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A Censoring Scheme for Multiclassification
iIn Wireless Sensor Networks
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Abstract—Censoring has been widely applied in wireless
sensor networks (WSNs) as an effective method to achieve a Wireless sensors
balance between energy consumption and the quality of the ___________ ‘ ((fi Ko T
observed signals. However, most recent studies focus on the | oene | A L _silent | Fusion center _______________.
censoring schemes applied in binary hypothesis problems g‘ A Classity signals |

(i.e., binary classification and detection problems). To expand
the application of censoring in WSNs, we propose a censor-
ing scheme for multiclassification problems in this article.
Sensors in this scheme only transmit observations deemed
informative enough for classification, where the decision
region of whether to transmit is derived based on log likeli-
hood ratios (LLRs). By analyzing the relationship between the
communication rate of the WSN and the censoring threshold,
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we design an adaptive strategy in the censoring scheme so that the censoring threshold can be adjusted according to the
communication rate. We further derive the theoretical lower bound of the classification accuracy, which is formulated via
the Chernoff distance among different signals. The performance superiority of the censored signals compared with the
original ones without censoring is revealed in the form of the theoretical lower bound, verified by experimental results on
WSN applications where our proposed censoring scheme allows significant communication saving without the sacrifice

of performance.

Index Terms— Censoring strategy, compressive sensing (CS), multiclassification, performance bound, wireless sensor

networks (WSNs).
NOMENCLATURE |la|  Absolute value of a.

Notation ~ Description |X| Determinant of the square matrix X.

i, N Scalar.

S,V Vector. [. INTRODUCTION

H Matrix. ECENTLY, people witness an obvious growth of wireless
L,D Set. sensor networks (WSNs) owing to the proliferation of the
la, D) Interval, which means {x |a <x < b}. Internet of Things (IoT) in many applications, e.g., environ-
Hi Hypothesis. ment, industry, military, and health [1], [2], [3], [4]. WSNs can
N(w.0?)  Gaussian distribution with mean . and variance be generally divided into centralized WSNs and decentralized
02.C Chernoff distance. WSNs according to the presence or absence of the fusion
p() Probability density function (pdf) of a variable. center (FC). Decentralized WSNs are usually deployed in
P() Probability of an event. target tracking scenarios, where the signal source moves in
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different sensing ranges of the sensors [5], [6]. By contrast,
centralized WSNs are common in traditional signal processing
scenarios, e.g., signal detection [7], [8], classification [9],
[10], and reconstruction [11], [12]. This article focuses on the
centralized WSN, which consists of a group of sensor nodes
(SNs) and an FC. These spatially distributed SNs observe
signals and transmit these observations to FC by wireless
communication, and they are required to be as small and
lightweight as possible with a simple structure in order to
facilitate the deployment.

However, sensors in many practical applications sample sig-
nals at high sampling rates and generate large volumes of data,
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which causes a great burden on the communication resources
of the sensors. To avoid excessive consumption of commu-
nication resources caused by directly transmitting originally
observed signals, compressive sensing (CS) has been adopted
in WSNs owing to the inherent sparsity in the data collected
by sensors [13], [14], [15]. With a properly designed sensing
matrix and reconstruction algorithm, sensors efficiently sample
signals with much lower sampling rates than the Nyquist
sampling rate, and FC can still obtain accurate reconstructions.
In such a way, transmitting compressed signals acquired by CS
reduces the consumption of communication resources between
the FC and SNs.

To further improve the communication efficiency, apart
from applying CS in signal transmission, some methods
have emerged to transmit only a part of the compressed
observations on the premise of ensuring as little performance
loss as possible. The existing improved schemes can be
divided into two categories, i.e., sensor selection and sensor
censoring. The former is a technology that FC determines
which sensors can transmit data at a given time [16], [17],
whereas in the latter one, the sensor censoring technol-
ogy hands over the selection task to the sensor to decide
whether the observed signal is informative to be transmitted
to the FC. Comparatively, sensor censoring is more flexible
since sensors can determine their own communication states,
i.e., transmitting observations to FC or keeping silent based
on the current state, and the extra feedback from FC is
avoided [18], [19], [20].

