Migration genetics take flight: genetic and genomic insights into monarch butterfly migration
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Highlights

Monarch butterflies (Danaus plexippus) have emerged as a model system in ecological
genomics.

Transcriptional processes associated with reproductive diapause initiation and
termination have recently been identified.

Recent global range expansion and subsequent loss of seasonal migration by monarchs
affords opportunities for identifying regions of the genome under divergent selection in
migratory versus non-migratory populations.

Population genetic approaches have highlighted connectedness among migratory
monarchs and divergence among non-migratory monarchs.

Population genetic techniques can be applied to provide context for monarch

conservation efforts.

Abstract

Monarch butterflies have emerged as a model system in migration genetics. Despite

inherent challenges associated with studying the integrative phenotypes that characterize
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migration, recent research has highlighted genes and transcriptional networks underlying
aspects of the monarch’s migratory syndrome. Circadian clock genes and the vitamin A synthesis
pathway regulate reproductive diapause initiation, while diapause termination appears to
involve calcium and insulin signaling. Comparative approaches have highlighted genes that
distinguish migratory and non-migratory monarch populations, as well as genes associated with
natural variation in propensity to initiate diapause. Population genetic techniques demonstrate
that seasonal migration can collapse patterns of spatial structure at continental scales, whereas
loss of migration can drive differentiation between even nearby populations. Finally, population
genetics can be applied to reconstruct the monarch’s evolutionary history and search for
contemporary demographic changes, which can provide relevant context for understanding

recently observed declines in overwintering North American monarch numbers.
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Monarch butterflies: a model system for studying migration genetics

Migration has evolved across the tree of life as an adaptation to seasonally variable
environments and resource availability (Dingle 2014). Despite its ubiquity and its importance for
ecosystem functioning (Lopez-Hoffman et al. 2017), patterns of disease transmission (Altizer et
al. 2011), and nutrient fluxes (Gu et al. 2016), animal migration remains relatively poorly
understood from a genetic perspective. The monarch butterfly, Danaus plexippus, is a promising
model system for advancing the study of migration genetics: unlike many other taxa that migrate
long distances, monarchs are short-lived, amenable to large-scale rearing and experimentation,
and have an emerging toolkit of functional genomic approaches available.

Monarch butterflies are perhaps the single best-studied migratory insect, known for their
spectacular multi-generational movements within North America and their annual return to
high-elevation Mexican overwintering sites. Research into monarch migration has traditionally
focused on describing their migratory routes (e.g., Urquhart and Urquhart 1978), characterizing
physiological differences between summer breeding versus autumn migratory butterflies (e.qg.,
Gibo and McCurdy 1993, Borland et al. 2004, Brower et al. 2006), and understanding
environmental cues associated with migration initiation (e.g., Barker and Herman 1976,
Goehring and Oberhauser 2002). Over the past 15 years, monarchs have emerged as a model
system in ecological genomics. Major advances in the study of monarch migration genetics have
included the development of an expressed sequence tag for characterizing gene expression
differences between summer breeding and fall migratory monarchs (Zhu et al. 2008, Zhu et al.
2009); the publication of the first monarch reference genome (Zhan et al. 2011) and, more
recently, a chromosome-level genome assembly (Gu et al. 2019); the development of an
extensive toolkit for dissecting the neural basis of the monarch’s circadian clock and sun
compass navigation system (Merlin et al. 2013, Markert et al. 2016, Zhang et al. 2017); a
genome-wide comparison of migratory and non-migratory populations from around the world
(Zhan et al. 2014); and recent studies that have identified genes and regulatory networks
associated with reproductive diapause initiation (liams et al. 2019) and termination (Green and

Kronforst 2019).
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In this review, we briefly highlight recent research that applies tools from genetics and
genomics to gain insights into the biology of monarch migration. We note that another review
(Merlin et al. 2020) excellently summarized recent research into the neurogenetic basis of
monarch migration. As such, we only briefly discuss the neurobiology of the monarch’s sun
compass navigation system and instead focus our review on two broad areas: (1) studies that use
genomic approaches to identify genes and patterns of gene expression that underpin certain
aspects of the monarch’s migratory syndrome and (2) studies that use population genetic
techniques to study connectivity of migratory and non-migratory populations and demographic

changes in monarch populations through time.

