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Abstract— We revisit the problem of computing (robust)
controlled invariant sets for discrete-time linear systems.
Departing from previous approaches, we consider implicit,
rather than explicit, representations for controlled invari-
ant sets. Moreover, by considering such representations
in the space of states and finite input sequences we ob-
tain closed-form expressions for controlled invariant sets.
An immediate advantage is the ability to handle high-
dimensional systems since the closed-form expression is
computed in a single step rather than iteratively. To validate
the proposed method, we present thorough case studies
illustrating that in safety-critical scenarios the implicit rep-
resentation suffices in place of the explicit invariant set.
The proposed method is complete in the absence of distur-
bances, and we provide a weak completeness result when
disturbances are present.

Index Terms— Constrained control, Controlled invariant
sets, Linear systems, Optimization, Robust control

I. INTRODUCTION

IN an increasingly autonomous world, safety has recently
come under the spotlight. A safety enforcing controller

is understood as one that indefinitely keeps the state of the
system within a set of safe states notwithstanding the presence
of uncertainties. A natural solution that guarantees safety is
to initialize the state of the system inside a Robust Controlled
Invariant Set (RCIS) within the set of safe states. Any RCIS is
defined by the property that any trajectory starting within, can
always be forced to remain therein and, hence, inside the set of
safe states. Consequently, RCISs are at the core of controller
synthesis for safety-critical applications.

Since the conception of the standard method for computing
the Maximal RCIS of discrete-time systems [6], which is
known to suffer from poor scaling with the system’s dimen-
sion and no guarantees of termination, numerous approaches
attempted to alleviate these drawbacks. A non-exhaustive
overview is found in Section VIII.
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An alternative approach is to construct an implicit repre-
sentation for an RCIS. The specific implicit representation
used in this paper is a set in the higher dimensional space
of states and finite input sequences. We argue that in many
practical, safety-critical applications, such as Model Predictive
Control (MPC) and supervisory control, knowledge of the
explicit RCIS is not required and the implicit representation
suffices. Consequently, by exploiting the efficiency of the
implicit representation the aforementioned ideas are suitable
for systems with large dimensions.

In this manuscript, we propose a general framework for
computing (implicit) RCISs for discrete-time linear systems
with additive disturbances, under polytopic state, input, and
even mixed, constraints. We consider RCISs parameterized
by collections of eventually periodic input sequences and
prove that this choice leads to a closed-form expression for
an implicit RCIS in the space of states and finite input
sequences. Moreover, this choice results in a systematic way to
obtain larger RCISs, which we term a hierarchy. Essentially,
the computed sets include all states for which there exist
eventually periodic input sequences that lead to a trajectory
that remains within the safe set indefinitely. Once the (implicit)
RCIS is computed, any controller rendering the RCIS invariant
can be used in practice and a fixed periodic input is not
chosen or used. Moreover, we show that this parameterization
is rich enough, such that: 1) in the absence of disturbances, our
method is complete and sufficient to approximate the Maximal
CIS arbitrarily well; 2) in the presence of disturbances, a
weak completeness result is established, along with a bound
for the computed RCIS that can be approximated arbitrarily
well. Finally we study, both theoretically and experimentally,
safety-critical scenarios and establish that the efficient implicit
representation suffices in place of computing the exact RCIS.
In practice, the use of implicit RCISs can be done via
optimization programs, e.g., a Linear Program (LP), a Mixed-
Integer (MI) program, or a Quadratic Program (QP), and is
only limited by the size of the program afforded to solve.

In order to make for a more streamlined presentation, a
review of the existing related literature is found at the end of
the manuscript.

Notation: Let R be the set of real numbers and N be the
set of positive integers. For sets P,Q ⊆ Rn, the Minkowski
sum is P +Q = {x ∈ Rn | x = p+ q, p ∈ P, q ∈ Q} and the
Minkowski difference is Q− P = {x ∈ Rn | x+ P ⊆ Q},
where by slightly abusing the notation, we denote the
Minkowski sum of a singleton {x} and a set P by x+P . The
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Hausdorff distance between P and Q, denoted by d(P,Q),
is induced from the Euclidean norm in Rn. We denote a
block-diagonal matrix M with blocks M1, . . . ,MN by M =
blkdiag(M1, . . . ,MN ). Moreover, given a matrix A ∈ Rm×n

and a set P ⊆ Rn, the linear transformation of P through
A is AP = {Ax ∈ Rm|x ∈ P}. Given a set S ⊂ Rn × Rm,
its projection onto the first n coordinates is πn (S). For any
N ∈ N, let [N ] = {1, 2, · · · , N}. Let I and 0 be the identity
and zero matrices of appropriate sizes respectively, while 1 is
a vector with all entries equal to 1.

II. PROBLEM FORMULATION

Let us begin by providing the necessary definitions.
Definition 1 (Discrete-time linear system): A Discrete-

Time Linear System (DTLS) Σ is a linear difference equation:

x+ = Ax+Bu+ Ew, (1)

where x ∈ Rn is the state of the system, u ∈ Rm is the input,
and w ∈ W ⊆ Rd is a disturbance term. Moreover, we have
that A ∈ Rn×n, B ∈ Rn×m, and E ∈ Rn×d.

Definition 2 (Polytope): A polytope S ⊂ Rn is a bounded
set of the form:

S = {x ∈ Rn | Gx ≤ f} , (2)

where G ∈ Rk×n, f ∈ Rk for some k > 0.
Definition 3 (Robust Controlled Invariant Set): Given a

DTLS Σ and a safe set Sxu ⊂ Rn × Rm, that is, the set
defining the state-input constraints for Σ, a set C ⊆ πn (Sxu)
is a Robust Controlled Invariant Set for Σ within Sxu if:

x ∈ C ⇒ ∃u ∈ Rm s.t. (x, u) ∈ Sxu, Ax+Bu+ EW ⊆ C.
Definition 4 (Admissible Input Set): Given an RCIS C of a

DTLS Σ within its safe set Sxu, the set A(x) of admissible
inputs at a state x is:

A(x) = {u ∈ Rm|(x, u) ∈ Sxu, Ax+Bu+ EW ⊆ C}.
Assumption 1: In this manuscript we focus on systems and

safe sets that satisfy the following:
1) There exists a suitable state feedback transformation that

makes the matrix A of system Σ nilpotent. For a nilpotent
matrix, there exists a ν ∈ N such that Aν = 0.

2) The safe set Sxu ⊂ Rn × Rm and the disturbance set
W ⊂ Rd are both polytopes.

Remark 1: For any controllable system Σ, there exists a
state feedback transformation satisfying Assumption 1 [4,
Ch.3]. In this case, the nilpotency index ν is equal to the
largest controllability index of Σ.

For any system Σ satisfying Assumption 1, let K ∈ Rm×n

be the feedback gain such that A + BK is nilpotent. We
construct a system Σ′ by pre-feedbacking Σ with u = Kx+u′:

x+ = (A+BK)x+Bu′ + Ew,

where u′ ∈ Rm is the input of the system Σ′. The safe set
for Σ′ is the polytope induced from the safe set Sxu of Σ as
S′xu = {(x, u′) ∈ Rn ×Rm | (x,Kx+ u′) ∈ Sxu}.

Proposition 2.1: Any RCIS C of Σ within Sxu is an RCIS
of Σ′ within S′xu and vice versa.

Proof: The proof is based on the fact that the map from
(x, u) to (x, u′) = (x, u−Kx) is a bijection from Sxu to S′xu.

Consider an RCIS C of Σ within Sxu, and (x, u) with x ∈
C and Ax + Bu + EW ⊆ C. Take u′ = u − Kx. Then,
(x, u′) ∈ S′xu since (x,Kx + u′) = (x, u) ∈ Sxu. Advancing
the state x with input u′ in Σ′ gives (A+BK)x+Bu′+EW =
Ax+BKx−BKx+Bu+EW = Ax+Bu+EW ⊆ C. Hence,
C is also an RCIS for Σ′ within S′xu. The other direction is
shown in a similar way.

Based on Proposition 2.1, it can be seen that the problem
of finding an RCIS of Σ within Sxu is exactly equivalent to
the problem of finding an RCIS of Σ′ within S′xv . That is,
for any procedure that takes in (Σ, Sxu) and produces a RCIS
C, there exists an equivalent procedure that takes in (Σ′, S′xu)
and produces the same RCIS C, and vice versa. Therefore, in
the remainder of this work, we simply assume that the system
in (1) (and its safe set Sxu) is already transformed to this
equivalent form where the matrix A is nilpotent.

The main goal of this paper is to compute an implicit
representation of an RCIS in closed-form. Hereafter, we refer
to this representation as the implicit RCIS.

Definition 5 (Implicit RCIS): Given a DTLS Σ, a safe set
Sxu ⊂ Rn×Rm, and some integer q ∈ N, a set Cxv ⊆ Rn×Rq
is an Implicit RCIS for Σ if its projection πn (Cxv) onto the
first n dimensions is an RCIS for Σ within Sxu.

The following result stems directly from Definition 3.
Proposition 2.2: The union of RCISs and the convex hull

of an RCIS are robustly controlled invariant.
For dynamical systems, i.e., systems Σ as in (1) where

B = 0, the analogous concept to RCISs is defined below.
Definition 6 (Robust Positively Invariant Set): Given a dy-

namical system Σ : x+ = Ax+Ew and a safe set Sx ⊂ Rn,
a set C ⊂ Rn is a Robust Positively Invariant Subset (RPIS)
for Σ within S if x ∈ C ⇒ Ax+ EW ⊆ C .

We define the accumulated disturbance set at time t by:

W t =
t∑
i=1

Ai−1EW. (3)

By nilpotency of A we have that:

W∞ =

∞∑
i=1

Ai−1EW =

ν∑
i=1

Ai−1EW. (4)

In the literature, W∞ is called the Minimal RPIS of the system
x+ = Ax+ Ew [31].