Censoring schemes have been applied in many scenarios in
WSNs [21], [22], [23]. In various schemes, local likelihood
ratios (LRs) and log likelihood ratios (LLRs) are usually
calculated to measure the signal quality. For example, [24]
proposes a censoring-based change-point-detection scheme
based on LLR, which is utilized to measure the probability
that a system is abnormal. Wu et al. [25] propose a ternary
censoring rule with three states: directly transmitting the
observed signal, transmitting a one-bit hard decision, and
keeping silent. Rago et al. [26] propose a simple LR-based
censoring rule for the signal detection problem, which
establishes a relationship between the censoring threshold
and the communication rate of WSNs. However, the above-
mentioned works are formulated and solved as simple binary
hypothesis problems for either on—off signal detection or
binary classification tasks, where the decision region reduces
to a simplified single interval and, thus, can be calculated
easily [27]. They cannot be straightforwardly extended
to the practical but more complicated multihypotheses
scenarios. To fill such a gap, we are motivated to design a
censoring scheme for multiclassification problems. The main
contributions of this article are summarized as follows.

1) We propose a WSN censoring scheme for practical
multiclassification problems, in which sensors decide
locally whether to transmit observations. This scheme
provides the censoring rule, which is determined in the
offline stage based on a censoring threshold to avoid the
energy consumption of calculating LLRs online for each
signal. In addition, we design a binary search scheme to
find a suitable censoring threshold corresponding to the

preset communication rate, which is determined by the
actual transmission ability of the WSN.

2) To evaluate the effectiveness of the proposed scheme,
we analyze the theoretical performance of the proposed
scheme in terms of the lower bound of the classification
accuracy. By comparing the theoretical lower bound of
the originally observed signals and censored signals,
we prove the performance advantage of our censoring
scheme.

3) We provide the experiments of our proposed scheme in
both the binary classification scenario and the multiclas-
sification scenario. The results show that when compared
with the conventional schemes, the proposed censoring
scheme effectively reduces the communication costs
without compromising the classification performance.

The rest of this article is organized as follows. Section II

illustrates the system model and the definition of LLR. Our
censoring scheme is proposed afterward in Section III. The
theoretical analysis, i.e., the theoretical lower bound of the
classification accuracy, is provided in Section IV. Simulation
results are shown in Section V to verify our analysis. Finally,
Section VI draws a conclusion to this article.

The notations used in this article are listed in the Nomen-

clature for the convenience of the following description.

Il. SIGNAL MODEL AND LLR

This section is devoted to describing the signal model and
the definition of LLR.

A. Signal Model

The multiclassification problem in the WSN aims to classify
an observed signal that belongs to one of the L hypotheses,
where the probability of the ith hypothesis is denoted as
P;. The original signal x € R¥*! under each hypothesis is
formulated as follows:

Hi:x=8]1+V
Hy:Xx=8 +V
Hp :x=8;,+V (N

where s; € RV*! is the source signal under the ith hypothesis,
i belongs to the index set of hypotheses £ = {1,2,..., L},
and v € RV is the additive white Gaussian noise (AWGN).
Suppose that the WSN consists of M sensors and an FC.
The signal observation of the mth sensor is formulated as

ym =hlx =hl(s; +v) 2)

where y,, is the compressed signal and h,, € RV*! is the
sensing vector of the mth sensor.

We assume that the entries of s; are independent random
Gaussian variables, i.e., s; ~ N(n;, X;) and the noise v ~
N0, aszN), where Iy is the N x N identity matrix. Then,
we obtain the distribution of the observed signal y,, and the
vector y = (y1,y2,..., ym)! consisting of all observations
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under the ith hypothesis as follows:

Ym|Hi ~ N(hI p; hI (Z; + o 2Iy)hy,)
yIH: ~ NH p;, H (Z; + 0 1y)H) 3)

where H £ (hy, .. .,hM)T is the equivalent sensing matrix
of the whole WSN. For the convenience of illustration, the
mean h! u; and the variance hl (X; + o2Iy)h,, of the mth
signal in (3) are denoted as u,,; and o,%”., respectively. Besides,
we denote the mean vector of y|H; as pu,; = H' u; and the
covariance matrix as X; = H' (X; + o2Iy)H.

B. Log Likelihood Ratio
The LLR is usually employed to measure the difference
between two pdfs, which is defined as follows:

p(ymlHi))
pmlH j )
where p(y,|H;) is the conditional pdf of the observed signal

ym under the H; hypothesis. According to (3), the LLR is
given by

LLR;; (yp) = In ( 4)

2
(ym - Hmj) _ Om — Mnn')z
202 202

mj mi

LLR;; () = In (Oﬂ) +

mi

&)

I1l. PROPOSED SCHEME
In this section, we present a censoring scheme for multi-
classification. We illustrate the censoring rule of our scheme,
the decision region of discarding less informative observations,
the selection of the censoring threshold, and the improvement
of the classifier in FC.

