
DOMINO: Domain-Invariant Hyperdimensional

Classification for Multi-Sensor Time Series Data
Junyao Wang†, Luke Chen§, Mohammad Abdullah Al Faruque†§

† Department of Computer Science, University of California, Irvine, CA, United States
§ Department of Electrical Engineering and Computer Science, University of California, Irvine, CA, United States

{junyaow4, panwangc, alfaruqu}@uci.edu

AbstractÐWith the rapid evolution of the Internet of Things,
many real-world applications utilize heterogeneously connected
sensors to capture time-series information. Edge-based machine
learning (ML) methodologies are often employed to analyze
locally collected data. However, a fundamental issue across data-
driven ML approaches is distribution shift. It occurs when a model
is deployed on a data distribution different from what it was
trained on, and can substantially degrade model performance.
Additionally, increasingly sophisticated deep neural networks
(DNNs) have been proposed to capture spatial and temporal
dependencies in multi-sensor time series data, requiring intensive
computational resources beyond the capacity of today’s edge de-
vices. While brain-inspired hyperdimensional computing (HDC)
has been introduced as a lightweight solution for edge-based
learning, existing HDCs are also vulnerable to the distribution
shift challenge. In this paper, we propose DOMINO, a novel HDC
learning framework addressing the distribution shift problem in
noisy multi-sensor time-series data. DOMINO leverages efficient
and parallel matrix operations on high-dimensional space to
dynamically identify and filter out domain-variant dimensions.
Our evaluation on a wide range of multi-sensor time series
classification tasks shows that DOMINO achieves on average
2.04% higher accuracy than state-of-the-art (SOTA) DNN-based
domain generalization techniques, and delivers 16.34× faster
training and 2.89× faster inference. More importantly, DOMINO

exhibits notably better performance when learning from partially
labeled data and highly imbalanced data, and provides 10.93×
higher robustness against hardware noises than SOTA DNNs.

I. INTRODUCTION

The Internet of Things (IoT) has become an emerging

trend for its extraordinary potential to connect heterogeneous

devices and enable them with new capabilities [1]. Many real-

world IoT applications utilize multiple sensors to collect infor-

mation over the course of time, constituting multi-sensor time

series data [2]±[4]. These applications often leverage edge-

based machine learning (ML) algorithms to analyze locally

collected data and perform various learning tasks. However,

a critical issue across data-driven ML approaches, including

deep neural networks (DNNs), is distribution shift. In partic-

ular, the excellent performance of these ML algorithms relies

heavily on the critical assumption that the training and infer-

ence data are independently and identically distributed (i.i.d.);

i.e., they come from the same distribution [5]. Unfortunately,

this assumption can be easily violated in real-world scenarios

and have shown to substantially degrade model performance

in many embedded ML applications, where instances from un-

seen domains not fitting the distribution of the training data are

inevitable [6]±[8]. For instance, in the field of mobile health,

(a) Model of Brain Cerebellum Cortex

Human Brain HD Computing⋯⋯ ⋯

Injury Degenerate Regenerate

Neuron Regeneration

Neuron

(b) An Overview of HDC Classification

Test Data

Train Data Training

Query

En
co

di
ng

HDC Model

Prediction

Similarity

Fig. 1. An Overview of Brain Cerebellum Cortex and HDC Classification

models can systematically fail when tested on patients from

different hospitals or people from diverse demographics [9].

A number of innovative domain generalization (DG) tech-

niques have been proposed for deep learning (DL) [10], [11].

However, due to their weak notion of memorization, these DL

approaches often fail to perform well on noisy multi-sensor

time series data with spatial and temporal dependencies [12].

Recurrent neural networks (RNNs), e.g., long short-term mem-

ory (LSTM), have recently been proposed to address this

issue [13]±[15]. Nevertheless, these models are notably com-

plicated and inefficient to train, and their intricate architectures

require substantial off-chip memory and computational power

to iteratively refine millions of parameters over multiple time

periods [15]. Such resource-intensive requirements can be im-

practical for less powerful computing platforms. Considering

the massive amount of information nowadays, the power and

memory limitations of embedded devices, and the potential

instabilities of IoT systems, a more lightweight, efficient, and

scalable learning framework to combat the distribution shift

issue in multi-sensor time series data are of critical need.

In contrast to traditional AI methodologies, brain-inspired

Hyperdimensional Computing (HDC) incorporates learning

capability along with typical memory functions of stor-

ing/loading information, and hence brings unique advantages

in dealing with time-series data [16]. Additionally, HDC pro-

vides a powerful learning solution for today’s edge platforms

by providing notably fast convergence, high computational ef-

ficiency, ultra-robustness against noises, and lightweight hard-

ware implementation [17]±[19]. As demonstrated in Fig. 1(a),

HDC is motivated by the neuroscience observation that the

cerebellum cortex in human brains effortlessly and efficiently

process memory, perception, and cognition information with-

out much concern for noisy or broken neuron cells. Closely

mimicking the information representation and functionalities

of human brains, HDC encodes low-dimensional inputs to

20
23

 IE
EE

/A
CM

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

om
pu

te
r A

id
ed

 D
es

ig
n

(IC
CA

D)
 |

 9
79

-8
-3

50
3-

22
25

-5
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
OI

: 1
0.

11
09

/IC
CA

D5
73

90
.2

02
3.

10
32

38
48

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 19,2023 at 04:31:58 UTC from IEEE Xplore. Restrictions apply.

0

30

60

90

0.5k 1k 2k 4k 6k

Ac
cu

ra
cy

 (%
)

Dimensions

zzzzzzz
LODO

Standard k-fold

0

30

60

90

10 20 30 40 50

Ac
cu

ra
cy

 (%
)

Iterations

Fig. 2. Comparison of the Accuracy of LODO CV and Standard k-fold CV

hypervectors with thousands of elements to perform various

learning tasks [19] as shown in Fig. 1(b). HDC then conducts

highly parallel and well-trackable operations, and has been

proven to achieve high-quality results in various learning tasks

with comparable accuracy to SOTA DNNs [18]±[20].

Unfortunately, existing HDCs are not immune to the distri-

bution shift issue. As shown in Fig. 2, SOTA HDCs converge

at notably lower accuracy in leave-one-domain-out (LODO)

cross-validation (CV) than in standard k-fold CV regardless of

training iteration and model complexity. LODO CV involves

training a model on all the available data except for one

domain that is left out for inference, while standard k-fold

CV randomly divides all data into k subsets with k − 1
subsets for training and the remaining one for inference.