Genomic approaches to studying monarch migration: linking genotype and phenotype

Migration is a behavior whose genetic basis is notoriously difficult to study, in part
because it represents a syndrome of interrelated physiological, morphological, behavioral, and
metabolic traits. Monarch migration is likely to have a complex genetic architecture (Merlin and
Liedvogel 2019, Green 2021) and to be subject to both genetic and epigenetic control, which has
made the search for genes associated with migration challenging. That said, recent studies have
made substantial contributions to our understanding of genes and transcriptional networks
associated with components of the migratory syndrome in monarchs (Table 1). These studies fall
into two general categories: (1) RNA-sequencing based approaches that contrast monarchs
across environmental contexts to identify migration-associated patterns of gene expression and
(2) genome-wide association studies that use natural variation in migratory tendency to identify

genetic variants that may be associated with migration.

Transcriptional processes associated with monarch migration

Circadian clock genes have long been implicated in monarch migration, beginning with

studies that linked the monarch’s sun compass-based navigation system to expression of clock

genes in the antennae (e.g., Froy et al. 2003, Merlin et al. 2009). Recent studies have solidified
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this connection (Zhang et al. 2017) while also highlighting a broader role for circadian clock gene
expression in photoperiodic responsiveness of monarchs. In preparation for their autumn
migration, monarchs enter a period of reproductive dormancy (diapause) characterized by
reduced production of juvenile hormone (JH) (Herman 1981). liams et al. (2019) used a
combination of RNA-sequencing and, crucially, clock gene knockouts (Clk, Cyc-like, and Cry2) to
demonstrate that circadian clock expression is required for reproductive diapause initiation.
Interestingly, this work also found a novel role for the vitamin A synthesis pathway in monarch
photoperiodic responses, which acts independently from visual inputs and may be a deeply
conserved feature of organismal responses to seasonal changes in photoperiod. liams et al.
(2019) also showed that JH production appears to act downstream of circadian clock genes,
suggesting that JH is not itself a master regulator of migration behavior.

Progress has also been made in elucidating the internal signals responsible for diapause
termination in North American overwintering butterflies. Using wild-collected overwintering
monarchs from California, Green and Kronforst (2019) measured gene expression in monarch
heads across a three-month time course that spanned the transition from diapause to
reproductive activity. A key finding of this research was that a period of cold exposure is likely
involved in initiating a diapause termination timer, potentially mediated through calcium
signaling pathways. As with liams et al. (2019), JH synthesis was proximately involved with
reproductive development, but JH itself does not seem to be the ultimate regulator of diapause
termination. Green and Kronforst (2019) also suggested that insulin signaling pathways may be
an important target of the processes involved in diapause termination. Insulin signaling and its
connection to lipid metabolism in monarchs is a potentially fruitful area for future research,
especially given the role of insulin signaling in seasonal adaptations in other insect systems (Sim
and Denlinger 2008). Monarch migration is associated with a pronounced uptick in lipid
accumulation (Gibo and McCurdy 1993, Brower et al. 2006), and insulin-like growth factor 2 is
among the genes that most strongly differentiate migratory and resident populations of
monarchs (Zhan et al. [2014]; see sections below) (Table 1).

While diapause initiation and termination are crucial components of the monarch

migratory syndrome, much less is known about the epigenetic basis of other migration-
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associated traits that differ between summer breeding and autumn migratory monarchs. Here, it
could be helpful to measure gene expression patterns in monarch tissues outside of the adult
monarch head that are likely to play a role in migration (e.g., wing muscles and the fat body).
Additionally, characterizing patterns of gene expression in developing larvae and/or pupae
exposed to divergent environmental conditions could help to identify the developmental

trajectory that distinguishes summer breeding from autumn migratory monarchs.

Genetic variation associated with differences in monarch migration

While monarchs are best-known from their migratory range in North America, non-
migratory populations are also established in locations around the world, corresponding to at
least three independent losses of migratory behavior (Figure 1). Zhan et al. (2014) sequenced
whole genomes from 80 monarchs across this global range in order to examine the history of
monarch expansion and identify genes associated with migration. This approach identified
hundreds of candidate loci associated with migration, most notably a 21 kb region containing an
F-box protein (FBXO45) and a collagen type IV a-1 gene that showed strong evidence for
convergent positive selection across non-migratory populations. This collagen type IV a-1 gene
was more highly expressed in non-migratory populations and has been associated with wing
muscle development in Drosophila (Schnorrer et al. 2010), though because of its critical role in
basement membrane formation during early phases of development, functional validation using
knockout approaches may not be possible.

