAP) classifier, which is expressed as follows:

Ĥ = arg max
1≤i≤L

p(Hi |y) = arg max
1≤i≤L

p(y|Hi )Pi . (23)

Scheme 2 Binary Search for Determining Decision Regions

Require: µyi , 6yi , the preset communication rate ε0, the

searching precision δ, and the step length ts
Ensure: Determined decision regions

1: Initialization: tle f t , tright = 0

2: repeat

3: tright = tright + ts
4: ∀m, call Scheme 1 with tright to compute Dm

5: Comupte εright from (21) based on D1, . . . ,DM

6: until εright ≤ ε0

7: loop

8: tmid = (tle f t + tright )/2

9: ∀m, call Scheme 1 with tmid to compute Dm

10: Comupte εmid from (21) based on D1, . . . ,DM

11: if |εmid − ε0| ≤ δ then

12: break

13: else if εmid > ε0 then

14: tle f t = tmid

15: else

16: tright = tmid

17: end if

18: end loop

19: return D1, . . . ,DM

By combining (23) and (22), our improved MAP classifier

for censored observations is given in (24), as shown at the

bottom of the next page.

Based on these discussions, the detailed procedures of

the WSN adapting to the censoring scheme are shown in

Scheme 3. The complete procedures contain offline and online

stages. In the offline stage, the means and variances of obser-

vations are calculated, and Scheme 2 is used to determine the

decision regions. Then, the FC notifies each decision region to

the corresponding SN. In the online stage, SNs continuously

observe signals and censor the observations based on the

decision regions. The FC receives the censored observations

transmitted from SNs and completes the classification task by

using the enhanced classifier in (24).

To describe how our scheme works, we give an illustrated

example of a WSN adopting our censoring scheme consisting

of an FC and four SNs. Assume that the decision regions of

these SNs are [−1, 0.5], [0.3, 1.5], [1, 1.9], and [−0.2, 1.3],
which are calculated according to Scheme 2 in the offline

stage. In an observation period of the online stage, the SNs

observe the source signal s and obtain their respective com-

pressed observations: 0.2, −0.9, 1.3, and 1.8. By censoring,

0.2 ∈ [−1, 0.5] and 1.3 ∈ [1, 1.9], whereas −0.9 /∈ [0.3, 1.5]
and 1.8 /∈ [−0.2, 1.3]. Therefore, SNs 1 and 3 keep silent; SNs

2 and 4 transmit the symbols with the values −0.9 and 1.8 to

FC, respectively, in this observation period. After FC receives

−0.9 and 1.8, it uses them to determine which hypothesis

holds according to (24).

{
ym ∈ [a2 −

√
b3, a2 −

√
b2] ∪ [a2 +

√
b2, a2 +

√
b3], σ 2

mi < σ 2
mj

ym ∈ [a2 −
√

b2, a2 −
√

b3] ∪ [a2 +
√

b3, a2 +
√

b2], σ 2
mi > σ 2

mj

(14)
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Scheme 3 Proposed Censoring Scheme

Require: Distribution parameters of all types of signals, ε0, δ,

and ts
Ensure: Classification result of the signal

Offline stage at FC:

1: Compute µyi = HT µi and 6yi = HT (6i + σ 2
v IN )H

2: Call Scheme 2 to determine decision regions

3: Notify decision regions to SNs

Online stage:

At the m-th sensor:

4: Sample signals

5: if ym /∈ Dm then

6: Transmit ym to FC

7: else

8: Keep silent

9: end if

At FC:

10: Receive censored signals

11: Classify the signal based on (24)

12: return the classification result Ĥ

IV. THEORETICAL ANALYSIS

In this section, we derive a performance lower bound of

the multiclassification when utilizing the censoring scheme

in Section III. Afterward, the performance superiority of the

censoring scheme is proved by comparing the lower bound

of the classification performance for noncensored signals and

censored signals.

A. Chernoff Distance
The Chernoff distance is utilized as a metric to deduce

the theoretical lower bound of signal classification [28]. The

Chernoff distance between two pdfs is defined as follows:
C

(
p(x|Hi ), p(x|H j )

)
≜ max

0≤t≤1
C̃

(
t; p(x|Hi ), p(x|H j )

)

= − ln

{∫
p(x|Hi )

1−t0 p(x|H j )
t0 dx

}

(25)

where t0 = arg max
0≤t≤1

C̃
(
t; p(x|Hi ), p(x|H j )

)
. Since it is diffi-

cult to obtain an analytical solution in (25), we consider the

special case of the Chernoff distance, where t0 = 0.5 [29].