Such performance degradation indicates a very limited gen-

eralization capability of existing HDCs. However, standard

k-fold CV does not reflect the real-world distribution shift

problem, as the random sampling process introduces data

leakage that enables the training data to include information

from all the domains. The accuracy from the standard k-fold

CV is thus often considerably higher than that in real-world

scenarios. In contrast, with constant dynamic regeneration of

cerebral neurons shown in Fig. 1(a), humans are capable of

effectively identifying and recalling attributes shared across

different domains, and naturally filtering out information that

is too specific and biased towards a single domain. Humans

then utilize this shared knowledge to infer instances from

novel domains. While the goal of HDC is to exploit the high-

dimensionality of randomly generated vectors to represent

information mimicking a pattern of neural activity, it remains

challenging for existing HDCs to support a similar behavior.

In this paper, we propose DOMINO, a novel HDC domain

generalization (DG) algorithm for multi-sensor time series

classification. DOMINO effectively eliminates dimensions rep-

resenting domain-variant information to enhance model gen-

eralization capability. Our main contributions are listed below:

• To the best of our knowledge, DOMINO is the first HDC-

based DG algorithm. By dynamically identifying and re-

generating domain-variant dimensions, DOMINO achieves

on average 2.04% higher accuracy than SOTA DL-based

techniques with 16.34× faster training and 2.89× faster

inference, ensuring accurate and timely performance for DG.

• DOMINO achieves up to 5.81% higher accuracy than SOTA

DNNs in scenarios with a significantly limited amount

of labeled data and on average 2.58% higher accuracy

when learning from highly imbalanced data across different

domains. Additionally, DOMINO exhibits 10.93× higher

robustness against hardware noise than SOTA DNNs.

• We propose hardware-aware optimizations for DOMINO’s

implementation, and evaluated it across multiple embedded

hardware devices including Raspberry Pi and NVIDIA Jet-

son Nano. DOMINO exhibits considerably lower inference

latency and energy consumption than DL-based approaches.

II. METHODOLOGY

The goal of DOMINO is to effectively leverage the informa-

tion learned from each training iteration to identify and filter

out domain-variant dimensions, thereby enhancing the general-

ization capability of our model. As shown in Fig. 3, DOMINO

starts with encoding multi-sensor time series data samples

into high-dimensional space (A). DOMINO then conducts

two innovative steps, domain-specific modeling and domain

generalization, to enable its encoding module and randomly-

generated base vectors with awareness of the relevance of each

dimension to the domains. In each iteration of domain-specific

modeling, DOMINO exploits an efficient and parallel hyper-

dimensional learning algorithm to construct domain-specific

hyperdimensional models (D). In domain generalization, we

utilize domain-specific models to form class-specific matrices

(E), and then identify and filter out dimensions that represent

domain-variant information(F). To mitigate the performance

degradation caused by eliminating dimensions, we replace

these dimensions with randomly generated hypervectors and

retrain them. Note that all these operations can be done in a

highly parallel matrix-wise way, as multiple training samples

can be grouped into a matrix of row hypervectors.

A. HDC Preliminaries

Inspired by the high-dimensional information representation

in human brains, HDC maps inputs onto hyperdimensional

space as hypervectors (A), each of which contains thousands

of elements. One unique property of the hyperdimensional

space is the existence of a large number of nearly orthog-

onal hypervectors, enabling highly parallel operations such

as similarity calculations, bundlings, and bindings. Mathe-

matically, consider random bipolar hypervectors H1 and H2

with dimension D, i.e., H1,H2 ∈ {−1, 1}D, when D is

large enough, the dot product H1 · H2 ≈ 0. Similarity:

calculation of the distance between the query hypervector

and the class hypervector (noted as δ(·, ·)). For real-valued

hypervectors, a common measure is cosine similarity. For

bipolar hypervectors, it is simplified to the Hamming distance.

Bundling (+): element-wise addition of multiple hypervectors,

e.g., Hbundle = H1 +H2, generating a hypervector with the

same dimension as inputs. In high-dimensional space, bundling

works as a memory operation and provides an easy way

to check the existence of a query hypervector in a bundled

set. In the previous example, δ(Hbundle,H1) ≫ 0 while

δ(Hbundle,H3) ≈ 0 (H3 ̸= H1,H2). Binding (*): element-

wise multiplication associating two hypervectors to create

another near-orthogonal hypervector, i.e. Hbind = H1 ∗ H2

where δ(Hbind,H1) ≈ 0 and δ(Hbind,H2) ≈ 0. Due to

reversibility, in bipolar cases, Hbind ∗ H1 = H2, information

from both hypervectors can be preserved. Binding models how

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 19,2023 at 04:31:58 UTC from IEEE Xplore. Restrictions apply.

