

Multi-Point Observations of the Dynamics at an ICME Sheath-Ejecta Boundary

2 MATTI ALA-LAHTI ,^{1,2} TUIJA I. PULKKINEN ,¹ JULIA RUOHOTIE ,² MOJTABA AKHAVAN-TAFTI ,¹
3 SIMON W. GOOD ,² AND EMILIA K. J. KILPUA ,²

4 ¹*Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA*

5 ²*Department of Physics, University of Helsinki, Finland*

6 Submitted to ApJ

ABSTRACT

7 The radial evolution of interplanetary coronal mass ejections (ICMEs) is dependent on their interaction with the ambient medium which causes ICME erosion and affects their geoefficiency. Here, an ICME front boundary, which separates the confined ejecta from the mixed, interacted sheath-ejecta plasma upstream, is analyzed in a multi-point study examining the ICME at 1 AU on 20 April 2020. A bifurcated current sheet, highly filamented currents and a two-sided jet were observed at the boundary. The two-sided jet, which was recorded for the first time for a magnetic shear angle $< 40^\circ$, implies multiple (patchy) reconnection sites associated with the ICME erosion. The reconnection exhaust exhibited fine structure including multi-step magnetic field rotation and localized structures that were measured only by separate Cluster spacecraft with the mission inter-spacecraft separation of $0.4 - 1.6 R_E$. The mixed plasma upstream of the boundary with a precursor at 0.8 AU lacked coherency at 1 AU and exhibited substantial variations of southward magnetic fields over radial (transverse) distances of $41 - 237 R_E$ ($114 R_E$). This incoherence demonstrates the need for continuous (sub)second resolution plasma and field measurements at multiple locations in the solar wind to adequately address the spatio-temporal structure of ICMEs and to produce accurate space weather predictions.

23 **Keywords:** Solar coronal mass ejections (310) — Interplanetary magnetic fields (824) — Solar magnetic
24 reconnection (1504) — Solar wind (1534)

1. INTRODUCTION

26 Solar activity regularly results in vast transient eruptions of plasma and magnetic field from the Sun's corona
27 known as coronal mass ejections (CMEs). Their inter-
28 planetary counterparts, ICMEs, have properties distinct
29 from the solar wind such as a low- β plasma, coherent ro-
30 tation of the magnetic field at large scales, low proton
31 temperature, counter-streaming electrons, and elevated
32 amounts of high charge state heavy ions (Zurbuchen &
33 Richardson 2006; Kilpua et al. 2017). ICMEs displaying
34 a strong magnetic field with a particularly coherent ro-
35 tation are classified as magnetic clouds. They resemble a
36 flux rope configuration, which has made them a specific
37

38 interest of research, with many studies having fo-
39 cused on their radial evolution in interplanetary space
40 (e.g., Good et al. 2015, 2018, 2020; Manchester et al.
41 2017; Al-Haddad et al. 2019; Salman et al. 2020; Palme-
42 ria et al. 2021; Scolini et al. 2021). ICMEs may exhibit
43 a layered structure which consists of the magnetic cloud
44 itself and preceding and following non-cloud-like ejecta
45 signatures (Kilpua et al. 2013). For example, coronal
46 loops can pile up in front of erupting plasma which
47 builds a so-called front region of an ICME. Such loops
48 appear as bright regions in white-light images (Kilpua
49 et al. 2013; Vourlidas et al. 2013).

50 ICMEs often travel with supermagnetosonic speeds
51 relative to the ambient solar wind, which results in
52 the formation of a shock upstream of the ejecta. The
53 shocked solar wind plasma deflects around the magneti-
54 cally confined ejecta forming a turbulent high- β plasma

sheath region. ICME sheaths differ from their planetary counterparts due to the expanding nature ICMEs have in interplanetary space. This causes relatively small deflection speeds and the accretion of plasma in front of the ICME nose (Siscoe & Odstrcil 2008).

Many ICMEs interact with their sheath regions. Under favorable conditions, magnetic reconnection connects the topologically separate sheath and ICME plasmas with each other at the ICME front boundary. At the boundary, asymmetric inflow conditions control reconnection, as relatively hot and dense sheath plasma couples with the tenuous low- β ejecta plasma. As a consequence, the ejecta experiences magnetic flux erosion and forms a boundary layer, where sheath and ejecta plasmas are mixed (Wei et al. 2003; Dasso et al. 2006; Ruffenach et al. 2012, 2015; Lavraud et al. 2014). This so-called mixing layer typically features properties of magnetic reconnection such as high proton temperature, high proton density and high- β plasma, i.e. so-called “three-high state” plasma. The three-high state coincides with abrupt large magnetic field rotations and an intensity drop. ICME erosion is a frequent process and on average 42% of the azimuthal flux of magnetic clouds has eroded away when they are observed at 1 AU (Ruffenach et al. 2015). The mixing layer is ultimately considered as part of the sheath region, and has not typically been distinguished as a separate region in statistical studies (e.g., Palmerio et al. 2016; Ala-Lahti et al. 2018; Kilpua et al. 2019).

A magnetic reconnection outflow region in interplanetary space is often characterized by a magnetic field rotation that happens in two steps (e.g., Phan et al. 2006, 2020; Gosling et al. 2005, 2006a,b; Gosling & Szabo 2008; Huttunen et al. 2007, 2008; Eriksson et al. 2009, 2022; Mistry et al. 2015b, 2016; Eastwood et al. 2021; Vörös et al. 2021) as predicted by the original Petschek reconnection model (Petschek 1964). This profile of a bifurcated current sheet is also typically associated with a forward-reverse slow-mode wave-pair, which propagates away from the exhaust axis and bounds a region of decreased magnetic field strength and increased plasma density that coincides with outflow jets (Gosling et al. 2005, 2006a,b; Phan et al. 2006). The detailed exhaust structure can become more complex when asymmetries between reconnecting plasmas are present (Semenov et al. 1983; Heyn et al. 1985; Owen et al. 2021). Compared to symmetrical inflow conditions with a merged Alfvén wave and slow-mode wave/shock-pair bounding the exhaust region, the asymmetric case can introduce a multi-layered outflow region due to the waves and discontinuities separating from each other. The importance of this picture for solar wind reconnec-

tion has been recently highlighted by Owen et al. (2021) (see also Lin & Lee 1993; Teh et al. 2009). Reconnection can furthermore drive non-Petschek-type discontinuities in the inflow regions, which can contribute to the exhaust structure by supporting Kelvin-Helmholtz instabilities at the outflow boundary (Sasunov et al. 2012; Vörös et al. 2021).

Here we present *in-situ* observations of a magnetic cloud like-ICME at Earth’s orbit on 20 April 2020. The ICME originated from a quiet-Sun region as a stealth CME and drove a shock and sheath region having a relatively strong magnetic field still at the Earth’s orbit (O’Kane et al. 2021). The structure and radial evolution of the ICME in the inner heliosphere have been previously analyzed by multiple authors (Davies et al. 2021; Freiherr von Forstner et al. 2021; Kilpua et al. 2021; Farrugia et al. 2023). The event displayed a complex structure, where a mixing layer and an ICME front region are identified between the sheath and magnetic cloud proper. We perform a multi-point analysis of the boundary separating these layers and considering the mixing layer (ICME front region) ultimately as a part of the sheath region (ejecta). The boundary initially marked by an abrupt increase of magnetic field intensity becomes bifurcated and more gradual and fine structured over small radial distances. The observed dynamics at the ICME sheath–ejecta boundary highlight the importance of continuous multi-point high time-resolution magnetic and plasma measurements in the solar wind at the Earth’s orbit: The boundary can exhibit strong spatial variation and while many observations favor an occurrence of magnetic reconnection, the time-resolution of analysed plasma measurements is not sufficient to resolve the boundary structure unambiguously.

The most drastic space weather storms in the Earth’s magnetosphere are driven by ICMEs. At global scales, the dynamics at the boundary regulates this interaction. We focus on its local nature, and find a significant lack of coherence from point to point at larger scales within the ICME mixing layer. This incoherence complicates space weather predictions.

2. OBSERVATIONS

2.1. The ICME and its front boundary on 20 April 2020 at 1 AU

Figure 1 shows the ICME on 20-21 April 2020 observed by the Wind spacecraft (Lepping et al. 1995; Ogilvie et al. 1995) at 1 AU. The figure displays 1 min measurements of the magnetic field (\mathbf{B}), proton velocity (\mathbf{V}), proton density (n), temperature (T), and plasma- β in the Geocentric Solar Ecliptic (GSE)-coordinates. We

158 show $-V_X$ in panel d to facilitate comparison. The
 159 marked boundaries defined by different authors (Davies
 160 et al. 2021; Kilpua et al. 2021) show an ICME which in
 161 addition to a coherent magnetic cloud consisted of pre-
 162 ceding and trailing non-magnetic-cloud-like ejecta sig-
 163 natures. We name these as magnetic cloud front re-
 164 gion (MCFR) and rear region (MCRR) following the
 165 terminology of Kilpua et al. (2013). The ICME was fur-
 166 thermore preceded by a shock and sheath region. We
 167 identify a mixing layer (ML) between the sheath proper
 168 and MCFR defined as the region in front of an ejecta
 169 with abrupt latitudinal and azimuthal field rotations
 170 and properties of magnetic reconnection including de-
 171 creased magnetic field magnitude, relatively high pro-
 172 ton density, temperature and plasma- β (Wei et al. 2003).
 173 Such layers contain a mix of interacted sheath and ejecta
 174 plasmas resulting from magnetic reconnection between
 175 the regions (Wei et al. 2003; Vörös et al. 2021). The
 176 mixing layer is also distinguished by the larger speed
 177 and V_Z compared to its surroundings. In this study,
 178 we focus on the front boundary of the ICME shown
 179 by the vertical solid magenta line in the figure. The
 180 boundary separates the confined ejecta from the ambi-
 181 ent medium. This boundary can be also regarded as the
 182 ICME sheath-ejecta boundary or ICME leading edge,
 183 the mixing layer being considered ultimately a part of
 184 the sheath region.

185 We examine measurements from the Wind, Advanced
 186 Composition Explorer (ACE) (Stone et al. 1998), Deep
 187 Space Climate Observatory (DSCOVR) (Burt & Smith
 188 2012), Time History of Events and Macroscale Inter-
 189 actions during Substorms C (Themis C) (Angelopoulos
 190 2008) spacecraft, and from the Cluster (Escoubet et al.
 191 1997) and Magnetospheric Multiscale (MMS) (Burch
 192 et al. 2016) missions, which were closer to the Earth but
 193 still in the solar wind. Figure 2a-b show the spacecraft
 194 positions during the ICME front boundary passage in
 195 the GSE XY- and YZ-planes in Earth radii (R_E). The
 196 solar wind monitors at the Lagrange L1 point were at
 197 200–250 R_E from the Earth, and within 110 R_E (25 R_E)
 198 from each other along GSE Y-axis (Z-axis). Themis C
 199 was at 50 R_E from the Earth, and Cluster and MMS at
 200 10–11 R_E . The spacecraft separations correspond to
 201 0.3–70 min time scales.

202 Figure 2c-f show magnetic field magnitude and GSE-
 203 components during the ICME front boundary passage at
 204 different locations with time-resolutions of 1 s for ACE,
 205 1 s for DSCOVR, 0.092 s for Wind, 4.1 s for Themis C,
 206 0.062 s for MMS 1, and 0.045 s for Cluster 4. These mag-
 207 netic field time-resolutions are used throughout in this
 208 study unless mentioned otherwise. In the figure, the so-
 209 lar wind monitor and Themis C measurements are time-

210 shifted relative to MMS and Cluster using the solar
 211 wind velocity measurements and spacecraft separation
 212 along the X-axis. The ICME front boundary is marked
 213 by the significant increase of the field magnitude up to
 214 14–15 nT, and simultaneous abrupt rotation of the field
 215 components. The similar field enhancement with the
 216 other spacecraft at Cluster 4 and MMS 1 indicates these
 217 magnetospheric missions were in the solar wind during
 218 the event. Figure 2c shows short distinct field depres-
 219 sions adjacent to the boundary at DSCOVR and Wind.
 220 The magnetic field was relatively weaker also at MMS 1
 221 and Cluster 4 before the field enhancement, but at ACE
 222 and Themis C the feature was less evident. The transi-
 223 tion to the high field values happened more abruptly at
 224 the solar wind monitors (ACE, DSCOVR, Wind) and at
 225 Themis C, and was more gradual at Cluster 4 and espe-
 226 cially at MMS 1.

227 Figure 2d shows similar B_X between ACE and Clus-
 228 ter 4, and between Themis C and MMS 1 across the
 229 boundary. Especially distinct rotations of B_Y occurred
 230 at ACE, Themis C, Cluster 4, and MMS 1. These ro-
 231 tations are highlighted by pale magenta for B_Y at
 232 Themis C in panel e: A large-scale rotation was fol-
 233 lowed by an oppositely directed rotation at all four
 234 spacecraft. Both rotations imply the presence of current
 235 sheets as predicted by Ampré's law. The large-scale
 236 B_Y -rotation occurred in two steps at the MMS location
 237 showing the profile of a bifurcated current sheet. An-
 238 other rotation of B_Y occurred shortly after the oppo-
 239 site rotation at ACE and Cluster 4. Furthermore, the
 240 field magnitude change occurred predominantly in B_Z
 241 at all spacecraft. ACE and Themis C observed a B_Z pro-
 242 file which resembles a rotation happening in two steps
 243 but which can also be associated with the trend mea-
 244 sured by MMS 1. Detecting these features at DSCOVR
 245 or Wind is more ambiguous. For further analysis, we
 246 transfer to the local boundary normal coordinates and
 247 examine measurements from each spacecraft separately.

2.2. Local Boundary Normal Coordinates

248 We use local boundary normal coordinates, where
 249 the local normal is defined by the cross product $\mathbf{N} =$
 250 $\mathbf{B}_1 \times \mathbf{B}_2 / |\mathbf{B}_1 \cdot \mathbf{B}_2|$, where \mathbf{B}_1 and \mathbf{B}_2 are the aver-
 251 age magnetic field directions on either side of a current
 252 sheet. In our analysis, the studied interval is bounded
 253 by intervals marked by pale blue shading in **Figures 3–**
 254 **5, 7, and 9**. These intervals give the downstream and
 255 upstream values used to determine the normal direc-
 256 tion. The maximum variance direction given by the
 257 minimum variance analysis of the field (\mathbf{L}_{mva}) across
 258 the current sheet (Sonnerup & Scheible 1998) is used
 259 to determine the unit vectors orthogonal to the normal:

261 $\mathbf{M} = \mathbf{N} \times \mathbf{L}_{\text{mva}} / |\mathbf{N} \cdot \mathbf{L}_{\text{mva}}|$, and $\mathbf{L} = \mathbf{N} \times \mathbf{M}$. This bound-
 262 ary normal coordinate LMN-system is often used instead instead
 263 of the MVA, being considered as a more robust method
 264 (Knetter et al. 2004; Vasquez et al. 2007; Eriksson et al.
 265 2022). It is known either as the cross-product method
 266 (Knetter et al. 2004) or the hybrid-MVA (Gosling &
 267 Phan 2013; Eastwood et al. 2021). Across a reconnection
 268 exhaust, \mathbf{L} (\mathbf{N}) indicates the outflow (inflow) direction,
 269 with B_L often showing the profile of a bifurcated current
 270 sheet with a two-step rotation. \mathbf{M} gives the out-of-plane
 271 direction and B_M the reconnection guide-magnetic field.