To calculate the Chernoff distance, we first calculate the

definite integral part in (25). For the convenience of descrip-

tion, we define a function Fm,i j (a, b) in (26), as shown at

the bottom of the next page, where µFm = (µmiσ
2
mj +

µmjσ
2
mi )/(σ

2
mi +σ 2

mj ) and σFm = ((2σ 2
miσ

2
mj )/(σ

2
mi +σ 2

mj ))
1/2.

The Chernoff distances of the received signals in the original

scheme and the censoring scheme are given in (27), as shown

at the bottom of the next page, where Co,i j is the Chernoff

distance of the original signals and Cc,i j is that of the censored

signals, respectively.

B. Theoretical Lower Bound of Multiclassification

Accuracy

Based on the derivation of Chernoff distance, we further

derive the theoretical lower bound of multiclassification accu-

racy. Suppose that HHT = I. [29] shows that the upper bound

of error probability between two hypotheses is formulated

in (28), as shown at the bottom of the next page. By assuming

equiprobable hypotheses, the classification accuracy of the

multiclassification problem is lower bounded by

Pacc = 1 − Perr ≥ 1 −
L∑

i=1

L∑

j=1, j ̸=i

P
(
Ĥ = Hi |H j

)
Pj .

(29)

We provide some numerical experiments of (29) in Fig. 2 to

show the superiority of our censoring scheme. In this figure,

ªOriginalº and ªCensoredº represent the schemes with non-

censored observations and censored observations, respectively.

From this figure, the lower bound of classification performance

increases with the increase in M , which shows that increasing

the number of observations can improve the performance

of classification. The gap of lower bounds between origi-

nal observations and censored observations demonstrates the

P (um = 1 |Hi ) = 1 −
∫

Dm

P (ym |Hi ) dy

= 1 −
Nm∑

j=1

∫

Dm, j

P (ym |Hi ) dy

= 1 − 1

2

Nm∑

j=1


er f


dmj − µmi√

2σ 2
mi


 −er f


cmj − µmi√

2σ 2
mi





 (20)

ε = 1 − 1

2M

M∑

m=1

L∑

i=1

Nm∑

j=1

Pi


er f


dmj (t) − µmi√

2σ 2
mi


 −er f


cmj (t) − µmi√

2σ 2
mi





 (21)

Ĥ = arg min
1≤i≤L

{(
y − µyi

)T
6

−1
yi

(
y − µyi

)
+ ln

(∣∣6yi

∣∣) + 2 ln P(um = 1|Hi )−2 ln Pi

}
(24)
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Fig. 2. Theoretical lower bounds of classification accuracy.

superiority of the latter because it transmits more informative

observations than the original scheme.

V. EXPERIMENTS

This section presents the experimental results of the pro-

posed scheme to demonstrate its superiority. The experiments

consider both the binary classification scenario and the multi-

classification scenario.

The sensing matrices of these WSNs are generated by the

QR decomposition of a Gaussian random matrix

Q = Q R(K)

H = Q1:M (30)

where K is an N × N random matrix, whose entries follow

the normal distribution, Q R(·) represents QR decomposition,

Q is the orthogonal matrix obtained by QR decomposition,

and H is the sensing matrix consisting of the first M rows

of Q. In doing so, the sensing matrix satisfies HHT = I.

A. Results in the Binary Classification Scenario

Our scheme focuses on censoring in the multiclassification

scenario; however, no equivalent schemes are available in

the current literature for comparison. To verify the advantage

of our scheme, we compare it with the censoring scheme

in [26], where only two classes are considered. The problem

is classifying two hypotheses, i.e., the absence and presence

of the sparse signal. The sparse signal with N = 1000 and

the sparsity of 20 is generated with a fixed support set,

whose nonzero entries follow N (0, σ 2
s ), and the noise follows

the i.i.d. standard normal distribution. To ensure the fairness

of the comparison, we replace the locally most powerful

test (LMPT) classifier in [26] with the MAP classifier in

(24). In the following comparison, the WSNs adopting our

Fm,i j (a, b) ≜

∫ b

a

po(ym |Hi )
1
2 po

(
ym |H j

) 1
2 dy

=
√

2σmiσmj

σ 2
mi + σ 2

mj

exp


−

(
µmi − µmj

)2

4
(
σ 2

mi + σ 2
mj

)


 × 1

2

[
er f

(
b − µFm√

2σFm

)
− er f

(
a − µFm√

2σFm

)]
(26)

Co,i j ≜ C
(

po(y|Hi ), po(y|H j )
)