M
od

el

En
se

m
bl

e

Inference
Data

Train Data

Time Series Encoding
 Dynamic Representation

Base Vectors⋯
HDC Modeling Similarity

cosine

𝜹 𝒎𝒂𝒙

Label

𝜹𝟏𝜹𝟐𝜹𝓷⋯
⋯

Domain-Specific Modeling Domain Generalization

D
im

en
si

on

R
eg

en
er

at
io

nG

CA

B

I

K

L

M

dim1 dim2 dim3 dim 𝓓𝚺Varia
nc

e

Domain-Variant
Filter F

⋯⋯
𝓡Class-Specific Matrix 𝜸

Variance

E

⋯𝓣𝟏𝓣𝟐𝓣𝓷 ⋯𝝈𝓓 𝝈𝟐 𝝈𝟏
⋯⋯𝓒𝒌𝜸𝓓 𝓒𝒌𝜸𝟐 𝓒𝒌𝜸𝟏

⋯𝓒𝟐𝜸𝓓 𝓒𝟐𝜸𝟐 𝓒𝟐𝜸𝟏⋯ 𝓒𝟏𝜸𝟐 𝓒𝟏𝜸𝟐

𝓖𝟏
𝓖𝒌⋯𝓖𝟐

Domains

sorting

J

zzz⋯𝓒𝟐𝓓 ⋯ 𝓒𝟐𝟐 𝓒𝟐𝟏𝓒𝟏𝓓 𝓒𝟏𝟐⋯ 𝓒𝟏𝟏
𝓒𝓷𝓓 𝓒𝓷𝟐⋯ 𝓒𝓷𝟏

Domain-Invariant

Tr
ai

ne
d

M
od

el

𝓺𝓓 𝓺𝟐 𝓺𝟏

𝓒𝟏𝜸𝓓
N

or
m

al
iz

at
io

nSimilarity

⋯

B
at

ch
 D

at
a

Label

⋯
C

on
fid

en
ce

𝟏−𝜹
×𝓗

Model Update

cosine𝜹𝟏𝜹𝟐𝜹𝓷
DH

⋯𝓜𝟏𝓜𝟐
𝓜𝒌

Models𝓱𝓓 𝓱𝟐 𝓱𝟏
⋯⋯𝓒𝝀𝟐𝓓𝓒𝝀𝓷𝓓 𝓒𝝀𝓷𝟐 𝓒𝝀𝟐𝟏𝓒𝝀𝓷𝟏⋯⋯𝓒𝝀𝟏𝓓 𝓒𝝀𝟐𝟐⋯ 𝓒𝝀𝟏𝟏𝓒𝝀𝟏𝟐

Fig. 3. An Overview of DOMINO Workflow

T

𝓗𝒕𝟑ᇱ
𝓗𝒕𝟏ᇱ

Sampling Windows Vector Quantization Temporally Sorted Spatially Integrated

𝝆𝓗𝒕𝟐
𝝆𝝆𝓗𝒕𝟏
𝓗𝒕𝟑

𝓗𝒕𝟐𝓗𝒕𝟏
𝝆𝝆𝓗𝒕𝟏ᇱ𝝆𝓗𝒕𝟐ᇱ𝓗𝒕𝟑ᇱ

Sensor I

𝒕𝟏 𝒕𝟐 𝒕𝟑
𝓨𝒕𝟐𝓨𝒕𝟑𝓨𝒕𝟏

Sensor II

𝒕𝟏 𝒕𝟐 𝒕𝟑𝓨′𝒕𝟐𝓨′𝒕𝟑𝓨′𝒕𝟏
T

+
𝓢 𝓗∗
𝓢′ 𝓗′∗

𝓗𝒕𝟑
max

min

𝓗𝒕𝟐ᇱ
max

min

Fig. 4. HDC Encoding Technique for Multi-Sensor Time Series Data

human brains connect input information. Permutation (ρ): a

single circular shift of a hypervector by moving the value of

the final dimension to the first dimension and shifting all other

values to their next dimension. It generates a permuted hyper-

vector that is nearly orthogonal to its original hypervector,

i.e., δ(ρH,H) ≈ 0. Permutation models how human brains

handle sequential information. Inference: The inference of

HDC consists of two steps: (i) encode (A) inference data with

the same encoder in training to generate a query hypervector

Q (K), and (ii) calculate the distance or similarity between

Q and each class hypervector (L). Q is then classified to the

class where it achieves the highest similarity(M).

B. Encoding of Multi-Sensor Time Series

To capture the temporal and spatial dependencies in multi-

sensor time series data, we employ the encoding techniques

demonstrated in Fig. 4. We sample time series data in n-

gram windows; in each sample window, the signal values (y-

axis) store the information and the time (x-axis) represents

the temporal sequence. We first assign random hypervectors

Hmax and Hmin to represent the maximum and minimum

signal values, i.e., ymax and ymin. We then perform vector

quantization to values between ymax and ymin to generate

vectors that have a spectrum of similarity to Hmax and Hmin.

As shown in Fig. 4, Sensor I and Sensor II follow a time series

in trigram. Sensor I has the maximum value at t2 and the

minimum value at t1, and hence we assign randomly generated

hypervectors Ht2 and Ht1 to yt2 and yt1 . Similarly, we assign

randomly generated hypervectors H′
t1

and H′
t2

to y′t1 and y′t2
in Sensor II. We then assign hypervectors to yt3 in Sensor I

and value at y′t3 in Sensor II through vector quantization, i.e.,

Ht3 = Ht1 +
yt3 − yt1
yt2 − yt1

· (Ht2 −Ht1)

H′
t3

= H′
t2
+

y′t3 − y′t2
y′t1 − y′t2

· (H′
t1
−H′

t2
).

We then represent the temporal sequence of data samples

utilizing permutations as explained in section II-A. In Fig. 4,

for Sensor I and Sensor II, we perform rotation shift (ρ) twice

to Ht1 and H′
t1

, once to Ht2 and H′
t2

, and keep Ht3 and H′
t3

the same. We bind data samples in one sampling widow by cal-

culating H = ρρHt1∗ρHt2∗Ht3 and H′ = ρρH′
t1
∗ρH′

t2
∗H′

t3
.

Finally, to integrate data from multiple sensors, we generate

a random signature hypervector for each sensor and bind

information as S1 ∗H1 + S2 ∗H2 + . . .+ Sn ∗Hn, where Si

denote the signature hypervector for Sensor i, and Hi denote

the data from sensor i. In Fig. 4, we combine information

from Sensor I and Sensor II by randomly generating sigature

hypervectors S and S ′ and calculating S ∗ H+ S ′ ∗ H′.

C. Domain-Specific Modeling

As demonstrated in Fig. 3, after mapping training data

samples to high-dimensional space (A) utilizing the time-

series encoding technique in section II-B, DOMINO separates

training data into k subsets (k = the number of domains)

based on their domains (B).We then exploit an efficient and

lightweight hyperdimensional learning algorithm to generate

a domain-specific model for each domain (D). Our approach

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 19,2023 at 04:31:58 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Domain-Specific Modeling

Input: N encoded training samples H1,H2, . . . ,HN with n
classes and k domains, domains for training data G1,G2, . . . ,Gk,
label of each data sample L1,L2, . . . ,LN , learning rate η.

Output: k domain-specific models M1,M2, . . . ,Mk after one
training iteration.

1: for each λ ∈ [1, k] do
2: Initialize a domain-specific modelMλ consisting of one class

hypervectors for each class Mλ = {C1λ, C
2

λ, . . . , C
n
λ}

3: for each Hi ∈ {H1,H2, . . . ,HN } do
4: if domain(Hi) = Gλ then
5: Cmax = argmaxCt

λ

{δ(Hi, C
1

λ), . . . , δ(Hi, C
n
λ)}

6: if Li = Cmax then
7: continue
8: else if Li ̸= Cmax ∧ Li = C

j

λ then
9: Cmax ← Cmax − η · [1− δ(Hi, Cmax)]×Hi

10: Cjλ ← C
j

λ + η · [1− δ(Hi, C
j

λ)]×Hi

11: Mλ = Normalize(Mλ)

12: return M1,M2, . . . ,Mk

aims to provide accurate classification performance by identi-

fying common patterns during training and eliminating model

saturations. As shwon in Algorithm 1, we bundle encoded data

points by scaling a proper weight to each of them depending

on how much new information is added to class hypervectors.

For each domain Gλ(1 ≤ λ ≤ k), a new encoded training

sample H updates the domain-specific model Mλ based on

its cosine similarities with all class hypervectors (line 5), i.e.,

δ(H, Ct
λ) =

H · Ct
λ

∥H∥ · ∥Ct
λ∥

=
H

∥H∥
·

Ct
λ

∥Ct
λ∥

∝ H · Normalize(Ct
λ)

where H · Ct
λ(1 ≤ t ≤ n) is the dot product between H

and a class hypervector Ct
λ representing class t of domain Gλ.