The next operator is used throughout this manuscript.
Definition 7 (Reachable set): Given a DTLS Σ and a set

X ⊂ Rn, define the reachable set from X under input
sequence {ui}t−1

i=0 as:

RΣ

(
X, {ui}t−1

i=0

)
= AtX +

t∑
i=1

Ai−1But−i +W t. (5)

Intuitively, RΣ

(
X, {ui}t−1

i=0

)
maps a set X and an input

sequence {ui}t−1
i=0 to the set of all states that can be reached

from X in t steps when applying said input sequence. Con-
ventionally, RΣ

(
X, {ui}bi=a

)
= X if b < a, and when X

is a singleton, i.e., X = {x}, we abuse notation to write
RΣ

(
x, {ui}t−1

i=0

)
.
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III. IMPLICIT REPRESENTATION OF CONTROLLED
INVARIANT SETS FOR LINEAR SYSTEMS

The classical algorithm that computes the Maximal RCIS
consists of an iterative procedure [6], [11] and theoretically
works for any discrete-time system and safe set. However,
this approach is known to suffer from the curse of dimen-
sionality and its termination is not guaranteed. To alleviate
these drawbacks, we propose an algorithm that is guaranteed
to terminate and computes an implicit RCIS efficiently in
closed-form, thus being suitable for high dimensional systems.
Moreover, by optionally projecting the implicit RCIS back
to the original state-space one computes an explicit RCIS.
Overall, the proposed algorithm computes controlled invariant
sets in one and two moves respectively.

The goal of this section is to present a finite implicit
representation of an RCIS. That is, we provide a closed-form
expression for an implicit RCIS characterized by constraints on
the state and on a finite input sequence, whose length is the
design parameter. This results in a polytopic RCIS in a higher
dimensional space. Intuitively, the implicit RCIS contains the
pairs of states and appropriate finite input sequences that
guarantee that the state remains in the safe set indefinitely.

A. General implicit robust controlled invariant sets

We begin by discussing a general construction of a polytopic
implicit RCIS. First, we consider inputs ut to Σ that evolve
as the output of a linear dynamical system, ΣC , whose state
is a sequence of q inputs, v, i.e.:

ΣC :
vt+1 = Pvt,

ut = Hvt,
(6)

where v ∈ Rmq , P ∈ Rmq×mq , and H ∈ Rm×mq . The
resulting input to Σ can be expressed as:

ut = Hvt = HP tv0, (7)

for an initial choice of v0 ∈ Rmq . We can then lift system Σ,
after closing the loop with ΣC , to the following companion
dynamical system:

Σxv :

[
x+

v+

]
=

[
A BH
0 P

] [
x
v

]
+

[
E
0

]
w. (8)

Given the safe set Sxu, we construct the companion safe
set Sxv = {(x, v) ∈ Rn ×Rmq | (x,Hv) ∈ Sxu}. The com-
panion system of (1) is the closed-loop dynamics of (1) with
a control input in (7). Then, the companion safe set simply
constrains the closed-loop state-input pairs in the original safe
set, i.e., (xt, Hvt) ∈ Sxu.

Theorem 3.1 (Generalized implicit RCIS): Let Cxv be an
RPIS of the companion system Σxv within the companion
safe set Sxv . The projection of Cxv onto the first n coordinates,
πn (Cxv), is an RCIS of the original system Σ within Sxu. In
other words, Cxv is an implicit RCIS of Σ.

Proof: Let x ∈ πn (Cxv). Then, there exists a v ∈ Rmq

such that (x, v) ∈ Cxv . Define u = Hv and pick an arbitrary
w ∈W . By construction of Sxv , (x, u) ∈ Sxu. Since Cxv is an
RPIS, we have that (x+, v+) = (Ax+Bu+ Ew,Pv) ∈ Cxv

and thus x+ ∈ πn (Cxv). By Definition 3, πn (Cxv) is an RCIS
of Σ in Sxu.

In principle, Theorem 3.1 holds even if ΣC is nonlinear.
However, the choice of a linear system ΣC , as in (6), makes
the computation of the Maximal RPIS of Σxv more efficient.
In what follows, we study the conditions on P and H such
that the Maximal RPIS of Σxv is represented in closed-form.

B. Finite reachability constraints

By definition of the companion safe set Sxv and Defini-
tion 6, we have that any state (x, v) belongs to the Maximal
RPIS of Σxv within Sxv , if and only if, the input sequence
{ui}t−1

i=0 , with each input as in (7), satisfies:(
RΣ

(
x, {ui}t−1

i=0

)
, ut
)
⊆ Sxu, t ≥ 0, (9)

where RΣ

(
x, {ui}t−1

i=0

)
⊆ Rn, ut ∈ Rm, and the pair(

RΣ

(
x, {ui}t−1

i=0

)
, ut
)
⊆ Rn × Rm. By Theorem 3.1, the

above constraints characterize the states and input sequences
within an implicit RCIS of Σ, such that the pair (x, u) stays
inside the safe set Sxu indefinitely. Notice that (9) defines an
infinite number of constraints in general. In this section, we
investigate under what conditions we can reduce the above
constraints into a finite number and compute them explicitly.
Then, we use these constraints to construct the promised
implicit RCIS.

Definition 8 (Eventually periodic behavior): Consider two
integers τ ∈ N ∪ {0} and λ ∈ N. A control input ut follows
an eventually periodic behavior if:

ut+λ = ut, for all t ≥ τ . (10)

We call τ the transient and λ the period.
Proposition 3.2 (Finite reachability constraints): Consider

a DTLS Σ satisfying Assumption 1. If the input ut follows
an eventually periodic behavior with transient τ ∈ N ∪ {0}
and period λ ∈ N, then the infinite constraints in (9) are
reduced to a finite number of constraints.

Proof: Under Assumption 1 the matrix A is nilpotent
with nilpotency index ν. Consequently, given (5), the reachable
set from a state x for t ≥ ν depends only on the past ν inputs.
We abuse notation to write RΣ

(
{ui}t−1

i=0

)
and omit the state x

to denote dependency only on the inputs. Then, for t ≥ ν+ τ :

RΣ

(
{ui}t−1

i=0

)
=

ν∑
i=1

Ai−1But−i +W∞

(10)
=

ν∑
i=1

Ai−1But+λ−i +W∞ = RΣ

(
{ui}t+λ−1

i=0

)
.

Therefore, under inputs with eventually periodic behavior the
reachability constraints repeat themselves after t = ν+ τ +λ.
As a result, we can split the constraints in (9) as:(
RΣ

(
x, {ui}t−1

i=0

)
, ut

)
⊆ Sxu, t = 0, . . . , ν − 1, (11)(

RΣ

(
{ui}t−1

i=0

)
, ut

)
⊆ Sxu, t = ν, . . . , ν + τ + λ− 1. (12)

The above suggests that
(
RΣ

(
x, {ui}t−1

i=0

)
, ut
)
⊆ Sxu for all

t ≥ 0 can be replaced with only ν + τ + λ constraints.
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Proposition 3.2 provides a finite representation of the con-
straints in (9) under the eventually periodic input behavior in
(10). The next question we address concerns characterizing
the classes of policies that guarantee the behavior in (10).

C. Implicit robust controlled invariant sets in closed-form

Recall that our goal is to derive a closed-form expression
for an implicit RCIS of Σ, which is essentially the Maximal
RPIS of the companion system Σxv by Theorem 3.1. So far
we proved that, in general, inputs with eventually periodic
behavior result in finite reachability constraints. Clearly, the
parameterized input in (7) follows an eventually periodic
behavior as in (10) if:

P t = P t+λ, t ≥ τ, (13)

i.e., P is an eventually periodic matrix with transient τ and
period λ.

Proposition 3.3 (Structure of eventually periodic matrices):
Any eventually periodic matrix P ∈ Rn×n has eigenvalues
that are either 0 or λ-th roots of unity. If τ 6= 0, i.e., P is not
purely periodic, then P has at least one 0 eigenvalue with
algebraic multiplicity equal to τ and geometric multiplicity
equal to 1. If P τ 6= 0, i.e., P is not nilpotent, then P has at
least one eigenvalue that is a λ-th root of unity.

Proof: Let v 6= 0 be an eigenvector of P and δ the
corresponding eigenvalue, i.e., Pv = δv. Then, (13) for t ≥ τ
yields:

P t = P t+λ ⇒ P tv = P t+λv⇔ δtv = δt+λv
v 6=0⇔ δt = δt+λ ⇔ δt

(
1− δλ

)
= 0,

that is, the eigenvalues δ of P are only 0 or λ-th roots of unity.
Consider now the Jordan normal form P = MJM−1 [19].

This form is unique up to the order of the Jordan blocks, and
P t = MJ tM−1. Without loss of generality, we write:

J =

[
J1 0

0 J2

]
,

where J1 is the Jordan block corresponding to the eigenvalues
of P that are 0, and J2 is the Jordan block corresponding to
the eigenvalues of P that are the λ-th roots of unity. Thus, J1

is nilpotent. Then, when τ 6= 0, equality (13) is equivalent to:

P t = P t+λ ⇔MJ tM−1 = MJ t+λM−1, t ≥ τ.

Matrix J1 vanishes in exactly τ steps, i.e., Jτ1 = 0 and
J t1 6= 0, for t < τ . This implies that P has at least one 0
eigenvalue with algebraic multiplicity equal to τ and geometric
multiplicity equal to 1, but no 0 eigenvalues of geometric
multiplicity 1 and algebraic multiplicity greater than τ .

Moreover, when P is not nilpotent, i.e., P τ 6= 0, for t ≥ τ :

J t = J t+λ
Jt1=0,t≥τ⇔

[
0 0

0 J t2

]
=

[
0 0

0 J t+λ2

]
⇔ J t2 = J t+λ2 .

Thus, P has at least one eigenvalue that is a λ-th root of unity.

Corollary 3.4: The class of matrices described by Proposi-
tion 3.3 that satisfies (13) can be written, up to a similarity
transformation, in the following form:

P =

[
N Q
0 R

]
, (14)

where N is a nilpotent matrix with nilpotency index τ , R is
a matrix whose eigenvalues are all λ-th roots of unity, i.e.,
Rλ = I, and Q is an arbitrary matrix.

Proposition 3.3 and Corollary 3.4 guide the designer to ef-
fortlessly select matrix P via its eigenvalues or its submatrices.
Moreover, it is reasonable to select the projection matrix H
to be surjective in order to obtain a non-trivial input in (7).

We now show that we can compute the desired closed-form
expression for an implicit RCIS parameterized by collections
of eventually periodic input sequences.

Theorem 3.5 (Closed-form implicit RCIS): Consider a
DTLS Σ and a safe set Sxu for which Assumption 1 holds.
Select an eventually periodic matrix P ∈ Rmq×mq and
a surjective projection matrix H ∈ Rm×mq . An implicit
RCIS for Σ within Sxu, denoted by Cxv , is defined by the
constraints:(

Atx+

t∑
i=1

Ai−1BHP t−iv,HP tv

)
⊆ Sxu −W t × {0},

t = 0, . . . , ν − 1,(
ν∑
i=1

Ai−1BHP t−iv,HP tv

)
⊆ Sxu −W∞ × {0},

t = ν, . . . , ν + τ + λ− 1.