2.3. Walén relation

272 We compute the Walén relation using plasma mea-
 273 surements, which are available for the event from
 274 Wind, Themis C and Cluster 4 at 3, 4.1 and 4.2 s time-
 275 resolutions, respectively, but absent or available only at
 276 too sparse time-resolutions from the ACE, DSCOVR,
 277 MMS and other Cluster spacecraft. The relation is given
 278 as (Walén 1944; Sonnerup et al. 1981; Paschmann et al.
 279 1986)

$$281 \quad V_{WL} = V_{L,ref} \pm \sqrt{\frac{\rho_{ref}}{\mu_0}} \left(\frac{B_L}{\rho} - \frac{B_{L,ref}}{\rho_{ref}} \right), \quad (1)$$

282 where ρ is the mass density, μ_0 the vacuum permeability
 283 and the subscript “ref” refers to the reference value given
 284 by the upstream and downstream of the studied inter-
 285 val. It tests the tangential momentum balance across an
 286 interval and is used to examine plasma flows in poten-
 287 tial magnetic reconnection exhausts. The test is often
 288 applied to the flows in the L -direction, which points to
 289 the direction of the reconnection outflow (e.g. Eriksson
 290 et al. 2009, 2014, 2022; Mistry et al. 2015a, 2016; Phan
 291 et al. 2020), and without the expectation of a larger
 292 $|V|$ within a reconnection exhaust relative to the sur-
 293 roundings (Phan et al. 1996). It is performed separately
 294 from both sides of the studied interval. The predic-
 295 tions conducted from different sides use opposite signs
 296 in Equation (1), since correlated and anti-correlated V_L
 297 and B_L are expected across the structure boundaries.
 298 The Walén prediction has a tendency to produce larger
 299 exhaust flow velocities than observed in space and nu-
 300 merical simulations (e.g., Phan et al. 1996; Le et al.
 301 2014).

2.4. Single-Spacecraft Analysis

2.4.1. DSCOVR and ACE

302 Figure 3a and 3c (3b and 3d) show magnetic field in
 303 local LMN-coordinates at DSCOVR (ACE), with the
 304 blue shading indicating the intervals used to determine
 305 the normal direction. The red horizontal bar marks
 306 the interval shown in Figure 3e (3f). At DSCOVR, all

307 the components experienced rapid changes across the
 308 boundary defined by the abrupt field intensity enhance-
 309 ment, with B_M following the field magnitude profile and
 310 having a change in two steps. The boundary, **which**
 311 **was preceded by** a short local dip in the magnitude,
 312 **did not show** signatures of bifurcated B_L . **However**,
 313 after the most abrupt field increase, B_L had a gradual
 314 bipolar rotation which was followed by an opposite ro-
 315 tation associated with a minor field strength increase.
 316 Figure 3c shows that further in the ejecta, notable field
 317 fluctuations occurred.

318 Figure 3d shows the magnetic field measurements at
 319 ACE observed a sudden change of B_L with no bifur-
 320 cation, which was followed by a gradual opposite ro-
 321 tation and a second additional sharp rotation. These
 322 B_L -rotations together mark an interval which shows a
 323 bipolar variation of B_M with respect the black dashed
 324 line in Figure 3d. The bifurcation of the B_Z -component
 325 at ACE shown in Figure 2f is no longer present in the
 326 LMN-coordinates.

2.4.2. Wind

327 Figure 4a-b show the Wind magnetic field measure-
 328 ments and Figure 4c-f 3 s plasma measurements for the
 329 ICME front boundary. Figure 4d-e give the proton and
 330 electron velocities, with panel d showing the Walén pre-
 331 diction for V_L performed separately from the each side of
 332 the boundary (black and gray dotted curves). Figure 4f
 333 shows the diamagnetic current density (J_D)

$$336 \quad J_D = (T_i + T_e) k_B \frac{\mathbf{B} \times \nabla n}{B^2}, \quad (2)$$

337 where T_i and T_e are the ion and electron temperatures,
 338 k_B is the Boltzmann constant, and n is the plasma num-
 339 ber density. We use the solar wind V_N to estimate the
 340 density gradient in single spacecraft measurements.

341 The sharp increase of $|B|$ was preceded by a region
 342 of decreased field strength caused by the weakening B_L -
 343 component. The decrease was simultaneous with local
 344 enhancements of proton and electron densities shown in
 345 panel c. The proton speed did not vary significantly
 346 across the boundary but had a local minimum just be-
 347 fore the field decrease on the sheath side, increased
 348 within the decrease and reached a local maximum at
 349 the boundary. This maximum was associated with an
 350 enhancement of proton V_L , which deviated from the sur-
 351 rounding values. The observed proton V_L is in a good
 352 agreement with the Walén prediction both showing a
 353 double-peaked V_L to the negative L -direction. The pre-
 354 diction carried from the sheath side (black dotted curve)
 355 has some magnitude and timing differences before the
 356 ICME front boundary, where the significant V_L enhance-
 357 ment occurred. The predictions performed from the dif-
 358 ferent sides cross each other at the boundary and predict

359 this jet with an over-estimation. Significant electron V_L
 360 peaks and enhanced diamagnetic currents occurred dur-
 361 ing the field strength drop. The latter electron V_L peak
 362 had minor timing difference with the proton V_L peak.

363 In addition, Figure 4b shows a two-step rotation of B_L
 364 across the sharp $|B|$ jump **at the boundary**, which is
 365 coincident with the observed proton V_L jet predicted by
 366 the Walén relation. $|V|$ was also slightly larger within
 367 the bifurcation compared to the immediate surround-
 368 ings. The stronger electron V_L jet is aligned with the
 369 first sharp increase of $|B|$ at 07:54:30. The following
 370 major field increase is aligned with a B_L change and the
 371 proton V_L peak.

372 2.4.3. *Themis C*

373 Figure 5 shows the boundary crossing at Themis C,
 374 which was located about 150-200 R_E earthward from the
 375 three solar wind monitors near L1. The panels follow the
 376 organization of Figure 4, panel g showing the parallel
 377 (solid) and perpendicular (dotted) proton and electrons
 378 temperatures relative to the magnetic field.

379 In contrast to DSCOVR and Wind, Themis C did not
 380 observe a dip in the magnetic field magnitude adja-
 381 cent to the boundary. Across the boundary, B_L shows
 382 a strong variation associated with a bipolar profile of
 383 B_M with respect to the level shown by the dotted black
 384 line in the figure. A bipolar B_M was not observed by
 385 DSCOVR or Wind and by ACE only when examining
 386 the field measurements further in the ejecta. The field
 387 components in the local LMN-coordinates at Themis C
 388 did not record a bifurcation nor the distinct opposite ro-
 389 tation of the major rotation component seen in Figure 2.

390 Local density minima aligned with the abrupt field
 391 increases in Figure 5 demarcated a denser plasma re-
 392 gion within the boundary and marks a deviation from
 393 the general density drop profile between the sheath **and**
 394 ejecta in panel c. Although the proton speed did not
 395 show significant changes across the boundary, proton V_L
 396 was larger having a rapid increase after the sheath and
 397 a gradual decrease towards the ejecta side. The Walén
 398 prediction overestimate the observed V_L , but the tempo-
 399 ral evolution is similar with the predictions from the dif-
 400 ferent sides, which again cross at the V_L maximum. The
 401 ejecta side prediction (gray dotted curve in Figure 5e)
 402 shows a sharp dip in the velocity which was captured
 403 by the electron measurements. The electron V_L shows
 404 bipolar two-sided jets, which were reflected also in the
 405 diamagnetic current density measurements. The tem-
 406 perature anisotropies of both protons and electrons were
 407 well below one ($T_\perp/T_{\parallel} < 1$) within the boundary due
 408 to the general enhancement of the parallel components
 409 and several distinct proton T_{\parallel} peaks seen in Figure 5g.

410 2.5. *Multi-Spacecraft Analysis*

411 The single-spacecraft observations of the ICME
 412 sheath-ejecta boundary on 20 April 2020 were followed
 413 by Cluster and MMS observations. Figure 6 shows the
 414 Cluster and MMS constellations during the event. The
 415 MMS formation was close to a perfect tetrahedron in-
 416 dicated by the close-to-one Q-factor of 0.96, which in-
 417 dicates a robust current density estimation performed
 418 with the curlometer technique (Robert et al. 1998; Dun-
 419 llop et al. 2002). The MMS spacecraft were within 0.044-
 420 0.056 R_E distance from each other. Cluster had instead
 421 an elongated formation, the inter-spacecraft separations
 422 varying between 0.4 and 1.6 R_E . The curlometer tech-
 423 nique is not reliable for a such formation as demon-
 424 strated by the low Q-factor of 0.05.

425 2.5.1. *Cluster*

426 Figure 7 shows the magnetic field measurements
 427 from the Cluster 1-4 spacecraft in the local LMN-
 428 coordinates. All Cluster spacecraft observed a mi-
 429 nor field magnitude decrease before the boundary, re-
 430 sembling the observations from ACE. The field in-
 431 crease across the boundary was however more gradual
 432 at Cluster in comparison to the earlier measurements
 433 (**DSCOVR, ACE, Wind, Themis C**). The bound-
 434 ary consisted of three distinct sharp field jumps shown in
 435 Figure 7a. Panels a-b show an alignment between these
 436 jumps and changes of B_L , the changes being highlighted
 437 by pale blue in panel c. Localised features occurred in
 438 the measurements, Cluster 3 (C3) observing a distinct
 439 rotation of B_N within the boundary. At the ejecta edge
 440 of the boundary, a local dip in the field magnitude was
 441 only observed by C4. The red horizontal bar in Fig-
 442 ure 7b marks an interval, which is shown in a zoomed-in
 443 view in Figure 7c for C1 and C2 and for C3 and C4 in
 444 Figure 7d. B_L experienced a multi-step variation across
 445 the boundary with a following opposite rotation. The
 446 steps are highlighted by pale blue and magenta in panel
 447 c, respectively. All the steps were observed by all the
 448 Cluster spacecraft except C2, which saw a more gradual
 449 variation of B_L without the plateau between the sec-
 450 ond and third rotations (the second and third pale blue
 451 highlightings from the left in panel c). B_M experienced
 452 a bipolar structure through the boundary relative to the
 453 dotted magenta line shown in Figure 7e. The opposite
 454 rotation of B_L highlighted by pale magenta in panel c
 455 coincided with a B_M -rotation.

456 Figure 8 shows $|B|$ and B_L together with the plasma
 457 measurements from C4, C1-3 having no recorded plasma
 458 measurements during the event. The organization of the
 459 panels follows Figure 4, with panel e giving the proton
 460 temperature parallel and perpendicular to the magnetic

field. In this scale, the dips in $|B|$ across the boundary appear more clearly. Furthermore, density had a two-step drop within the transition from sheath to ejecta, the major B_L -variation coinciding with the most significant drop in density. The major drop was followed by two local density enhancements before ejecta values. The latter enhancement occurred simultaneously with the opposite B_L -rotation. Both $|V|$ and V_L were enhanced within the boundary and show a double-peaked structure in Figure 8d. The first jet is aligned with the major B_L change. The enhanced $|V|$ occurred simultaneously with a local B_M decrease, the bipolar pattern occurring across a wider interval (see Figure 7). Similar to Wind and Themis C observations, the Walén relation follows the observations (over-) predicting the two-sided jet, the first jet shown by the crossing of the predictions from sheath and ejecta sides. Within the boundary, parallel proton temperature was smaller and a temperature anisotropy $T_\perp/T_{\parallel} > 1$ briefly occurred.

2.5.2. MMS

Figure 9 shows the ICME boundary layer crossing on 20 April 2020 at MMS. Magnetic field measurements shown in panels a-b did not differ from each other between the individual spacecraft and the values shown in Figure 9 represent the observations of MMS 1-4. During the $|B|$ -increase, the L -component had a large-scale bifurcated rotation occurring in two steps. The bifurcated current sheet was followed by an opposite rotation of B_L and a rotation of B_M . In panel b, B_M shows a bipolar profile across the B_L -rotations, the profile being displayed relative to the reference level marked by the dotted black line in Figure 9b. The variation of B_M is also aligned with the first jump of the relatively gradual increase of $|B|$ through the boundary.

Figure 9c shows the total current density ($|J|$) estimated using the curlometer technique. Together with its 2-second moving average, $|J|$ in panel c reveals enhanced currents during the field increase with high filamentation and major current peaks in the L- and M-directions. The averages highlight a structure which is aligned with the field rotations. Additionally, MMS observed a wide double-peaked distribution associated with the second step of the bifurcated current sheet in the middle of the boundary layer.

Plasma dynamics can cause non-linear gradients of the magnetic field, which can lead to non-zero magnetic field divergence and inaccurately resolved current vectors when applying the curlometer technique to the four-point constellation measurements. These inaccuracies are negligible for $|\nabla \cdot \mathbf{B}|/|\nabla \times \mathbf{B}| \ll 1$, with the value of 0.5 being used as a threshold for reliability (Dunlop

et al. 2002; Haaland et al. 2004). The ratio is given in Figure 9e, with the dashed orange line marking unity. The gray (teal) bars at the bottom of Figures 2c-d indicate the times during which the ratio was below 0.5 (1), with panel d showing the times for the averaged curve. Despite the spikes in panel e, which indicate uncertainties in the current estimation, the method is reliable for most of the studied interval.

Plasma measurements were only available for high-energy ions during the event at MMS. The measurements were measured with a 10 s time-resolution and did not capture distinct features across the boundary (not shown).

Table 1 supplements this section showing the GSE-components of the local LMN-coordinates used in this study and also providing the magnetic shear angles and $|B_M/B_L|$ ratios across the ICME front boundary.

2.6. Spatial Variation and Radial Evolution of the Mixing Layer

Finally, we compare the mixing layer identified in Figure 1 at different spacecraft including the observations of $|B|$ from Solar Orbiter (Müller et al. 2013). Figure 10a-c show the magnetic field magnitude and the field azimuthal and GSE Z components across a wider interval around the ICME sheath-ejecta boundary at 1 AU at 1 min time-resolutions. The data are shown with arbitrary time-shifts from different spacecraft. The figure highlights the mixing layer at different locations based on the rapid and substantial ϕ_B -rotations, which occurred primarily within the interval of decreased $|B|$. While all spacecraft observed highly fluctuating ϕ_B , decreased magnetic field intensity is less prevalent at DSCOVR. Furthermore, B_Z experienced significant spatial variation between the spacecraft. The start of substantial ϕ_B -rotations is aligned with an abrupt rotation of B_Z from northward to southward at all spacecraft. At L1, ACE and especially DSCOVR observed a field that maintained a strong negative B_Z across the mixing layer, whereas Wind observed only brief intervals of negative B_Z . ACE data shows a significant dip of $|B|$ which is associated with a near-zero B_Z . Themis C, MMS 1 and Cluster 4 observed a weaker southward field than ACE and DSCOVR, the field experiencing notable fluctuations and temporarily turning northward.