Here ∥H∥ is a constant factor when comparing a query with

all classes and thus can be eliminated. The cosine similarity

calculation can hence be simplified to a dot product operation

between H and the normalized class hypervector. If the pre-

diction matches the expected output, no update will be made

to prevent overfitting. If H has the highest cosine similarity

with class Cmax while its true label matches Cj
λ (line 8), the

model updates following lines 9 - 10. A large δ(H, ·) indicates

the input data point is marginally mismatched or already exists

in the model, and the model is updated by adding a very small

portion of the encoded query (1 − δ(H, ·) ≈ 0). In contrast,

a small δ(H, ·), indicating a noticeably new pattern that is

uncommon or does not already exist in the model, updates

the model with a large factor (1 − δ(H, ·) ≈ 1). We then

normalize each dimension in every model at the end of our

algorithm (line 11). Our learning algorithm provides a higher

chance for non-common patterns to be properly included in

the model, and effectively reduces computationally-expensive

retraining iterations required to achieve reasonable accuracy.

D. Domain Generalization

In each training iteration, after applying the hyperdimen-

sional learning algorithm, DOMINO utilizes partially trained

models to calculate the relevance of each dimension to do-

mains and filter-out dimensions representing domain-variant

Algorithm 2 Domain Generalization

Input: k domain-specific models {M1,M2, . . . ,Mk} each with
size n×D, regeneration rate R.

Output: Domain-variant dimensions U to drop.
1: Initialize n empty matrices T1, T2, . . . , Tn, each with size k×D.
2: for each Tγ ∈ {T1, T2, . . . , Tn} do
3: for each Mλ ∈ {M1,M2, . . . ,Mk} do
4: Tγ [λ, :] =Mλ[γ, :] ▷ Form n class-specific matrices

5: σγ = Variance(Tγ , columnwise) ▷ dim(σγ) = 1×D

6: V =
∑n

i=1
σi

7: U = argsort(V)
[

⌊(1−R) · D⌋ : D
]

▷ R of dimensions with
largest variance

8: return U

Domain 1 Domain 2 Domain k𝓒𝟏𝟏𝓒𝟏𝟐 𝓒𝟐𝟏𝓒𝟐𝟐 𝓒𝒌𝟏𝓒𝒌𝟐
Domain-Specific Model (𝓜)

𝓒𝟏𝒏⋯ 𝓒𝟐𝒏⋯ 𝓒𝒌𝒏⋯
Class 1 Class 2 Class n

Class-Specific Matrix (𝓣)

⋯ ⋯ ⋯𝓒𝟏𝟏𝓒𝟐𝟏𝓒𝒌𝟏
𝓒𝟏𝟐𝓒𝟐𝟐𝓒𝒌𝟐

𝓒𝟏𝒏𝓒𝟐𝒏𝓒𝒌𝒏
Fig. 5. Extracting Class Hypervectors From k Domain-Specific Models to
Contruct n Class-Specific Matricies. Each Class Hypervector is in size 1×D

information. As demonstrated in Fig. 3, our domain gen-

eralization consists of three parts: class-specific aggregation

(E), domain-variant filter (F), and model ensemble (I).

In class-specific aggregation, we extract class hypervectors

from each domain-specific model obtained in section II-C

to construct class-specific matrices. In domain-variant filter,

DOMINO identifies and regenerates domain-variant dimen-

sions to enhance the generalization capability of our model. In

model ensemble, we combine multiple domain-specific models

into a single model to form the domain-invariant HDC model.

Class-Specific Aggregation: As demonstrated in Algorithm

2, for each class, we extract the class hypervector from each

domain-specific model representing that class to form a class-

specific matrix (line 4). As shown in Fig. 5, we denote Ct
λ as

the class hypervector of class t (1 ≤ t ≤ n) in the domain-

specific model Mλ (1 ≤ λ ≤ k), where k and n represent the

number of domains and the number of classes, respectively.

Then, for instance, to construct the class-specific matrix for

class 1, we extract C1

1
from M1, C1

2
from M2, . . . , and C1

k

from Mk. Note that we obtain k domain-specific models each

with size n×D (Algorithm 2 line 3), where D denote the the

dimensionality of our HDC models. Hence, here we construct

n class-specific matrices (line 2), each with size k ×D.

Domain-Variant Filter: HDC algorithms represent each

class with a hypervector that encodes the patterns of that class.

Dimensions with very different values indicate that they store

differentiated patterns, while dimensions with similar values

indicate they store common information across classes. Hence,

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 19,2023 at 04:31:58 UTC from IEEE Xplore. Restrictions apply.

as detailed in Algorithm 2, for each class-specific matrix,

we calculate the variance of each dimension to measure its

dispersion (line 5). Dimensions with large variance indicate

that, for the same class, these dimensions store very differen-

tiated information, and are hence considered domain-variant.

We sum up the variance vector of each class-specific matrix

to obtain V , an 1×D vector representing the overall relevance

of each dimension to domains (line 6). We then select the top

R portion of dimensions with the highest variance, where R
denote the regeneration rate, and filter them out from the model

(line 7). To mitigate the performance degradation caused by

eliminating dimensions from models, we replace them with

new randomly-generated dimensions and retrain them (Fig.

3 G , H). Considering the non-linear relationship between

features, we utilize an encoding method inspired by the Radial

Basis Function (RBF) [21]. Mathematically, for an input vector

in original space F = {f1, f2, . . . , fn}(fi ∈ R), we generate

the corresponding hypervector H = {h1, h2, . . . , hD}(0 ≤
hi ≤ 1, hi ∈ R) with D(D ≫ n) dimensions by calculating

a dot product of F with a randomly generated vector as

hi = cos(Bi ·F+c)×sin(Bi ·F), where Bi = {b1, b2, . . . , bn}
is a randomly generated base vector with bi ∼ Gaussian(µ =
0, σ = 1) and c ∼ Uniform[0, 2π]. DOMINO replaces each

base vector of the selected dimensions in the encoding module

with another randomly generated vector from the Gaussian

distribution, and retrains the current domain-specific models.

Instead of training from scratch, DOMINO only updates values

of class hypervectors on the dropped dimensions while other

dimensions continue learning based on their existing values.

Model Ensemble: After filtering out and regenerating

domain-variant dimensions, we assemble all the domain-

specific models to build a general domain-invariant model.