(15)

That is, the set Cxv ⊂ Rn ×Rmq:

Cxv = {(x, v) ∈ Rn ×Rmq | (x, v) satisfy (15)} , (16)

is computed in closed-form. Moreover, Cxv is the Maximal
RPIS of the companion dynamical system in (8).

Proof: By Proposition 3.2, the set Cxv defined by (15)
in closed-form satisfies the constraints in (9) and, thus, is the
Maximal RPIS of the companion system Σxv in Sxv . Then,
by Theorem 3.1, Cxv is an implicit RCIS of Σ in Sxu.

Theorem 3.5 provides an implicit RCIS, Cxv , in closed-
form. This set defines pairs of states and finite input sequences
such that the state remains in the safe set indefinitely.

Remark 2 (On the choice of input behavior): Notice that
the open-loop eventually periodic policy used to parameterize
the implicit RCIS is only a means towards its computation
in closed-form. In practice, after computing an RCIS, we
can use any controller appropriate for the task at hand. This
is illustrated in our case studies in Section VII, where the
controller of the system is independent of the RCIS implicit
representation. For instance, once an RCIS is available one
defines a closed-loop non-periodic and memoryless controller
K : Rn → Rm for which Ax+BK(x) belongs to the RCIS
when x is an element of the RCIS.

Corollary 3.6 (Computation of explicit RCIS): By select-
ing an eventually periodic matrix P ∈ Rmq×mq and a
projection matrix H ∈ Rm×mq , one computes an explicit
RCIS Cx = πn (Cxv) with a single projection step.

The size of the lifted space leads to a trade-off: on the one
hand it can result to larger RCISs, as we detail in the next

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3336819

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Michigan Library. Downloaded on December 19,2023 at 19:36:26 UTC from IEEE Xplore.  Restrictions apply. 



ANEVLAVIS et al.: CONTROLLED INVARIANT SETS: IMPLICIT CLOSED-FORM REPRESENTATIONS AND APPLICATIONS 5

section, but on the other it requires more effort if the optional
projection step is taken.

IV. A HIERARCHY OF CONTROLLED INVARIANT SETS

Our main result, Theorem 3.5, provides a closed-form
expression for an implicit RCIS, Cxv , with constraints on the
state of the system, x, and on a finite sequence of inputs,
v. The resulting sets depend on the choice of the eventually
periodic matrix P in (6) and the projection matrix H .

In this section, we show how to systematically construct a
sequence of RCISs that form a hierarchy, i.e., a non-decreasing
sequence. Our goal is to provide a closed-form expression for
the implicit RCISs corresponding to this hierarchy. Towards
this, we identify special forms of matrices P and H .

Definition 9 ((τ, λ)-lasso sequence): Consider two integers
τ ∈ N∪{0} and λ ∈ N, and let q = τ+λ. The control input u
generated by the dynamical system ΣC in (6) forms a (τ, λ)-
lasso sequence with respect to the inputs v, if:

P = P(τ, λ) = blkdiag
(
P̄ , . . . , P̄

)
∈ Rmq×mq,

H = H(τ, λ) = blkdiag
(
H̄, . . . , H̄

)
∈ Rm×mq,

(17)

with m blocks each and P̄ , H̄ defined as:

P̄ =

[
0 I

0 · · · 1 · · · 0

]
∈ Rq×q,

H̄ =
[
1 0 . . . 0

]
∈ R1×q.

(18)

In the last row of P̄ the 1 occurs at the τ -th position. It is
easy to verify that P(τ, λ) in (17) is of the form (14). A (τ, λ)-
lasso sequence has a transient of τ inputs followed by periodic
inputs with period λ.

We utilize the (τ, λ)-lasso sequence to formalize a hierarchy
of RCISs with a single decision parameter q.

Definition 10 (Lassos of same length): Select q ∈ N. De-
fine the set of all pairs (τ, λ) ∈ N∪{0}×N corresponding to
lassos of length q as:

Θq = {(τ, λ) ∈ N ∪ {0} × N | τ + λ = q} . (19)

The cardinality of Θq is exactly q.
The next result provides a way to systematically construct

implicit RCISs in closed-form such that the corresponding
explicit RCISs form a hierarchy.

Theorem 4.1 (Hierarchy of RCISs): Consider a DTLS Σ
and a safe set Sxu for which Assumption 1 holds, and select
an integer q ∈ N. Given q, the set Cxv,q ⊂ Rn ×Rmq:

Cxv,q =
⋃

(τ, λ)∈Θq

Cxv,(τ, λ), (20)

is the implicit RCIS induced by the q-level of the hierarchy,
where each Cxv,(τ, λ) is computed in closed-form in (16) with
P and H as in (17). In addition, the explicit RCIS:

Cx,q = πn (Cxv,q) =
⋃

(τ, λ)∈Θq

πn
(
Cxv,(τ, λ)

)
=

⋃
(τ, λ)∈Θq

Cx,(τ, λ),
(21)

corresponding to the q-level of the hierarchy contains any
RCIS lower in the hierarchy, i.e.:

Cx,q ⊇ Cx,q′ , for any q, q′ ∈ N with q′ < q. (22)
Proof: First, the sets Cxv,q and Cx,q are implicit and

explicit RCISs respectively as the unions of, implicit and
explicit, RCISs by Proposition 2.2. Next we prove (22) for
the case of q and q + 1, while the more general statement
follows by a simple induction argument.

For any λ ∈ N such that (τ, λ) ∈ Θq , we have by (19) that
(τ + 1, λ) ∈ Θq+1. It is easy to show that:

Cx,(τ+1,λ) ⊇ Cx,(τ, λ), (23)

as Cx,(τ, λ) contains the set of states rendered invariant by a
(τ, λ)-lasso sequence of inputs, and any (τ, λ)-lasso sequence
is also a (τ + 1, λ)-lasso sequence. Hence, by (21):

Cx,(q+1) =
⋃

(τ, λ)∈Θq+1

Cx,(τ, λ) =

 ⋃
(τ, λ)∈Θq

Cx,(τ+1,λ)

⋃ Cx,(0,q+1)

(23)
⊇

 ⋃
(τ, λ)∈Θq

Cx,(τ, λ)

⋃ Cx,(0,q+1)
(21)
= Cx,q

⋃
Cx,(0,q+1).

The above entails that Cx,(q+1) ⊇ Cx,q.
Corollary 4.2: Using the standard big-M formulation, the

implicit RCIS Cxv,q can be expressed as a projection of a
higher-dimensional polytope:

Cxvζ,q =

{
(x, v, ζ)

∣∣∣∣∣
q∑
i=1

ζi = 1, Gi(x, v) ≤ fi + (1− ζi)M1

}
,

(24)

where ζ ∈ {0, 1}q , Gi and fi describe each of the q polytopes
Cxv,(τ, λ) in (20), and M ∈ R+ is sufficiently large. The set
Cxvζ,q is a polytope in Rn×Rmq×{0, 1}q , and its projection
on Rn×Rmq is exactly the union in (20), while its projection
on Rn is exactly the explicit RCIS in (21).

Theorem 4.1 defines the promised hierarchy and provides
an implicit RCIS for each level of the hierarchy that can also
be computed in closed-form in (24) at the cost of an additional
lift. Fig. 1 illustrates the relation in (22), that is, how the sets
induced by each hierarchy level contain the ones induced by
lower hierarchy levels.

Remark 3 (Convex hierarchy): We can replace the union
in (20) by the convex hull conv

(⋃
(τ, λ)∈Θq

Cxv,(τ, λ)

)
. Then,

in an analogous manner, all the above results go through
resulting in a hierarchy of convex RCISs. Similarly to (24),
by standard set-lifting techniques, one obtains a closed-form
expression for the convex hull.

Remark 4 (Partial hierarchies without union): The
proposed hierarchy involves handling a union of sets.
However, one might prefer to avoid unions of sets and rather
use a single convex set. As each implicit RCIS Cxv,(τ, λ)

involved in the hierarchy is computed in closed-form by
Theorem 3.5, we provide two more refined guidelines for
obtaining larger RCISs, based on the choice of (τ, λ):

1) Given any λ ∈ N, it holds that Cx,(τ+1,λ) ⊇ Cx,(τ, λ) for
any τ ∈ N ∪ {0}.
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Fig. 1: RCIS corresponding to q = 1 (white), q = 2 (gray),
q = 3 (teal), q = 4 (green), q = 5 (yellow), and q = 6 (orange)
for a double integrator. Safe set in blue.

2) Given any τ ∈ N∪{0}, it holds that Cx,(τ, λ) ⊇ Cx,(τ,λ′)

for any λ, λ′ ∈ N such that λ = kλ′, k ∈ N, i.e., λ is a
multiple of λ′, see [3, Section 4.6] when τ = 0.

The above can direct the designer in search of larger RCISs
that are based on a single implicit RCIS.

V. IMPLICIT INVARIANT SETS IN PRACTICE:
CONTROLLED INVARIANT SETS IN ONE MOVE

Using the proposed results, one has the option to project
the implicit RCIS back to the original space and obtain an
explicit RCIS as proposed in the two-move approach [1]–[3].
However, the required projection from a higher dimensional
space becomes the bottleneck of this approach.

One of the goals of this manuscript is to establish that
in a number of key control problems explicit knowledge of
the RCIS is not required and the implicit RCIS suffices. We
show how the proposed methodology can be used online as
the implicit RCIS which admits a closed-form expression.

A. Extraction of admissible inputs

For many applications in this section, we need to extract a
set of admissible inputs of the RCIS πn(Cxv) at a given state
x, i.e, A(x) as given in Definition 4. Given only the implicit
RCIS Cxv , we provide here three linear encodings of A(x) or
its nonempty subsets.

1) The first linear encoding of A(x) is given by the
polytope:

U1(x) =
{

(u, v1:N ) ∈ R(1+Nq)m
∣∣ (x, u) ∈ Sxu,

(Ax+Bu+ Ewi, vi) ∈ Cxv, ∀i ∈ [N ]
}
,

(25)

where v1:N denotes the vector (v1, v2, · · · , vN ). It follows that
πm(U1(x)) = A(x).

