1	Migration genetics take flight: genetic and genomic insights into monarch butterfly migration		
2			
3		Micah G. Freedman ^{1,2} , Marcus R. Kronforst ¹	
4			
5	1.	Department of Ecology & Evolution, University of Chicago	
6	2.	Present address: Department of Botany, University of British Columbia	
7			
8	Corres	ponding author email: micah.freedman@botany.ubc.ca	
9			
10			
11		Highlights	
12			
13	1.	Monarch butterflies (<i>Danaus plexippus</i>) have emerged as a model system in ecological	
14		genomics.	
15	2.	Transcriptional processes associated with reproductive diapause initiation and	
16		termination have recently been identified.	
17	3.	Recent global range expansion and subsequent loss of seasonal migration by monarchs	
18		affords opportunities for identifying regions of the genome under divergent selection in	
19		migratory versus non-migratory populations.	
20	4.	Population genetic approaches have highlighted connectedness among migratory	
21		monarchs and divergence among non-migratory monarchs.	
22	5.	Population genetic techniques can be applied to provide context for monarch	
23		conservation efforts.	
24			
25			
26		Abstract	
27			
28		Monarch butterflies have emerged as a model system in migration genetics. Despite	
29	inhere	nt challenges associated with studying the integrative phenotypes that characterize	

migration, recent research has highlighted genes and transcriptional networks underlying aspects of the monarch's migratory syndrome. Circadian clock genes and the vitamin A synthesis pathway regulate reproductive diapause initiation, while diapause termination appears to involve calcium and insulin signaling. Comparative approaches have highlighted genes that distinguish migratory and non-migratory monarch populations, as well as genes associated with natural variation in propensity to initiate diapause. Population genetic techniques demonstrate that seasonal migration can collapse patterns of spatial structure at continental scales, whereas loss of migration can drive differentiation between even nearby populations. Finally, population genetics can be applied to reconstruct the monarch's evolutionary history and search for contemporary demographic changes, which can provide relevant context for understanding recently observed declines in overwintering North American monarch numbers.

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

41

Migration has evolved across the tree of life as an adaptation to seasonally variable environments and resource availability (Dingle 2014). Despite its ubiquity and its importance for ecosystem functioning (Lòpez-Hoffman et al. 2017), patterns of disease transmission (Altizer et al. 2011), and nutrient fluxes (Gu et al. 2016), animal migration remains relatively poorly understood from a genetic perspective. The monarch butterfly, *Danaus plexippus*, is a promising model system for advancing the study of migration genetics: unlike many other taxa that migrate long distances, monarchs are short-lived, amenable to large-scale rearing and experimentation, and have an emerging toolkit of functional genomic approaches available.

Monarch butterflies are perhaps the single best-studied migratory insect, known for their spectacular multi-generational movements within North America and their annual return to high-elevation Mexican overwintering sites. Research into monarch migration has traditionally focused on describing their migratory routes (e.g., Urquhart and Urquhart 1978), characterizing physiological differences between summer breeding versus autumn migratory butterflies (e.g., Gibo and McCurdy 1993, Borland et al. 2004, Brower et al. 2006), and understanding environmental cues associated with migration initiation (e.g., Barker and Herman 1976, Goehring and Oberhauser 2002). Over the past 15 years, monarchs have emerged as a model system in ecological genomics. Major advances in the study of monarch migration genetics have included the development of an expressed sequence tag for characterizing gene expression differences between summer breeding and fall migratory monarchs (Zhu et al. 2008, Zhu et al. 2009); the publication of the first monarch reference genome (Zhan et al. 2011) and, more recently, a chromosome-level genome assembly (Gu et al. 2019); the development of an extensive toolkit for dissecting the neural basis of the monarch's circadian clock and sun compass navigation system (Merlin et al. 2013, Markert et al. 2016, Zhang et al. 2017); a genome-wide comparison of migratory and non-migratory populations from around the world (Zhan et al. 2014); and recent studies that have identified genes and regulatory networks associated with reproductive diapause initiation (liams et al. 2019) and termination (Green and Kronforst 2019).

In this review, we briefly highlight recent research that applies tools from genetics and genomics to gain insights into the biology of monarch migration. We note that another review (Merlin et al. 2020) excellently summarized recent research into the neurogenetic basis of monarch migration. As such, we only briefly discuss the neurobiology of the monarch's sun compass navigation system and instead focus our review on two broad areas: (1) studies that use genomic approaches to identify genes and patterns of gene expression that underpin certain aspects of the monarch's migratory syndrome and (2) studies that use population genetic techniques to study connectivity of migratory and non-migratory populations and demographic changes in monarch populations through time.