The $|B|$ measurements from ACE and Wind are furthermore compared to those from Solar Orbiter, which observed the ICME on 19 April 2020 at the distance of 0.8 AU from the Sun. Figure 10d shows the start of ICME ejecta with magenta vertical lines. Closer to the Sun, the ejecta followed plasma that showed a multi-step $|B|$ enhancement from the solar wind to the ejecta. The

563 ICME front was preceded by a mini flux rope (Kilpua
 564 et al. 2021), which caused the second field enhancement
 565 shown in the figure. The mini-flux rope extended up to
 566 the ICME front, where a shorter and less prevalent dip
 567 of the magnetic field occurred than at the solar wind
 568 monitors.

569 3. DISCUSSION

570 We report multi-point observations of an ICME mixing
 571 layer and ejecta front boundary in April 2020, ex-
 572 amining measurements from solar wind monitors at L1,
 573 magnetospheric missions in the solar wind, and from
 574 Solar Orbiter at the distance of 0.8 AU from the Sun.
 575 The spacecraft measurements revealed differences at
 576 the boundary, which imply evolution over radial dis-
 577 tances of $237 R_E$ and spatial variation over transverse
 578 distances of $114 R_E$. In addition, the Cluster mis-
 579 sion distinguished localized structures while hav-
 580 ing $0.4 - 1.6 R_E$ inter-spacecraft separations. Different
 581 spacecraft generally observed an abrupt change of
 582 the B_L -component, a following opposite B_L -rotation,
 583 and a bipolar B_M at the boundary. Interestingly,
 584 the mixing layer displayed substantial differences in
 585 the geoefficient B_Z -component. We interpret our results
 586 below and list features in data which favors magnetic re-
 587 connection at the boundary.

588 3.1. Ambiguous Reconnection Signatures at 589 Wind

590 At Wind, the $|B|$ decrease occurred with simultaneous
 591 increases in densities. A similar dip in the field magni-
 592 tude occurred at DSCOVR but not at ACE. The Walén
 593 prediction and the observations show no clear velocity
 594 enhancement profile across the $|B|$ decrease, which may
 595 show a trace of a reconnection exhaust where the jet
 596 has already experienced dissipation. The weakened field
 597 interval however hosted a one-sided proton V_L jet and
 598 double-peaked electron velocities.

599 The relatively low time-resolution 3 s plasma measure-
 600 ments at Wind leave our interpretation ambiguous. The
 601 gradual changes in plasma variables complicate the iden-
 602 tification of slow-mode waves, which can also be unde-
 603 tectable due to an oblique spacecraft path across a re-
 604 connection exhaust (Walia et al. 2022). Consequently,
 605 no separation between a reverse wave and the ICME
 606 ejecta front boundary can be made. The outflow plasma
 607 can also interact with the ambient medium at the ex-
 608 haust boundaries (Sasunov et al. 2012; Lapenta et al.
 609 2017; Vörös et al. 2021). The most significant proton
 610 and electron V_L jets indicate reconnection in the prox-
 611 imity of the boundary, but cannot be unambiguously
 612 related to dynamics within the field depression or at

613 the very boundary marked by the abrupt field increase.
 614 They occurred right at the boundary, where the sharp
 615 multi-step increase of $|B|$, a bifurcation of B_L , and a
 616 weak local maximum of $|V|$ were observed. We however
 617 repeat that a larger $|V|$ relative to the surroundings is
 618 not a strict requirement for magnetic reconnection iden-
 619 tification (e.g., Phan et al. 1996).

620 3.2. Outflow of Asymmetric Reconnection with 621 Hall Fields at Themis C

622 At Themis C,
 623 a large rotation of B_L together with the bipolar B_M ,
 624 local density enhancement and proton V_L increase over-
 625 predicted but followed by the Walén relation suggest
 626 that Themis C observed magnetic reconnection exhaust
 627 across the ICME front boundary. We note that the pre-
 628 diction showed an opposite V_L jet, which was not ob-
 629 served. The proton V_L instead peaked at the sheath
 630 side of the boundary decreasing gradually towards the
 631 ejecta. Such a profile can be observed in a single ex-
 632 haust crossing of asymmetric reconnection, where the
 633 inflow conditions from one side dominates the dynam-
 634 ics. As a consequence, a weaker or absent jet occurs
 635 at the other edge of the exhaust (see e.g., Section 2 by
 636 Owen et al. 2021).

637 The bipolar B_M resembled the Hall fields. The
 638 Hall fields are generated by the Hall currents,
 639 which result from the different decoupling scales
 640 of plasma protons and electrons and which flow
 641 toward and away from the diffusion region along
 642 the outflow direction (the L-direction) (East-
 643 wood et al. 2010; Denton et al. 2016; Peng et al.
 644 2017; Dai 2018). These currents create a bipolar
 645 B_M profile in spacecraft observations in a single-
 646 exhaust crossing (Mistry et al. 2016). The profile
 647 is distorted in the presence of a guide field (non-
 648 zero inflow B_M), becoming asymmetric across
 649 the normal axis (Eastwood et al. 2010).

650 3.3. Density Cavities at Themis C: Guide Field 651 Reconnection and Magnetic Islands

652 Guide field reconnection is observed to introduce den-
 653 sity cavities to an exhaust edge. Such cavities host par-
 654 allel ion heating and parallel electron cooling in addi-
 655 tion to the parallel heating of the plasma happening
 656 in the main exhaust (Eastwood et al. 2018). Consis-
 657 tent with these observations, the boundary observed by
 658 Themis C hosted $T_{||}$ -heated plasma, and density dips at
 659 the edges which coincided with local parallel heating of
 660 protons. Signatures of electron cooling were however ab-
 661 sent. Magnetic reconnection accelerates electrons which
 662 show a jet close to the B_M reversal in guide field recon-
 663 nection (Wilder et al. 2017). The cavities, on the other

hand, are associated with electron flows toward the X-line (Eastwood et al. 2018). The observed electron jet to the positive L-direction at Themis C may correspond to the electron outflow from the X-line, with the jet to the negative direction at the ejecta side showing a cavity related flow toward the X-line. We however note that there is a timing difference between the electron outflow and B_M reversal. Regular higher time-resolution plasma measurements in the solar wind would enable a more detailed analysis. We also observe density decreases at both edges. While local density minima can occur right outside of reconnection exhaust edges (Phan et al. 2016) or within the exhaust near the edges (Eastwood et al. 2018), the cavities of guide field reconnection occur only at one edge (Eastwood et al. 2018; Che et al. 2021).

The density minima may also result from the formation of magnetic islands due to multiple reconnection X-lines (Eriksson et al. 2014, 2015), which produces two-sided (bipolar) electron flows and a so-called overshoot of the B_L -component, which is followed by a bifurcation and an opposite rotation. Themis C measured such bidirectional two-sided electron flows and an overshoot on the sheath side right before the major B_L -rotation. Similar overshoots were also observed by ACE, Cluster and MMS. However, while the magnetic field GSE-components showed a multi-step rotation, a bifurcated B_L and a tripolar B_M were not observed at Themis C. We note that the field fine structure may have been missed by Themis C due to its relatively low 4.1 s time-resolution measurements. A clear bifurcation typically develops only at large distances (~ 1000 ion skin depths d_i) from the reconnection site (Mistry et al. 2015b) but can also appear closer to the X-line ($\sim 130 d_i$) in long-lasting reconnection (Innocenti et al. 2015).

3.4. Localized Structures and Two-Sided Jet at Cluster

The boundary fine structure was evident in Cluster measurements, with magnetic field structures being solely observed by individual spacecraft, which were within $1.6 R_E$ from each other. For example, Cluster 4 observed a local dip in the magnetic field which was associated with density and velocity enhancements and not observed by the other Cluster spacecraft. Cluster 3 on the other hand observed a distinct B_N -rotation. Compared to the earlier measurements, Cluster observed a multi-step gradual increase of field magnitude, which hosted minor field depressions. The field jumps coincided with changes in the B_L -component.

Cluster 4 observed a distinct double-peaked velocity enhancements across the boundary. Such velocity

signatures are called bifurcated outflow jets (Liu et al. 2021) or two-sided jets (Enžl et al. 2017). We use the term “two-sided jets” in this study to avoid confusion with a bifurcated current sheet, which is manifested by a two-step field rotation. Two-sided jets develop in a multi-step or patchy reconnection exhaust (Enžl et al. 2017) when the reconnection outflow interacts with the preceding slower exhaust plasma (Liu et al. 2021). The inhomogeneous plasma conditions drive multiple reconnection sites or patchy reconnection regulating the outflow properties, such as jet speeds (Enžl et al. 2017). The central region of the faster outflow overtaking the slower flow is slowed down at the interface with high-speed jets forming at the exhaust boundaries.

Patchy reconnection with a finite length of the X-line can furthermore result in a one-sided jet (Enžl et al. 2017) and explain the jet in the Wind observations. And when including another weak V_L enhancement to the negative L-direction at the sheath side into consideration, two-sided jets can also be identified in the Wind data. Similar to the other jets reported in this study, this enhancement is also over-predicted by the Walén relation.

3.5. Bifurcated B_L and Filamentary Currents at MMS

The boundary fine structure was further revealed by MMS which observed a clear bifurcated current sheet populated by filamentary currents. The filamentation can be attributed to plasma dynamics that generates spatio-temporal variations at turbulent reconnection exhausts, where filamentary currents coexist with enhanced field variations (Fu et al. 2017; Huang et al. 2017; Wang et al. 2022). Field variation levels, measured as the mean of $\sum_{i=1}^N |\mathbf{B}_{i+1} - \mathbf{B}_i|$, are 0.14 (0.05), 0.09 (0.03), and 0.09 nT (0.03 nT) for B_L , B_M , and B_N within (outside) the potential exhaust region within the boundary, respectively. The difference of successive points is taken to subtract the large-scale field rotations. Reconnection becomes turbulent especially in low- β plasmas (Higashimori & Hoshino 2015).

Significant J_M currents were associated with transverse B_L -rotations at MMS, where the bipolar variation of B_M is in qualitative agreement with previous observations across a reconnection exhaust (Mistry et al. 2016). Similar currents aligned with a bifurcation have been previously observed in the vicinity of an ICME inner boundary (Chian & Muñoz 2011). In a reconnection exhaust, such currents can result from the breaking of the original current sheet or from plasma gradients, which drive field suppressing diamagnetic currents (Owen et al. 2021). Multiple field depressions occur within the cross-

ing in Figure 9, aligned with the field rotations. Also, kinetic instabilities introduce fine structure to reconnection current sheets (e.g., Mistry et al. 2015a, and references therein). Unfortunately, the necessary plasma measurements for a conclusive identification of the current carriers were unavailable for MMS during the event. Wind and Themis C data however show diamagnetic currents at the boundary.

3.6. Summary of Low-Shear Magnetic Reconnection at the ICME Sheath-Ejecta Boundary

The right column of Table 1 summarises our conclusions about magnetic reconnection at different locations. The observed reconnection signatures are not inhibited by the low magnetic shear ($11^\circ - 35^\circ$) present across the ICME front boundary on 20 April 2020. Magnetic reconnection occurs within ICMEs even with extremely low magnetic shears, with values of $4^\circ - 9^\circ$ and $27^\circ - 37^\circ$ being observed (Gosling & Phan 2013; Phan et al. 2020). This is however the first report of (one) two-sided jets that were associated with magnetic shear angle $< 40^\circ$ (Enzl et al. 2017).

In addition to reconnection, electron and proton anisotropies ($T_\perp/T_{\parallel} > 1$) as well as the Speiser orbit of energized heavy ions cause bifurcated current sheets (George & Jahn 2020; Jiang & Lu 2021, and references therein). Such anisotropies were however absent in the analyzed measurements with the exception of a short term anisotropy peak observed by Cluster 4. Continuous high time-resolution plasma and heavy-ion measurements in the solar wind would enable investigation of different scenarios in detail. They would, for example, improve the understanding of the opposite B_L -rotation observed at several spacecraft. Such rotations may appear in multi-layered outflows during asymmetric reconnection (Owen et al. 2021). In addition, magnetic reconnection is regulated by the ionospheric cold ions at the Earth's magnetopause (e.g., André et al. 2016). ICMEs often show elevated amounts of high charge state heavy ions with solar origin, whose impact on reconnection remains still unrecorded in in-situ measurements. We also note the expansion of the ejecta also contributes to the dynamics at the ICME front boundary by compressing structures emanating at the boundary.

3.7. Mixing Layer Introduces Uncertainty to Space Weather Predictions

Finally, the reconnection at an ICME front boundary results in a mixing layer, which based on our results evolves over both large (0.2 AU) and small ($237 R_E$) radial distances. The evolution over larger distances

is consistent with the findings by Farrugia et al. (2023), who analyzed the same ICME event concluding that the ejecta front eroded between Solar Orbiter to Wind.

At 1 AU, we observed major differences in the mixing layer between ACE - MMS, and a lack of coherency in B_Z occurred even between Themis C and Cluster ($42 R_E$ radial and $21 R_E$ transverse separations). Substantial B_Z variations also occurred in the mixing layer in the transverse direction between the L1 solar wind monitors, which were within $114 R_E$ from each other in the GSE YZ-plane. Wind observed only temporary southward fields during the mixing layer whereas DSCOVR measured a strong steady negative B_Z .