We construct this model based on domain-specific models and

the weight of each domain. For each domain λ ∈ [0, k] (k

= number of domains), we calculate the proportion of the

data from domain λ as Pλ = Nλ

Ntotal

, where Nλ denote the

number of data samples from domain λ and Ntotal denote the

total number of training samples. We then ensemble domain-

specific models M1,M2, . . . ,Mk into a general domain-

invariant model M by computing M = P1 ·M1+P2 ·M2+
. . .+Pk ·Mk. Note that M and each Mλ are of size n×D.

E. Hardware Optimizations

Edge-based ML applications often involve strict latency and

performance requirements. We apply the following hardware-

aware optimizations into the implementation of our proposed

DOMINO to maximize its performance and robustness:

• Multithreading. DOMINO involves several implicit parallel

processing opportunities. We utlizes multi-threads to paral-

lelize operations including random basis generation, basis

regeneration, encoding, and vector normalization.

• Tiled matrix multiplication. Several steps in DOMINO are

naturally matrix operations, e.g., encoding and cosine sim-

ilarity. We tile matrix operations with memory hierarchy in

mind to optimize for the best local memory locality.

TABLE I
DETAILED BREAKDOWNS OF DATASETS(N : NUMBER OF DATA SAMPLES)

DSADS [22] USC-HAD [23] PAMAP2 [24]

Domains N Domains N Domains N

Domain 1 2,280 Domain 1 8,945 Domain 1 5,636
Domain 2 2,280 Domain 2 8,754 Domain 2 5,591
Domain 3 2,280 Domain 3 8,534 Domain 3 5,806
Domain 4 2,280 Domain 4 8,867 Domain 4 5,660

Domain 5 8,274

Total 9,120 Total 43,374 Total 22,693

• Kernel fusion. We create custom kernels to fuse original

kernels to reduce kernel invocation overheads.

• Quantization. DOMINO supports custom bitwidth to lever-

age low-bitwidth functional units on hardware platforms to

further improve computational efficiency.

III. EVALUATION

Taking human activity recognition as the application use-

case, we evaluate DOMINO on widely-used multi-sensor time

series datasets DSADS [22], USC-HAD [23], PAMAP2 [24].

Domains are defined by subject grouping chosen based on sub-

ject ID from low to high. The data size of each domain in each

dataset is demonstrated in TABLE I. We compare DOMINO

with (i) two SOTA CNN-based domain generalization (DG)

algorithms: Representation Self-Challenging (RSC) [25] and

AND-mask [26], and (ii) SOTA HDC without domain gen-

eralization capability [27] (BaselineHD). Our evaluations in-

clude leave-one-domain-out (LODO) performance, learning

efficiency on both server CPU and resource-constrained de-

vices, and robustness against hardware noises. The CNN-

based DG algorithms are trained with TensorFlow, and we

utilize the common practice of grid search to identify the best

hyper-parameters for each model. The results of BaselineHD

are reported in two dimensionality: (i) Physical dimensional-

ity (D = 0.5k) of DOMINO, a compressed dimensionality

designed for resource-constrained computing platforms, (ii)

Effective dimensionality (D∗ = 4k), defined as the sum of the

physical dimensions (D) of DOMINO with all the regenerated

dimensions throughout the retraining iterations. Mathemati-

cally, D∗ = D+D×R×Number of Iterations, where R is the

regeneration rate. We also explore the hyperparameter design

space of DOMINO to identify optimal hyperparameters.

A. Experimental Setup

To evaluate the performance of DOMINO on both high-

performance computing environments and resource-limited

devices, we include results from the following platforms:

• Server CPU: Intel Xeon Silver 4310 CPU (12-core, 24-

thread, 2.10 GHz), 96 GB DDR4 memory, Ubuntu 20.04,

Python 3.8.10, PyTorch 1.12.1, TDP 120 W.

• Embedded CPU: Raspberry Pi 3 Model 3+ (quad-core

ARM A53 @1.4GHz), 1 GB LPDDR2 memory, Debian 11,

Python 3.9.2, PyTorch 1.13.1, TDP 5 W.

• Embedded GPU: Jetson Nano (quad-core ARM A57 @1.43

GHz, 128-core Maxwell GPU), 4 GB LPDDR4 memory,

Python 3.8.10, PyTorch 1.13.0, CUDA 10.2, TDP 10 W.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 19,2023 at 04:31:58 UTC from IEEE Xplore. Restrictions apply.

45

60

75

90

Domain 1 Domain 2 Domain 3 Domain 4 Domain 5

Ac
cu

ra
cy

 (%
)

Average

BaselineHD (D*=4k) DOMINO (D=0.5k, this work)
RSC AND-mask BaselineHD (D=0.5k)

50

75

100

Domain 1 Domain 2 Domain 3 Domain 4

Ac
cu

ra
cy

 (%
)

Average

DSADS

USCHAD

45

60

75

90

Domain 1 Domain 2 Domain 3 Domain 4

Ac
cu

ra
cy

 (%
)

Average

PAMAP2

Fig. 6. LODO Accuracy of DOMINO and CNN-based Approaches

B. Data Preprocessing

We describe the data processing steps for each dataset

primarily focusing on data segmentation and domain labeling.

For specific details, please refer to their respective papers.

DSADS [22]: The Daily and Sports Activities Dataset

includes 19 activities performed by eight subjects. Each data

segment is a non-overlapping five-second window sampled at

25Hz. Four domains are formed with two subjects each.

USC-HAD [23]: The USC human activity dataset includes

12 activities performed by 14 subjects. Each data segment is

a 1.26-second window sampled at 100Hz with 50% overlap.

Five domains are formed with three subjects each.

PAMAP2 [24]: The Physical Activity Monitoring dataset

includes 18 activities performed by nine subjects. Each data

segment is a 1.27-second window sampled at 100Hz with 50%

overlap. Four domains, excluding subject nine, are formed with

two subjects each. We also removed invalid and irrelevant data

as suggested by the authors. Lastly, we only retain common

activity labels (1, 2, 3, 4. 12, 13, 16, and 17).

C. Accuracy

The accuracy of the LODO classification is shown in Fig. 6.

The accuracy of Domain i means that the model is trained with

data from all other domains and tested on data from Domain i.

This accuracy score indicates the generalization capability of

a trained model to data from unseen distributions. DOMINO

outperforms SOTA CNN-based DG approaches by achieving

on average 0.96% higher accuracy than RSC and 2.04% higher

accuracy than AND-mask. DOMINO also exhibits 11.70%
higher accuracy than BaselineHD (D∗ = 4k) and 15.93%

60

70

80

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ac
cu

ra
cy

 (%
)

Percentage of Training Data

Constantly achieves
the highest accuracy

DOMINO (this work)

RSC

AND-mask
Accuracy
decreases
sharply

80

75

70

Fig. 7. Comparing Performance on Partial Training Data

RSC AND-mask
DOMINO (D=0.5k, this work)BaselineHD (D*=4k)

Average
30

45

60

75

Setting 1 Setting 2 Setting 3 Setting 4

Ac
cu

ra
cy

 (%
)

Fig. 8. Comparing Performance on Imbalanced Training Data

higher accuracy than BaselineHD (D = 0.5k). This shows

DOMINO effectively filters out domain-variant dimensions

and thereby improves model generalization capabilities. Addi-

tionally, with the informative time series encoding technique

and our dynamic regenerating method, DOMINO delivers

reasonable accuracy with notably lower dimensionalities.