An alternative approach to studying migration genetics in monarchs involves leveraging
naturally occurring variation in responsiveness to environmental cues, such as declining
photoperiod, within monarch populations. Hemstrom (2022) performed a family-structured
genome-wide association study (GWAS) using monarch butterflies from Australia that differ in
their propensity to enter reproductive arrest upon exposure to declining photoperiod, following
the approach of Freedman et al. (2018). This research pinpointed a locus on chromosome 11
containing a probable E3 ubiquitin ligase (DPOGS208560) (Hemstrom et al., submitted).
Interestingly, DPOGS208560 was not among the genes identified by Zhan et al. (2014) as
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differing between migratory and non-migratory monarch populations, nor the pathways
identified by liams et al. (2019) as regulating photoperiodic sensitivity. However, the general
connection between E3 ubiquitin ligases and F-box proteins (including FBXO45 identified by Zhan
et al. [2014]) is intriguing given the known role of proteasome complexes in interacting with
CRY2 (Xing et al. 2013, Yoo et al. 2013), which has a known role in monarch photoperiodism.
Further research is needed to determine whether traits that differ between migratory
and non-migratory monarchs—including wing morphology (Altizer and Davis 2010), resting
metabolic rate (Zhan et al. 2014), resistance to the protozoan parasite Ophryocystis
elektroschirrha (Sternberg et al. 2013), and responsiveness to green wavelengths of light
(Nguyen et al. 2021)—have a clear underlying genetic basis. Here, quantitative trait locus (QTL)
mapping using crosses between migratory and non-migratory populations with divergent
phenotypes could be a promising approach, as previously suggested by Reppert and de Roode

(2018).

Population genetic approaches to studying monarch migration: global range expansion,

population differentiation, and historical changes in population size

Across migratory taxa, population genetic approaches have provided key insights into
understanding connectivity and differentiation among populations (Meek et al. 2016), the
importance of migratory divides (Delmore and Irwin 2014), and the origins of partial migration
(Gdmez-Bahamon et al. 2021). Population genetic approaches have also been informative for
studying monarchs and placing their migratory behavior into a broader evolutionary context.
Recent research has used population genetic approaches to describe the monarch’s global range
expansion, the role of long-distance migration in mediating spatial population genetic structure,
the link between captive breeding and loss of migration, and historical demographic changes in
monarch populations over the last 20,000 years.

In contrast to their migratory North American range, where monarchs are genetically
panmictic (Talla et al. 2020; reviewed in Freedman et al. 2021), a number of recent studies have

highlighted how range expansion and loss of migration contribute to genetic differentiation in
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monarch populations around the world. Peirce et al. (2014) found that monarchs show evidence
for serial stepwise dispersal in each of their three independent out-of-North America expansion
events. Hemstrom et al. (2022) corroborated the finding of serial stepwise dispersal in Pacific
Island monarchs and found that loss of seasonal migration can generate pronounced signatures
of isolation by distance even in island populations located less than 40 km apart. By contrast,
monarchs sampled across the Australian continent, where they show evidence for long-distance
seasonal movement (James and James 2019), are genetically panmictic, recapitulating the lack of
spatial population genetic structure seen in their migratory North American ancestors
(Hemstrom et al. 2022). Thus, an emerging pattern seems to be that migration in monarchs may
collapse any nascent patterns of spatially structured genetic variation, whereas loss of migration
can allow for isolation by distance to evolve even over small spatial scales. A similar pattern has
been noted in the globally distributed dragonfly Pantala flavescens (Alvial et al. 2019).

Loss of migration in monarchs has traditionally been considered in the context of
establishment in seasonally stable environments where their milkweed (Asclepias spp.) host
plants grow year-round (Zhan et al. 2014, Freedman et al. 2020). However, recent results have
highlighted that captive breeding of monarchs, even over relatively short time scales, can have
pronounced effects on their ability to respond appropriately to cues associated with initiating
autumn migration. Tenger-Trolander et al. (2019) showed that a history of captive breeding can
disrupt directional orientation abilities and also demonstrated that population genetic
divergence between migratory and captive-reared monarchs is remarkably pronounced (i.e.,
comparable to that seen between North American migrants and non-migratory populations from
other areas of their global range) (Figure 1B). Whether any of the loci that distinguish captive-
bred from migratory monarchs have functional connections to directional sun compass
orientation system remains to be determined.

Monarchs are the subject of intense conservation attention, in part due to recorded
declines in the numbers of overwintering eastern monarchs between 1996-2014 (Thogmartin et
al. 2017) and western monarchs between 1996-2020 (Pelton et al. 2019). A potential application
of population genomic methods to inform monarch conservation is the use of demographic

reconstructions to understand past changes in population size. These approaches are
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informative because they can provide broader evolutionary context for understanding recently
observed declines. Previous work has shown that monarchs likely underwent a pronounced
demographic expansion coinciding with the end of the Last Glacial Maximum (Zhan et al. 2014,
Pfeiler et al. 2017), approximately 10-20 thousand years ago. Other demographic modeling
efforts provide modest but inconclusive support for a more recent demographic expansion over
the past 250 years for monarchs, coinciding with a clear demographic expansion in the
monarch’s primary North American host plant, common milkweed (Asclepias syriaca), over the
same time frame (Boyle et al. 2022).