A. Censoring Rule for Multiclassification

The communication state of sensors is denoted as u =
(ur,uz,...,upy), where u,, € {0, 1} represents the state of
the mth sensor, such that

[ uy, =1, transmitting
o (6)
u, =0, keeping silent.

The purpose of censoring is to transmit informative obser-
vations and discard less informative ones, where the latter
contributes less to the classification. Most existing censoring
schemes [19], [24], [25], [26] first define the uninformative
decision region of each SN and then adopt the following
general rule:

up =1,

Ym ¢ D

where D,, is the uninformative decision region of the mth SN.
To guarantee efficient censoring, the first important step is to
calculate suitable decision regions. Though recent works have
made some achievements in this aspect [19], [26], [27], they
only focus on the binary classification problem. For example,
[27, Th. 1] shows that the optimal uninformative decision

[um=0, Ym € Dp 7

region at each SN of the binary classification problem is in
the form of

D = {yml 1 < LR(ym) < 12} (¥

where LR(ym) = (p(ym|H1))/(p(ym|Ho)); Ho and H; rep-
resent the absence and presence of the source signal, respec-
tively; and #; and #, are the lower and upper thresholds of
this single interval, respectively. In addition, [19, Th. 2.2]
further shows #; can be simplified to zero when Py, i.e., the
prior probability of Hy, is larger than a special value. This
condition is usually satisfied in the detection problem (i.e.,
a specific binary classification problem, where Py is generally
larger than Pp), and #; = 0 is set by [26]. However, this
condition cannot be always satisfied in the general binary
classification problem. In this case, a more feasible censoring
decision region is still the one in (8) with #; # 0. To fairly
constrain the conditional probability of y,, under either Hy or
‘H1, a feasible simplification of (8) is to set t; = (1/#2). Then,
we obtain the following simplified decision region:

Dy = {ym| ILLRo1(ym)| =1} (©))

where t = |Int;| = |In#|. By doing so, the region with two
thresholds is reduced to the one with only one threshold 7.

To extend the censoring rule to the multiclassification sce-
nario, it is obvious that the transmitted observations should be
informative for all hypotheses. Thus, the decision region of
censoring should consider all LLRs, i.e., LLR;;(ym), Vi, j €
L,i # j. Each LLR corresponds to a decision subregion
D(m; i, j), so the whole decision region of the mth SN should
be the union of all the decision subregions

U i,
i#]
Vi,jeLl

D(m; i, j) = {ym| ILLRij(ym)| < 1}.

Dy =

(10)

B. Calculation of Decision Region

Note that the LLR in (5) means that we have to calculate
the LLR for each observation. However, it is inappropriate to
implement such tedious calculations on each sensor, owing to
the high complexity and limited energy. Therefore, it is more
desirable to determine the decision region in the offline stage.
Combining (5) and (10), the decision region is calculated by
the following inequation:

2
In (%) i ()’m _Mmj) _ (Ym _/fLmi)2 <t

Omi 20—’121] 2(7”2“

(1)

The left-hand side of this inequation is denoted as |G (y;)]|.
To determine whether y,, should be discarded, we discuss (11)
in the following three cases.

The first case corresponds to crnzu. = o,:, and G(y,) can
be reduced to an affine function, i.e., G(y) = (2y — Umi —
i) (Mmi — ,umj))/(2o,ﬁi). We denote this case as Case 1,
which is illustrated in Fig. 1(a) with the settings shown in the
figure. The solution of inequation (11) in Case 1 is given by

2

Ym € [—a1 — b1, —a1 + b1] (12)
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(a) . . . . . .
2 ‘ this case is a single interval, which is formulated as follows:
Ym € laz — /b2, a2 + /b2], Um, >0mj (16)
L R e . ym € lar = /b3, ar +/b3), op; <o
© \ [ . .
| | According to the above arguments, we conclude the solution
| \ cases of (11) as follows:
0 s P s s T s
2 _ 2
0.5 0.6 0.7 0.8 0.9 }1 1.1 1.2 1.3 1.4 1.5 Gnll ij s Case 1
\ ®) 02, # amj and ¢t < G(yp), Case 2 (17)
2 2
Opi 7 Opmj and t > G(yp), Case3

m

IG(y )l

-~ W

m

(S}

IG(y )l

Fig. 1.