2) The second linear encoding is:

U2(x) =
{
v ∈ Rqm

∣∣ (x, v) ∈ Cxv
}
, (26)

with H and P as in (6). Note that U2(x) is the slice of
Cxv at x and is nonempty for x ∈ πn(Cxv). Then, the linear
transformation HU2(x) is a nonempty subset of A(x).

3) Finally, define the polytope:

U3(x) =
{

(u, v) ∈ R(1+q)m
∣∣ (x, u) ∈ Sxu,

(Ax+Bu+ Ewi, v) ∈ Cxv, ∀i ∈ [N ]
}
,

(27)

where wi ∈ V with V the vertices of W . It follows that
πm(U3(x)) ⊆ A(x). It is easy to check that (Hv, Pv) ∈ U3(x)
for all v ∈ U2(x), which implies that U3(x) is guaranteed to
be nonempty for any x ∈ πn(Cxv).

All three linear encodings are easily computed online given
Cxv . Moreover, it holds that:

HU2(x) ⊆ πm(U3(x)) ⊆ πm(U1)(x) = A(x).

That is, U2(x) is the most conservative encoding, while U1(x)
is the least conservative one. However, U2 is of lower dimen-
sion, while U1 has the highest dimension. More conservative
encodings are easier to compute. Depending on the available
compute, a user can select the most appropriate encoding.

B. Supervision of a nominal controller

In many scenarios, when synthesizing a controller for a
plant, the objective is to meet a performance criterion while
always satisfying a safety requirement. This gives rise to the
problem of supervision.

Problem 1 (Supervisory Control): Consider a system Σ, a
safe set Sxu, and a nominal controller that meets a perfor-
mance objective. The supervisory control problem asks at each
time step to evaluate if, given the current state, the input ũ
from the nominal controller keeps the next state of Σ in the
safe set. If not, correct ũ by selecting an input that does so.

To solve Problem 1 one has to guarantee at every step that
the pairs of states and inputs respect the safe set Sxu. A
natural way to do so is by using an RCIS. The supervision
framework operates as follows. Given an RCIS C, assume
that the initial state of Σ lies in C. The nominal controller
provides an input ũ to be executed by Σ. If ũ ∈ A(x), then
its execution is allowed. Else ũ is corrected by selecting an
input usafe ∈ A(x). Existence of usafe is guaranteed in any
RCIS by Definition 3.

In practice an explicit RCIS is not needed. One can exploit
the three linear encodings of admissible inputs from the
proposed implicit RCISs to perform supervision. Furthermore,
the nominal controller can be designed independently of the
implicit RCIS parameterization. Consider an implicit RCIS
Cxv for Σ within Sxu, as in Theorem 3.5. Then supervision
of an input ũ is performed by solving the following QP:

min
u,v

||u− ũ||22

s.t. (x, u) ∈ Sxu
(Ax+Bu+ Ew, v) ∈ Cxv, ∀w ∈W

(28)

Notice that the feasible domain of the QP in (28) is equal to the
third linear encoding U3(x) of admissible inputs; similar QPs
are easily formulated with the feasible domain being U1(x) or
U2(x). By solving optimization problem (28) we compute the
minimally intrusive safe input.
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Fig. 2: The overall safe online planning framework.

C. Safe online planning
Based on the discussed supervision framework, we utilize

the proposed implicit RCIS to enforce safety constraints in
online planning tasks. The goal here is to navigate a robot
through unknown environments without collision with any
obstacles. The map is initially unknown, and it is built and
updated online based on sensor measurements, such as LiDAR.
The robot must only operate in the detected obstacle-free
region. To ensure this, given a path planning algorithm and a
tracking controller, we supervise the controller inputs based on
the implicit RCIS. The overall framework is shown in Figure 2.

The safe set for the robot imposes bounds on states and
inputs, which do not change over time, and also constraints,
e.g., on the robot’s position, which are given by the obstacle-
free region in the current map. As the detected obstacle-free
region expands over time, the corresponding part of the safe
set does as well. Thus, differently from Section V-B, we have a
time-varying safe set Sxu(t) satisfying Sxu(t) ⊆ Sxu(t+ 1),
t ≥ 0. As the implicit RCIS is constructed in closed-form,
we can generate a new implicit RCIS Cxv(t) for each Sxu(t).
Then, at each time step t, for any t′ ≤ t, we supervise the
nominal input ũ(t) by solving the optimization problem:

P(t, t′) :

min
u,v

||u− ũ||22

s.t. (x, u) ∈ Sxu(t)

(Ax+Bu+ Ew, v) ∈ Cxv(t′), ∀w ∈W.
As Sxu(t) ⊆ Sxu(t + 1), Cxv(t′) is a valid implicit RCIS in
Sxu(t) for all t ≥ t′. Thus, as long as P(t, t′) is feasible,
the optimizer v∗ of P(t, t′) is a safe input that guarantees the
next state lies in the RCIS. Furthermore, if P (t, t′) is feasible,
by definition of RCIS, P (t + 1, t′) is also feasible. Thus, if
P (0, 0) is feasible, for all t > 0, there exists t′ ≤ t such that
P (t, t′) is feasible. That is, the recursive feasibility of P (t, t′)
is guaranteed. In practice, to take advantage of the latest map,
we always select t′ to be the latest time instant t∗ for which
P (t, t∗) is feasible.

To summarize, at each time step, we first construct the
implicit RCIS Cxv(t) based on the current map. Then, given
the state and nominal control input, we solve P(t, t∗) to obtain
the minimally intrusive safe input. This input guarantees that
the state of the robot stays within Sxu(t) for all t ≥ 0, provided
that P(0, 0) is feasible.

D. Safe hyper-boxes
For high dimensional systems, the exact representation of an

RCIS Cx can be a set of thousands of linear inequalities. This

reduces insight as it is quite difficult to clearly identify regions
of each state that lie within the RCIS. In contrast, hyper-boxes
are easy to grasp in any dimension and immediately provide
information about the regions of states they contain. Based
on this, we explore how implicit RCISs can be used to find
hyper-boxes that can be considered safe in the following sense.

Definition 11 (Safe hyper-boxes): Consider a system Σ, a
safe set Sx, and the Maximal RCIS Cmax ⊆ Sx. Define a
hyper-box B = [b1, b1]× · · · × [bn, bn] = [b, b] ⊂ Rn. We call
a hyper-box B safe if B ⊆ Cmax.

To simplify the presentation we only consider state con-
straints, Sx, instead of Sxu. Notice that by Definition 11, a
safe hyper-box is not necessarily invariant. A safe hyper-box
B entails the guarantee that the trajectory starting therein can
remain in Sx forever, but not necessarily within B. We now
aim to address the following problem.

Problem 2: Find the largest1 safe hyper-box B within Cx.
A hyper-box B can be described by a pair of vectors(
b, b
)
∈ Rn ×Rn. Then, using similar arguments to Sec-

tion III, we compute in closed-form an implicit RCIS CB
characterizing all hyper-boxes

(
b, b
)

that remain in Sx under
eventually periodic inputs. The eventually periodic inputs are
given by a vector v ∈ Rmq with q = τ + λ. Then, the set CB
lives in Rn ×Rn ×Rmq and is described by:

At
[
b, b
]
+

t∑
i=1

Ai−1BHP t−iv ⊆ Sx −W t, t = 0, . . . , ν − 1,

ν∑
i=1

Ai−1BHP t−iv ⊆ Sx −W∞, t = ν, . . . , ν + q − 1.

The above constraints can all be written as linear inequalities
in
(
b, b, v

)
∈ Rn ×Rn ×Rmq . Then, the implicit RCIS CB is

a polytope and one solves Problem 2 by the following convex
optimization program:

max
(b,b,v)

γ
(
b− b

)
s.t.

(
b, b, v

)
∈ CB,

where γ(y) = (Πn
i=1yi)

1
n is the geometric mean function,

which is used as a heuristic for the volume of the hyper-box.
Function γ is concave, and maximizing a concave function
can be cast as a convex minimization problem [7].

Remark 5 (Invariant and recurrent hyper-boxes): Two
special cases of the above are invariant hyper-boxes, when
τ = 0, λ = 1, see also [1], and recurrent hyper-boxes, when
τ = 0, λ > 0, see also [2], [3].

A related question to Problem 2 is to evaluate if a proposed
hyper-box is safe. This is of interest when evaluating whether
the initial condition of a problem or an area around a configu-
ration point xc where the system is required to operate is safe.
If both the above are modeled by hyper-boxes (b, b), we can
simply ask whether there exists a v, such that (b, b, v) ∈ CB.
Similarly, more complicated questions can be formulated, e.g.,
to find the largest safe box around a configuration point.

1The largest, as measured by volume, hyper-box within a set might not be
unique. We choose a heuristic for maximizing the volume of a set that yields
a well-defined convex optimization problem. Hence, the term “largest” refers
to the heuristic used.
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Remark 6 (Complexity when using implicit RCISs): In this
section we showed how several key problems in control are
solved without the need of projection and of an explicit RCIS,
which results in extremely efficient computations since the
implicit RCISs are computed in closed-form. The decision to
be made is the size of the lift, i.e., the length of the input
sequence. From a computational standpoint, this choice is only
limited by how large an optimization problem one affords
solving given the application.

VI. PERFORMANCE BOUND FOR THE PROPOSED
METHOD

Numerical examples, to be presented later, will show that
the projection of the proposed implicit RCIS onto the original
state-space can coincide with the Maximal RCIS. However,
this is not always the case. When there is a gap between our
projected set and the Maximal RCIS, one may wonder if that
gap is fundamental to our method. In other words, can we
arbitrarily approximate the Maximal RCIS with the projection
of our implicit RCIS by choosing better P and H matrices?

In this section we aim to answer the above question and
provide insights into the completeness of our method. Given
(4), define the nominal DTLS Σ and the nominal safe set Sxu:

Σ : x+ = Ax+Bu, (29)

Sxu = Sxu −W∞ × {0}, (30)

where A and B are the same as in (1). Let Cmax be the
Maximal CIS of the nominal system Σ within Sxu and define:

Couter,ν =
{
x ∈ R

n
∣∣∣ ∃{ui}ν−1

i=0 ∈ R
mν ,(

RΣ

(
x, {ui}t−1

i=0

)
, ut
)
⊆Sxu, t = 0, . . . , ν − 1,

RΣ

(
x, {ui}ν−1

i=0

)
⊆ Cmax +W∞

}
,

(31)

where ν is the nilpotency index of A.
Proposition 6.1: Couter,ν is an RCIS of Σ within Sxu.