= − ln

{
M∏
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∫ +∞

−∞
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1
2 p(ym |H j )

1
2 dym

}

= −
M∑
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ln
{
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}

Cc,i j ≜ C
(
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)

= − ln
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1
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Pr
(
Ĥ = Hi |H j

)
≤ 1

2
exp

(
−Cc,i j

)

≤ 1

2

M∏
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{
Fm,i j (−∞, +∞) −

∑Nm
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P(um = 1|Hi )P(um = 1|H j )

}
(28)
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Fig. 3. Actual communication rate of the WSN-proposed and the WSN-
benchmark with varying signal variances.

censoring scheme and the comparison scheme are denoted as

WSN-proposed and WSN-benchmark, respectively. We set the

number of SNs as M = 100 and the preset communication

rate as ε0 = 0.33 of both WSNs to ensure fairness, where the

latter is determined by the actual transmission ability of the

communication system. In addition, δ = 0.1, and ts = 1 in

the proposed scheme.

First, we calculate the actual communication rate ε̂ (the

statistical average of the numbers of the transmitting SNs in

10 000 Monte Carlo trials) of the two schemes when the preset

communication rate ε0 is fixed at 0.33, as shown in Fig. 3.

Observed from this figure, the actual communication rate

of WSN-benchmark increases as σ 2
s increases and gradually

deviates from the preset communication rate 0.33. It is due to

the reason that the sensors in the comparison scheme are more

inclined to transmit observations when P1 is larger according

to the censoring rule in [26]. This phenomenon is confirmed

in this figure, where a smaller P0 corresponds to a larger

actual communication rate of WSN-benchmark. As for our

proposed scheme, the actual communication rate is almost

identical to the preset communication rate no matter of the

varying P0 and σ 2
s , which demonstrates that the adaptability

and stability of our scheme are both superior to those of the

comparison scheme.

Next, we depict the classification accuracy curves with

varying σ 2
s in Fig. 4 by averaging over 10 000 Monte Carlo

trials. From this figure, WSN-proposed performs better than

WSN-benchmark on the classification accuracy when σ 2
s is

not very large. It can be also noted that the classification

accuracy of WSN-proposed is slightly worse than that of

WSN-benchmark when σ 2
s is large. It is due to the reason that

the actual communication rate of WSN-benchmark increases

as σ 2
s increases, which means more observations are received

for classification at FC in WSN-benchmark. However, such

an advantage does not exist in a practical system, where the

communication rate is generally limited.

B. Results in the Multiclassification Scenario

In this section, we present the results in the multiclassifica-

tion scenario. The following four WSNs will be considered in

this section.

Fig. 4. Classification accuracy of the WSN-proposed and the WSN-
benchmark with varying signal variances.

TABLE I

DISTRIBUTION PARAMETERS OF SYNTHETIC DENSE SIGNALS

1) WSN-ori1: the original WSN without censoring includ-

ing M sensors.

2) WSN-cen: the WSN with our proposed censoring

scheme including M sensors. The preset communication

rate of this WSN is ε0, and the auxiliary parameters of

the scheme are set to be δ = 0.1, and ts = 1.

3) WSN-sel: the WSN adopts the random selection scheme.

It has ε0 M transmitting sensors, which are randomly

selected from M sensors in each round of simulation.

4) WSN-ori2: the original WSN without censoring includ-

ing fixed ε0 M sensors.

These WSNs experiment with synthetic dense signals, syn-

thetic sparse signals, and the MNIST dataset so that we can

evaluate the performance of our scheme in various signal

conditions. All these datasets contain ten types of signals.

For the synthetic dense signal, the length of the signal is

set to 100, and each element of the signal follows the same

Gaussian distribution, whose means and variances are shown

in Table I. For the synthetic sparse signal, the length is 1000,

and the sparsity is 100. Different types of sparse signals have

different support sets, and the nonzero elements of the signal

follow the Gaussian distribution, whose means and variances

are shown in Table II. For the MNIST dataset, the samples

are first normalized. Then, suppose the pixels of each digit in

the dataset follow the mixture Gaussian distribution [30]. The

training set in MNIST is utilized to estimate the means and

variances of pixels in each digit, and the test set is used to

show the classification accuracy.

We first discuss the classification results with different

energies of noise of three datasets, as shown in Fig. 5. The

Authorized licensed use limited to: Georgia State University. Downloaded on December 19,2023 at 19:29:42 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: CENSORING SCHEME FOR MULTICLASSIFICATION IN WIRELESS SENSOR NETWORKS 14445

Fig. 5. Classification accuracy with different energies of noise.