Genomic approaches to studying monarch migration: linking genotype and phenotype

Migration is a behavior whose genetic basis is notoriously difficult to study, in part because it represents a syndrome of interrelated physiological, morphological, behavioral, and metabolic traits. Monarch migration is likely to have a complex genetic architecture (Merlin and Liedvogel 2019, Green 2021) and to be subject to both genetic and epigenetic control, which has made the search for genes associated with migration challenging. That said, recent studies have made substantial contributions to our understanding of genes and transcriptional networks associated with components of the migratory syndrome in monarchs (Table 1). These studies fall into two general categories: (1) RNA-sequencing based approaches that contrast monarchs across environmental contexts to identify migration-associated patterns of gene expression and (2) genome-wide association studies that use natural variation in migratory tendency to identify genetic variants that may be associated with migration.

Transcriptional processes associated with monarch migration

Circadian clock genes have long been implicated in monarch migration, beginning with studies that linked the monarch's sun compass-based navigation system to expression of clock genes in the antennae (e.g., Froy et al. 2003, Merlin et al. 2009). Recent studies have solidified

this connection (Zhang et al. 2017) while also highlighting a broader role for circadian clock gene expression in photoperiodic responsiveness of monarchs. In preparation for their autumn migration, monarchs enter a period of reproductive dormancy (diapause) characterized by reduced production of juvenile hormone (JH) (Herman 1981). Iiams et al. (2019) used a combination of RNA-sequencing and, crucially, clock gene knockouts (*Clk*, *Cyc-like*, and *Cry2*) to demonstrate that circadian clock expression is required for reproductive diapause initiation. Interestingly, this work also found a novel role for the vitamin A synthesis pathway in monarch photoperiodic responses, which acts independently from visual inputs and may be a deeply conserved feature of organismal responses to seasonal changes in photoperiod. Iiams et al. (2019) also showed that JH production appears to act downstream of circadian clock genes, suggesting that JH is not itself a master regulator of migration behavior.

Progress has also been made in elucidating the internal signals responsible for diapause termination in North American overwintering butterflies. Using wild-collected overwintering monarchs from California, Green and Kronforst (2019) measured gene expression in monarch heads across a three-month time course that spanned the transition from diapause to reproductive activity. A key finding of this research was that a period of cold exposure is likely involved in initiating a diapause termination timer, potentially mediated through calcium signaling pathways. As with liams et al. (2019), JH synthesis was proximately involved with reproductive development, but JH itself does not seem to be the ultimate regulator of diapause termination. Green and Kronforst (2019) also suggested that insulin signaling pathways may be an important target of the processes involved in diapause termination. Insulin signaling and its connection to lipid metabolism in monarchs is a potentially fruitful area for future research, especially given the role of insulin signaling in seasonal adaptations in other insect systems (Sim and Denlinger 2008). Monarch migration is associated with a pronounced uptick in lipid accumulation (Gibo and McCurdy 1993, Brower et al. 2006), and insulin-like growth factor 2 is among the genes that most strongly differentiate migratory and resident populations of monarchs (Zhan et al. [2014]; see sections below) (Table 1).

While diapause initiation and termination are crucial components of the monarch migratory syndrome, much less is known about the epigenetic basis of other migration-

associated traits that differ between summer breeding and autumn migratory monarchs. Here, it could be helpful to measure gene expression patterns in monarch tissues outside of the adult monarch head that are likely to play a role in migration (*e.g.*, wing muscles and the fat body). Additionally, characterizing patterns of gene expression in developing larvae and/or pupae exposed to divergent environmental conditions could help to identify the developmental trajectory that distinguishes summer breeding from autumn migratory monarchs.

Genetic variation associated with differences in monarch migration

While monarchs are best-known from their migratory range in North America, non-migratory populations are also established in locations around the world, corresponding to at least three independent losses of migratory behavior (Figure 1). Zhan et al. (2014) sequenced whole genomes from 80 monarchs across this global range in order to examine the history of monarch expansion and identify genes associated with migration. This approach identified hundreds of candidate loci associated with migration, most notably a 21 kb region containing an F-box protein (FBXO45) and a collagen type IV α -1 gene that showed strong evidence for convergent positive selection across non-migratory populations. This collagen type IV α -1 gene was more highly expressed in non-migratory populations and has been associated with wing muscle development in *Drosophila* (Schnorrer et al. 2010), though because of its critical role in basement membrane formation during early phases of development, functional validation using knockout approaches may not be possible.