Proof: In this proof, we use the order cancellation lemma,
as a special case of [13, Thm. 4].

Lemma 6.2: Let X,Y ⊂ Rn be two closed convex sets
with Y bounded. A point x ∈ Rn is in X if and only if
x+ Y ⊆ X + Y .
To prove that Couter,ν is an RCIS, we show that for any
x0 ∈ Couter,ν , there exists u such that (x0, u) ∈ Sxu and for
all w ∈ W , Ax0 + Bu + Ew ∈ Couter,ν . By definition of
Couter,ν , there exists a sequence {ui}ν−1

i=0 that, along with x0,
satisfies the conditions in (31). We aim to show that u0 in
{ui}ν−1

i=0 is a feasible choice for u. Given (31), the reachable
set from x0 at time ν is:

RΣ

(
x0, {ui}ν−1

i=0

)
=
ν−1∑
i=0

Aν−1−iBui +W∞ ⊆ Cmax +W∞,

with W∞ and Cmax convex and W∞ bounded. By Lemma 6.2
we have that

∑ν−1
i=0 A

ν−1−iBui ∈ Cmax. Since Cmax is
controlled invariant within Sxu for the nominal DTLS Σ, there

exists uν such that:(
ν−1∑
i=0

Aν−1−iBui, uν

)
∈ Sxu, (32)

A

(
ν−1∑
i=0

Aν−1−iBui

)
+Buν =

ν∑
i=1

Aν−1−iBui ∈ Cmax.

Consider any w ∈W and define x1 = Ax0 +Bu0 + Ew:

RΣ(x1, {ui}νi=1) =

ν∑
i=1

Aν−1−iBui +W∞ ⊆ Cmax +W∞. (33)

From (32) we have that:

(RΣ(x1, {ui}ν−1
i=1 ), uν) ⊆ Sxu. (34)

Finally, note that for t = 0, · · · , ν − 2, we have:(
RΣ(x1, {ui}ti=1), ut+1

)
⊆
(
RΣ(x0, {ui}ti=0), ut+1

)
⊆ Sxu.

(35)

From (33), (34), and (35) we verify that x1 ∈ Couter,ν . Thus,
Couter,ν is an RCIS.

The following theorem shows that Couter,ν is an outer bound
of the projection of the proposed implicit RCIS.

Theorem 6.3 (Outer bound on πn (Cxv)): For a companion
system Σxv as in (8), with arbitrary matrices P and H ,
let Cxv be an RPIS of Σxv within the companion safe set
Sxv . The RCIS πn (Cxv) is a subset of Couter,ν , that is
πn (Cxv) ⊆ Couter,ν .

Proof: Let x ∈ πn (Cxv). We show that x ∈ Couter,ν . By
definition of Cxv , there exists a vector v such that:(
RΣ

(
x,
{
HP iv

}t−1

i=0

)
, HP tv

)
⊆ Sxu, for all t ≥ 0. (36)

Define ut = HP tv. We want to verify that x and {ui}ν−1
i=0

satisfy the two conditions in the definition of (31). The first
condition is immediately satisfied by (36). It is left to show
that RΣ(x, {ui}ν−1

i=0 ) ⊆ Cmax +W∞. That is:

ν−1∑
i=0

Aν−1−iBui +W∞ ⊆ Cmax +W∞.

By Lemma 6.2, it is equivalent to prove that:

x ≡
ν−1∑
i=0

Aν−1−iBui ∈ Cmax.

By (36), we have that for t ≥ 0:(
ν−1∑
i=0

Aν−1−iBui+t +W∞, uv+t

)
⊆ Sxu

⇔

(
ν−1∑
i=0

Aν−1−iBui+t, uν+t

)
∈ Sxu

⇔
(
RΣ(x, {ui}ν+t−1

i=ν ), uν+t

)
∈ Sxu

(37)

According to (37), the control sequence {ui}ν+t−1
i=ν guarantees

that the trajectory of Σ starting at x stays within Sxu for all
t ≥ 0. Thus, x must belong to the Maximal CIS of Σ in Sxu.
That is, x ∈ Cmax.
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Note here that the set Couter,ν , which serves as an outer
bound for the set computed by our method, is as hard to
compute as the Maximal RCIS. Given Theorem 6.3 we have:

πn (Cxv) ⊆ Couter,ν ⊆ Cmax. (38)

Thus, the projection of our implicit RCIS can coincide with the
Maximal RCIS, for appropriately selected matrices P and H ,
only if Couter,ν = Cmax in (38). This potential gap between our
approximation and the Maximal RCIS is due to the fact that
our method uses open-loop forward reachability constraints
under disturbances. Finally, the following theorem establishes
weak completeness of our method.

Theorem 6.4 (Weak completeness): The set Couter,ν is
nonempty, if and only if, there exist matrices P and H
such that the corresponding implicit RCIS Cxv is nonempty.
Specifically, Couter,ν 6= ∅, if and only if, Cxv,(0,1) 6= ∅, that is
P and H are as in (17) with (τ, λ) = (0, 1).

Proof: We want to show that Couter,ν is nonempty if and
only if Cxv,(0,1) is nonempty, where Cxv,(0,1) is defined in (20)
with respect to system Σ and safe set Sxu.

Since πn
(
Cxv,(0,1)

)
⊆ Couter,ν , immediately nonemptyness

of Cxv,(0,1) implies nonemptyness of Couter,ν .
For the converse, suppose that Couter,ν is nonempty. Then

Cmax is nonempty. By [9, Theorem 12], we know that Cmax is
nonempty, if and only if, there exists a fixed point x ∈ Cmax

along with a u such that (x, u) ∈ Sxu and Ax + Bu = x.
Also, note that AW∞ + EW = W∞. Thus, we have:

(x+W∞, u) ⊆ Sxu,
A(x+W∞) +Bu+ EW = x+W∞.

(39)

According to (39), for any y ∈ x+W∞, we have (y, u) ∈ Sxu
and Ay+Bu+EW ⊆ x+W∞, which implies that x+W∞
is an RCIS of Σ within Sxu. By the definition of Cxv,(0,1), it
is easy to check that (x+W∞, u) ⊆ Cxv,(0,1). Thus, Cxv,(0,1)

is nonempty.
Corollary 6.5 (Completeness in absence of disturbances):

In the absence of disturbances, Couter,ν = Cmax and thus
there exist P and H such that Cxv is nonempty, if and only if,
Cmax is nonempty. That is, the proposed method is complete.

The significance of Theorem 6.4 lies in allowing to quickly
check nonemptiness of Couter,ν by computing Cxv,(0,1), which
we can do in closed-form. Even though the gap between
Couter,ν and Cmax is still an open question at the writing of
this manuscript, we show that πn (Cxv) can actually converge
to its outer bound for a specific choice of H and P matrices.

Theorem 6.6 (Convergence to Couter,ν): Assume that the
disturbance set W contains 0, and the interior of Sxu contains
a fixed point (x, u) of Σ. There exist matrices H and P such
that πn (Cxv) approaches Couter,ν . Specifically, if H and P
are as in (17), by increasing τ in (17), πn (Cxv) converges to
Couter,ν in Hausdorff distance exponentially fast.

Proof: Without loss of generality, assume that the fixed
point (x, u) of Σ in the interior of Sxu is the origin of the
state-input space. We define a set operator U(C) that maps a
subset C of Rn to a subset of Rνm:

U(C) =

{
u0:ν−1 ∈ Rνm

∣∣∣∣ ν∑
i=1

Ai−1Buν−i ∈ C
}
, (40)

where u0:ν−1 denotes the vector (u0, u1, · · · , uν−1) ∈ Rνm.
To maintain a streamlined presentation, we make the fol-

lowing claims that we prove in Appendix A.
Claim 1: The polytope Cxv,0 contains the origin, where:

Cxv,0 ={(x, u0:ν−1) ∈ Rn+νm |(
RΣ

(
x, {ui}t−1

i=0

)
, ut
)
⊆Sxu, t = 0, . . . , ν − 1}.

Claim 2: For the set Couter,ν in (31) it holds that:

Couter,ν = πn(Cxv,max), (41)

where Cxv,max = Cxv,0 ∩ (Rn × U(Cmax)).
Claim 3: Let Cxv,(τ,λ) be the implicit CIS of the nominal

system Σ within Sxu with H and P as in (17) and let
Cx,(τ,λ) = πn(Cxv,(τ,λ)). The implicit RCIS Cxv,(τ,λ) of Σ
within Sxu with H and P as in (17) satisfies:

πn(Cxv,(τ,λ)) = πn(Ĉxv,(τ,λ)), for any τ ≥ ν, (42)

where Ĉxv,(τ,λ) = Cxv,0 ∩ (Rn × U(Cx,(τ−ν,λ))).
Claim 4: There exist c0 > 0, a ∈ [0, 1), and some τ1 ≥ 0

such that for any λ ≥ 1 and for any τ ≥ τ1:

Cx,(τ,λ) ⊇ (1− c0aτ )Cmax, (43)

with τ1 big enough such that 1 − c0aτ1 ≥ 0 and thereby the
right hand side of (43) is well-defined.

We use these claims to prove the desired convergence rate.
The operator U(·) in (40) is linear with respect to scalar
multiplication, i.e, U(ξC) = ξU(C), ξ ≥ 0, and monotonic,
i.e., U(C1) ⊇ U(C2), C1 ⊇ C2. According to (43), for τ ≥ τ1:

U(Cx,(τ,λ)) ⊇ (1− c0aτ )U(Cmax). (44)

Note τ0 = ν + τ1. By (42), for τ ≥ τ0:

Ĉxv,(τ,λ) ⊇ Cxv,0 ∩ (1− c0aτ−ν)(Rn × U(Cmax))

⊇ (1− c0aτ−ν)(Cxv,0 ∩ (Rn × U(Cmax)))

⊇ (1− c0aτ−ν)Cxv,max.
(45)

The second inclusion above holds since 0 ∈ Cxv,0 and thus
(1 − c0aτ )Cxv,0 ⊆ Cxv,0. Note that πn(·) is also linear with
respect to scalar multiplication. By (41), (42) and (45), for
τ ≥ τ0:

Cx,(τ,λ) =πn(Cxv,(τ,λ)) = πn(Ĉxv,(τ,λ))

⊇πn((1− c0aτ−ν)Cxv,max)

=(1− c0aτ−ν)Couter,ν .
(46)

By Theorem 6.3 and (46), for any τ ≥ τ0:

(1− c0aτ−ν)Couter,ν ⊆ Cx,(τ,λ) ⊆ Couter,ν . (47)

Let c1 = maxx1,x2∈Couter,ν ‖x1 − x2‖2 be the diameter of
Couter,ν , which is finite since Sxu is bounded. Then, by (47),
the Hausdorff distance between Cx,(τ,λ) and Couter,ν satisfies:

d(Cx,(τ,λ), Couter,ν) ≤ caτ , for c = c0c1a
−ν and τ ≥ τ0.