Three cases of calculating decision regions.

where a; = (Mmt + tmj)/(2) and by = t)/(Mmj Mmi)-

When o . F 03”, the solution of 1nequat10n (11) can be
further d1V1ded into two cases, which are shown, respectively,
in Fig. 1(b) and (c). Case 2 occurs when ¢ is less than the
extreme value of G(y,,), denoted as G(yp) given by

(,Uvml2 Nvm;) +1n (%)
2(07%, — amj) Omj

where yg is the corresponding extreme point. As shown
in Fig. 1(b), the solution of (11) in this case contains two
intervals, which is formulated in (14), as shown at the bottom
of the next page, where ap, by, and b3 are given in the
equation (14).

G(yo) = (13)

2
_ Mmjo,,; — Mmigmj
a2 = 02 — 0'2
mj mi 5
2 . 2 2
by — Omi®; mj (Mmz Mm/) 2Umioﬂmj 1 Omj _;
27 2 2 2 ol —o2 ! Omi
(amj - omi) mn mt
2 ( 2 2 2
0202 Mmi — Mmj) 20,0, Omi
mi“ mj mi” mj m
b3 = 5 + 3 ) ln ()’_j + t].
2 2 o . — 0. mi
(O‘mj — 0. ) mj mi

(15)

The last case, i.e., Case 3, where ¢ is larger than G(yp),

is shown in Fig. 1(c). It is obvious that the solution of (11) in

«

and the decision regions of censoring are expressed, respec-
tively, in (12), (14), and (16). Based on the above illustrations,
the steps of calculating the decision region of one SN are
summarized in Scheme 1.

Scheme 1 Computing the Decision Region

Require: p;, Xy; and the censoring threshold ¢
Ensure: decision regions of all SNs

I:fori=1to L—1do

22 for j=i+1to L do

3 switch case based on (17)
4: case 1: Compute D(m; i, j) from (12)
5: case 2: Compute D(m; i, j) from (14)
6 case 3: Compute D(m; i, j) from (16)
7 end switch
8 end for
9: end for
10: Dy, =Y i#j Dm;i, J)

Vi, jel

11: return D,

For the convenience of the following description, we rewrite
the decision region of the mth sensor as the union of N,, single
intervals: Dy, 1, ..., Dy, N, which have no intersections with
each other

N
Dm = U Dm,i

i=1

Vi,je{l,.... Ny}, DpiNDp,;=90. (18)

In the above equation, each single interval is denoted as
Dn.i = [cmi, dmil, where ¢, and dy,; are the lower and upper
bounds of this interval, respectively.

C. Relationship Between the Censoring Threshold and
the Communication Rate

It is noted that the decision region derived in Section III-B
depends on the censoring threshold 7. In this section, we deter-
mine the censoring threshold ¢ according to the communica-
tion rate ¢, which is defined as the ratio of sensors maintaining
communications with FC in a unit time interval. Following the
definition in [26], the communication rate of the whole WSN
system is given by

1 M
8:Mn§1p(um: 1)
1 M L
= MZIZP"P(”’" = 1|H,~)}.

m=1 Li=1

19)
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The conditional probability of the mth sensor transmitting
signals under the ith hypothesis is given in (20), as shown
at the bottom of the next page. Observing from (12), (14),
and (16), the lower bound c,,; and the upper bound d,,; of
the decision regions are the functions of . Thus, we express
them as ¢y, (t) and dy,;(¢), respectively. Combining (19) and
(20), we derive the expression for the communication rate with
respect to ¢ in (21), as shown at the bottom of the next page.

It is difficult to derive the inverse function of ¢ with
respect to ¢ from (21) owing to the summation in this
equation. We adopt the binary search scheme to search for
t corresponding to a preset communication rate &y and then
give the determined decision region, as shown in Scheme 2.
Specifically, this scheme aims to search for ¢ within a possible
search space [fieft, fright] and stops if |emig — €0| < 8, where
&mid 18 the communication rate corresponding to the midpoint
tmid between fiere and fign, and § is the searching precision.
It is obvious that ¢ = 1|;—¢ and l1m e = 0. Thus, #fier and
hight can be initialized to O and a large value, respectively.
However, a too-large value of fgn, affects the convergence of
the searching scheme, so we introduce an iterative step with
a given search step length #; to initialize fign. That is, #ight
is first set to O and then increases by #; in each iteration,
until &4ene < €0, as shown in steps 2-6. In iteration search
steps 7-18, the scheme iteratively computes &g and updates
the search space by comparing the values of epig and &g.
By such iteration steps, emig keeps approaching the preset
&o until the iteration stops when the difference between them
is smaller than §.

