

108:2 M. Odema et al.

ACM Reference format:

Mohanad Odema, Halima Bouzidi, Hamza Ouarnoughi, Smail Niar, and Mohammad Abdullah Al Faruque.

2023. MaGNAS: AMapping-Aware Graph Neural Architecture Search Framework for Heterogeneous MPSoC

Deployment. ACM Trans. Embedd. Comput. Syst. 22, 5s, Article 108 (September 2023), 26 pages.

https://doi.org/10.1145/3609386

1 INTRODUCTION

Due to their inherent capacity in learning meaningful feature representations from non-Euclidean
graph-structured data, the employment of Graph Neural Networks (GNNs) has extended beyond
typical graph learning applications, e.g., molecular inference and social networks [32], to encom-
pass the field of computer vision. By transforming an image structured as a regular grid of pixels
into a graph, irregular and complex objects can be better captured by the more flexible graph-level
features generated throughout the model architecture. As such, recent works employing GNNs to
operate on this generalized form of image data have demonstrated remarkable successes across a
variety of visual tasks, e.g., object detection and image classification [17, 31, 37, 38]. In fact, the
application of GNNs has been further studied for more nuanced visual-based tasks in critical ap-
plication settings, such as collision prediction in self-driving vehicles [25, 43].

On a separate note, recent advances have seen a proliferation in multi-processor System-on-
Chips (MPSoCs) architectures that can balance the low-latency and energy efficiency require-
ments of compute-intensiveworkloads. For instance, commercial SoC platforms, such as theNvidia
Xavier [1] and Tesla FSD [30], have successfully integrated a variety of proven hardware comput-
ing units (CUs) and industrial IPs on a single chip to achieve said purpose. Other platforms, such
as Xilinx Versal [12], enable even more flexibility in SoC solution development by supporting
customized hardware design choices. Through such advanced platforms, deep learning-based vi-
sion modules can be run effectively in an edge computing setting to meet stringent application
requirements such as object detection for autonomous driving [24]. By extension, any consider-
ation for applying GNNs in these vision modules under the embedded deployment setting must
ensure that the execution constraints are still satisfied. However, this objective is challenging, con-
sidering the discrepancy between the GNN workloads and the underlying hardware in the SoC.
That is, contrary to the dense, regular workloads of typical DNNs, GNNs are characterized by
an irregular, multiphase sparse-dense computational flow [15]. Particularly, this irregularity em-
anates from the repeated sequence of Aggregation and Combination phases. The former employs a
message-passing algorithm for feature exchange between graph vertices, exhibiting sparse kernels
with random memory access patterns. The latter constitutes typical multi-layer perceptron (MLP)
layer(s) for feature transformation, exhibiting dense kernels and regular access patterns. As such,
the complication arises as neither the architecture of typical CUs (e.g., GPU) nor that of conven-
tional accelerators (e.g., DLA) is designed to efficiently support this unique execution sequence.
Naturally, considerable research works have dedicated efforts to design customized GNN accel-

erator architectures that can support themulti-phased computational flow [3, 7, 19, 29, 36, 39]. Gen-
erally, the approach entailed a hybrid architecture comprising specialized computing engines to
accelerate each of the two phases separately. Unfortunately, these designs are not flexible enough
to be consolidated into standard MPSoCs. On the one hand, this is attributed to the fact that GNNs
belong to a relatively nascent, rapidly-evolving field in which customized accelerator architectures
may not support running newer generations of graph learning operations andmodels. On the other
hand, physical restrictions and low-power requirements of critical embedded computing platforms
at the edge restrict the integration of specialized hardware CUs onto the SoC to the components

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 108. Publication date: September 2023.