Accuracy with Partial Training Data: In practical imple-

mentation, edge-based ML applications frequently encounter

scenarios wherein only a limited portion of data is labeled. We

exhibit the performance of DOMINO with decreasing amounts

of labeled data on the dataset DSADS. We randomly sample

a portion (ranging from 10% to 90%) of training data from all

the domains except Domain 5 for training, and evaluate our

model by using data from Domain 5 for inference. As shown in

Fig. 7, with the decreasing of data size, the learning accuracy

of SOTA CNN-based DG algorithms decreases sharply while

DOMINO is capable of constantly delivering significantly

better performance. In particular, when we only use 10% of the

training data, DOMINO demonstrates 5.81% higher accuracy

than AND-mask and 4.90% high accuracy than RSC.

Accuracy with Imbalanced Training Data: Imbalanced

training data, where certain domains contribute a dispropor-

tionately larger portion of the data while other domains are

represented by considerably smaller amounts, often severely

degrades model performance. We evaluate the performance

of DOMINO when learning from highly imbalanced training

data using the dataset USC-HAD as demonstrated in Fig. 8.

In Setting γ(1 ≤ γ ≤ 4), we construct the training data

by randomly sampling 70% of the data from Domain γ and

the remaining 30% from all other domains except Domain 5.

We evaluate our trained model by using data from Domain 5

for inference. DOMINO outperforms SOTA CNN-based DG

approaches by exhibiting on average 1.18% and 2.58% higher

accuracy than RSC and AND-mask, respectively.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 19,2023 at 04:31:58 UTC from IEEE Xplore. Restrictions apply.

10

100

1000

10000

DASAD UCSHAD PAMAP2

Tr
ai

ni
ng

 T
im

e
(s

)

0.1

1

10

DASAD UCSHAD PAMAP2

In
fe

re
nc

e
La

te
nc

y
(s

)

RSC AND-mask
DOMINO (D=0.5k, this work)BaselineHD (D*=4k)

(a) Efficiency of DOMINO and CNN-based approaches on Server CPU

1

10

100

1000

Raspberry Pi Jetson Nano

En
er

gy

C
on

su
m

pt
io

n
(J

)

1

10

100

Raspberry Pi Jetson Nano

In
fe

re
nc

e
La

te
nc

y
(s

)

(b) Efficiency of DOMINO and CNN-based approaches on Embedded Platforms

Fig. 9. (log scale) Comparing Efficiency on Server GPU and Edge Platforms

D. Efficiency

Efficiency on Server CPU: For fairness, we compare

the learning efficiency of DOMINO with RSC, AND-mask,

and BaselineHD (D = 4k) on the server CPU. For each

dataset, each domain consists of roughly similar amounts of

data as detailed in TABLE I; thus, we show the average

runtime of training and inference for all the domains. As

demonstrated in Fig. 9(a), DOMINO exhibits 16.34× faster

training than RSC and 14.17× faster training than AND-

mask. Additionally, DOMINO delivers 2.89× faster inference

than RSC and 1.97× faster inference than AND-mask. Such

notable higher learning efficiency is thanks to the highly

parallel matrix operations on high-dimensional space and the

notably faster convergence of HDC. Compared to BaselineHD

(D∗ = 4k), DOMINO delivers considerably higher accuracy

without sacrificing much training efficiency as shown in Fig.

6 and Fig. 9. DOMINO also achieves 1.93× faster inference

than BaselineHD (D∗ = 4k) since it requires considerably

lower physical dimensionality (D) and thereby reduces large

amounts of unnecessary computations.

Efficiency on Embedded CPU and GPU: To further under-

stand the performance of DOMINO on resource-constrained

platforms, we evaluate the efficiency of DOMINO, RSC, and

AND-mask using a Raspberry Pi 3 Model B+ board and an

NVIDIA Jetson Nano board. Both platforms have very limited

memory and CPU cores (and GPU cores for Jetson Nano). Fig.

9(b) shows the average inference latency for each algorithm

processing each domain in the DSADS dataset. DOMINO out-

performs CNN-based DG algorithms by providing speedups

19.79× compared to RSC and 15.31× compared to AND-

mask on Raspberry Pi. DOMINO also delivers 58.44× faster

inference than RSC and 10.49× faster inference than AND-

mask on Jetson Nano. Additionally, DOMINO exhibits signif-

icantly less energy consumption, indicating that DOMINO can

run efficiently on energy-constrained platforms.

RSC AND-mask DOMINO (D=0.5k, this work)

10

100

1000

0.1 0.3 0.5 0.7 0.9

Tr
ai

ni
ng

 T
im

e
(s

)

Percentage of Training Data

0.1

1

10

0.1 0.3 0.5 0.7 0.9

In
fe

re
nc

e
La

te
nc

y
(s

)

Percentage of Inference Data

𝟏𝟎𝟓
𝟏𝟎𝟑
𝟏𝟎

𝟏𝟎𝟎
𝟏𝟎ି𝟏

𝟏𝟎

Fig. 10. Comparing Scalability Using Different Size of Data

1.0% 2.0% 5.0% 10.0% 15.0%
2.1% 7.3% 11.2% 20.4% 29.7%
2.9% 8.7% 13.8% 28.1% 35.2%

1 bit 0.0% 0.0% 1.0% 3.1% 4.1%
2 bits 0.0% 0.5% 1.6% 4.8% 8.0%
4 bits 0.2% 1.0% 2.9% 7.4% 11.7%
8 bits 1.4% 3.6% 5.1% 12.8% 17.6%

Hardware Error

AND-mask
RSC

D
O

M
IN

O

Fig. 11. Comparing Quality Loss Under Hardware Errors

E. Data Size Scalability

We exhibit the scalability of DOMINO and SOTA CNN-

based DG approaches using various training data sizes (per-

centages of the full dataset). As shown in Fig. 10, with the

increasing size of the training dataset, DOMINO is capable of

maintaining high efficiency in both training and inference with

a sub-linear growth in execution time. In contrast, the training

and inference time of CNN-based algorithms increases notably

faster than DOMINO. This indicates that DOMINO is capable

of providing timely and scalable DG solutions for both high-

performance and resource-constrained computing devices.