D. Enhanced Classifier

With the censoring scheme proposed in Section III-B, only
informative observations are retained and transmitted to FC.
As a result, the distribution of observations received by FC
is different from (3), which corresponds to the case that all
observations are transmitted without censoring. Thus, it is
essential to redesign the classifier to fit the new distribution.
Note that the censored observations contain those that are not
in the decision region D,,. The distribution of the censored
observations for the ith hypothesis, which is denoted as
pc(ym”_(i)’ is given by

PomlHi)
A, Ym ¢ D,
P(um = 11H;)
0, Ym € Dp

PeymIHi) = (22)

where p,(ym|H;) is the pdf of the original observations,
which is given by (3). When the sensing matrix is fixed and
the distribution of signals is known, the optimal classifier
minimizing the classification error is the maximum a posteriori
(MAP) classifier, which is expressed as follows:

H = argmax p(H;|y) = argmax p(y|H) P (23)

Scheme 2 Binary Search for Determining Decision Regions
Require: Ryis Zyi, the preset communication rate &g, the
searching precision §, and the step length #,

Ensure: Determined decision regions

1: Initialization: fief, trighs = 0

2: repeat

3 tright = tright + 15
4:  Vm, call Scheme 1 with #,;,;; to compute D,,
5 Comupte &,jgp, from (21) based on Dy, ..., Dy
6: until Eright < €0
7
8
9

: loop
: Imid = (tleft + tright)/z

. Vm, call Scheme 1 with t,,;4 to compute D,,
10:  Comupte &;,;4 from (21) based on Dy, ..., Dy

11: if |e;niq0 — €0 < 8 then

12: break

13:  else if g,,;4 > &p then
14: Heft = tmid

15:  else

16: Lright = Imid

17:  end if

18: end loop

19: return Dy, ..., Dy

By combining (23) and (22), our improved MAP classifier
for censored observations is given in (24), as shown at the
bottom of the next page.

Based on these discussions, the detailed procedures of
the WSN adapting to the censoring scheme are shown in
Scheme 3. The complete procedures contain offline and online
stages. In the offline stage, the means and variances of obser-
vations are calculated, and Scheme 2 is used to determine the
decision regions. Then, the FC notifies each decision region to
the corresponding SN. In the online stage, SNs continuously
observe signals and censor the observations based on the
decision regions. The FC receives the censored observations
transmitted from SNs and completes the classification task by
using the enhanced classifier in (24).

To describe how our scheme works, we give an illustrated
example of a WSN adopting our censoring scheme consisting
of an FC and four SNs. Assume that the decision regions of
these SNs are [—1, 0.5], [0.3,1.5], [1, 1.9], and [-0.2, 1.3],
which are calculated according to Scheme 2 in the offline
stage. In an observation period of the online stage, the SNs
observe the source signal s and obtain their respective com-
pressed observations: 0.2, —0.9, 1.3, and 1.8. By censoring,
0.2 € [-1,0.5] and 1.3 € [1, 1.9], whereas —0.9 ¢ [0.3, 1.5]
and 1.8 ¢ [—0.2, 1.3]. Therefore, SNs 1 and 3 keep silent; SNs
2 and 4 transmit the symbols with the values —0.9 and 1.8 to
FC, respectively, in this observation period. After FC receives
—0.9 and 1.8, it uses them to determine which hypothesis

I<i<L I<i<L holds according to (24).
Ym € laz — Vb3, a0 — b2l U laz + /b2, a2 + /b3 Ur%u‘<‘72] (14)
Ym € laz — Vb2, a0 — /b3l U [ax + /b3, ax + /2], anu'>ar%lj
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Scheme 3 Proposed Censoring Scheme

Require: Distribution parameters of all types of signals, &g, &,
and f,
Ensure: Classification result of the signal
Offline stage at FC:
1: Compute p,; = H p; and Ty; = H' (%; + o2Iy)H
2: Call Scheme 2 to determine decision regions
3: Notify decision regions to SNs
Online stage:
At the m-th sensor:
Sample signals
if y,, ¢ D,, then
Transmit y,, to FC
else
Keep silent
end if
At FC:
10: Receive censored signals
11: Classify the signal based on (24)
12: return the classification result 7{

D A A

IV. THEORETICAL ANALYSIS
In this section, we derive a performance lower bound of
the multiclassification when utilizing the censoring scheme
in Section III. Afterward, the performance superiority of the
censoring scheme is proved by comparing the lower bound
of the classification performance for noncensored signals and
censored signals.