MaGNAS: A Mapping-Aware Graph Neural Architecture Search Framework 108:3

Fig. 1. Comparing ViG model variants [17] with different graph learning operators when trained on the

Oxford-Flowers dataset and deployed onto the NVIDIA Jetson AGX Xavier SoC. All values are normalized by

the baseline performance evaluations incurred by the original ViG with MRConv layers when fully deployed

onto the GPU only. The left figure shows how performance characteristics differ from one variant to the other

regarding accuracy, latency, and energy consumption. The right figure illustrates how distributed mapping

strategies across the GPU and DLA can yield different latency-energy trade-offs.

that best serve the desired target applications – as in how DLAs are integrated in the AGX Xavier
SoC as they support a broad class of applications which employ typical DNN workloads.
As GNNs continue to become increasingly popular, the challenges of their deployment onto

embedded platforms are due to be seen in a new light. In addition to implementing customized
accelerator architectures, another research direction is to investigate what optimization opportu-
nities exist – on both the hardware and algorithmic levels – to alleviate the deficiencies of GNNs’
computational flow when deployed on conventional CUs. Researchers in [15] have assumed this
perspective by characterizing the design space of dataflow choices for running GNNs on conven-
tional re-configurable spatial accelerators, where they studied the costs and benefits of adopting
various dataflows for GNNs. In that same spirit, we also believe there are ample optimization op-
portunities through characterizing the combined design space of SoC mapping options and GNN

architectural parameters together. In the context of GNNs for vision applications, two consider-
ations motivate this hypothesis: (i) Heterogeneous MPSoCs naturally offer pipelining parallelism

opportunities, presenting options to run GNN kernels of diverse characteristics on different CUs to
potentially yield better performance benefits. (ii) the recently proposed VisionGNN (ViG) architec-
ture [17] offers to transform an image frame into a graph by dividing it into equally-sized patches
and constructing a graph out of them to be processed by the model. As will be detailed later, the
key advantage of this scheme is that it enables leveraging graph-level features while maintaining
a consistent, dense structure for any graphed image throughout the GNN model, which is more
amenable to CUs than sparse graphs of inconstant dimensions.

1.1 Motivational Example

In Figure 1, we showcase the potential performance trade-offs as offered by the architectural and
mapping optimization spaces for a vision GNNmodel when deployed onto a heterogeneous SoC. In
this example, the backbone GNN architecture is the ViG-S [17], the target platform is the NVIDIA
Xavier AGX SoC, and the models are trained on the Oxford-Flowers image dataset. Given how
the ViG belongs to the Graph Convolutional Network (GCN) class of GNNs, we construct three
(03) additional variants of the baseline ViG with different GCN operators. Specifically, the original
ViG architecture employs the Max-Relative Graph Conv (MRConv) graph operation throughout
the entirety of its model, whereas the variants employ other GCN layer types, namely EdgeConv,
GIN, and GraphSage. After training the ViG variants, we characterize their accuracy, latency, and

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 108. Publication date: September 2023.

108:4 M. Odema et al.

energy consumption scores relative to the original MRConv ViG variant when deployed onto the
NVIDIA platform. In the left Figure, we can observe some performance trade-offs from varying this
singular GNN architectural setting, i.e., the GCN layer operator. For instance, the EdgeConv ViG
variant can achieve slightly higher accuracy (0.69% more) than the MRConv one at the expense of
a considerable increase in latency and energy consumption. Contrarily, the GIN operation is 6.6%
more energy-efficient than MRConv at the expense of a 3.7% decrease in accuracy. Though there
is no clear dominance for one variant over the other, this analysis sheds light on the potential
performance trade-off gains from optimizing the architectural design parameters. These gains can
be further compounded when considered alongside feasible deployment options. In these first
experiments, only the GPU component of the SoC was used as the target deployment hardware.
In the right Figure, we showcase how additional performance trade-offs are attained considering

the various deployment options for the ViG variants on the SoC. In this example, the considered op-
tions are standalone deployment on either the GPU or DLA components or distributed deployment
across the two. We remark that the distributed deployment options follow the mapping strategies
for GNN processing workloads provided by our optimization engine, detailed in a later Section.
From the Figure, the straightforward observation is that for every ViG architecture, standalone
GPU deployment is the option with the fastest execution speeds, standalone DLA deployment is
the most energy-efficient alternative, and the distributed option compromises between the two.
However, a more interesting perspective on mapping optimizations can be taken when consid-
ered part of a broader design problem. That is, combining both the architectural and mapping

optimizations to achieve better performance trade-offs compared to performing optimizations for
each design space in isolation. For instance, assume a designer’s primary objective is to improve
the ViG’s energy efficiency while incurring minimal execution slowdown. From a pure resource
efficiency perspective, a distributed mapping strategy for the GIN architectural variant can be more
beneficial than directly distributing the original MRConv ViG workloads since the former achieves
comparable energy efficiency gains to those of the latter (28.1% to 33.8%) at the expense of reduced
latency costs (14% to 39%). Still, the caveat remains that the GIN variant is less accurate than the
original ViG, and the question becomes how can we better characterize this combined architecture-

mapping design space to attain better performance trade-offs for vision GNNs given the target task

and SoC platform.