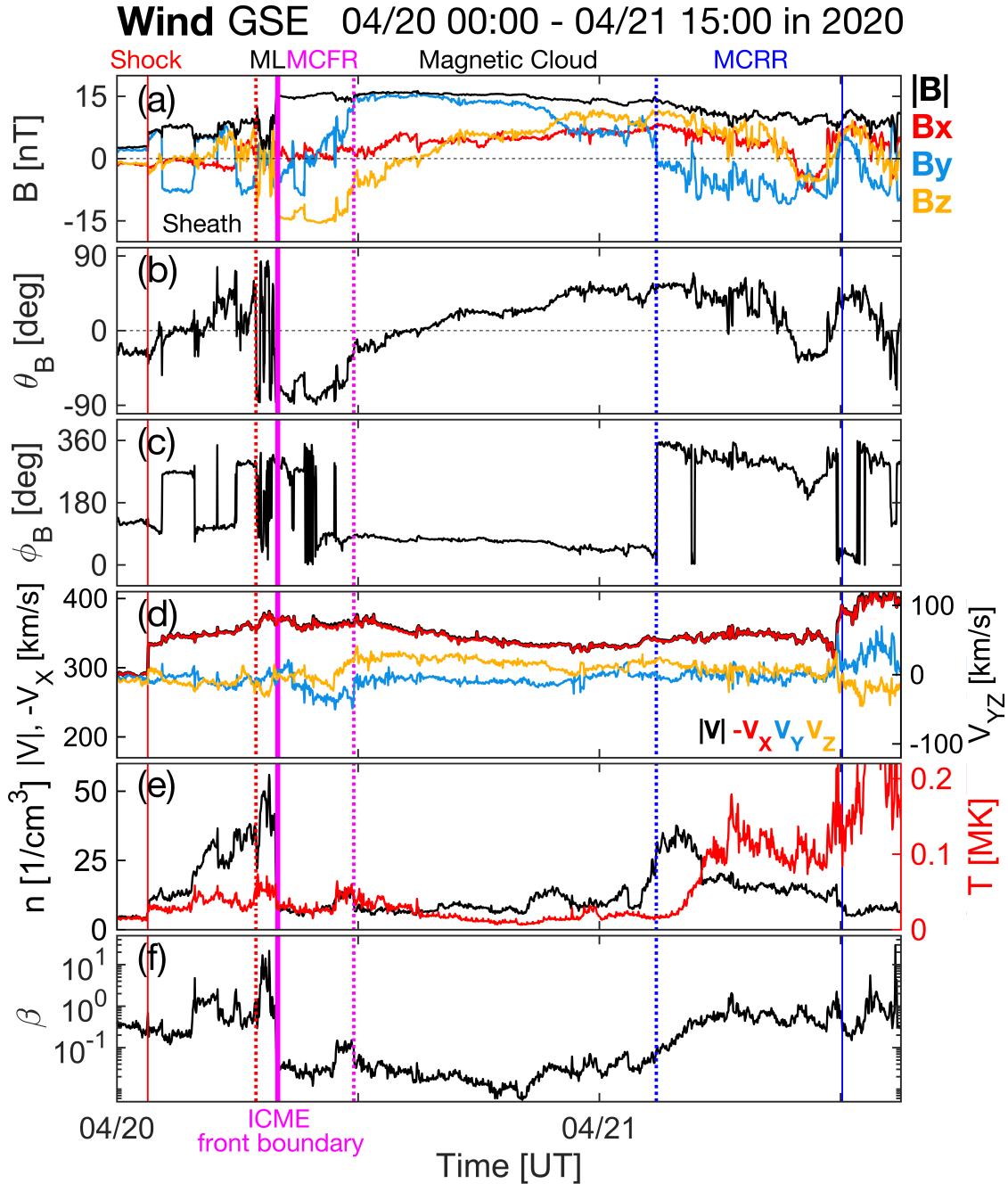
Space weather predictions are dependent on observations at L1. OMNI data, which are often used as the reference for the upstream conditions in magnetospheric studies, for example was derived from the Wind measurements during the event. Our results imply that care ought to be taken when making predictions during the passage of ICMEs and their sheath regions, which are key drivers of magnetospheric activity (Huttunen et al. 2002; Huttunen & Koskinen 2004). Their space weather impact may vary due to local dynamics in proximity to the ICME sheath-ejecta boundary. The uncertainties in upstream solar wind conditions have been noted recently by several authors (e.g., Borovsky 2018; Walsh et al. 2019; Di Matteo & Sivadas 2022; Sivadas & Sibeck 2022).

4. CONCLUSIONS

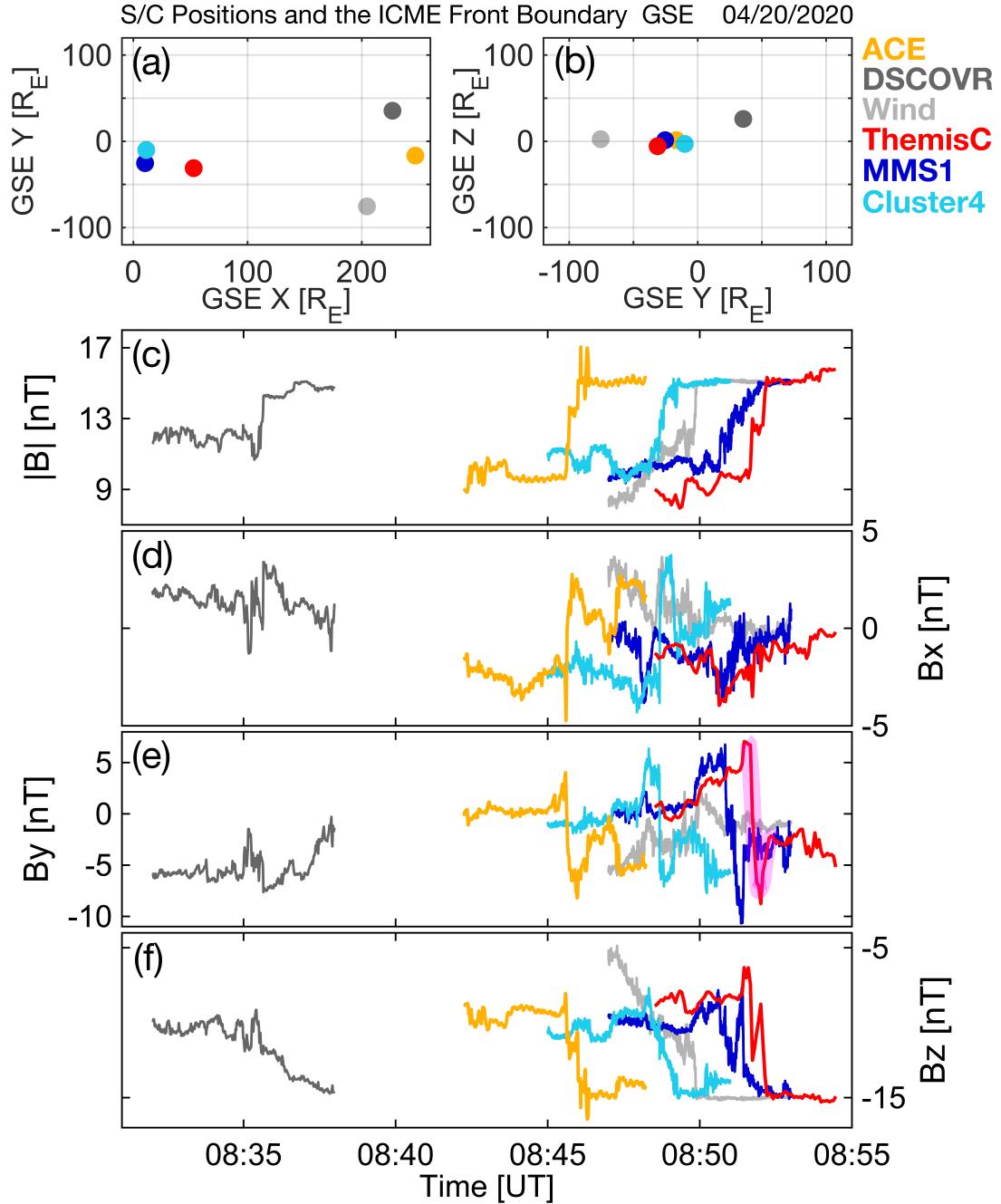
In summary, we have presented multi-spacecraft *in-situ* observations of magnetic reconnection at an ICME sheath-ejecta boundary on April 2020. We analyzed multi-point measurements and identified magnetic reconnection at various locations at the boundary, which hosted a two-sided jet associated with an unprecedentedly low magnetic shear angle. Our results imply several (patchy) reconnection sites along the ICME front boundary (see Enzl et al. 2017; Liu et al. 2021) augmenting earlier work about ICME erosion (Ruffenach et al. 2012). The dynamics at the ICME sheath-boundary exhibited fine structure captured by the Cluster and MMS observations. Individual Cluster spacecraft observed localised structures across the inter-spacecraft separations of $0.4 - 1.6 R_E$, whereas highly filamented currents were measured by MMS. The measurements were however not sufficient for further specification of the structures or the currents at the boundary.

At larger scales, we identified a mixing layer in front of the ejecta, which experienced substantial southward field variations and a lack of coherency at 1 AU.

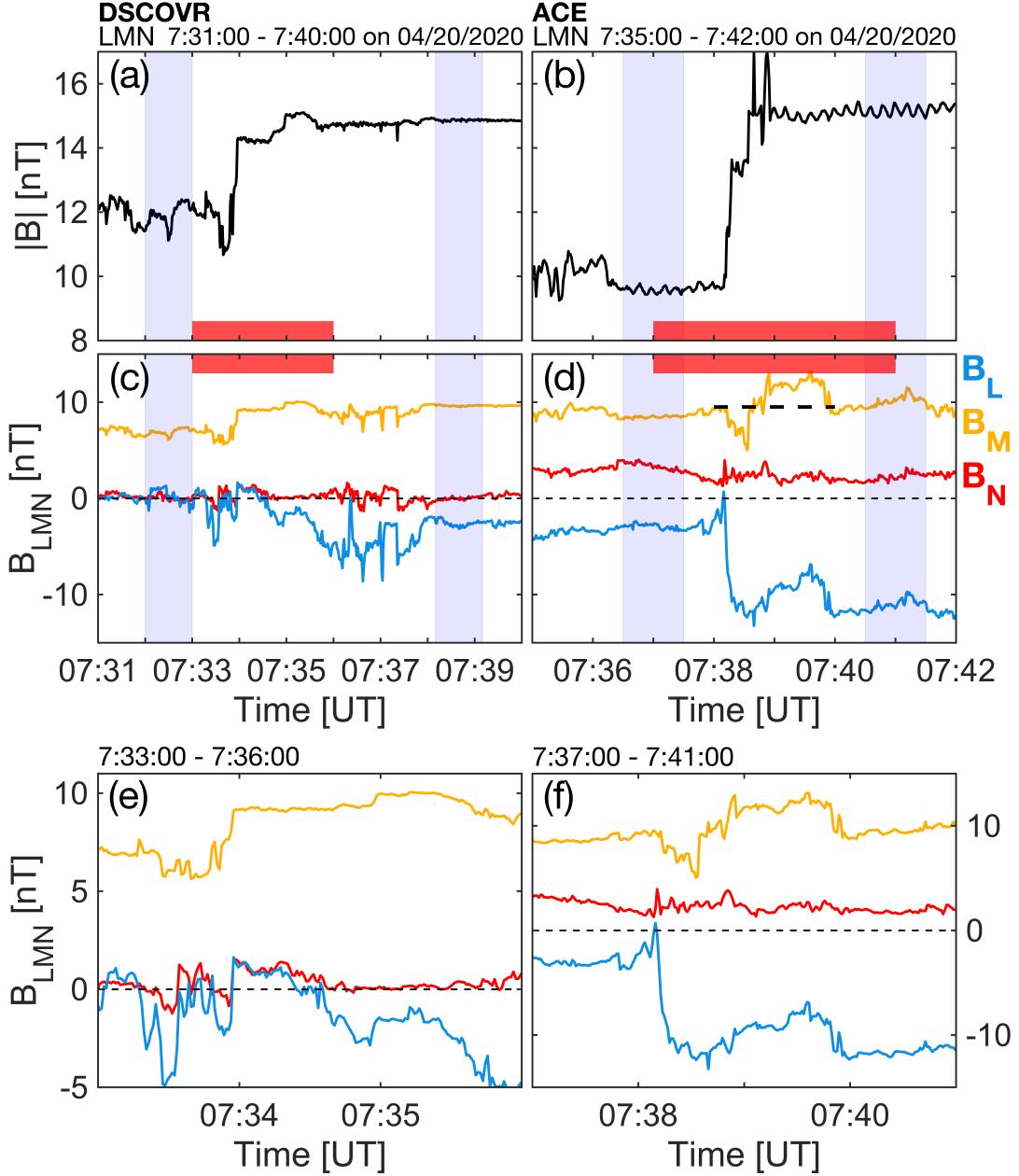
Magnetic reconnection outflows at an ICME sheath-ejecta interface are shown to interact with the ambient plasma at magnetohydrodynamic and kinetic scales at the outflow boundaries, where various dynamic processes occur (e.g., Lapenta et al. 2017; Hesse et al. 2018; Vörös et al. 2021) including Kelvin-Helmholtz instability (Sasunov et al. 2012; Vörös et al. 2021). It is important to understand the interplay between the small- and large-scale dynamics of the mixing layer and the front boundary of an expanding ICME ejecta, because at Earth the dynamics introduce uncertainties to space weather predictions.

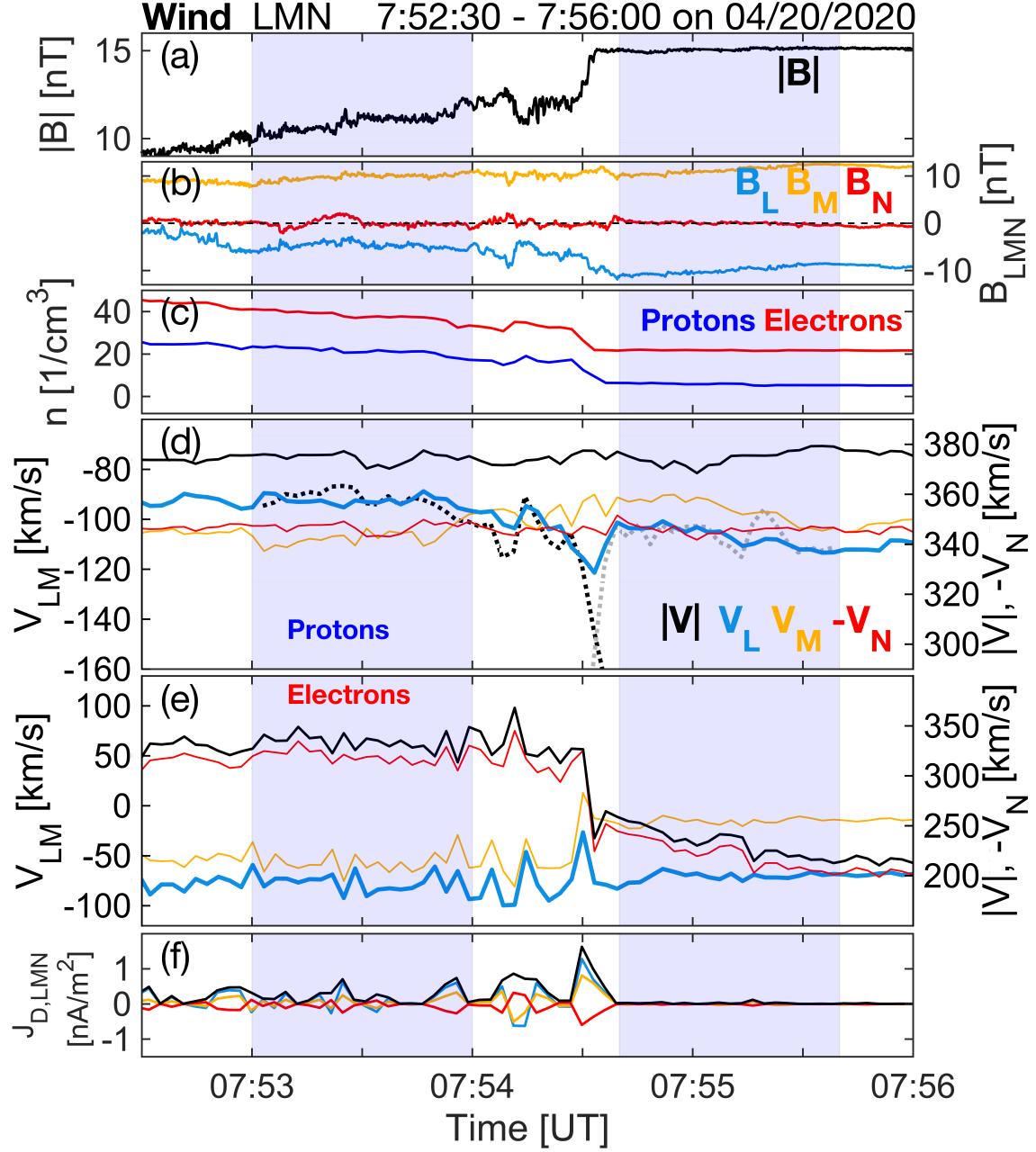

Solar Orbiter and Parker Solar Probe (Fox et al. 2016) enable studying the ICME sheath-ejecta boundary and the mixing layer at various sub-1 AU-distances from the Sun. Analyzing their high time-resolution magnetic field, proton and electron measurements can help to specify the dynamics at the ICME ejecta front boundary as well as the mixing layer formation (e.g., Owen et al. 2021). Future research about the mixing layer including resolving the distances of its initiation will result in a better understanding of the ICME evolution.