Note that Couter,ν contains the union of the projections
πn(Cxv) for all general implicit RCISs Cxv suggested by
Theorem 3.1 (that is, the matrices H and P can be arbitrary,
not necessarily the eventually periodic ones in Section III-C).
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Hence, intuitively the set Couter,ν should be much larger than
the projection of any specific implicit RCIS Cxv corresponding
to an eventually periodic H and P in Section III-C. However,
Theorem 6.6 shows that the proposed implicit RCIS can
approximate Couter,ν arbitrarily well by just using the simple
H and P matrices as in (18). Moreover, the approximation
error decays exponentially fast as we increase the parameter τ
in (18). This result implies that the eventually periodic input
structure explored in Section III.B and III.C is rich enough,
and not as conservative as what it may look at first sight.

Corollary 6.7: In the absence of disturbances, if the interior
of Sxu contains a fixed point of Σ, then for any λ > 0, then
Cx,(τ,λ) converges to the Maximal CIS Cmax in Hausdorff
distance exponentially fast as τ increases.

The condition that the interior of Sxu (resp. Sxu) contains
a fixed point of Σ (resp. Σ) in Corollary 6.7 (resp. Theorem
6.6) is critical to our method:

Example 1: Let Σ be x+
1 = x2, x+

2 = u and the safe set
Sxu = {(x, u)| − 1 ≤ x1, 1.5x2 ≤ x1 ≤ 2x2, u ∈ [−1, 1]}.
The only fixed point of Σ in Sxu is the origin in R3, which is
also a vertex of Sxu. It is easy to check that Cmax = πn(Sxu),
but the largest CIS πn(Cxv) computed by our method is equal
to the singleton set {0}.

If we expand Sxu slightly so that its interior contains the
origin, there immediately exist H and P such that πn(Cxv) ap-
proximates Cmax arbitrarily well, as expected by Corollary 6.7.
Conversely, if we slightly shrink Sxu so that it does not contain
any fixed point, then Cmax is empty [9, Theorem12].

Remark 7: Under the assumption that 0 ∈ W , let Sxu
be the set of all the polytopic safe sets Sxu that have a
nonempty Couter,ν . Moreover, let ∂Sxu be the set of all safe
sets Sxu ∈ Sxu, whose corresponding nominal safe set Sxu
does not contain a fixed point of Σ in the interior. It can be
shown that ∂Sxu must be contained by the boundary of Sxu
in the topology induced by Hausdorff distance. Consequently,
for any safe set in the interior of Sxu, there exists H and P
such that πn(Cxv) approximates Couter,ν arbitrarily well.

VII. CASE STUDIES

A MATLAB implementation of the proposed method,
along with instructions to replicate our case studies, can be
found at https://github.com/tzanis-anevlavis/
cis2m. A C++ library is currently under development as well.
Hence, we direct the interested reader to the above repository
for the latest performance metrics.

A. Quadrotor obstacle avoidance using explicit RCIS
We begin by tackling the supervision problem, defined in

Section V-B, for the task of quadrotor obstacle avoidance.
That is, we filter nominal inputs to the quadrotor to ensure
collision-free trajectories. The dynamics of the quadrotor can
be modeled as a non-linear system with 12 states [26].
Nonetheless, this system is differentially flat, which implies
that the states and inputs can be rewritten as a function of the
so-called flat outputs and a finite number of their derivatives
[36]. Exploiting this property, we obtain an equivalent linear
system that expresses the motion of a quadrotor. Moreover,

Fig. 3: Quadrotor operational region. Obstacles in purple
transparent boxes. Nominal trajectory (red), corrected trajec-
tory (blue), supervision active (green).

the original state and input constraints can be overconstrained
by polytopes in the flat output space [29]. Then, the motion
of a quadrotor can be described by:

x+ = Ax+Bu+ Ew,

with A = blkdiag(A1, A2, A3), B = blkdiag(B1, B2, B3),
and:

Ai =

1 Ts
T 2
s

2!
0 1 Ts
0 0 1

 , Bi =

T
3
s

3!
T 2
s

2!
Ts

 .
The state x ∈ R9 contains the 3-dimensional position, velocity,
and acceleration, while the input u ∈ R3 is the 3-dimensional
jerk. The matrix E and disturbance w are selected appropri-
ately to account for various errors during the experiment.

The operating space for the quadrotor is a hyper-box with
obstacles in R3, see Fig. 3. The safe set is described as the
obstacle-free space, a union of overlapping hyper-boxes in R3,
along with box constraints on the velocity and the acceleration:

S =
N⋃
j=1

[
p
j
, pj

]
× [v, v]× [a, a] ,

where [p
j
, pj ] ⊂ R3, for j = 1, . . . , N , is a hyper-box in the

obstacle-free space, [v, v] ⊂ R3 and [a, a] ⊂ R3 denote the
velocity and acceleration constraints respectively. The safe set
is a union of polytopes, while our framework is designed for
convex polytopes. Since we already know the obstacle layout,
we compute an explicit RCIS for each polytope in the safe set.
As these polytopes overlap we expect, and it is actually the
case in our experiments, that the RCISs do so as well. This
allows, when performing supervision, to select the input that
keeps the quadrotor into the RCIS of our choice when in the
intersection of overlaping RCISs and, hence, navigate safely.

Our goal is to ensure collision-free trajectory tracking. In
Fig. 3, the nominal trajectory (red line) moves the quadrotor
from a start point to an end point through the obstacles. As we
can appreciate, the supervised trajectory (blue curve) takes the
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(a) Quadrotor position
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(b) Quadrotor velocity
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(c) Quadrotor acceleration

Fig. 4: Quadrotor trajectory in x-y plane: nominal trajectory (red), corrected trajectory (blue), supervision active (green).

quadrotor around the obstacles and, safely, to the end point.
When the supervision is active, the quadrotor performs more
aggressive maneuvers to avoid the obstacle as shown in Fig. 4b
and Fig. 4c, where we omit the z-axis as in this experiment
the quadrotor maintains a relatively constant altitude. A video
of the experiment is found at https://tinyurl.com/
drone-supervision-cis. For visualizing the trajectory
and the obstacles in the video, we used the Augmented Reality
Edge Networking Architecture (ARENA) [10].

In this experiment we utilized the explicit RCIS
Cx,(τ, λ) = πn

(
Cxv,(τ, λ)

)
with (τ, λ) = (0, 6) and the one-

step projection was done in just several seconds for this
specific system. Our hardware platform is the open-source
Crazyflie 2.0 quadrotor. The operating space for the posi-
tion is [−2, 2] × [−2, 2] × [0, 1] (in m) and the obstacles
are shown in Fig. 3. The velocity, acceleration, and jerk
constraints are [−1.0, 1.0] (in m/s), [−2.83, 2.83] (in m/s2),
and [−59.3, 59.3] (in m/s3) respectively. The sampling time
is Ts = 0.18s. For the state estimation we use a Kalman
filter, where the measurements are the quadrotor’s position and
attitude as obtained by the motion capture system OptiTrack.
The nominal controller is a feedback controller stabilizing the
error dynamics between the current state and a tracking point
in the nominal trajectory. The optimization problems were
solved by GUROBI [16].

B. Safe online planning using implicit RCIS

Next, we solve the safe online planning problem, discussed
in Section V-C, for ground robot navigation. The map is
initially unknown and is built online based on LiDAR mea-
surements. While navigating the robot needs to avoid the
obstacles, indicated by the dark area in Fig. 5, and reach the
target point. This case study is inspired by the robot navigation
problem in [5].

The robot’s motion, using forward Euler discretization, is:

x+ =

[
I ITs
0 I

]
x+

[
0
ITs

]
u,

where the state x = (px, py, vx, vy) ∈ R4 is the robot’s
position and velocity and the input u = (u1, u2) ∈ R2 is the
acceleration. The safe set consists of two parts:

1) The time-invariant constraints vx, vy ∈ [−v, v] and
u1, u2 ∈ [−u, u].

2) The time-varying constraint of (px, py) within the
obstacle-free region, shown by the white nonconvex area in
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Fig. 5: Robot operational space: initial position (yellow ar-
rowhead), target position (cyan), unsafe region (dark area).

Fig. 5. The obstacle-free region, denoted by M(t) ⊆ R2,
is determined by a LiDAR sensor using data up to time t.
Combining the two constraints, the safe set at time t is:

Sxu(t) ={(px, py, vx, vy, u1, u2) | (px, py) ∈M(t),

vx, vy ∈ [−v, v], u1, u2 ∈ [−u, u]}.