An alternative approach to studying migration genetics in monarchs involves leveraging naturally occurring variation in responsiveness to environmental cues, such as declining photoperiod, within monarch populations. Hemstrom (2022) performed a family-structured genome-wide association study (GWAS) using monarch butterflies from Australia that differ in their propensity to enter reproductive arrest upon exposure to declining photoperiod, following the approach of Freedman et al. (2018). This research pinpointed a locus on chromosome 11 containing a probable E3 ubiquitin ligase (DPOGS208560) (Hemstrom et al., submitted). Interestingly, DPOGS208560 was not among the genes identified by Zhan et al. (2014) as

differing between migratory and non-migratory monarch populations, nor the pathways identified by liams et al. (2019) as regulating photoperiodic sensitivity. However, the general connection between E3 ubiquitin ligases and F-box proteins (including FBXO45 identified by Zhan et al. [2014]) is intriguing given the known role of proteasome complexes in interacting with CRY2 (Xing et al. 2013, Yoo et al. 2013), which has a known role in monarch photoperiodism.

Further research is needed to determine whether traits that differ between migratory and non-migratory monarchs—including wing morphology (Altizer and Davis 2010), resting metabolic rate (Zhan et al. 2014), resistance to the protozoan parasite *Ophryocystis elektroschirrha* (Sternberg et al. 2013), and responsiveness to green wavelengths of light (Nguyen et al. 2021)—have a clear underlying genetic basis. Here, quantitative trait locus (QTL) mapping using crosses between migratory and non-migratory populations with divergent phenotypes could be a promising approach, as previously suggested by Reppert and de Roode (2018).

Population genetic approaches to studying monarch migration: global range expansion, population differentiation, and historical changes in population size

Across migratory taxa, population genetic approaches have provided key insights into understanding connectivity and differentiation among populations (Meek et al. 2016), the importance of migratory divides (Delmore and Irwin 2014), and the origins of partial migration (Gómez-Bahamón et al. 2021). Population genetic approaches have also been informative for studying monarchs and placing their migratory behavior into a broader evolutionary context. Recent research has used population genetic approaches to describe the monarch's global range expansion, the role of long-distance migration in mediating spatial population genetic structure, the link between captive breeding and loss of migration, and historical demographic changes in monarch populations over the last 20,000 years.

In contrast to their migratory North American range, where monarchs are genetically panmictic (Talla et al. 2020; reviewed in Freedman et al. 2021), a number of recent studies have highlighted how range expansion and loss of migration contribute to genetic differentiation in

monarch populations around the world. Peirce et al. (2014) found that monarchs show evidence for serial stepwise dispersal in each of their three independent out-of-North America expansion events. Hemstrom et al. (2022) corroborated the finding of serial stepwise dispersal in Pacific Island monarchs and found that loss of seasonal migration can generate pronounced signatures of isolation by distance even in island populations located less than 40 km apart. By contrast, monarchs sampled across the Australian continent, where they show evidence for long-distance seasonal movement (James and James 2019), are genetically panmictic, recapitulating the lack of spatial population genetic structure seen in their migratory North American ancestors (Hemstrom et al. 2022). Thus, an emerging pattern seems to be that migration in monarchs may collapse any nascent patterns of spatially structured genetic variation, whereas loss of migration can allow for isolation by distance to evolve even over small spatial scales. A similar pattern has been noted in the globally distributed dragonfly *Pantala flavescens* (Alvial et al. 2019).

Loss of migration in monarchs has traditionally been considered in the context of establishment in seasonally stable environments where their milkweed (*Asclepias spp.*) host plants grow year-round (Zhan et al. 2014, Freedman et al. 2020). However, recent results have highlighted that captive breeding of monarchs, even over relatively short time scales, can have pronounced effects on their ability to respond appropriately to cues associated with initiating autumn migration. Tenger-Trolander et al. (2019) showed that a history of captive breeding can disrupt directional orientation abilities and also demonstrated that population genetic divergence between migratory and captive-reared monarchs is remarkably pronounced (*i.e.*, comparable to that seen between North American migrants and non-migratory populations from other areas of their global range) (Figure 1B). Whether any of the loci that distinguish captive-bred from migratory monarchs have functional connections to directional sun compass orientation system remains to be determined.