F. Robustness Against Hardware Noises

Leveraging encoded data points on high-dimensional space,

DOMINO exhibits ultra-robustness against noise and failures,

ensuring effective performance of DG classification tasks on

noisy embedded devices. In particular, each hypervector stores

information across all its components and no component

is more responsible for storing any more information than

another. We compare the robustness of DOMINO with SOTA

CNN-based DG algorithms against hardware noise by showing

the average quality loss under different percentages of hard-

ware errors in Fig. 11. The error rate refers to the percentage

of random bit flips on memory storing CNNs and DOMINO

models. For fairness, all CNNs weights are quantized to their

effective 8-bit representation. In CNNs, random bit flip results

in significant quality loss as corruptions on most significant

bits can cause major weight changes. In contrast, DOMINO

provides significantly higher robustness against noise due to its

redundant and holographic distribution of patterns with high

dimensionality. Specifically, all dimensions equally contribute

to storing information; thus, failures on partial data will not

cause the loss of entire information. DOMINO exhibits the

maximum robustness using hypervectors in 1-bit precision,

that is on average 10.93% higher robustness than AND-mask

and 8.62% higher robustness than RSC. Increasing precision

lowers the robustness of DOMINO since random flips on more

significant bits will cause more loss of accuracy.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 19,2023 at 04:31:58 UTC from IEEE Xplore. Restrictions apply.

(b)(a)

B

A
C

60

70

80

0 0.25 0.5 0.75 1

Ac
cu

ra
cy

 (%
)

Regeneration Rate

Fig. 12. Relation Between Accuracy and (a) Physical Dimensionality (D)
and Effective Dimensionality (D∗) (b) Regeneration Rate (R)

G. Design Space Exploration

To understand the behavior of DOMINO in different hy-

perparameter settings, we conduct a design space exploration

traversing all possible combinations of different physical di-

mensionality (D), effective dimensionality (D∗), and regen-

eration rate(R). We observe that a larger effective dimen-

sionality (D∗) play significant roles in enhancing the model

performance. For instance, in Fig. 12(a), though starting from

a much smaller D, the DG accuracy of points near A

is notably higher than points near B and is comparable

to points near C , as the disadvantage of utilizing a very

limited physical dimensionality can be compensated by more

training iterations and larger effective dimensionality. This

characteristics is extremely appealing since using models with

compressed dimensionalities significantly reduces unnecessary

computations involved in training and inference and can be

more resource-efficient for edge-based ML applications. Math-

ematically, Number of Iterations = D
∗

−D

D×R
. This indicates

when R and D are fixed, models with larger D∗ go through

more iterations of filtration and regeneration of domain-variant

dimensions and potentially perform better. We also learn the

relation between accuracy and R as shown in Fig. 12(b) by

fixing D and D∗ to 0.5k and 4k, respectively. We observe

DOMINO achieves optimal performance when R is around

0.25. A too small R will cause failure in filtering out the

majority of domain-invariant dimensions, while a too large

R will lead to performance degradation due to excessively

eliminating and regenerating informative dimensions.

IV. RELATED WORKS

A. Distribution Shift

Distribution shift (DS), where a model is deployed on

a data distribution different from what it was trained on,

poses significant robustness challenges in real-world ML ap-

plications [5], [9], [28]. Various innovative ideas have been

proposed to mitigate this issue, and can be majorly catego-

rized as domain generalizations (DG) and domain adaptations

(DA). DA generally utilizes unlabeled or sparsely labeled

data in target domains to quickly adapt a model trained in

different source domains [29], [30]. In contrast, most DG

approaches aim to build models by extracting domain-invariant

features across known domains [30]±[32]. Existing DG are

primarily based on CNNs [25], [26], [30], [33], [34] and

target image classification and object detection tasks. How-

ever, these approaches often rely on multiple convolutional

and fully-connected layers, requiring intensive computations

and iterative refinement. This can often be challenging to

implement on resource-constrained platforms considering the

memory and power limitations [35]. Our proposed DOMINO

is the first HDC-based DG algorithm aiming to provide a

more resource-efficient and hardware-friendly DG solution

for today’s edge-based ML applications. It utilizes encoded

data points on high-dimensional space to dynamically identify

and regenerate domain-variant dimensions, thereby enhancing

model generalization capability.

B. Hyperdimensional Computing

Prior studies have exhibited enormous success in various

applications of HDCs, such as brain-like reasoning [36],

bio-signal processing [37], and cyber-security [20]. A few

endeavors have been made toward utilizing HDC for time

series classification, including data from Electroencephalogra-

phy (EEG) and Electromyography (EMG) sensors [16], [38],

[39]. However, existing HDCs do not consider the challenge

of distribution shift. For instance, TempHD [16] relies on

historical EEG data from an individual to make inferences

for the same individual. This can be a detrimental drawback,

especially in the deployment of embedded AI applications.

Hyperdimensional Feature Fusion [8], a recently proposed al-

gorithm for out-of-distribution (OOD) sample detection, maps

information from multiple layers of DNNs into class-specific

vectors in high-dimensional space to deliver ultra-efficient

performance. However, its proposed algorithm remains to rely

on resource-intensive multi-layer DNNs, and a systematic

way to deal with OOD samples for DG has not yet been

proposed. In contrast, we propose DOMINO, an HDC-based

DG learning framework that fully leverages the highly efficient

and parallel matrix operations on high-dimensional space to

filter out dimensions representing domain-variant information.

V. CONCLUSION

In this paper, we propose DOMINO, an innovative HDC-

based DG algorithm for noisy multi-sensor time series classi-

fication. Our evaluations demonstrate that DOMINO achieves

notably higher accuracy than CNN-based DG approaches,

especially when learning from partially labeled data and highly

imbalanced data. Additionally, DOMINO provides a hardware-

friendly solution for both high-performance computing devices

and resource-constrained platforms by delivering significantly

faster training and inference on both server CPU and embed-

ded platforms. Leveraging holographic pattern distributions on

high-dimensional space, DOMINO also exhibits considerably

higher robustness against hardware errors than CNN-based ap-

proaches, bringing unique advantages in performing learning

tasks on noisy and unstable edge devices.

VI. ACKNOWLEDGEMENT

This work was partially supported by the National Science

Foundation (NSF) under award CCF-2140154.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 19,2023 at 04:31:58 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] J. Wang, S. Huang, and M. Imani, ªDisthd: A learner-aware dynamic
encoding method for hyperdimensional classification,º arXiv preprint

arXiv:2304.05503, 2023.