Since M(t) ⊆M(t+1), we have Sxu(t) ⊆ Sxu(t+1), t ≥ 0.
The overall control framework is shown in Fig. 2. Initially,

the map is blank and the path planner generates a reference
trajectory assuming no obstacles. At each time t, the map is
updated based on the latest LiDAR measurements and the
path planner checks if the reference trajectory collides with
any obstacles in the updated map. If so, it generates a new,
collision-free, reference path. Then, the nominal controller
provides a candidate input ũ = (ũ1(t), ũ2(t)) tracking the
reference path. When updating the reference trajectory, a
transient period is needed for the robot to converge to the
new reference. Moreover, the path planner cannot guarantee
satisfaction of the input constraints. To resolve these issues,
we add a supervisory control to the candidate inputs. Based
on the updated obstacle-free region M(t), we construct the
safe set Sxu(t) and compute an implicit CIS Cxv,(τ, λ)(t)
within Sxu(t). To handle the nonconvexity of Sxu(t), we first
compute a convex composition of Sxu(t). When constructing
Cxv,(τ, λ)(t), we let the reachable set at each time belong to
one of the convex components in Sxu(t), encoded by mixed-
integer linear inequalities. For details see [22]. The convex
decomposition of Sxu(t) becomes more complex over time,
which slows down the algorithm. To lighten the computational
burden, we replace the full convex composition by the union of
the 10 largest hyper-boxes in Sxu(t) as the safe set. Given the
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(a) t = 0s

Binary Occupancy Grid

0 100 200 300 400 500 600 700

X [meters]

0

100

200

300

400

500

600

700

Y
 [

m
e
te

rs
]

Occupancy Grid

0 100 200 300 400 500 600 700

X [meters]

0

100

200

300

400

500

600

700

Y
 [

m
e
te

rs
]

(b) t = 40s

Binary Occupancy Grid

0 100 200 300 400 500 600 700

X [meters]

0

100

200

300

400

500

600

700

Y
 [

m
e
te

rs
]

Occupancy Grid

0 100 200 300 400 500 600 700

X [meters]

0

100

200

300

400

500

600

700

Y
 [

m
e
te

rs
]

(c) t = 78.6s

Fig. 6: Simulation screenshots at times t = 0s, 40s and 78.6s. Left (a)-(b)-(c): reference path (red) and actual trajectory (blue); the disk of
blue rays is the LiDAR measurements; the arrowhead indicates the position and moving direction of the robot. Right (a)-(b)-(c): obstacle-free
region M(t) (white) and unknown region (grey); purple boxes are the 10 largest boxes in M(t) that contain the current robot position.

constructed implicit CIS Cxv,(τ, λ)(t) at time t, we supervise
the nominal control input ũ(t) by solving P(t, t∗) as discussed
in Section V-C. Note that P (t, t∗) becomes a mixed-integer
program as we introduced binary variables for the convex
composition of the safe set and, therefore, in the implicit CIS.

In our simulations, we use a linear feedback controller as
the nominal controller. The MATLAB Navigation Toolbox
is used to simulate a LiDAR sensor with sensing range of
100 m, update the map, and generate the reference path
based on the A* algorithm. The simulation parameters are
(τ, λ) = (6, 4), Ts = 0.1s, v = 5m/s, u = 5m/s2. The
mixed-integer program P(t, t∗) is implemented via YALMIP
[24] and solved by GUROBI [16]. The average computation
time for constructing Cxv,(τ, λ)(t) and solving P(t, t∗) at each
time step is 2.87s. The average computation time shows the
efficiency of our method, considering the safe set is nonconvex
and being updated at every time step.

The simulation results are shown in Fig. 6. The robot
reaches the target region at t = 78.6s, and thanks to the
supervisor, it satisfies the input and velocity constraints, while
always staying within the time-varying safe region. As a
comparison, when the supervisor is disabled, the velocity con-
straint is violated at time t = 1.2s. The full simulation video
can be found at https://youtu.be/mB9ir0R9bzM .

C. Scalability and quality
In this subsection we illustrate the scalability of the pro-

posed method and compare with other methods in the litera-
ture. We consider a system of dimension n as in (1) that is
already in Brunovsky normal form [8].

An =

[
0 I

0 0

]
, Bn =

[
0

1

]
,

where An ∈ Rn×n and Bn ∈ Rn. This assumption does not
affect empirical performance measurements as the transfor-
mation that brings a system in the above form is system-
dependent and, thus, can be computed offline just once. To
generalize the assessment of performance, we generate the safe
set as a random polytope of dimension n and we average the
results over multiple runs. Moreover, we constraint our input
to [−0.5, 0.5] and the disturbance to [−0.1, 0.1].

1) Scalability of implicit invariant sets: We begin with the
case of no disturbances. Fig. 7a and Fig. 7b show the times to
compute the implicis CIS Cxv,q for safe sets with 2n and n2

constraints respectively. Cxv,q can be computed in less than
0.5s for systems of size n = 200 when the safe set has 2n
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Fig. 7: Absence of disturbances. Computation times for im-
plicit CISs for different levels q of the full hierarchy, i.e.,
computing q Implicit CISs per level. Safe sets with (a) 2n
constraints, n ≤ 200, and (b) n2 constraints, n ≤ 100.
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Fig. 8: Presence of disturbances. Safe sets with 2n constraints,
n ≤ 20. Computation times for Implicit RCISs. (a) Differ-
ent levels q of the hierarchy. (d) Individual implicit RCIS,
Cxv,(τ, λ), for different values of (τ, λ).

constraints, and in around 5s for n = 100 and safe sets with
n2 constraints, that is 10000 constraints in this example.

We now proceed to the case where system disturbances are
present. In Fig. 8a and Fig. 8b, we observe that in the presence
of disturbances computations are slower and, actually, are
almost identical for different values of q. This is attributed
to the presence of the Minkowsky difference in the closed-
form expression (15) that dominates the runtime and depends
on the nilpotency index of the system. Still, we are able to
compute implicit RCISs in closed-form for systems with up
to 20 states fairly efficiently in this experiment.

The above results suggest the efficiency and applicability of
our approach to scenarios involving online computations, as
shown already in Section VII-B. Moreover, in our experience,
the numerical result of a projection operation, depending on
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Fig. 9: Computation times for Cxv,(0,2), its projection Cx,(0,2),
the LMI method in [34], the ellipsoidal CIS in [21], and Cmax.
Logarithmic scale. Note: [21] is evaluated in the absence of
disturbances as it considers only nominal systems. The other
methods’ performance without disturbance is similar or better.

the method used, can be sometimes unreliable. Contrary to
this, our closed-form implicit representation does not suffer
from such drawback.

Note that the runtimes in this section are derived using the
MATLAB version of our approach. Even though it already
shows the efficiency of our method, naturally, we expect the
C++ library to further improve the presented runtimes.

2) Quality of the computed sets and comparison to other
methods: We now compare our method with different methods
in the literature, both in runtime and quality of the computed
sets as measured by the percentage of their volume compared
to the Maximal (R)CIS. Even though, we already provided a
comprehensive analysis in terms of runtime for our method, we
still present a few cases for the sake of comparison. We com-
pare our approach to the Multi-Parametric Toolbox (MPT3)
[17] that computes the Maximal (R)CIS, Cmax, the iterative
approach in [34] that computes low-complexity (R)CISs, and
the one in [21] that computes ellipsoidal CISs.

The runtimes of each method are reported in Fig. 9. The
difficulty of computing Cmax is apparent from the steep
corresponding curve. The low-complexity methods in [34] and
[21] are considerably faster, and [21] is slightly faster than
even our implicit representation. However, our sets are superior
in quality as we detail next.

First, in the absence of disturbances, the relative volume
of the computed sets with respect to Cmax is presented in
Table I. Since for n ≥ 7 MPT3 does not terminate after
several hours and the computed set before termination is not
invariant, we present the relative volumes only for 2 ≤ n ≤ 6.
Our method returns a very close approximation of Cmax
even with small values of (τ, λ) and computes substantially
larger sets compared to the other techniques. This supports
our theoretical result in Corollary 6.7. In other words, our
implicit representation retains the best out of two worlds:
computational efficiency and close approximations of Cmax.

In the presence of disturbances, the results are similar and
are reported in Table II, where we omit [21] that only con-
siders nominal systems. Theorem 6.6 proves that our method
converges to its outer bound Couter,ν . We can appreciate that
empirically Couter,ν approximates very closely Cmax, even in
the presence of disturbances, based on the size of the sets
our method computes. However, the gap between Couter,ν and

TABLE I: Absence of disturbances. Volume percentage with
respect to the Maximal CIS. Algorithms: Our method for
different implicit CISs Cxv,(τ, λ), the LMI method in [34], and
the ellipsoidal CIS in [21]. (S) denotes a singleton set.

Our method LMI method
[34]

Ellipsoidal
CIS method [21]

System
dimension Cxv,(0,2) Cxv,(4,2)
n = 2 100 100 42.43 45.69
n = 3 100 100 16.31 24.66
n = 4 99.92 100 3.69 14.41
n = 5 99.75 100 0.47 10.50
n = 6 97.81 100 0 (S) 3.89

TABLE II: Presence of disturbances. Volume percentage with
respect to the Maximal RCIS. Algorithms: Our method for
different implicit RCISs Cxv,(τ, λ) and the LMI method in [34].
(S) denotes a singleton set.

Volume (%) Our method LMI method [34]
System

dimension Cxv,(0,2) Cxv,(2,2) Cxv,(4,2)
n = 2 100 100 100 31.99
n = 3 98.24 99.67 99.96 16.35
n = 4 99.02 99.42 99.88 4.36
n = 5 98.75 99.74 99.81 3.64
n = 6 91.17 96.07 97.91 0 (S)

TABLE III: Increasing the size of the disturbance set
W = [−w,w]. Volume percentage of Cx,(2,2) with respect to
the Maximal RCIS and volume percentage of Sxu with respect
to Sxu. (NE) set is nonempty. (E) set is empty.

w 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
vol Cx,(2,2)
vol Cmax

99.9 99.7 99.3 98.1 91.8 10.5 Cx
empty

Cmax
empty

vol Sxu
vol Sxu

63.9 38.2 20.5 9.2 2.6 0.1 Sxu
empty

Sxu
empty

Sxu ∩∆xu NE NE NE NE NE NE E E

Cmax depends on the size of the disturbance as shown next.
We illustrate how the size of the disturbance set affects our

performance. We fix the safe set to be a random polytope
in R4 and constrain the input to [−0.5, 0.5]. The disturbance
set is W = [−w,w] and we increase w as in Table III.
Recall the nominal system Σ and the nominal safe set
Sxu = Sxu −W∞, and let ∆xu be the set of fixed points
of Σ, which is in Brunovsky normal form. We can show
that ∆xu = {(x, u) ∈ R4 ×R|x1 = x2 = x3 = x4 = u}. As
Table III details, by increasing the size of W the our RCIS
shrinks at a faster rate compared to Cmax, until finally Sxu
is empty and, hence, does not contain any fixed points from
∆xu. This is when the set we compute becomes empty as well.

VIII. RELATED LITERATURE

Recent works by the authors [1]–[3] develop methods
constructing implicit RCISs in closed-form. These approaches
consider different collections of periodic input sequences,
which can be viewed as special instances of the parameteriza-
tion proposed here. Furthermore, this work provides theoretical
performance results, both for completeness and convergence,
which extend to the previous methods as special cases. The
concept of implicit RCISs is also explored in [12] for nominal
systems and in [30], [32], [35] for systems with disturbances.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3336819

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Michigan Library. Downloaded on December 19,2023 at 19:36:26 UTC from IEEE Xplore.  Restrictions apply. 