Monarchs are the subject of intense conservation attention, in part due to recorded declines in the numbers of overwintering eastern monarchs between 1996-2014 (Thogmartin et al. 2017) and western monarchs between 1996-2020 (Pelton et al. 2019). A potential application of population genomic methods to inform monarch conservation is the use of demographic reconstructions to understand past changes in population size. These approaches are

informative because they can provide broader evolutionary context for understanding recently observed declines. Previous work has shown that monarchs likely underwent a pronounced demographic expansion coinciding with the end of the Last Glacial Maximum (Zhan et al. 2014, Pfeiler et al. 2017), approximately 10-20 thousand years ago. Other demographic modeling efforts provide modest but inconclusive support for a more recent demographic expansion over the past 250 years for monarchs, coinciding with a clear demographic expansion in the monarch's primary North American host plant, common milkweed (*Asclepias syriaca*), over the same time frame (Boyle et al. 2022).

Forthcoming research has used sequencing of monarch genomes from specimens collected in 1977 and contemporary specimens to compare patterns of genetic diversity (Talla, Mehta and de Roode, in revision). The predominant signal in these data is, as in previous studies, strong evidence for postglacial demographic expansion; however, based on simulations, the absence of a decline in genetic diversity between monarch samples from 1977 and contemporary samples suggests that population declines over that period do not exceed 60% (Talla, Mehta and de Roode, in revision). Further sequencing of historical samples, potentially including ethanol-preserved monarch caterpillars in natural history collections, could help to resolve questions about the magnitude of change in monarch population size over the past century. Likewise, future sampling could help to establish the degree to which mostly non-migratory monarchs in locations like the U.S. Gulf Coast, coastal California, and Florida are genetically distinct from North American migrants, which has important implications for how these resident populations are considered in conservation decision-making processes.

237 Conclusions

In spite of the inherent challenges associated with studying migration genetics, substantial progress has been made in describing the genetic basis of certain features of monarch migration. Our understanding of some aspects of the migratory syndrome is relatively thorough; for example, the genomic bases of reproductive diapause initiation and termination have now been fairly well-characterized, as has the neurogenetic basis of sun compass

orientation. Future work that illuminates the genomic basis of other aspects of migration, particularly lipid metabolism and wing morphological variation, would represent a substantial advance. Finally, although there are unlikely to be simple proximate controls governing the transition from summer breeding into an autumn migratory state, research into the monarch epigenome—including the role of histone modification (e.g., Zhang et al. 2022) and micro-RNAs in governing transcriptional processes associated with migration—is a promising avenue for future research.

Acknowledgments

The authors thank three reviewers and the editor for comments on an earlier version of this review. This work was supported by NSF Postdoctoral Research Fellowship 2010658 to MGF, NSF grant IOS-1922624 to MRK, and NIH grant R35GM131828 to MRK.

Declarations of interest: none

259		References
260		
261	1.	Altizer S, Bartel R, Han BA: Animal migration and infectious disease risk. <i>Science</i> 2011,
262		331:296–302.
263	2.	Altizer S, Davis AK: Populations of monarch butterflies with different migratory behaviors
264		show divergence in wing morphology. <i>Evolution</i> 2010, 64:1018–1028.
265	3.	Alvial IE, Vargas HA, Marinov M, Esquivel C, Araya J, Araya-Donoso R, Vila I, Véliz D:
266		Isolation on a remote island: genetic and morphological differentiation of a cosmopolitan
267		odonate. <i>Heredity</i> 2018, 122:893–905.
268	4.	Barker JF, Herman WS: Effect of photoperiod and temperature on reproduction of the
269		monarch butterfly, Danaus plexippus. J Insect Physiol 1976, 22:1565–1568.
270	5.	Borland J, Johnson CC, Crumpton TW, Thomas M, Altizer SM, Oberhauser KS:
271		"Characteristics of fall migratory monarch butterflies, Danaus plexippus, in Minnesota
272		and Texas." In: The Monarch Butterfly: Biology and Conservation. KS Oberhauser & MJ
273		Solensky, Eds. pp 97-104. (Cornell University Press, Ithaca, NY, 2004).
274	6.	Boyle JH, Strickler S, Twyford A, Ricono A, Powell A, Zhang J, Xu H, Dalgleish HJ, Jander G,
275		Agrawal AA, et al.: Temporal matches and mismatches between monarch butterfly and
276		milkweed population changes over the past 12,000 years. bioRxiv 2022,
277		doi:10.1101/2022.02.25.481796.
278		Outstanding interest: Uses DNA sequencing and approximate Bayesian
279		computation (ABC) methods to estimate changes in population size for both
280		Asclepias syriaca, the monarch's primary North American host plant, as well as
281		monarch butterflies themselves over the past 12,000 years.
282	7.	Brower LP, Fink LS, Walford P: Fueling the fall migration of the monarch butterfly. <i>Integr</i>
283		Comp Biol 2006, 46:1123–1142.
284	8.	Delmore KE, Irwin DE: Hybrid songbirds employ intermediate routes in a migratory divide.
285		Ecol Lett 2014, 17:1211–1218.
286	9.	Dingle, H. "Migration: Definition and Scope" in Migration: The Biology of Life on the