[2] R. R. Shrivastwa et al., ªA brain±computer interface framework based
on compressive sensing and deep learning,º IEEE Consumer Electronics

Magazine, 2020.

[3] N. Rashid et al., ªTemplate matching based early exit cnn for energy-
efficient myocardial infarction detection on low-power wearable de-
vices,º Proceedings of the ACM on Interactive, Mobile, Wearable and

Ubiquitous Technologies, 2022.

[4] B. U. Demirel et al., ªNeural contextual bandits based dynamic sensor
selection for low-power body-area networks,º in Proceedings of the

ACM/IEEE International Symposium on Low Power Electronics and

Design, 2022.

[5] K. Dong and T. Ma, ªFirst steps toward understanding the extrapolation
of nonlinear models to unseen domains,º in NeurIPS 2022 Workshop

on Distribution Shifts: Connecting Methods and Applications, 2022.
[Online]. Available: https://openreview.net/forum?id=lfs4KqfrY1

[6] E. H. Pooch et al., ªCan we trust deep learning based diagnosis? the
impact of domain shift in chest radiograph classification,º in Thoracic

Image Analysis: Second International Workshop, TIA 2020, Held in Con-

junction with MICCAI 2020, Lima, Peru, October 8, 2020, Proceedings

2. Springer, 2020.

[7] A. Subbaswamy et al., ªFrom development to deployment: dataset shift,
causality, and shift-stable models in health ai,º Biostatistics, 2020.

[8] S. Wilson et al., ªHyperdimensional feature fusion for out-of-distribution
detection,º in Proceedings of the IEEE/CVF Winter Conference on

Applications of Computer Vision, 2023.

[9] I. Gulrajani et al., ªIn search of lost domain generalization,º in
International Conference on Learning Representations, 2021. [Online].
Available: https://openreview.net/forum?id=lQdXeXDoWtI

[10] M. Wang et al., ªDeep visual domain adaptation: A survey,º Neurocom-

puting, 2018.

[11] S. Zhao et al., ªA review of single-source deep unsupervised visual
domain adaptation,º Transactions on Neural Networks and Learning

Systems, 2020.

[12] G. Wilson et al., ªMulti-source deep domain adaptation with weak
supervision for time-series sensor data,º in Proceedings of the 26th

ACM SIGKDD international conference on knowledge discovery & data

mining, 2020.

[13] Y. Qin et al., ªA dual-stage attention-based recurrent neural network for
time series prediction,º arXiv preprint arXiv:1704.02971, 2017.

[14] Y. Su et al., ªRobust anomaly detection for multivariate time series
through stochastic recurrent neural network,º in Proceedings of the 25th

ACM SIGKDD international conference on knowledge discovery & data

mining, 2019.

[15] S. Hochreiter et al., ªLong short-term memory,º Neural computation,
1997.

[16] Y. Ni et al., ªNeurally-inspired hyperdimensional classification for
efficient and robust biosignal processing,º in Proceedings of the 41st

IEEE/ACM International Conference on Computer-Aided Design, 2022.

[17] M. Imani et al., ªA framework for collaborative learning in secure high-
dimensional space,º in CLOUD. IEEE, 2019.

[18] L. Ge et al., ªClassification using hyperdimensional computing: A
review,º IEEE Circuits and Systems Magazine, 2020.

[19] Z. Zou et al., ªScalable edge-based hyperdimensional learning system
with brain-like neural adaptation,º in SC, 2021.

[20] J. Wang, H. Chen, M. Issa, S. Huang, and M. Imani, ªLate breaking
results: Scalable and efficient hyperdimensional computing for network
intrusion detection,º arXiv preprint arXiv:2304.06728, 2023.

[21] A. Rahimi and B. Recht, ªRandom features for large-scale kernel
machines,º Advances in neural information processing systems, 2007.

[22] B. Barshan et al., ªRecognizing daily and sports activities in two open
source machine learning environments using body-worn sensor units,º
The Computer Journal, 2014.

[23] M. Zhang et al., ªUsc-had: A daily activity dataset for ubiquitous activity
recognition using wearable sensors,º in Proceedings of the 2012 ACM

conference on ubiquitous computing, 2012.

[24] A. Reiss et al., ªIntroducing a new benchmarked dataset for activity
monitoring,º in 16th international symposium on wearable computers.
IEEE, 2012.

[25] Z. Huang et al., ªSelf-challenging improves cross-domain generaliza-
tion,º in Computer Vision±ECCV 2020: 16th European Conference,

Glasgow, UK, August 23±28, 2020, Proceedings, Part II 16. Springer,
2020.

[26] G. Parascandolo et al., ªLearning explanations that are hard to vary,º
arXiv preprint arXiv:2009.00329, 2020.

[27] A. Hernandez-Cane et al., ªOnlinehd: Robust, efficient, and single-pass
online learning using hyperdimensional system,º in Design, Automation

& Test in Europe Conference & Exhibition (DATE). IEEE, 2021.
[28] R. Palakkadavath et al., ªImproving domain generalization with inter-

polation robustness,º in NeurIPS 2022 Workshop on Distribution Shifts:

Connecting Methods and Applications, 2022.
[29] G. Csurka et al., Domain adaptation in computer vision applications.

Springer, 2017.
[30] D. Li et al., ªLearning to generalize: Meta-learning for domain general-

ization,º in Proceedings of the AAAI conference on artificial intelligence,
2018.

[31] H. Li et al., ªDomain generalization with adversarial feature learning,º
in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2018.
[32] Q. Dou et al., ªDomain generalization via model-agnostic learning of

semantic features,º Advances in Neural Information Processing Systems,
2019.

[33] Y. Ganin et al., ªDomain-adversarial training of neural networks,º The

journal of machine learning research, 2016.
[34] S. Sagawa et al., ªDistributionally robust neural networks,º in Interna-

tional Conference on Learning Representations, 2019.
[35] J. Pan et al., ªFuture edge cloud and edge computing for internet of

things applications,º IEEE Internet of Things Journal, 2017.
[36] P. Poduval et al., ªGraphd: Graph-based hyperdimensional memorization

for brain-like cognitive learning,º Frontiers in Neuroscience, 2022.
[37] A. Burrello et al., ªLaelaps: An energy-efficient seizure detection algo-

rithm from long-term human ieeg recordings without false alarms,º in
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2019.

[38] A. Moin et al., ªA wearable biosensing system with in-sensor adaptive
machine learning for hand gesture recognition,º Nature Electronics,
2021.

[39] A. Rahimi et al., ªHyperdimensional biosignal processing: A case study
for emg-based hand gesture recognition,º in International Conference

on Rebooting Computing. IEEE, 2016.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 19,2023 at 04:31:58 UTC from IEEE Xplore. Restrictions apply.