Fig. 6. Classification accuracy with different numbers of SNs.

TABLE II

DISTRIBUTION PARAMETERS OF THE NONZERO ENTRIES IN

SYNTHETIC SPARSE SIGNALS

results of synthetic dense signals, synthetic sparse signals, and

MNIST are shown in Fig. 5(a)±(c), respectively. As shown

in this figure, the classification accuracy of all schemes

decreases with the increase of σ 2
v . All three subfigures show

that WSN-cen performs significantly better than WSN-sel and

WSN-ori2, which means the WSN with our censoring scheme

transmits more informative observations than the other two

schemes to FC. As expected, the performance of WSN-ori1

is better than WSN-cen. This is due to the fact that all SNs

transmit observation in the former, whereas in the latter, only

40% SNs are activated. Meanwhile, the gap between WSN-cen

and WSN-sel, and that between WSN-cen and WSN-ori2

increase with the increase in σ 2
v in the experiments of all three

datasets. This indicates that the effect of censoring is better

when the signal is harder to classify. That means our censoring

scheme has superiority in the low signal-to-noise ratio (SNR)

condition.

For the result of synthetic dense signals in Fig. 5(a), WSN-

ori2 performs worse than WSN-sel, but in Fig. 5(b) and (c), the

performance of these two WSNs is similar. That is because

the sensing vectors on different SNs are different in terms of

the ability to distinguish signals. Take the first and second SNs

for example. If |hT
1 µi − hT

1 µ j | is larger than |hT
2 µi − hT

2 µ j |,
the observations from the first SN possess better classification

ability than those from the second SN. Such a phenomenon

implies the problem that the sensing vectors of a WSN may

be unfortunately unsatisfactory to distinguish signals. Note that

such a problem is more likely to occur when the number of

SNs is smaller, which explains the relatively poor performance

of WSN-ori2 in Fig. 5(a). In contrast, WSN-cen and WSN-sel

avoid this problem due to the randomness of activated SNs

in each round of simulation. We will soon observe that the

aforementioned problem vanishes in the subsequent experi-

ments of synthetic sparse signals and MNIST because of the

large number of SNs.

Then, we focus on the results with different numbers of SNs,

as shown in Fig. 6. It can be observed that the classification

accuracy of all schemes increases with the increase in M ,

and the degree of performance improvement slows down

with the increase in M . This implies that the performance
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Fig. 7. Classification accuracy with different communication rates.

of each WSN converges an upper bound when M is large

enough. Notably, the performance gap between WSN-ori1 and

WSN-cen narrows with the increase in M , especially narrows

to 0 in Fig. 6(a). This means WSN with our censoring scheme

can save a large amount of transmitting energy consumption

but with only little performance loss when M is large.

The performance curves in Fig. 6(a) are not as smooth

as those in Fig. 6(b) and (c). This phenomenon is caused

by the similar reason mentioned in the fourth paragraph of

this subsection for Fig. 6 that different SNs have different

abilities to distinguish signals. Especially, the smaller the M

is, the greater the influence of a single sensing vector on the

performance of the WSN. The numbers of SNs in Fig. 6(a)

are smaller than Fig. 6(b) and (c), and thus, the phenomenon

of unsmooth curves appears.

At last, the results with different communication rates are

shown in Fig. 7. This figure shows that, with the increase

in the communication rate, the performance of all three

schemes first improves rapidly and then slowly approaches

the baseline of WSN-cen when the communication rate is set

to 1. The performance degradation in the low communication

rate case indicates that the performance loss caused by a

significant decrease in observations cannot be compensated

by the advantage of informative observations. We can observe

that the performance gaps between WSN-cen and WSN-sel,

and WSN-cen and WSN-ori2 first increase and then decrease.

Meanwhile, the increasing degree of classification accuracy

of WSN-cen slows down when ε0 > 0.5. This indicates

that the communication rate should be set approximately by

considering the balance between performance requirements

and energy-saving requirements in practice.

VI. CONCLUSION

This article proposes a WSN censoring scheme for multi-

classification. This scheme gives a decision region of whether

to transmit observations based on LLRs and a censoring

threshold. Sensors compute this decision region offline and

censor signals efficiently based on this region in the online

stage. We further theoretically analyze the Chernoff distances

between the signals of different types for the censored scheme

and the noncensored scheme, which demonstrate the effec-

tiveness of our proposed scheme. Experimental results in

the binary classification scenario and the multiclassification

scenario demonstrate that the proposed scheme achieves the

desired performance of multiclassification comparable with

the conventional scheme without censoring while significantly

reducing the communication costs.
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