Move, H. Dingle, Ed. (Oxford University Press, 2014).

288 10. Freedman MG, de Roode JC, Forister ML, Kronforst MR, Pierce AA, Schultz CB, Taylor OR,
 289 Crone EE.: Are eastern and western monarch butterflies distinct populations? A review of
 290 evidence for ecological, phenotypic, and genetic differentiation and implications for
 291 conservation. *Conservation Science and Practice* 2021, 3:e342.

- 11. Freedman MG, Dingle H, Strauss SY, Ramírez SR: Two centuries of monarch butterfly collections reveal contrasting effects of range expansion and migration loss on wing traits. *Proc Natl Acad Sci U S A* 2020, 117:28887–28893.
- 12. Freedman MG, Dingle H, Tabuloc CA, Chiu JC, Yang LH, Zalucki MP: Non-migratory monarch butterflies, *Danaus plexippus* (L.), retain developmental plasticity and a navigational mechanism associated with migration. *Biol J Linn Soc Lond* 2018, 123:265–278.
- 13. Froy O, Gotter AL, Casselman AL, Reppert SM: Illuminating the circadian clock in monarch
 butterfly migration. *Science* 2003, 300:1303–1305.
 - 14. Gibo DL, McCurdy JA: Lipid accumulation by migrating monarch butterflies (*Danaus plexippus* L.). *Can J Zool* 1993, 71:76–82.
 - 15. Goehring L, Oberhauser KS: Effects of photoperiod, temperature, and host plant age on induction of reproductive diapause and development time in *Danaus plexippus*. *Ecol Entomol* 2002, 27:674–685.
 - 16. Gómez-Bahamón V, Márquez R, Jahn AE, Miyaki CY, Tuero DT, Laverde-R O, Restrepo S, Cadena CD: Speciation Associated with Shifts in Migratory Behavior in an Avian Radiation. *Curr Biol* 2020, 30:1312–1321.e6.
 - 17. Green DA 2nd: Monarch Butterfly Migration as an Integrative Model of Complex Trait Evolution. *Am Nat* 2021, 198:142–157.
 - Outstanding interest: Discusses approaches for studying evolution of traits with complex genetic architecture and proposes a threshold plasticity model for understanding monarch migration.
 - 18. Green DA 2nd, Kronforst MR: Monarch butterflies use an environmentally sensitive, internal timer to control overwintering dynamics. *Mol Ecol* 2019, 28:3642–3655.

316	 Outstanding interest: Highlights the physiological processes and transcriptional 	
317	mechanisms associated with diapause termination in western North American	
318	monarchs.	
319	19. Hu G, Lim KS, Horvitz N, Clark SJ, Reynolds DR, Sapir N, Chapman JW: Mass seasonal	
320	bioflows of high-flying insect migrants. Science 2016, 354:1584–1587.	
321	20. Gu L, Reilly PF, Lewis JJ, Reed RD, Andolfatto P, Walters JR: Dichotomy of Dosage	
322	Compensation along the Neo Z Chromosome of the Monarch Butterfly. Curr Biol 2019,	
323	29:4071–4077.e3.	
324	• Special interest: Provides the most recent version (v4) of the monarch genome,	
325	including a chromosome level assembly built using Hi-C methods, and an updated	
326	transcriptome.	
327	21. Hemstrom, WB: Improving Genomic Forecasting via Locus-Ambivalent Genetic	
328	Architecture Estimation and Novel Genetic Control of Migratory Diapause in Australian	
329	Monarch Butterflies. 2022. Ph.D. Thesis, University of California, Davis. ProQuest ID:	
330	Hemstrom_ucdavis_0029D_21302.	
331	22. Hemstrom WB, Freedman MG, Zalucki MP, Ramírez SR, Miller MR: Population genetics of	
332	a recent range expansion and subsequent loss of migration in monarch butterflies. Mol	
333	<i>Ecol</i> 2022, 31:4544–4557.	
334	Special interest: Uses RAD-sequencing of 281 monarchs from North America and	
335	Pacific Island locations to document how range expansion and subsequent loss of	
336	seasonal migration have affected spatial patterns of population genetic	
337	differentiation.	
338	23. Herman WS: Studies on the adult reproductive diapause of the monarch butterfly,	
339	Danaus plexippus. Biol Bull 1981, 160:89–106.	
340	24. liams SE, Lugena AB, Zhang Y, Hayden AN, Merlin C: Photoperiodic and clock regulation of	
341	the vitamin A pathway in the brain mediates seasonal responsiveness in the monarch	
342	butterfly. <i>Proc Natl Acad Sci U S A</i> 2019, 116:25214–25221.	