14 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

However, different from our method, these papers need to
check a sufficient condition on set recurrence by LPs and do
not provide completeness guarantees.

In addition to the aforementioned methods, a plethora of
works have attempted to alleviate the poor scalability and
the absence of termination guarantees of the standard method
for computing the Maximal CIS of discrete-time systems
introduced in [6]. The following list is not exhaustive.

One line of work [18], [28] focuses on outer and inner
approximations of the Maximal CIS by solving either LPs
or QPs. The resulting sets, however, are not always invariant.
Comparing to these works, our method provides sets that are
always guaranteed to be invariant and, given our closed-form
expression, scales better with the system dimension.

Other methods compute exact ellipsoidal CISs efficiently
and, thus, offer improved scalability, such as [21] which solves
Semi-Definite Programs (SDP) for a class of hybrid systems.
Nevertheless, the resulting ellipsoidal sets are generally small.
This is backed by our comparison studies, which show that
even though [21] computes very efficiently exact CISs, our
implicit CIS offers similar computational performance, but
substantially better quality in terms of approximating the Max-
imal CIS. In addition, for online control problems, like MPC
and supervisory control, polytopes are preferred to ellipsoids,
as they result in LPs or QPs, which are solved more efficiently
compared to Quadratically Constrained Quadratic Programs
(QCQP) that stem from ellipsoids.

In the presence of bounded disturbances, when the set
of safe states are polytopes, [33] computes inner and outer
approximations of the Maximal RCIS for linear systems.
However, this iterative method suffers from the usual problem
of performing an expensive projection operation in between
iterations, which hinders its applicability in practice.

Ideas similar to ours, in the sense of using finite input
sequences, were explored in the context of MPC [25]. Their
goal is to establish asymptotic stability of a linear system,
whereas we exploit finite input sequences that describe the
proposed control behavior, leading to a closed-form expression
for an implicit representation of controlled invariant sets. Other
popular approaches first close the loop with a linear state-
feedback control law, and then compute an invariant set of
the closed-loop system. Under this umbrella, an idea close to
ours is found in [20], where recurrent sets are computed in the
context of MPC without disturbances. This can be understood
as a special case of our eventually periodic approach.

In a similar spirit, i.e., by restricting to linear state-feedback
control laws, the following works focus on reducing the com-
putational cost and employ iterative procedures to compute
low- or fixed-complexity RCISs and their associated feedback
gains. In [34] low-complexity RCISs are found via SDPs under
norm-bounded uncertainties. More recently, [14], [15] com-
pute low- and fixed-complexity RCISs respectively for systems
with rational parameter dependence. The complexity, i.e., the
number of inequalities of the set, in [15] is twice the number
of states, while [14] is more flexible as the complexity can be
pre-decided. These methods assume the RCIS to be symmetric
around the origin, whereas we make no assumptions on the
RCIS. Arguably, pre-deciding the complexity is valuable for

applications, such as MPC, but it can be very conservative.
Increasing the set complexity to obtain larger sets hinders
performance of said iterative methods. In comparison, we offer
an alternative way to obtain larger sets, by increasing the
transient and/or the period of the eventually periodic input
parameterization. This bears minimal computation impact due
to the derived closed-form expression.

The work of [27] computes larger controlled contractive
sets of specified degree for nominal linear systems by solving
Sum Of Squares (SOS) problems, but requires prior knowledge
of a contractive set. Their scalability is also limited by the
size of the SOS problems and so is its extension to handle
polytopic uncertainty, which significantly increases the SOS
problem size. Again, our method offers improved scalability
along with the ability to increase the size of the computed
set with minimal performance impact, as is backed by our
experiments.

APPENDIX

A. Claims of Theorem 6.6
Proof of Claim 1: Since Sxu contains the origin, we have

W∞×{0} ⊆ Sxu. Since 0 ∈W , it is easy to verify from (3)
and (4) that W k ⊆W∞ for all k ≥ 1. Thus, W k×{0} ⊆ Sxu
for all k ≥ 1. According to (5), if x = 0 and ut = 0 for all
t ≥ 0, the reachable set

(
RΣ

(
x, {ui}t−1

i=0

)
, ut
)

= W t×{0} ⊆
Sxu. Thus, 0 ∈ Cxv,0.

Proof of Claim 2: Recall from (31) that Couter,ν is:

Couter,ν =
{
x ∈ Rn | ∃{ui}ν−1

i=0 ∈ Rmν ,(
RΣ

(
x, {ui}t−1

i=0

)
, ut
)
⊆Sxu, t = 0, . . . , ν − 1,

RΣ

(
x, {ui}ν−1

i=0

)
⊆ Cmax +W∞

}
.

Due to Lemma 6.2, RΣ

(
x, {ui}ν−1

i=0

)
⊆ Cmax + W∞ if and

only if
∑ν−1
i=0 A

ν−1−iBui ∈ Cmax. Based on this observation,
it is easy to verify that Couter,ν = πn(Cxv,max) where
Cxv,max = Cxv,0 ∩ (Rn × U(Cmax)).

Proof of Claim 3: We show that Ĉxv,(τ,λ) =
πn+νm(Cxv,(τ,λ)). Using the matrices H and P as in
(17), the definition of Cxv,(τ, λ), and Lemma 6.2, we write
Cxv,(τ,λ) as:

Cxv,(τ,λ) =
{

(x0, u0:τ+λ−1) | (48)(
RΣ

(
x, {ui}t−1

i=0

)
, ut
)
⊆ Sxu, t = 0, · · · , ν − 1,

(RΣ(
v∑
i=1

Ai−1Buv−i, {uv+i}k−1
i=0 ), uv+k) ∈ Sxu,

k = 0, · · · , τ + λ− 1
}
.

By (48) , the projection πn+νm(Cxv,(τ,λ)) is:

πn+νm(Cxv,(τ,λ)) =
{

(x0, u0:ν−1) | ∃uν:τ+λ−1, (49)(
RΣ

(
x, {ui}t−1

i=0

)
, ut
)
⊆ Sxu, t = 0, · · · , ν − 1,

(RΣ(
ν∑
i=1

Ai−1Buν−i, {uν+i}k−1
i=0 ), uν+k) ∈ Sxu,

k = 0, · · · , τ + λ− 1
}
.
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Again, using the matrices H and P as in (17), by the definition
of Cx,(τ−ν,λ), we have:

Cx,(τ−ν,λ) =
{
x0 ∈ Rn | ∃u0:τ−ν+λ, (50)

(RΣ(x0, {ui}t−1
i=0), ut) ∈ Sxu,

t = 0, · · · , τ + λ− 1
}
.

Comparing the right hand sides of (49) and (50), we have:

πn+νm(Cxv,(τ,λ)) =
{

(x0, u0:ν−1) | (51)(
RΣ

(
x, {ui}t−1

i=0

)
, ut
)
⊆ Sxu, t = 0, · · · , ν − 1,

ν∑
i=1

Ai−1Buν−i ∈ Cx,(τ−ν,λ)

}
.

Note that Cxv,0 and U(Cx,(τ−ν,λ)) respectively impose the first
and second constraints on (x0, u0:ν−1) on the right hand side
of (51). Thus, πn+νm(Cxv,(τ,λ)) is equal to the intersection of
Cxv,0 and U(C)x,(τ−ν,λ). That is:

Ĉxv,(τ,λ) = πn+νm(Cxv,(τ,λ)). (52)

Since (52) implies (42), the third claim is proven.
Proof of Claim 4: We define the k-step null-controllable set

Ck as the set of states of Σ that reach the origin at kth step
under the state-input constraints Sxu:

Ck =
{
x ∈ Rn | ∃u0:k−1 ∈ Rkm, (53)

(RΣ(x, {ui}t−1
i=0), ut) ∈ Sxu, t = 0, · · · , k − 1,

RΣ(x, {ui}k−1
i=0 ) = 0

}
.

Obviously, C0 = {0}. Since Aν = 0 and the fixed point
(0, 0) ∈ Rn × Rm is in the interior of Sxu, there exists an
ε > 0 such that the ε-ball Bε(0) at the origin satisfies that for
u0:ν−1 = 0 ∈ Rνm and for all t ∈ [0, k − 1]:

(RΣ(Bε(0), {ui}t−1
i=0), ut) = (AtBε(0), 0) ⊆ Sxu,

RΣ(x, {ui}ν−1
i=0 = AνBε(0) = 0.

(54)

By (54) and the definition of Ck, Bε(0) is contained by Cν ,
and thus C0 = {0} is contained in the interior of Cν . Then, by
Theorem 1 in [23], since C0 is contained in the interior of Cν ,
there exists τ2 ≥ 0, c2 ∈ [0, 1] and a ∈ [0, 1) such that for all
k ≥ τ2, the Hausdorff distance d(Ck, Cmax) satisfies that:

d(Ck, Cmax) ≤ c2ak. (55)

Furthermore, let k = τ . For any x ∈ Cτ and the corresponding
u0:τ−1 satisfying the constraints on the right hand side of (53),
it is easy to check that (x, u0:τ−1, 0) ∈ Rn × R(τ+λ)m is
contained in Cxv,(τ,λ). Thus, we have for all τ ≥ 0:

Cτ ⊆ Cx,(τ,λ) ⊆ Cmax. (56)

Thus, by (55) and (56), for any τ ≥ τ2, the Hausdorff distance
d(Cx,(τ,λ), Cmax) satisfies:

d(Cx,(τ,λ), Cmax) ≤ c2aτ . (57)

From the properties of Hausdorff distance, (57) implies that:

Cmax ⊆ Cx,(τ,λ) +Bc2aτ (0), (58)

where Bc2aτ (0) is the ball at origin with radius c2aτ . Recall
that Cν contains a ε-ball Bε(0) for some ε > 0. Since Cν ⊆
Cmax, we have (c2a

τ/ε)Cmax ⊇ Bc2aτ (0). Thus, by (58), we
have for any τ ≥ τ2:

Cmax ⊆ Cx,(τ,λ) +
c2a

τ

ε
Cmax. (59)

Select a big enough τ1 such that τ1 ≥ τ2 and c2aτ1 ≤ ε. Then,
by Lemma 6.2 and (59), we have for any τ ≥ τ1:

Cx,(τ,λ) ⊇ (1− c0aτ )Cmax,

where c0 = c2
ε . Thus, the fourth claim is proven.
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