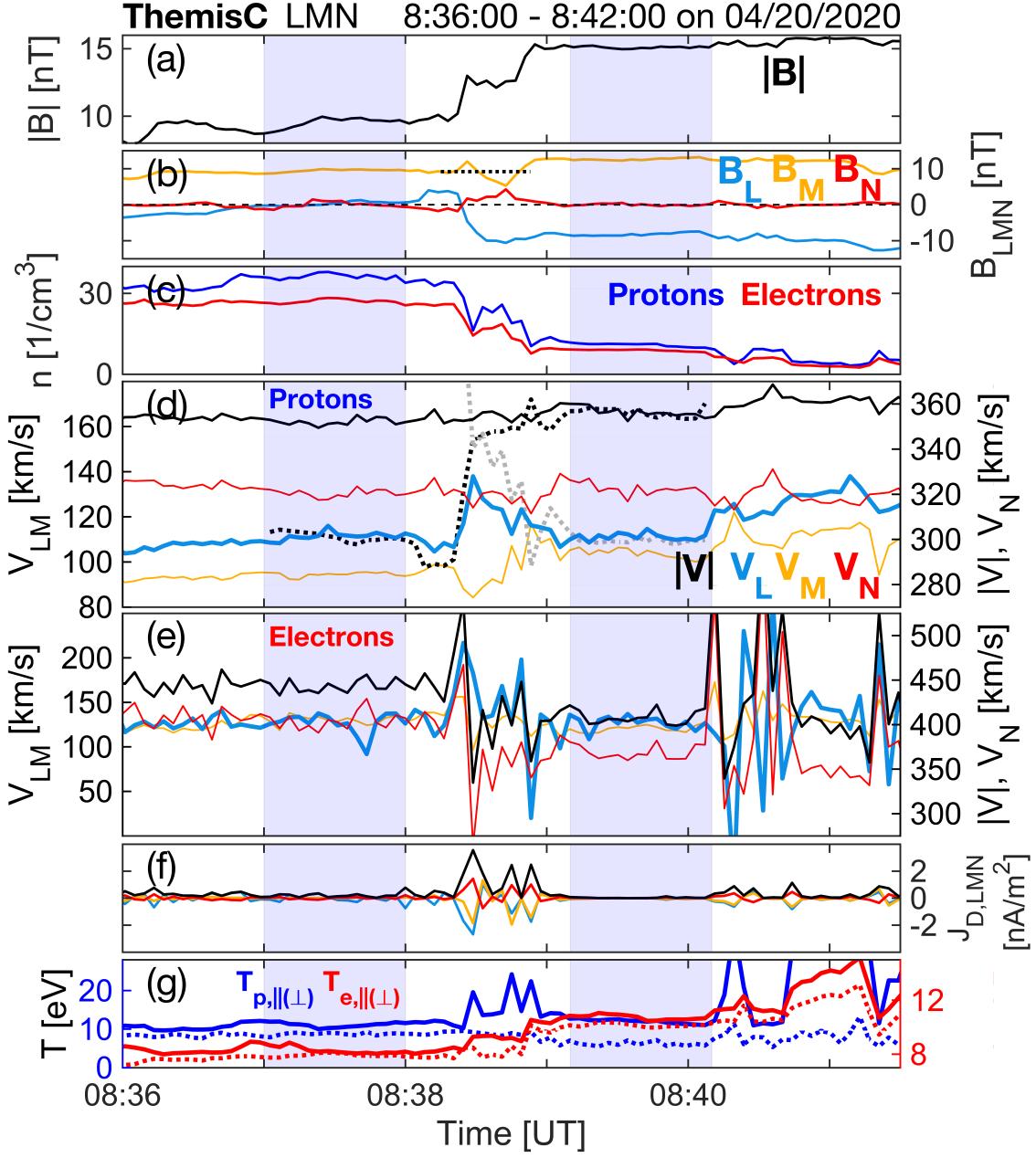
Finally, our study augments the multi-point research of ICMEs at the Earth's orbit (Lugaz et al. 2018, 2022; Ala-Lahti et al. 2020, 2021; Vörös et al. 2021). Together with previous work, it highlights the need for continuous (sub)second-resolution plasma and field measurements at multiple locations in the solar wind which can address the spatio-temporal structure of ICMEs. These results should direct the future spacecraft mission design which aims at discovering the detailed structure and evolution of ICMEs (e.g., Allen et al. 2022; Akhavan-Tafti et al. 2023; Nykyri et al. 2023).

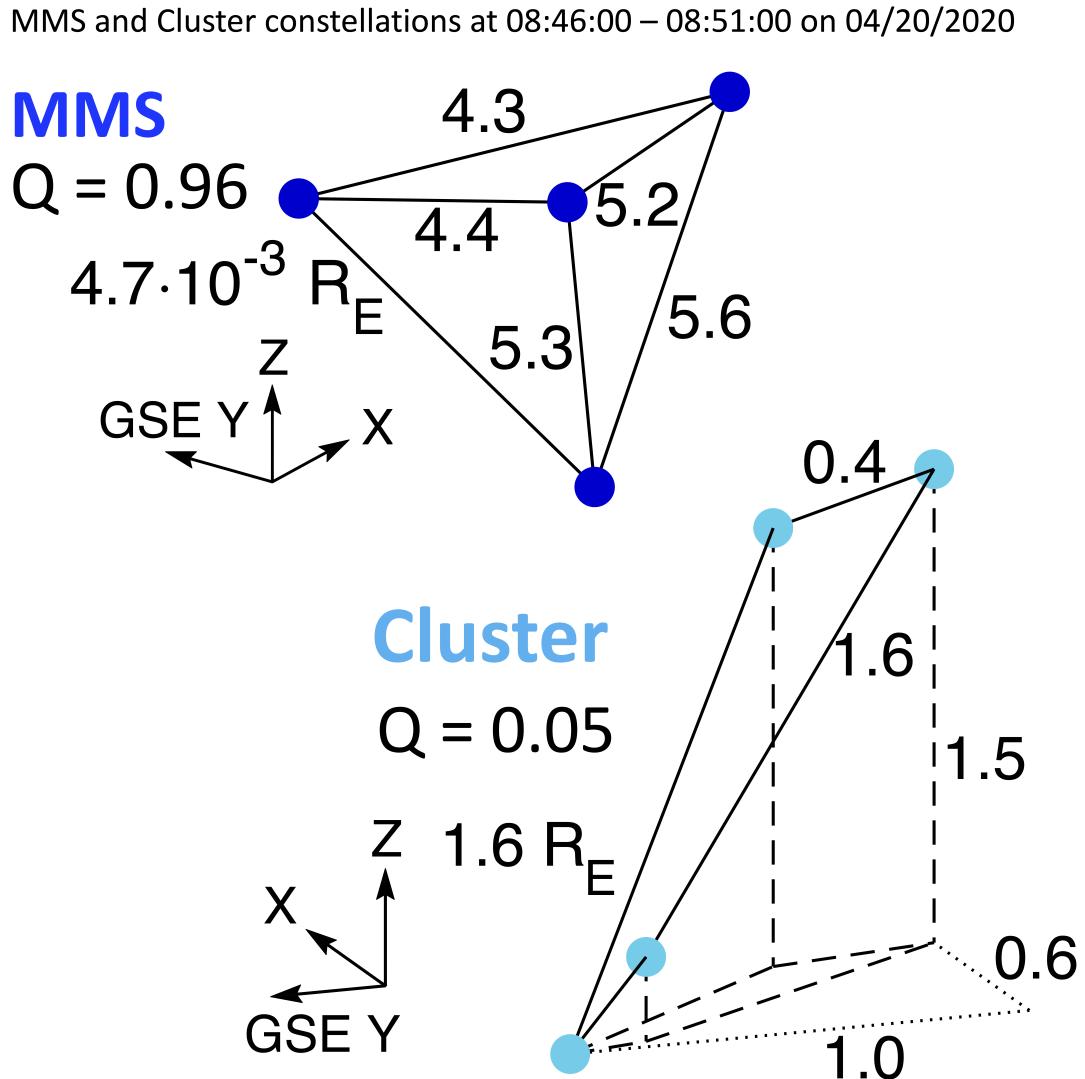

The Space Weather Investigation Frontier (SWIFT; Akhavan-Tafti et al. 2023) is a multi-spacecraft mission concept dedicated to addressing these questions including the ICME three-dimensional structure and dynamics. The mission aims to provide continuous measurements along the Sun-Earth line beyond the Lagrange L1 point (sub-L1), doubling the current forecasting lead-times. In Table 2, we list desired probe separations and time-resolutions for the SWIFT mission according to the discoveries made in this study. The spatial coherence of ICME sub-structures requires further study at various transverse probe separations and in Table 2, we double the maximum separation analyzed in this study ($\sim 110 R_E \rightarrow 220 R_E$). A four-probe mission with (sub)second-resolution plasma and field measurements and varying inter-spacecraft separations is required for a comprehensive examination that covers the dynamics

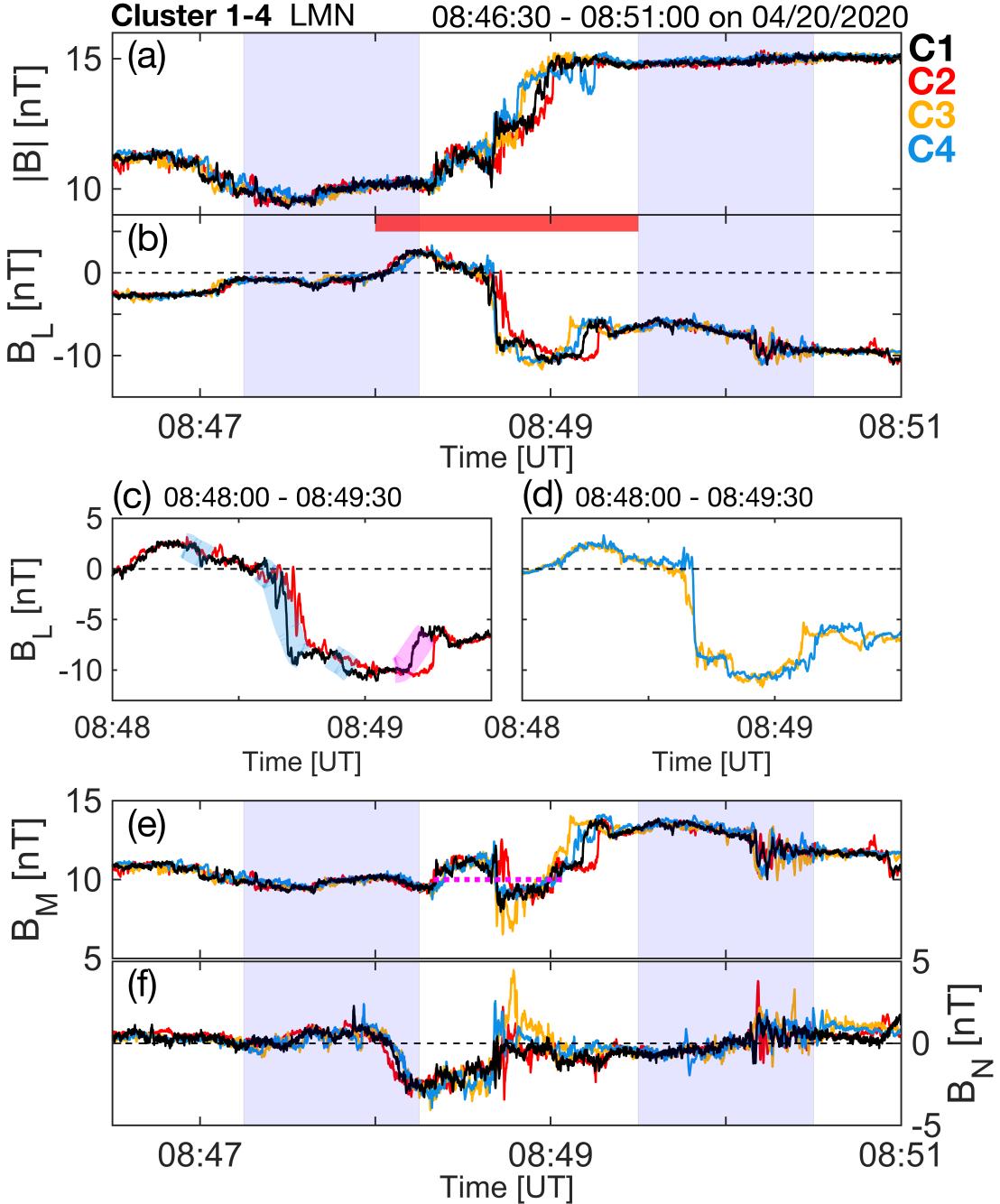
at small and large scales. However, as demonstrated by the analyzed Themis C and Cluster 4 measurements, sub-L1 measurements at ~ 4 s time-resolution together with observations from current missions at L1 can also improve our understanding of ICME three-dimensional substructures and dynamics.