343	Outstanding interest: Documents the role of major circadian clock elements in
344	photoperiodic responsiveness of monarchs and highlights a novel role for the
345	vitamin A pathway in mediating these responses.
346	25. James DG, James TA: Migration and Overwintering in Australian Monarch Butterflies
347	(Danaus plexippus (L.) (Lepidoptera: Nymphalidae): a Review with New Observations and
348	Research Needs. The Journal of the Lepidopterists' Society 2019, 73:177.
349	26. López-Hoffman L, Chester CC, Semmens DJ, Thogmartin WE, Rodríguez-McGoffin MS,
350	Merideth R, Diffendorfer JE: Ecosystem services from transborder migratory species:
351	Implications for conservation governance. Annu Rev Environ Resour 2017, 42:509–539.
352	27. Markert MJ, Zhang Y, Enuameh MS, Reppert SM, Wolfe SA, Merlin C: Genomic Access to
353	Monarch Migration Using TALEN and CRISPR/Cas9-Mediated Targeted Mutagenesis. G3
354	2016, 6:905–915.
355	28. Meek MH, Baerwald MR, Stephens MR, Goodbla A, Miller MR, Tomalty KMH, May B:
356	Sequencing improves our ability to study threatened migratory species: Genetic
357	population assignment in California's Central Valley Chinook salmon. Ecol Evol 2016,
358	6:7706–7716.
359	29. Merlin C, Beaver LE, Taylor OR, Wolfe SA, Reppert SM: Efficient targeted mutagenesis in
360	the monarch butterfly using zinc-finger nucleases. Genome Res 2013, 23:159–168.
361	30. Merlin C, Gegear RJ, Reppert SM: Antennal circadian clocks coordinate sun compass
362	orientation in migratory monarch butterflies. Science 2009, 325:1700–1704.
363	31. Merlin C, Iiams SE, Lugena AB: Monarch Butterfly Migration Moving into the Genetic Era.
364	Trends Genet 2020, 36:689–701.
365	32. Merlin C, Liedvogel M: The genetics and epigenetics of animal migration and orientation:
366	birds, butterflies and beyond. J Exp Biol 2019, 222.
367	33. Nguyen TAT, Beetz MJ, Merlin C, El Jundi B: Sun compass neurons are tuned to migratory
368	orientation in monarch butterflies. Proc Biol Sci 2021, 288:20202988.
369	34. Pelton EM, Schultz CB, Jepsen SJ, Black SH, Crone EE: Western Monarch Population
370	Plummets: Status, Probable Causes, and Recommended Conservation Actions. Frontiers

in Ecology and Evolution 2019, 7:258.