Forthcoming research has used sequencing of monarch genomes from specimens
collected in 1977 and contemporary specimens to compare patterns of genetic diversity (Talla,
Mehta and de Roode, in revision). The predominant signal in these data is, as in previous studies,
strong evidence for postglacial demographic expansion; however, based on simulations, the
absence of a decline in genetic diversity between monarch samples from 1977 and
contemporary samples suggests that population declines over that period do not exceed 60%
(Talla, Mehta and de Roode, in revision). Further sequencing of historical samples, potentially
including ethanol-preserved monarch caterpillars in natural history collections, could help to
resolve questions about the magnitude of change in monarch population size over the past
century. Likewise, future sampling could help to establish the degree to which mostly non-
migratory monarchs in locations like the U.S. Gulf Coast, coastal California, and Florida are
genetically distinct from North American migrants, which has important implications for how

these resident populations are considered in conservation decision-making processes.

Conclusions

In spite of the inherent challenges associated with studying migration genetics,
substantial progress has been made in describing the genetic basis of certain features of
monarch migration. Our understanding of some aspects of the migratory syndrome is relatively
thorough; for example, the genomic bases of reproductive diapause initiation and termination

have now been fairly well-characterized, as has the neurogenetic basis of sun compass
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orientation. Future work that illuminates the genomic basis of other aspects of migration,
particularly lipid metabolism and wing morphological variation, would represent a substantial
advance. Finally, although there are unlikely to be simple proximate controls governing the
transition from summer breeding into an autumn migratory state, research into the monarch
epigenome—including the role of histone modification (e.g., Zhang et al. 2022) and micro-RNAs
in governing transcriptional processes associated with migration—is a promising avenue for

future research.
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Gene / Pathway / GO ID

Associated phenotype(s)

Reference

Retinol dehydrogense 13 (rdh13)

Photoperiodic sensitivity /diapause initiation

liams et al. (2019)

Neither inactivation nor
afterpotential B (ninaB1)

Photoperiodic sensitivity / diapause initiation

liams et al. (2019)

Scavenger receptor acting in
neural tissue 1 and 2
(santa maria 1, santa maria 2)

Photoperiodic sensitivity / diapause initiation

liams et al. (2019)

Clock (Clk)

Photoperiodic sensitivity / diapause initiation

liams et al. (2019)

Basic helix-loop-helix
ARNT like 1 (Bmal1)

Photoperiodic sensitivity / diapause initiation

liams et al. (2019)

Cryptochrome 2 (Cry2)

Photoperiodic sensitivity / diapause initiation;
directional orientation during migration

liams et al. (2019);
Merlin et al. (2009)

Juvenile hormone acid
methyltransferase (jhamt)

Reproductive activity; diapause termination

Zhu et al. (2009); Green
and Kronforst (2019)

Krippel homolog 1 (Kr-h1)

Diapause termination

Green and Kronforst
(2019)

Calcium signaling pathway
(G0O:0051282, GO:0051283,
G0:0051208)

Diapause termination

Green and Kronforst
(2019)

Collagen type IV a-1

Migratory vs. non-migratory status; wing
muscle development

Zhan et al. (2014)

FBXO45

Migratory vs. non-migratory status

Zhan et al. (2014)

Insulin-like growth factor 2 (IGF2)

Migratory vs. non-migratory status; lipid
metabolism

Zhan et al. (2014)

E3 ubiquitin-protein ligase Udf4

Diapause initiation

Hemstrom et al.
(submitted)

period (per)

Directional orientation during migration

Merlin et al. (2009)

timeless (tim)

Directional orientation during migration

Merlin et al. (2009)
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Table 1 — List of genes, transcripts, and/or gene ontology (GO) terms shown to be associated with monarch
butterfly migration. Note that this list not comprehensive and is meant to highlight recent research, as well
as genes that are especially promising candidates for being associated with migration.
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Figure 1 — (A) The global distribution of the monarch butterfly affords opportunities for
comparative approaches that contrast the ancestrally migratory North American population
(green) with derived non-migratory populations throughout Central America, South America,
and the Caribbean (red), as well as the Pacific (blue) and Atlantic (purple). (B) Stylized neighbor
joining tree depicting relationships among global monarch populations, including captive-bred
butterflies (adapted from Tenger-Trolander et al. [2019]).