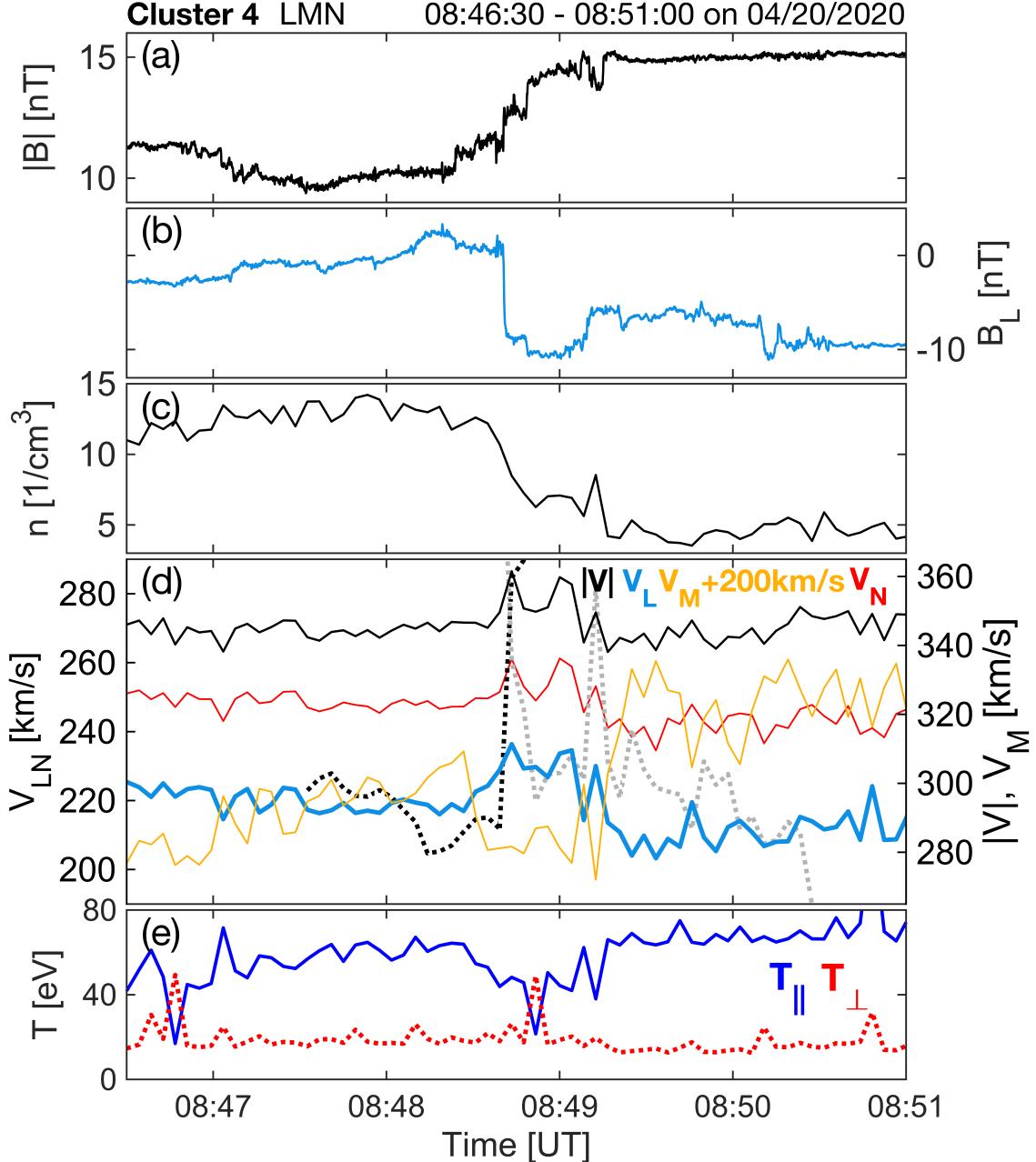

Data reported here were first identified by the authors while performing preparatory work for the Space Weather Investigation Frontier (SWIFT; NASA grant 80NSSC23K0674), the data being obtained from the MMS Science Data Center (<https://lasp.colorado.edu/mms/sdc/public/>), Cluster Science Archive (<https://csa.esac.int/csa-web/>), and the CDAWeb Archive (<https://cdaweb.gsfc.nasa.gov/>). MA-L acknowledges the Emil Aaltonen Foundation for financial support. TP and MA-L acknowledge support from NSF grant 2033563. SG and JR acknowledge support by the Academy of Finland (INERTUM, grants 338486 and 346612). MAT was supported by NASA contract NNN06AA01C, and grants 80NSSC20K1847, 80NSSC20K1014, 80NSSC21K1662, 940 and 80NSSC23K0674. EK acknowledges the ERC under the European Union's Horizon 2020 Research and Innovation Programme Project SolMAG 724391. EK and SG acknowledge the Finnish Centre of Excellence in Research of Sustainable Space (Academy of Finland grant numbers 312390, 336807). **We wish to thank the anonymous reviewer for their careful evaluation of this work.**


Figure 1. ICME observed by Wind on 20-21 April 2020 at 1 AU. Panels show (a) magnetic field (\mathbf{B}) magnitude and GSE-components, (b) magnetic field latitudinal (θ_B), and (c) azimuthal (ϕ_B) angular components with respect to the ecliptic plane, (d) proton velocity (\mathbf{V}), (e) density (n , black), and temperature (T , red), and (f) proton plasma- β . The vertical lines indicate the shock (solid red), the beginning of the mixing layer (dotted red) front boundary of the ICME (solid magenta), magnetic cloud (dotted magenta and blue), and the rear boundary of the ICME (solid blue). In panel d, $-V_x$ is shown to facilitate comparison. Abbreviations: ML - mixing layer MCFR - magnetic cloud front region, MCRR - magnetic cloud rear region.


Figure 2. The spacecraft positions and the magnetic field measurements during the ICME front boundary passage on 20 April 2020. Panels show the spacecraft positions in (a) the GSE XY -plane, (b) YZ -plane in Earth radii (R_E), and the magnetic field (c) magnitude, (d) GSE X -component, (e) Y -component, and (f) Z -component. The solar wind monitor and Themis C measurements are time-shifted relative to MMS and Cluster using the solar wind velocity measurements and spacecraft separation along the X -axis. In panel e, the pale magenta curve highlights the B_Y changes discussed in the text for Themis C. Abbreviations: S/C - spacecraft.


Figure 3. ICME front boundary on 20 April 2020 observed by the DSCOVR and ACE spacecraft. Panels show (a-b) the magnetic field magnitude, (c-f) the field components in the local LMN-coordinates. The blue shadings in panels a-d display the intervals that determine the normal directions. The red bars indicate the intervals shown in panels e-f.


Figure 4. ICME front boundary on 20 April 2020 observed by the Wind spacecraft. Panels show (a) the magnetic field magnitude, (b) the field components in the local LMN-coordinates, (c) proton (blue) and electron (red) densities, (d) proton velocity and the Walén prediction of V_L from the sheath (ejecta) side on black (gray), (e) electron velocity, and (f) the diamagnetic current density (J_D).


Figure 5. ICME front boundary on 20 April 2020 observed by the Themis C spacecraft. Panels show (a) the magnetic field magnitude, (b) the field components in the local LMN-coordinates, (c) proton (blue) and electron (red) densities, (d) proton velocity and the Walén prediction of V_L from the sheath (ejecta) side on black (gray), (e) electron velocity, (f) the diamagnetic current density, and (g) the parallel (||, solid) and perpendicular (perp, dotted) proton and electron temperatures relative to the magnetic field.

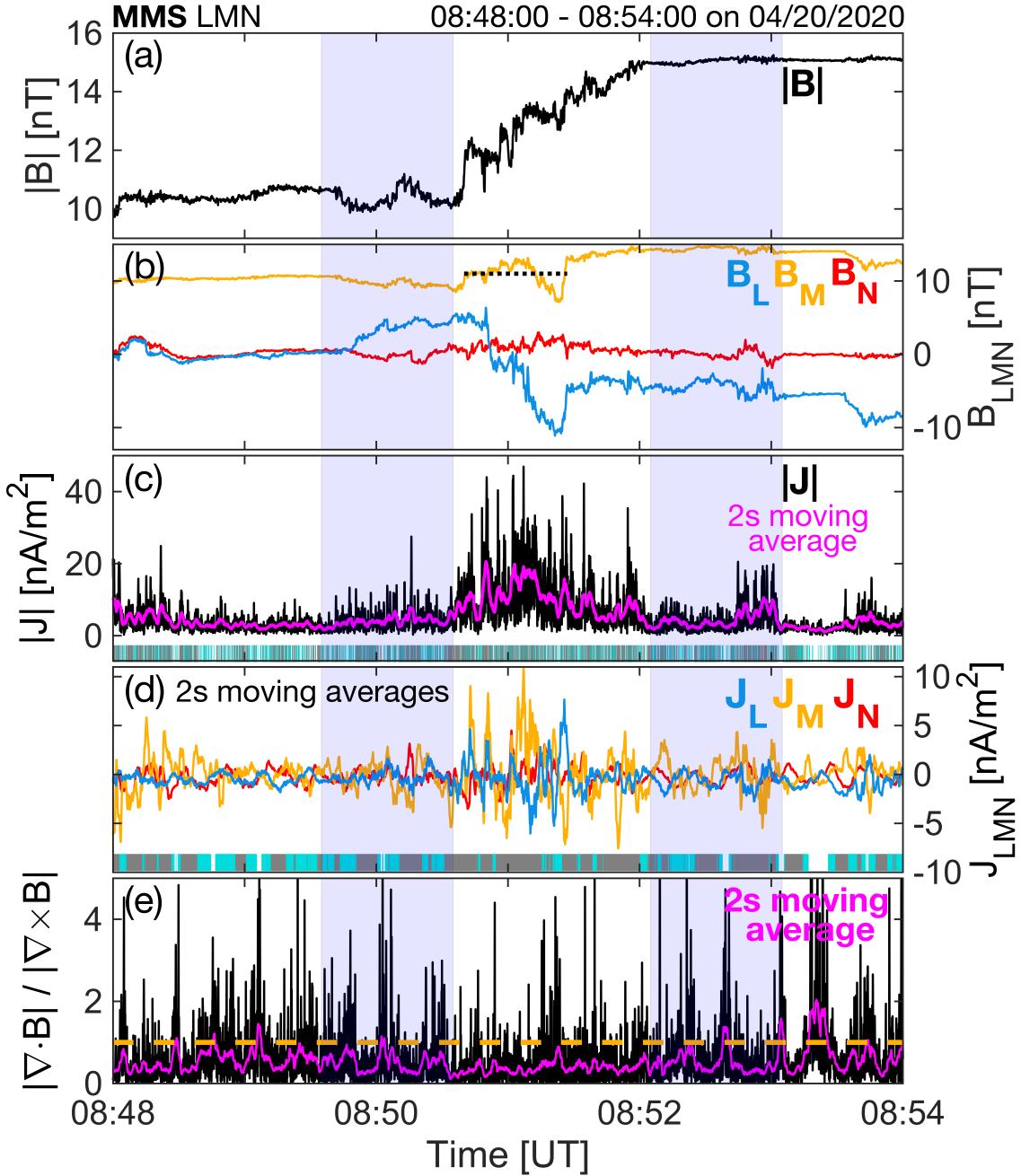

Figure 6. MMS and Cluster constellations during ICME front boundary passing on 20 April 2020. Constellation Q-factors quantifying the proximity to the perfect tetrahedron ($Q=1$) are shown.

Figure 7. ICME front boundary on 20 April 2020 observed by the Cluster 1-4 spacecraft. Panels show (a) the magnetic field magnitude, and (b-f) the field components in the local LMN-coordinates. The blue shadings in panels a-b and e-f display the intervals that determine the normal directions. The red horizontal bar in panel a marks the interval shown in panels c-d. In panel c, the pale blue curves in panel c show the B_L -rotations aligned with field increases. The pale magenta curve marks the opposite rotation discussed in the text.

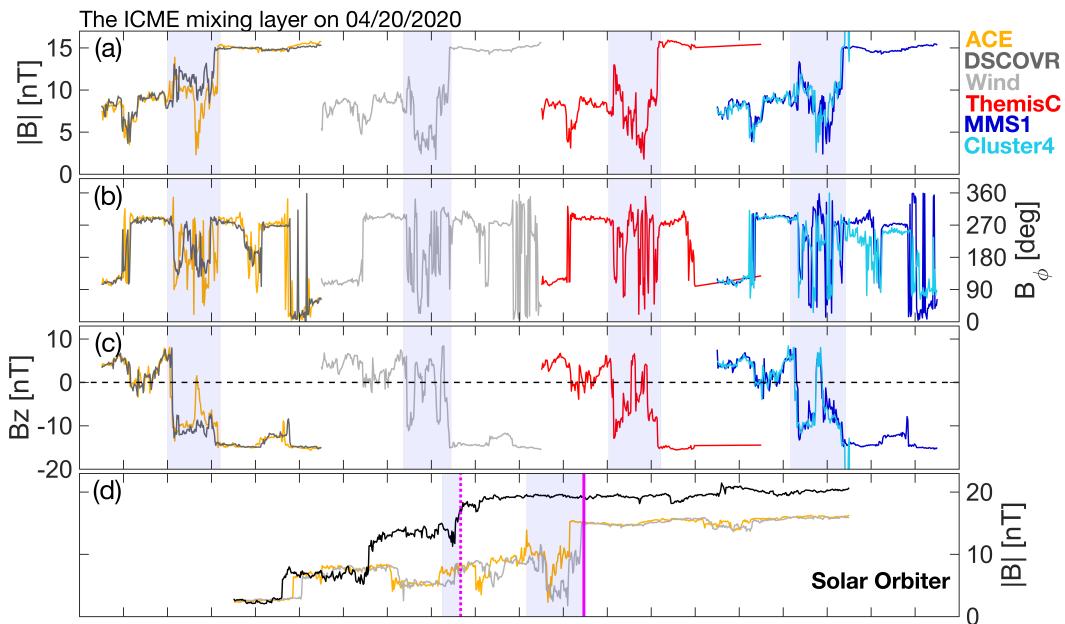

Figure 8. ICME front boundary on 20 April 2020 observed by Cluster 4. Panels show (a) the magnetic field magnitude, (b-f) B_L , (c) proton density, (d) velocity and the Walén prediction of V_L from the sheath (ejecta) side on black (gray), and (e) proton temperatures.

Figure 9. ICME front boundary on 20 April 2020 observed by MMS. Panels show (a) the magnetic field magnitude, (b) field components in the local LMN-coordinates, (c) the total current density, (d) 2 s moving averages of J_{LMN} -components, and (e) the magnetic field divergence-curl ratio, with the dashed orange line indicating the unity. In panel c the magenta gives the 2 s moving average of $|J|$. The gray (teal) bars at the bottom of panels c-d indicate the times when the divergence-curl ratio was below 0.5 (1), panel d showing the times for the average curve.