372	35. Pfeiler E, Nazario-Yepiz NO, Pérez-Gálvez F, Chávez-Mora CA, Laclette MRL, Rendón-
373	Salinas E, Markow TA: Population genetics of overwintering monarch butterflies, Danaus
374	plexippus (Linnaeus), from central Mexico inferred from mitochondrial DNA and
375	microsatellite markers. J Hered 2017, 108:163–175.
376	36. Pierce AA, Zalucki MP, Bangura M, Udawatta M, Kronforst MR, Altizer S, Haeger JF, de
377	Roode JC: Serial founder effects and genetic differentiation during worldwide range
378	expansion of monarch butterflies. Proc Biol Sci 2014, 281.
379	37. Reppert SM, de Roode JC: Demystifying Monarch Butterfly Migration. Curr Biol 2018,
380	28:R1009-R1022.
381	38. Schnorrer F, Schönbauer C, Langer CCH, Dietzl G, Novatchkova M, Schernhuber K, Fellner
382	M, Azaryan A, Radolf M, Stark A, et al.: Systematic genetic analysis of muscle
383	morphogenesis and function in <i>Drosophila</i> . <i>Nature</i> 2010, 464:287–291.
384	39. Sim C, Denlinger DL: Insulin signaling and FOXO regulate the overwintering diapause of
385	the mosquito Culex pipiens. Proc Natl Acad Sci U S A 2008, 105:6777–6781.
386	40. Sternberg ED, Li H, Wang R, Gowler C, de Roode JC: Patterns of Host-Parasite Adaptation
387	in Three Populations of Monarch Butterflies Infected with a Naturally Occurring
388	Protozoan Disease: Virulence, Resistance, and Tolerance. <i>Am Nat</i> 2013, 182:E235–E248.
389	41. Talla V, Pierce AA, Adams KL, de Man TJB, Nallu S, Villablanca FX, Kronforst MR, de Roode
390	JC: Genomic evidence for gene flow between monarchs with divergent migratory
391	phenotypes and flight performance. <i>Mol Ecol</i> 2020, 29:2567–2582.
392	Special interest: Compares whole genome resequencing data from eastern and
393	western North American monarchs to show that is very little genetic
394	differentiation, despite ecological and phenotypic variation.
395	42. Tenger-Trolander A, Lu W, Noyes M, Kronforst MR: Contemporary loss of migration in
396	monarch butterflies. Proc Natl Acad Sci U S A 2019, 116:14671–14676.
397	Special interest: Shows that captive-bred and indoor-reared monarchs lose the
398	ability to directionally orient, a necessary feature of the migratory syndrome, and
399	that captive-bred monarchs are strongly genetically differentiated from wild-
400	caught North American migrants.

401	43. Thogmartin WE, Wiederholt R, Oberhauser K, Drum RG, Diffendorfer JE, Altizer S, Taylor
402	OR, Pleasants J, Semmens D, Semmens B, et al.: Monarch butterfly population decline in
403	North America: identifying the threatening processes. R Soc Open Sci 2017, 4:170760.
404	44. Urquhart FA, Urquhart NR: Autumnal migration routes of the eastern population of the
405	monarch butterfly (Danaus p. plexippus L.; Danaidae; Lepidoptera) in North America to
406	the overwintering site in the Neovolcanic Plateau of Mexico. Can J Zool 1978, 56:1759–
407	1764.
408	45. Xing W, Busino L, Hinds TR, Marionni ST, Saifee NH, Bush MF, Pagano M, Zheng N:
409	SCFFBXL3 ubiquitin ligase targets cryptochromes at their cofactor pocket. Nature 2013,
410	496:64–68.
411	46. Yoo S-H, Mohawk JA, Siepka SM, Shan Y, Huh SK, Hong H-K, Kornblum I, Kumar V, Koike N,
412	Xu M, et al.: Competing E3 ubiquitin ligases govern circadian periodicity by degradation
413	of CRY in nucleus and cytoplasm. Cell 2013, 152:1091–1105.
414	47. Zhan S, Merlin C, Boore JL, Reppert SM: The monarch butterfly genome yields insights
415	into long-distance migration. Cell 2011, 147:1171–1185.
416	Special interest: Describes the first monarch genome assembly and establishes
417	MonarchBase as a central database for monarch genomic resources.
418	48. Zhan S, Zhang W, Niitepõld K, Hsu J, Haeger JF, Zalucki MP, Altizer S, de Roode JC,
419	Reppert SM, Kronforst MR: The genetics of monarch butterfly migration and warning
420	colouration. <i>Nature</i> 2014, 514:317–321.
421	Outstanding interest: Uses whole-genome resequencing of 80 monarch
422	butterflies from around the world as well as closely-related Danaus species to
423	describe the evolutionary history and patterns of selection associated with
424	seasonal migration and its loss.
425	49. Zhang Y, liams SE, Menet JS, Hardin PE, Merlin C: TRITHORAX-dependent arginine
426	methylation of HSP68 mediates circadian repression by PERIOD in the monarch butterfly.
427	Proc Natl Acad Sci U S A 2022, 119.