A. Chernoff Distance

The Chernoff distance is utilized as a metric to deduce
the theoretical lower bound of signal classification [28]. The
Chernoff distance between two pdfs is defined as follows:

C (pxIM:), p(xIH)) & max C (; pxIHy), p(xIH;))

= _1nUp(x|Hi)1—f0p(x|Hj)f°dx]
(25)

where 79 = argmax C (1; p(x|M;), p(x|H,)). Since it is diffi-
0<r<l
cult to obtain an analytical solution in (25), we consider the

special case of the Chernoff distance, where #p = 0.5 [29].
To calculate the Chernoff distance, we first calculate the

definite integral part in (25). For the convenience of descrip-

tion, we define a function F, ;j(a,b) in (26), as shown at

the bottom of the next page, where wur, = (,umionzﬁ +
Hmjom) /(@ piton ) and opm = (20,000 / (02 0, ))'/2.

The Chernoff distances of the received signals in the original
scheme and the censoring scheme are given in (27), as shown
at the bottom of the next page, where C,;; is the Chernoff
distance of the original signals and C, ;; is that of the censored
signals, respectively.

B. Theoretical Lower Bound of Multiclassification
Accuracy

Based on the derivation of Chernoff distance, we further
derive the theoretical lower bound of multiclassification accu-
racy. Suppose that HH” = I. [29] shows that the upper bound
of error probability between two hypotheses is formulated
in (28), as shown at the bottom of the next page. By assuming
equiprobable hypotheses, the classification accuracy of the
multiclassification problem is lower bounded by

L L
Poce =1 — Pepp > 1_2 Z P(H=H,‘|Hj)Pj.
i=1 j=1,j#i
(29)
We provide some numerical experiments of (29) in Fig. 2 to
show the superiority of our censoring scheme. In this figure,
“Original” and “Censored” represent the schemes with non-
censored observations and censored observations, respectively.
From this figure, the lower bound of classification performance
increases with the increase in M, which shows that increasing
the number of observations can improve the performance
of classification. The gap of lower bounds between origi-
nal observations and censored observations demonstrates the

P (up =1|Hi)=1—/ P (ym IHi)dy

m

N
=1—Z/ P (ym [Mi) dy
j:1 Dm,j
N,
1 & d . .
—1_ z erf mj — Hmi —erf mj — Mmi 20)
=1 202, 202,
M L N,
1 m d (1 (1) — )
e=1—— Z Z Pi|erf mj (1) = [mi —erf Cmj (1) — Wi @1
2 4 o 2 —
m=1i=1 j=I O i O
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Fig. 2. Theoretical lower bounds of classification accuracy.

superiority of the latter because it transmits more informative
observations than the original scheme.

V. EXPERIMENTS
This section presents the experimental results of the pro-
posed scheme to demonstrate its superiority. The experiments
consider both the binary classification scenario and the multi-
classification scenario.

The sensing matrices of these WSNs are generated by the
QR decomposition of a Gaussian random matrix

Q = OR(K)
H=Quu

where K is an N x N random matrix, whose entries follow
the normal distribution, Q R(-) represents QR decomposition,
Q is the orthogonal matrix obtained by QR decomposition,
and H is the sensing matrix consisting of the first M rows
of Q. In doing so, the sensing matrix satisfies HH” =L

(30)

A. Results in the Binary Classification Scenario

Our scheme focuses on censoring in the multiclassification
scenario; however, no equivalent schemes are available in
the current literature for comparison. To verify the advantage
of our scheme, we compare it with the censoring scheme
in [26], where only two classes are considered. The problem
is classifying two hypotheses, i.e., the absence and presence
of the sparse signal. The sparse signal with N = 1000 and
the sparsity of 20 is generated with a fixed support set,
whose nonzero entries follow A (0, asz), and the noise follows
the i.i.d. standard normal distribution. To ensure the fairness
of the comparison, we replace the locally most powerful
test (LMPT) classifier in [26] with the MAP classifier in
(24). In the following comparison, the WSNs adopting our
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Fig. 3. Actual communication rate of the WSN-proposed and the WSN-
benchmark with varying signal variances.

censoring scheme and the comparison scheme are denoted as
WSN-proposed and WSN-benchmark, respectively. We set the
number of SNs as M = 100 and the preset communication
rate as &g = 0.33 of both WSNs to ensure fairness, where the
latter is determined by the actual transmission ability of the
communication system. In addition, § = 0.1, and #;, = 1 in
the proposed scheme.