S/C	L GSE [X, Y, Z]	M	N	Magnetic Shear	$ B_M/B_L $ Sheath Side - Ejecta Side	Magnetic Reconnection
DSCOVR	[0.30, -0.82, 0.49]	[0.11, -0.48, -0.87]	[0.95, 0.32, -0.06]	11°	61.82 - 5.59	No plasma data
ACE	[-0.45, 0.75, 0.48]	[-0.15, 0.47, -0.87]	[-0.88, -0.47, -0.10]	30°	2.90 - 0.93	No plasma data
Wind	[0.27, -0.69, 0.67]	[0.25, -0.62, -0.74]	[0.93, 0.37, 0.0]	15°	2.00 - 1.20	Ambiguous
Themis C	[-0.30, 0.85, 0.43]	[-0.28, 0.36, -0.89]	[-0.91, -0.39, 0.13]	35°	34.48 - 1.50	Yes
Cluster 4	[-0.61, 0.72, 0.33]	[-0.34, 0.14, -0.93]	[-0.72, -0.68, 0.16]	28°	21.78 - 1.71	Yes
MMS	[-0.23, 0.97, 0.10]	[-0.09, 0.07, -0.99]	[-0.97, -0.25, 0.07]	34°	3.36 - 3.19	No plasma data
Solar Orbiter	Shorter and less prevalent dip of $ B $ at the ICME front than at the Earth's orbit; no plasma data					

Table 1. Parameters at the examined spacecraft during the ICME front boundary crossings. The table shows local LMN-coordinates given in GSE-coordinates, the magnetic shear angle across the boundary, the ratio between B_M - and B_L -component, and the occurrence of magnetic reconnection. The values are calculated using the intervals indicated by the blue shadings in the figures. Abbreviations: S/C - spacecraft.

Figure 10. ICME mixing layer observed on 20 April 2020. Panels show (a) the magnetic field **magnitude**, (b) ϕ_B - and (c) B_z -component from the spacecraft at the Earth's orbit, and (d) the field magnitude at ACE, Wind and Solar Orbiter at 1 min time-resolutions. The blue shadings indicate the mixing layer characterized by large rotations of ϕ_B and decreases of $|B|$. In panel d, vertical magenta lines show the ICME sheath-ejecta boundary. Spacecraft data is time-shifted arbitrarily and the distance between the ticks on the horizontal axis **corresponds to** 1 hour.

SWIFT Design Recommendations					
Mission Configuration	Number of Probes	Probe Separation [RE] Radial	Probe Separation [RE] Transverse	Time-Resolution [s] Magnetic Field	Time-Resolution [s] Plasma
Baseline	1 hub at sub-L1 + 3 nodes at L1	40 – 240	20 – 220	≤ 1	≤ 1
Threshold	1 hub at sub-L1 + existing L1 assets	~ 150	~ 100	4	4

Table 2. Desired number of probes, their separations and instrument time-resolutions for Space Weather Investigation Frontier (SWIFT) mission (Akhavan-Tafti et al. 2023). Sub-L1 refers to sunward from the Lagrange L1 point. The transverse probe separation of the baseline configuration includes the minimum transverse probe separation ($\sim 20 R_E$) and two times the maximum ($\sim 110 R_E \rightarrow 220 R_E$) analyzed in this study. The radial probe separation of the threshold configuration is given by the radial separation between Wind and Themis C.

REFERENCES

948 Akhavan-Tafti, M., Johnson, L., Sood, R., et al. 2023,
 949 *Frontiers in Astronomy and Space Sciences*, 10.
 950 <https://www.frontiersin.org/articles/10.3389/fspas.2023.1185603/abstract>

952 Al-Haddad, N., Lugaz, N., Poedts, S., et al. 2019, *The
 953 Astrophysical Journal*, 884, 179,
 954 doi: [10.3847/1538-4357/ab4126](https://doi.org/10.3847/1538-4357/ab4126)

955 Ala-Lahti, M., Dimmock, A. P., Pulkkinen, T. I., et al.
 956 2021, *Journal of Geophysical Research (Space Physics)*,
 957 126, e29896, doi: [10.1029/2021JA029896](https://doi.org/10.1029/2021JA029896)

958 Ala-Lahti, M., Ruohotie, J., Good, S., Kilpua, E. K. J., &
 959 Lugaz, N. 2020, *Journal of Geophysical Research (Space
 960 Physics)*, 125, e28002, doi: [10.1029/2020JA028002](https://doi.org/10.1029/2020JA028002)

961 Ala-Lahti, M. M., Kilpua, E. K. J., Dimmock, A. P., et al.
 962 2018, *Annales Geophysicae*, 36, 793,
 963 doi: [10.5194/angeo-36-793-2018](https://doi.org/10.5194/angeo-36-793-2018)

964 Allen, R. C., Smith, E. J., Anderson, B. J., et al. 2022,
 965 *Frontiers in Astronomy and Space Sciences*, 9, 1002273,
 966 doi: [10.3389/fspas.2022.1002273](https://doi.org/10.3389/fspas.2022.1002273)

967 André, M., Li, W., Toledo-Redondo, S., et al. 2016,
 968 *Geophysical Research Letters*, 43, 6705,
 969 doi: [10.1002/2016GL069665](https://doi.org/10.1002/2016GL069665)

970 Angelopoulos, V. 2008, *Space Science Reviews*, 141, 5,
 971 doi: [10.1007/s11214-008-9336-1](https://doi.org/10.1007/s11214-008-9336-1)

972 Borovsky, J. E. 2018, *Journal of Atmospheric and
 973 Solar-Terrestrial Physics*, 177, 2,
 974 doi: [10.1016/j.jastp.2017.03.014](https://doi.org/10.1016/j.jastp.2017.03.014)

975 Burch, J. L., Moore, T. E., Torbert, R. B., & Giles, B. L.
 976 2016, *Space Science Reviews*, 199, 5,
 977 doi: [10.1007/s11214-015-0164-9](https://doi.org/10.1007/s11214-015-0164-9)

978 Burt, J., & Smith, B. 2012, in 2012 IEEE Aerospace
 979 Conference, 1–13, doi: [10.1109/AERO.2012.6187025](https://doi.org/10.1109/AERO.2012.6187025)

980 Che, H., Zank, G. P., Benz, A. O., Tang, B., & Crawford,
 981 C. 2021, *The Astrophysical Journal*, 908, 72,
 982 doi: [10.3847/1538-4357/abcf29](https://doi.org/10.3847/1538-4357/abcf29)

983 Chian, A. C. L., & Muñoz, P. R. 2011, *The Astrophysical
 984 Journal Letters*, 733, L34,
 985 doi: [10.1088/2041-8205/733/2/L34](https://doi.org/10.1088/2041-8205/733/2/L34)

986 Dai, L. 2018, *Journal of Geophysical Research (Space
 987 Physics)*, 123, 7332, doi: [10.1029/2018JA025251](https://doi.org/10.1029/2018JA025251)

988 Dasso, S., Mandrini, C. H., Démoulin, P., & Luoni, M. L.
 989 2006, *Astronomy and Astrophysics*, 455, 349,
 990 doi: [10.1051/0004-6361:20064806](https://doi.org/10.1051/0004-6361:20064806)

991 Davies, E. E., Möstl, C., Owens, M. J., et al. 2021,
 992 *Astronomy & Astrophysics*, 656, A2,
 993 doi: [10.1051/0004-6361/202040113](https://doi.org/10.1051/0004-6361/202040113)

994 Denton, R. E., Sonnerup, B. U. Ö., Hasegawa, H., et al.
 995 2016, *Journal of Geophysical Research (Space Physics)*,
 996 121, 9880, doi: [10.1002/2016JA023323](https://doi.org/10.1002/2016JA023323)

997 Di Matteo, S., & Sivadas, N. 2022, *Frontiers in Astronomy
 998 and Space Sciences*, 9, 333,
 999 doi: [10.3389/fspas.2022.1060072](https://doi.org/10.3389/fspas.2022.1060072)

1000 Dunlop, M. W., Balogh, A., Glassmeier, K. H., & Robert,
 1001 P. 2002, *Journal of Geophysical Research (Space
 1002 Physics)*, 107, 1384, doi: [10.1029/2001JA005088](https://doi.org/10.1029/2001JA005088)

1003 Eastwood, J. P., Shay, M. A., Phan, T. D., & Øieroset, M.
 1004 2010, *Physical Review Letters*, 104, 205001,
 1005 doi: [10.1103/PhysRevLett.104.205001](https://doi.org/10.1103/PhysRevLett.104.205001)

1006 Eastwood, J. P., Mistry, R., Phan, T. D., et al. 2018,
 1007 *Geophysical Research Letters*, 45, 4569,
 1008 doi: [10.1029/2018GL077670](https://doi.org/10.1029/2018GL077670)

1009 Eastwood, J. P., Stawarz, J. E., Phan, T. D., et al. 2021,
 1010 *Astronomy & Astrophysics*, 656, A27,
 1011 doi: [10.1051/0004-6361/202140949](https://doi.org/10.1051/0004-6361/202140949)

1012 Enžl, J., Šafránková, J., Němeček, Z., & Přech, L. 2017,
 1013 *The Astrophysical Journal*, 851, 86,
 1014 doi: [10.3847/1538-4357/aa98e0](https://doi.org/10.3847/1538-4357/aa98e0)

1015 Eriksson, S., Newman, D. L., Lapenta, G., & Angelopoulos,
 1016 V. 2014, *Plasma Physics and Controlled Fusion*, 56,
 1017 064008, doi: [10.1088/0741-3335/56/6/064008](https://doi.org/10.1088/0741-3335/56/6/064008)

1018 Eriksson, S., Gosling, J. T., Phan, T. D., et al. 2009,
 1019 *Journal of Geophysical Research (Space Physics)*, 114,
 1020 A07103, doi: [10.1029/2008JA013990](https://doi.org/10.1029/2008JA013990)

1021 Eriksson, S., Lapenta, G., Newman, D. L., et al. 2015, *The
 1022 Astrophysical Journal*, 805, 43,
 1023 doi: [10.1088/0004-637X/805/1/43](https://doi.org/10.1088/0004-637X/805/1/43)

1024 Eriksson, S., Swisdak, M., Weygand, J. M., et al. 2022, *The
 1025 Astrophysical Journal*, 933, 181,
 1026 doi: [10.3847/1538-4357/ac73f6](https://doi.org/10.3847/1538-4357/ac73f6)

1027 Escoubet, C. P., Schmidt, R., & Goldstein, M. L. 1997,
 1028 *Space Science Reviews*, 79, 11,
 1029 doi: [10.1023/A:1004923124586](https://doi.org/10.1023/A:1004923124586)

1030 Farrugia, C. J., Vasquez, B. J., Lugaz, N., et al. 2023, *The
 1031 Astrophysical Journal*, 953, 15,
 1032 doi: [10.3847/1538-4357/acdef7](https://doi.org/10.3847/1538-4357/acdef7)

1033 Fox, N. J., Velli, M. C., Bale, S. D., et al. 2016, *Space
 1034 Science Reviews*, 204, 7, doi: [10.1007/s11214-015-0211-6](https://doi.org/10.1007/s11214-015-0211-6)

1035 Freiherr von Forstner, J. L., Dumbović, M., Möstl, C., et al.
 1036 2021, *Astronomy & Astrophysics*, 656, A1,
 1037 doi: [10.1051/0004-6361/202039848](https://doi.org/10.1051/0004-6361/202039848)

1038 Fu, H. S., Vaivads, A., Khotyaintsev, Y. V., et al. 2017,
 1039 *Geophysical Research Letters*, 44, 37,
 1040 doi: [10.1002/2016GL071787](https://doi.org/10.1002/2016GL071787)

1041 George, D. E., & Jahn, J.-M. 2020, *Journal of Geophysical
 1042 Research (Space Physics)*, 125, e27339,
 1043 doi: [10.1029/2019JA027339](https://doi.org/10.1029/2019JA027339)

1044 Good, S. W., Ala-Lahti, M., Palmerio, E., Kilpua, E. K. J.,
 1045 & Osmane, A. 2020, *The Astrophysical Journal*, 893, 110,
 1046 doi: [10.3847/1538-4357/ab7fa2](https://doi.org/10.3847/1538-4357/ab7fa2)

1047 Good, S. W., Forsyth, R. J., Eastwood, J. P., & Möstl, C.
 1048 2018, *Solar Physics*, 293, 52,
 1049 doi: [10.1007/s11207-018-1264-y](https://doi.org/10.1007/s11207-018-1264-y)

1050 Good, S. W., Forsyth, R. J., Raines, J. M., et al. 2015, *The
 1051 Astrophysical Journal*, 807, 177,
 1052 doi: [10.1088/0004-637X/807/2/177](https://doi.org/10.1088/0004-637X/807/2/177)

1053 Gosling, J. T., Eriksson, S., & Schwenn, R. 2006a, *Journal
 1054 of Geophysical Research (Space Physics)*, 111, A10102,
 1055 doi: [10.1029/2006JA011863](https://doi.org/10.1029/2006JA011863)

1056 Gosling, J. T., Eriksson, S., Skoug, R. M., McComas, D. J.,
 1057 & Forsyth, R. J. 2006b, *The Astrophysical Journal*, 644,
 1058 613, doi: [10.1086/503544](https://doi.org/10.1086/503544)

1059 Gosling, J. T., & Phan, T. D. 2013, *The Astrophysical
 1060 Journal Letters*, 763, L39,
 1061 doi: [10.1088/2041-8205/763/2/L39](https://doi.org/10.1088/2041-8205/763/2/L39)

1062 Gosling, J. T., Skoug, R. M., McComas, D. J., & Smith,
 1063 C. W. 2005, *Journal of Geophysical Research (Space
 1064 Physics)*, 110, A01107, doi: [10.1029/2004JA010809](https://doi.org/10.1029/2004JA010809)

1065 Gosling, J. T., & Szabo, A. 2008, *Journal of Geophysical
 1066 Research (Space Physics)*, 113, A10103,
 1067 doi: [10.1029/2008JA013473](https://doi.org/10.1029/2008JA013473)

1068 Haaland, S., Sonnerup, B. U. Ö., Dunlop, M. W., et al.
 1069 2004, *Geophysical Research Letters*, 31, L10804,
 1070 doi: [10.1029/2004GL020001](https://doi.org/10.1029/2004GL020001)

1071 Hesse, M., Norgren, C., Tenfjord, P., et al. 2018, *Physics of
 1072 Plasmas*, 25, 122902, doi: [10.1063/1.5054100](https://doi.org/10.1063/1.5054100)

1073 Heyn, M. F., Biernat, H. K., Semenov, V. S., & Kubyshkin,
 1074 I. V. 1985, *Journal of Geophysical Research*, 90, 1781,
 1075 doi: [10.1029/JA090iA02p01781](https://doi.org/10.1029/JA090iA02p01781)

1076 Higashimori, K., & Hoshino, M. 2015, *Journal of
 1077 Geophysical Research (Space Physics)*, 120, 1803,
 1078 doi: [10.1002/2014JA020544](https://doi.org/10.1002/2014JA020544)

1079 Huang, C., Lu, Q., Wang, R., et al. 2017, *The Astrophysical
 1080 Journal*, 835, 245, doi: [10.3847/1538-4357/835/2/245](https://doi.org/10.3847/1538-4357/835/2/245)

1081 Huttunen, K., & Koskinen, H. 2004, *Annales Geophysicae*,
 1082 22, 1729, doi: [10.5194/angeo-22-1729-2004](https://doi.org/10.5194/angeo-22-1729-2004)