50. Zhang Y, Markert MJ, Groves SC, Hardin PE, Merlin C: Vertebrate-like CRYPTOCHROME 2
 from monarch regulates circadian transcription via independent repression of CLOCK and
 BMAL1 activity. *Proc Natl Acad Sci U S A* 2017, 114:E7516–E7525.
 51. Zhu H, Casselman A, Reppert SM: Chasing migration genes: a brain expressed sequence
 tag resource for summer and migratory monarch butterflies (*Danaus plexippus*). *PLoS*

433

434

435

436

One 2008, 3:e1345.

52. Zhu H, Gegear RJ, Casselman A, Kanginakudru S, Reppert SM: Defining behavioral and molecular differences between summer and migratory monarch butterflies. *BMC Biol* 2009, 7:14.

Gene / Pathway / GO ID	Associated phenotype(s)	Reference
Retinol dehydrogense 13 (<i>rdh13</i>)	Photoperiodic sensitivity /diapause initiation	liams <i>et al.</i> (2019)
Neither inactivation nor afterpotential B (ninaB1)	Photoperiodic sensitivity / diapause initiation	liams <i>et al.</i> (2019)
Scavenger receptor acting in neural tissue 1 and 2 (santa maria 1, santa maria 2)	Photoperiodic sensitivity / diapause initiation	liams <i>et al.</i> (2019)
Clock (Clk)	Photoperiodic sensitivity / diapause initiation	liams <i>et al.</i> (2019)
Basic helix-loop-helix ARNT like 1 (<i>Bmal1</i>)	Photoperiodic sensitivity / diapause initiation	liams <i>et al.</i> (2019)
Cryptochrome 2 (Cry2)	Photoperiodic sensitivity / diapause initiation; directional orientation during migration	liams <i>et al.</i> (2019); Merlin <i>et al.</i> (2009)
Juvenile hormone acid methyltransferase (<i>jhamt</i>)	Reproductive activity; diapause termination	Zhu <i>et al.</i> (2009); Green and Kronforst (2019)
Krüppel homolog 1 (<i>Kr-h1</i>)	Diapause termination	Green and Kronforst (2019)
Calcium signaling pathway (GO:0051282, GO:0051283, GO:0051208)	Diapause termination	Green and Kronforst (2019)
Collagen type IV α-1	Migratory vs. non-migratory status; wing muscle development	Zhan <i>et al.</i> (2014)
FBXO45	Migratory vs. non-migratory status	Zhan <i>et al.</i> (2014)
Insulin-like growth factor 2 (<i>IGF2</i>)	Migratory vs. non-migratory status; lipid metabolism	Zhan <i>et al.</i> (2014)
E3 ubiquitin-protein ligase Udf4	Diapause initiation	Hemstrom et al. (submitted)
period (per)	Directional orientation during migration	Merlin <i>et al.</i> (2009)
timeless (tim)	Directional orientation during migration	Merlin <i>et al.</i> (2009)

<u>437</u>

Table 1 – List of genes, transcripts, and/or gene ontology (GO) terms shown to be associated with monarch butterfly migration. Note that this list not comprehensive and is meant to highlight recent research, as well as genes that are especially promising candidates for being associated with migration.

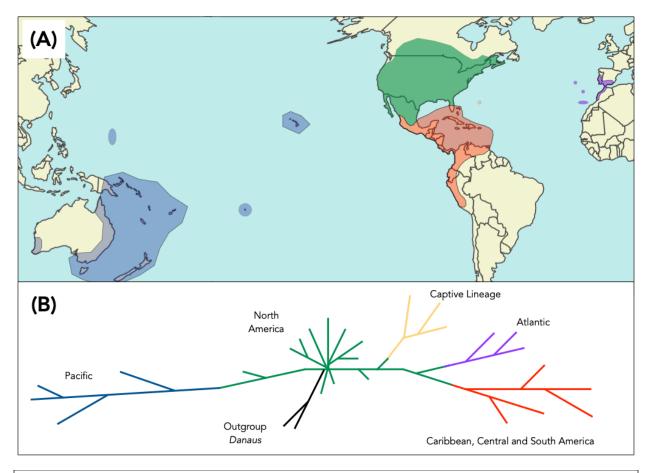


Figure 1 – (A) The global distribution of the monarch butterfly affords opportunities for comparative approaches that contrast the ancestrally migratory North American population (green) with derived non-migratory populations throughout Central America, South America, and the Caribbean (red), as well as the Pacific (blue) and Atlantic (purple). (B) Stylized neighbor joining tree depicting relationships among global monarch populations, including captive-bred butterflies (adapted from Tenger-Trolander et al. [2019]).