First, we calculate the actual communication rate & (the
statistical average of the numbers of the transmitting SNs in
10000 Monte Carlo trials) of the two schemes when the preset
communication rate &g is fixed at 0.33, as shown in Fig. 3.
Observed from this figure, the actual communication rate
of WSN-benchmark increases as 032 increases and gradually
deviates from the preset communication rate 0.33. It is due to
the reason that the sensors in the comparison scheme are more
inclined to transmit observations when P is larger according
to the censoring rule in [26]. This phenomenon is confirmed
in this figure, where a smaller Py corresponds to a larger
actual communication rate of WSN-benchmark. As for our
proposed scheme, the actual communication rate is almost
identical to the preset communication rate no matter of the
varying Py and O‘S2, which demonstrates that the adaptability
and stability of our scheme are both superior to those of the
comparison scheme.

Next, we depict the classification accuracy curves with
varying osz in Fig. 4 by averaging over 10000 Monte Carlo
trials. From this figure, WSN-proposed performs better than

WSN-benchmark on the classification accuracy when o2 is

S
not very large. It can be also noted that the classification
accuracy of WSN-proposed is slightly worse than that of
WSN-benchmark when GSZ is large. It is due to the reason that
the actual communication rate of WSN-benchmark increases
as osz increases, which means more observations are received
for classification at FC in WSN-benchmark. However, such
an advantage does not exist in a practical system, where the

communication rate is generally limited.

B. Results in the Multiclassification Scenario

In this section, we present the results in the multiclassifica-
tion scenario. The following four WSNs will be considered in
this section.

B
£ 07 i
=
Q
%
= 0.6 i
L
g
& 0.5 .
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S - - - WSN-benchmark, ) = 0.8 |
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Fig. 4. Classification accuracy of the WSN-proposed and the WSN-

benchmark with varying signal variances.

TABLE |
DISTRIBUTION PARAMETERS OF SYNTHETIC DENSE SIGNALS
Signal 1 | Signal 2 | Signal 3 | Signal 4 Signal 5
Mean 0 1 2 3 4
Variance 1 1.1 0.9 1.12 0.95
Signal 6 | Signal 7 | Signal 8 | Signal 9 | Signal 10
Mean 5 6 7 8 9
Variance 0.88 0.93 1.05 0.92 1.15

1) WSN-oril: the original WSN without censoring includ-
ing M sensors.

2) WSN-cen: the WSN with our proposed censoring
scheme including M sensors. The preset communication
rate of this WSN is g, and the auxiliary parameters of
the scheme are set to be § = 0.1, and ¢, = 1.

3) WSN-sel: the WSN adopts the random selection scheme.
It has ggM transmitting sensors, which are randomly
selected from M sensors in each round of simulation.

4) WSN-ori2: the original WSN without censoring includ-
ing fixed egM sensors.

These WSNs experiment with synthetic dense signals, syn-
thetic sparse signals, and the MNIST dataset so that we can
evaluate the performance of our scheme in various signal
conditions. All these datasets contain ten types of signals.
For the synthetic dense signal, the length of the signal is
set to 100, and each element of the signal follows the same
Gaussian distribution, whose means and variances are shown
in Table I. For the synthetic sparse signal, the length is 1000,
and the sparsity is 100. Different types of sparse signals have
different support sets, and the nonzero elements of the signal
follow the Gaussian distribution, whose means and variances
are shown in Table II. For the MNIST dataset, the samples
are first normalized. Then, suppose the pixels of each digit in
the dataset follow the mixture Gaussian distribution [30]. The
training set in MNIST is utilized to estimate the means and
variances of pixels in each digit, and the test set is used to
show the classification accuracy.