1083 Huttunen, K. E. J., Bale, S. D., Phan, T. D., Davis, M., &
 1084 Gosling, J. T. 2007, *Journal of Geophysical Research
 1085 (Space Physics)*, 112, A01102,
 1086 doi: [10.1029/2006JA011836](https://doi.org/10.1029/2006JA011836)

1087 Huttunen, K. E. J., Bale, S. D., & Salem, C. 2008, *Annales
 1088 Geophysicae*, 26, 2701, doi: [10.5194/angeo-26-2701-2008](https://doi.org/10.5194/angeo-26-2701-2008)

1089 Huttunen, K. E. J., Koskinen, H. E. J., & Schwenn, R.
 1090 2002, *Journal of Geophysical Research (Space Physics)*,
 1091 107, 1121, doi: [10.1029/2001JA900171](https://doi.org/10.1029/2001JA900171)

1092 Innocenti, M. E., Goldman, M., Newman, D., Markidis, S.,
 1093 & Lapenta, G. 2015, *The Astrophysical Journal Letters*,
 1094 810, L19, doi: [10.1088/2041-8205/810/2/L19](https://doi.org/10.1088/2041-8205/810/2/L19)

1095 Jiang, L., & Lu, S. 2021, *AIP Advances*, 11, 015001,
 1096 doi: [10.1063/5.0037770](https://doi.org/10.1063/5.0037770)

1097 Kilpua, E., Koskinen, H. E. J., & Pulkkinen, T. I. 2017,
 1098 *Living Reviews in Solar Physics*, 14, 5,
 1099 doi: [10.1007/s41116-017-0009-6](https://doi.org/10.1007/s41116-017-0009-6)

1100 Kilpua, E. K. J., Isavnin, A., Vourlidas, A., Koskinen,
 1101 H. E. J., & Rodriguez, L. 2013, *Annales Geophysicae*, 31,
 1102 1251, doi: [10.5194/angeo-31-1251-2013](https://doi.org/10.5194/angeo-31-1251-2013)

1103 Kilpua, E. K. J., Fontaine, D., Moissard, C., et al. 2019,
 1104 *Space Weather*, 17, 1257, doi: [10.1029/2019SW002217](https://doi.org/10.1029/2019SW002217)

1105 Kilpua, E. K. J., Good, S. W., Dresing, N., et al. 2021,
 1106 *Astronomy & Astrophysics*, 656, A8,
 1107 doi: [10.1051/0004-6361/202140838](https://doi.org/10.1051/0004-6361/202140838)

1108 Knetter, T., Neubauer, F. M., Horbury, T., & Balogh, A.
 1109 2004, *Journal of Geophysical Research (Space Physics)*,
 1110 109, A06102, doi: [10.1029/2003JA010099](https://doi.org/10.1029/2003JA010099)

1111 Lapenta, G., Goldman, M. V., Newman, D. L., & Markidis,
 1112 S. 2017, *Plasma Physics and Controlled Fusion*, 59,
 1113 014019, doi: [10.1088/0741-3335/59/1/014019](https://doi.org/10.1088/0741-3335/59/1/014019)

1114 Lavraud, B., Ruffenach, A., Rouillard, A. P., et al. 2014,
 1115 *Journal of Geophysical Research (Space Physics)*, 119,
 1116 26, doi: [10.1002/2013JA019154](https://doi.org/10.1002/2013JA019154)

1117 Le, A., Egedal, J., Ng, J., et al. 2014, *Physics of Plasmas*,
 1118 21, 012103, doi: [10.1063/1.4861871](https://doi.org/10.1063/1.4861871)

1119 Lepping, R. P., Acuña, M. H., Burlaga, L. F., et al. 1995,
 1120 *Space Science Reviews*, 71, 207, doi: [10.1007/BF00751330](https://doi.org/10.1007/BF00751330)

1121 Lin, Y., & Lee, L. C. 1993, *Space Science Reviews*, 65, 59,
 1122 doi: [10.1007/BF00749762](https://doi.org/10.1007/BF00749762)

1123 Liu, C., Feng, X., Guo, J., & Fu, H. 2021, *Astrophysics and
 1124 Space Science*, 366, 2, doi: [10.1007/s10509-020-03910-6](https://doi.org/10.1007/s10509-020-03910-6)

1125 Lugaz, N., Farrugia, C. J., Winslow, R. M., et al. 2018, *The
 1126 Astrophysical Journal Letters*, 864, L7,
 1127 doi: [10.3847/2041-8213/aad9f4](https://doi.org/10.3847/2041-8213/aad9f4)

1128 Lugaz, N., Salman, T. M., Zhuang, B., et al. 2022, *The
 1129 Astrophysical Journal*, 929, 149,
 1130 doi: [10.3847/1538-4357/ac602f](https://doi.org/10.3847/1538-4357/ac602f)

1131 Manchester, W., Kilpua, E. K. J., Liu, Y. D., et al. 2017,
 1132 *Space Science Reviews*, 212, 1159,
 1133 doi: [10.1007/s11214-017-0394-0](https://doi.org/10.1007/s11214-017-0394-0)

1134 Mistry, R., Eastwood, J. P., Haggerty, C. C., et al. 2016,
 1135 *Physical Review Letters*, 117, 185102,
 1136 doi: [10.1103/PhysRevLett.117.185102](https://doi.org/10.1103/PhysRevLett.117.185102)

1137 Mistry, R., Eastwood, J. P., & Hietala, H. 2015a, *Journal of
 1138 Geophysical Research (Space Physics)*, 120, 30,
 1139 doi: [10.1002/2014JA020465](https://doi.org/10.1002/2014JA020465)

1140 Mistry, R., Eastwood, J. P., Phan, T. D., & Hietala, H.
 1141 2015b, *Geophysical Research Letters*, 42, 10,513,
 1142 doi: [10.1002/2015GL066820](https://doi.org/10.1002/2015GL066820)

1143 Müller, D., Marsden, R. G., St. Cyr, O. C., Gilbert, H. R.,
 1144 & Solar Orbiter Team. 2013, *Solar Physics*, 285, 25,
 1145 doi: [10.1007/s11207-012-0085-7](https://doi.org/10.1007/s11207-012-0085-7)

1146 Nykyri, K., Ma, X., Burkholder, B., et al. 2023, *Frontiers in
 1147 Astronomy and Space Sciences*, 10,
 1148 doi: [10.3389/fspas.2023.1179344](https://doi.org/10.3389/fspas.2023.1179344)

1149 Ogilvie, K. W., Chornay, D. J., Fritzenreiter, R. J., et al.
 1150 1995, *Space Science Reviews*, 71, 55,
 1151 doi: [10.1007/BF00751326](https://doi.org/10.1007/BF00751326)

1152 O’Kane, J., Green, L. M., Davies, E. E., et al. 2021,
 1153 *Astronomy & Astrophysics*, 656, L6,
 1154 doi: [10.1051/0004-6361/202140622](https://doi.org/10.1051/0004-6361/202140622)

1155 Owen, C. J., Foster, A. C., Bruno, R., et al. 2021,
 1156 *Astronomy & Astrophysics*, 656, L8,
 1157 doi: [10.1051/0004-6361/202140944](https://doi.org/10.1051/0004-6361/202140944)

1158 Palmerio, E., Kilpua, E. K. J., & Savani, N. P. 2016,
 1159 *Annales Geophysicae*, 34, 313,
 1160 doi: [10.5194/angeo-34-313-2016](https://doi.org/10.5194/angeo-34-313-2016)

1161 Palmerio, E., Nieves-Chinchilla, T., Kilpua, E. K. J., et al.
 1162 2021, *Journal of Geophysical Research (Space Physics)*,
 1163 126, e2021JA029770, doi: [10.1029/2021JA029770](https://doi.org/10.1029/2021JA029770)

1164 Paschmann, G., Papamastorakis, I., Baumjohann, W.,
 1165 et al. 1986, *Journal of Geophysical Research*, 91, 11099,
 1166 doi: [10.1029/JA091iA10p11099](https://doi.org/10.1029/JA091iA10p11099)

1167 Peng, F. Z., Fu, H. S., Cao, J. B., et al. 2017, *Journal of
 1168 Geophysical Research (Space Physics)*, 122, 6349,
 1169 doi: [10.1002/2016JA023666](https://doi.org/10.1002/2016JA023666)

1170 Petschek, H. E. 1964, in *NASA Special Publication*,
 1171 Vol. 50, 425

1172 Phan, T. D., Paschmann, G., & Sonnerup, B. U. Ö. 1996,
 1173 *Journal of Geophysical Research*, 101, 7817,
 1174 doi: [10.1029/95JA03751](https://doi.org/10.1029/95JA03751)

1175 Phan, T. D., Gosling, J. T., Davis, M. S., et al. 2006,
 1176 *Nature*, 439, 175, doi: [10.1038/nature04393](https://doi.org/10.1038/nature04393)

1177 Phan, T. D., Eastwood, J. P., Cassak, P. A., et al. 2016,
 1178 *Geophysical Research Letters*, 43, 6060,
 1179 doi: [10.1002/2016GL069212](https://doi.org/10.1002/2016GL069212)

1180 Phan, T. D., Bale, S. D., Eastwood, J. P., et al. 2020, *The
 1181 Astrophysical Journal Supplement Series*, 246, 34,
 1182 doi: [10.3847/1538-4365/ab55ee](https://doi.org/10.3847/1538-4365/ab55ee)

1183 Robert, P., Roux, A., Harvey, C. C., et al. 1998, *ISSI
 1184 Scientific Reports Series*, 1, 323

1185 Ruffenach, A., Lavraud, B., Owens, M. J., et al. 2012,
 1186 *Journal of Geophysical Research (Space Physics)*, 117,
 1187 A09101, doi: [10.1029/2012JA017624](https://doi.org/10.1029/2012JA017624)

1188 Ruffenach, A., Lavraud, B., Farrugia, C. J., et al. 2015,
 1189 *Journal of Geophysical Research (Space Physics)*, 120,
 1190 43, doi: [10.1002/2014JA020628](https://doi.org/10.1002/2014JA020628)

1191 Salman, T. M., Winslow, R. M., & Lugaz, N. 2020, *Journal
 1192 of Geophysical Research (Space Physics)*, 125, e27084,
 1193 doi: [10.1029/2019JA027084](https://doi.org/10.1029/2019JA027084)

1194 Sasunov, Y. L., Semenov, V. S., Heyn, M. F., Kubyshkin,
 1195 I. V., & Biernat, H. K. 2012, *Geophysical Research
 1196 Letters*, 39, L06104, doi: [10.1029/2012GL051273](https://doi.org/10.1029/2012GL051273)

1197 Scolini, C., Winslow, R. M., Lugaz, N., & Poedts, S. 2021,
 1198 *The Astrophysical Journal Letters*, 916, L15,
 1199 doi: [10.3847/2041-8213/ac0d58](https://doi.org/10.3847/2041-8213/ac0d58)

1200 Semenov, V. S., Hejn, M. F., & Kubyshkin, I. V. 1983,
 1201 *Astronomicheskii Zhurnal*, 60, 1138

1202 Siscoe, G., & Odstrcil, D. 2008, *Journal of Geophysical
 1203 Research (Space Physics)*, 113, A00B07,
 1204 doi: [10.1029/2008JA013142](https://doi.org/10.1029/2008JA013142)

1205 Sivadas, N., & Sibeck, D. G. 2022, *Frontiers in Astronomy
 1206 and Space Sciences*, 9, 924976,
 1207 doi: [10.3389/fspas.2022.924976](https://doi.org/10.3389/fspas.2022.924976)

1208 Sonnerup, B. U. Ö., & Scheible, M. 1998, *ISSI Scientific
 1209 Reports Series*, 1, 185

1210 Sonnerup, B. U. Ö., Paschmann, G., Papamastorakis, I.,
 1211 et al. 1981, *Journal of Geophysical Research*, 86, 10049,
 1212 doi: [10.1029/JA086iA12p10049](https://doi.org/10.1029/JA086iA12p10049)

1213 Stone, E. C., Frandsen, A. M., Mewaldt, R. A., et al. 1998,
 1214 *Space Science Reviews*, 86, 1,
 1215 doi: [10.1023/A:1005082526237](https://doi.org/10.1023/A:1005082526237)

1216 Teh, W. L., Sonnerup, B. U. Ö., Hu, Q., & Farrugia, C. J.
 1217 2009, *Annales Geophysicae*, 27, 807,
 1218 doi: [10.5194/angeo-27-807-2009](https://doi.org/10.5194/angeo-27-807-2009)

1219 Vasquez, B. J., Abramenko, V. I., Haggerty, D. K., &
 1220 Smith, C. W. 2007, *Journal of Geophysical Research
 1221 (Space Physics)*, 112, A11102,
 1222 doi: [10.1029/2007JA012504](https://doi.org/10.1029/2007JA012504)

1223 Vörös, Z., Varsani, A., Yordanova, E., et al. 2021, *Journal
 1224 of Geophysical Research (Space Physics)*, 126, e29415,
 1225 doi: [10.1029/2021JA029415](https://doi.org/10.1029/2021JA029415)

1226 Vourlidas, A., Lynch, B. J., Howard, R. A., & Li, Y. 2013,
 1227 *Solar Physics*, 284, 179, doi: [10.1007/s11207-012-0084-8](https://doi.org/10.1007/s11207-012-0084-8)

1228 Walén, C. 1944, *Arkiv for Matematik, Astronomi och
 1229 Fysik*, 30A, 1

1230 Walia, N. K., Seki, K., & Amano, T. 2022, *Journal of
 1231 Geophysical Research (Space Physics)*, 127, e30066,
 1232 doi: [10.1029/2021JA030066](https://doi.org/10.1029/2021JA030066)

1233 Walsh, B. M., Bhakyapaibul, T., & Zou, Y. 2019, *Journal
 1234 of Geophysical Research (Space Physics)*, 124, 3291,
 1235 doi: [10.1029/2019JA026507](https://doi.org/10.1029/2019JA026507)

1236 Wang, R., Wang, S., Lu, Q., et al. 2022, *Nature Astronomy*,
 1237 doi: [10.1038/s41550-022-01818-5](https://doi.org/10.1038/s41550-022-01818-5)

1238 Wei, F., Liu, R., Fan, Q., & Feng, X. 2003, Journal of
1239 Geophysical Research (Space Physics), 108, 1263,
1240 doi: [10.1029/2002JA009511](https://doi.org/10.1029/2002JA009511)

1241 Wilder, F. D., Ergun, R. E., Eriksson, S., et al. 2017,
1242 Physical Review Letters, 118, 265101,
1243 doi: [10.1103/PhysRevLett.118.265101](https://doi.org/10.1103/PhysRevLett.118.265101)

1244 Zurbuchen, T. H., & Richardson, I. G. 2006, Space Science
1245 Reviews, 123, 31, doi: [10.1007/s11214-006-9010-4](https://doi.org/10.1007/s11214-006-9010-4)