We first discuss the classification results with different
energies of noise of three datasets, as shown in Fig. 5. The
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TABLE Il
DISTRIBUTION PARAMETERS OF THE NONZERO ENTRIES IN
SYNTHETIC SPARSE SIGNALS

Signal 1 | Signal 2 | Signal 3 | Signal 4 Signal 5
Mean 1 1 1 1 1
Variance 1 1.1 0.9 1.12 0.95
Signal 6 | Signal 7 | Signal 8 | Signal 9 | Signal 10
Mean 1 1 1 1 1
Variance 0.88 0.93 1.05 0.92 1.15

results of synthetic dense signals, synthetic sparse signals, and
MNIST are shown in Fig. 5(a)—(c), respectively. As shown
in this figure, the classification accuracy of all schemes
decreases with the increase of 2. All three subfigures show
that WSN-cen performs significantly better than WSN-sel and
WSN-ori2, which means the WSN with our censoring scheme
transmits more informative observations than the other two
schemes to FC. As expected, the performance of WSN-oril
is better than WSN-cen. This is due to the fact that all SNs
transmit observation in the former, whereas in the latter, only
40% SN are activated. Meanwhile, the gap between WSN-cen
and WSN-sel, and that between WSN-cen and WSN-ori2
increase with the increase in /2 in the experiments of all three
datasets. This indicates that the effect of censoring is better
when the signal is harder to classify. That means our censoring

scheme has superiority in the low signal-to-noise ratio (SNR)
condition.

For the result of synthetic dense signals in Fig. 5(a), WSN-
ori2 performs worse than WSN-sel, but in Fig. 5(b) and (c), the
performance of these two WSNs is similar. That is because
the sensing vectors on different SNs are different in terms of
the ability to distinguish signals. Take the first and second SNs
for example. If |th;1,,- — th;Lj| is larger than |h2T[l,l~ — hZT[Lj|,
the observations from the first SN possess better classification
ability than those from the second SN. Such a phenomenon
implies the problem that the sensing vectors of a WSN may
be unfortunately unsatisfactory to distinguish signals. Note that
such a problem is more likely to occur when the number of
SNs is smaller, which explains the relatively poor performance
of WSN-ori2 in Fig. 5(a). In contrast, WSN-cen and WSN-sel
avoid this problem due to the randomness of activated SNs
in each round of simulation. We will soon observe that the
aforementioned problem vanishes in the subsequent experi-
ments of synthetic sparse signals and MNIST because of the
large number of SNs.

Then, we focus on the results with different numbers of SNs,
as shown in Fig. 6. It can be observed that the classification
accuracy of all schemes increases with the increase in M,
and the degree of performance improvement slows down
with the increase in M. This implies that the performance
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of each WSN converges an upper bound when M is large
enough. Notably, the performance gap between WSN-oril and
WSN-cen narrows with the increase in M, especially narrows
to 0 in Fig. 6(a). This means WSN with our censoring scheme
can save a large amount of transmitting energy consumption
but with only little performance loss when M is large.

The performance curves in Fig. 6(a) are not as smooth
as those in Fig. 6(b) and (c). This phenomenon is caused
by the similar reason mentioned in the fourth paragraph of
this subsection for Fig. 6 that different SNs have different
abilities to distinguish signals. Especially, the smaller the M
is, the greater the influence of a single sensing vector on the
performance of the WSN. The numbers of SNs in Fig. 6(a)
are smaller than Fig. 6(b) and (c), and thus, the phenomenon
of unsmooth curves appears.

At last, the results with different communication rates are
shown in Fig. 7. This figure shows that, with the increase
in the communication rate, the performance of all three
schemes first improves rapidly and then slowly approaches
the baseline of WSN-cen when the communication rate is set
to 1. The performance degradation in the low communication
rate case indicates that the performance loss caused by a
significant decrease in observations cannot be compensated
by the advantage of informative observations. We can observe
that the performance gaps between WSN-cen and WSN-sel,
and WSN-cen and WSN-ori2 first increase and then decrease.
Meanwhile, the increasing degree of classification accuracy
of WSN-cen slows down when gy > 0.5. This indicates
that the communication rate should be set approximately by
considering the balance between performance requirements
and energy-saving requirements in practice.

V1. CONCLUSION

This article proposes a WSN censoring scheme for multi-
classification. This scheme gives a decision region of whether
to transmit observations based on LLRs and a censoring
threshold. Sensors compute this decision region offline and
censor signals efficiently based on this region in the online
stage. We further theoretically analyze the Chernoff distances
between the signals of different types for the censored scheme
and the noncensored scheme, which demonstrate the effec-
tiveness of our proposed scheme. Experimental results in

the binary classification scenario and the multiclassification
scenario demonstrate that the proposed scheme achieves the
desired performance of multiclassification comparable with
the conventional scheme without censoring while significantly
reducing the communication costs.
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