1.2 Novel Contributions

In light of the above challenges, we list the key novel contributions of this paper:

• We study how vision GNNs can leverage distributed deployment across multiple CUs for
performance efficiency when deployed onto a heterogeneous SoC.
• We presentMaGNAS, a Mapping-aware Graph Neural Architecture Search Framework for
co-optimizing the design of vision GNN (ViG) architectures and their SoC mappings.
• MaGNAS first contributes a self-contained framework for designing ViG supernets to char-
acterize their search space of GNN-based architectural design choices.
• To specify the mapping problem, we derive a systemmodel that characterizes the distributed
deployment of GNNs onto heterogeneous SoCs and the incurred performance overheads.
• To identify optimal ViG architecture-mapping pairs, MaGNAS solves a bilevel optimization
problem via a two-tier evolutionary search algorithm of two optimization engines: an outer

engine to optimize GNN architectural design choices; an inner engine to identify optimal
mapping strategies for ViG workloads onto heterogeneous CUs.
• We conduct extensive experiments, in-depth analysis, and ablation studies on MaGNAS
using a real MPSoC platform and hardware simulator on four (04) state-of-the-art vision

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 108. Publication date: September 2023.

MaGNAS: A Mapping-Aware Graph Neural Architecture Search Framework 108:5

datasets. Our findings have demonstrated the superiority of MaGNAS in designing and
mapping ViG architectures onto heterogeneous CUs and its effective scaling capabilities on
increasing levels of problem complexity. On the Nvidia Xavier SoC, MaGNAS provided on
average 1.57× latency speedup and 3.38×more energy gains than the GPU-only deployment
while sustaining an average 0.11% accuracy drop from the baseline.

2 A PRIMER ON VISION GRAPH NEURAL NETWORK (VIG)

We briefly describe the main constituents of the ViG architecture [17], which pioneered a
generic approach for graph-based image processing through modeling raw input images as graph
structures.
Graphing Image Data Structures. The ViG operates on images modeled as graphs of patches.

AW × H ×C image is first partitioned into N patches of dimensionsW ′ × H ′ ×C ′. Each patch’s
dimensions can be viewed as a single feature vector xi ∈ R

D where D = W ′ × H ′ × C ′. To
construct the graph, a node vi is assigned to each patch, forming an unordered set of N nodes
V = {v1,v2, . . . ,vN } associated with the corresponding set of feature vectorsX = {x1,x2, . . . ,xN },
where xi can be called the feature embedding of vertex vi . To build graph edges, K edges are con-
structed for each vi based on the K nearest vertices in its neighborhood N (V), that is, for every
vj ∈ N (V), an edge eji is constructed from vj to vi . Finally, the full graph structure of the image
is given by G (V,E), which can be inputted into the ViG model for processing.

Graph Processing Layer. Describing a graph through its features, G = G (X) s.t. X ∈ RN×D , a
typical GCN layer operation on G can be represented by the following abstract formula:

G′ = Combine (Aддreдate (G,Waдд),Wcomb) (1)

where G is processed through an aggregation and a combination stages of the GCN layer.Waдд and
Wcomb resemble the respective learnable weights of each stage. The aggregation stage employs a
feature exchange procedure in which every node vi receives features x j ∈ N (xi)s .t .i � j from
its neighboring nodes and aggregates them to provide x ′i . The combination stage involves further
treatment of features x ′i (as through an MLP layer) to obtain refined representation x ′′i . We remark
that for each of the two stages, a variety of operations can be employed (e.g., aggregation through
sum, max-relative, mean), which correspond to the variety of GCN layer types existing in the
literature (e.g., GraphSage, GIN, etc.). Lastly, The resulting output feature set from both stages, X ′,
is used to construct the output graph G′ = G (X ′).
Grapher and FFN Modules. To enrich feature representation, graph processing layers can

be interleaved with typical DNN layers in a GNN model. As such, the standard ViG architecture
comprises a stack of two basic building blocks: Grapher and Feed Forward Network (FFN) given by:

LGrapher = lpost ◦ lcomb ◦ laдд ◦ lpre , LF FN = l f c2 ◦ l f c1 (2)

TheGrapher comprises at its core the GCN layer with its aggregation, laдд , and combination, lcomb ,
operations, injected between two linear layers, namely pre-processing, (lpre), and post-processing,
lpost , layers, to promote feature diversity. The FFN block constitutes two fully connected layers
that further elevate feature capacity, l f c1 and l f c2 . For every GCN or fully-connected layer in either
module, non-linear activation and batch normalization operations are applied. From here, every
Grapher can be followed by an optional FFN to form the ViG block, and the sequence of ViG blocks
form the ViG backbone architecture.

3 SYSTEMMODEL AND PROBLEM FORMULATION

In this section, we model the mapping problem of GNN kernels onto heterogeneous SoC CUs.
Then, we derive a formulation for the global design-mapping bi-optimization objective.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 108. Publication date: September 2023.

108:6 M. Odema et al.

3.1 System Model for Mapping GNNs onto Heterogeneous SoCs

3.1.1 GNN Workload Characterization. Let a standard GNN model architecture, α , be formally
described as a sequence of n computing blocks as follows:

α = Ln ◦ Ln−1 ◦ · · · ◦ L1, s .t . Li � Li−1, Li ∈ {L
F FN
,LGrapher }, LF FN ∈ {LF FN ,ϕ} ∀1 ≤ i ≤ n (3)

where each GNN computing block Li can either be the Grapher or FFN blocks as defined in the
previous section, denoted by LGrapher and LF FN , respectively. The condition ensures that each
LGrapher block can be succeeded by an optional LF FN block.

Let X j be the input graph-level features for block Lj ∈ α . Then, the output feature embedding
vector, X j+1, can be obtained as:

X j+1 = Lj (X j) s .t . x
j

k
∈ RD

′

∀ x
j

k
∈ X j (4)

where the condition ensures that feature embedding dimensions remain consistent throughout

each computing block within the GNN. That is the feature embedding for x
j

k
(the kth node within

the graph representation at the jth block) retains the same D ′ dimensions before and after being
processed through block Lj . This consistency in the feature embedding dimensions is typical of
GNNs as it preserves the integrity of graph operations with regards to feature aggregation from
farther nodes across multiple consecutive layers and facilitates supporting residual and dense con-
nections [40]. Note that D ′ can either be equivalent to D or a downsampled version of it as some
architectures (e.g., Pyramid in [17]) can include additional downsampling layers in-between stacks
of computing blocks to promote abstract feature learning.
Let CU = {CU1,CU2, · · · ,CUM } be the set of available computing units within a hetero-

geneous MPSoC with varying degrees of support for DNN and graph operations. Considering a
blockwise granularity, we can define amapping vector,m, to characterize the workload distribution
for each GNN computational block as follows:

m = [π1,π2, · · · ,πn], s .t . πi ∈ CU ∀ 1 ≤ i ≤ n | support (πi ,Li) == True (5)

where each entry πi inM describes the mapping assignment of Li onto a computing unit CUm ∈

CU as long as this corresponding CUm hardware supports running Li .

3.1.2 Performance Modelling. For a mapping strategym, the total latency and energy consump-
tion overheads, Ttotal and Etotal , experienced by a GNN model when deployed in a distributed,
pipelined fashion can be modeled as the sum of the overheads incurred by its individual blocks:

Ttotal (m) =

n
∑

i=1

Ti (m), s .t . Ti (m) = τ
comp
i + I[πi−1 � πi] · τ

in
i + I[πi � πi+1] · τ

out
i (6)

Etotal (m) =

n
∑

i=1

Ei (m), s .t . Ei (m) = e
comp
i + I[πi−1 � πi] · e

in
i + I[πi � πi+1] · e

out
i (7)

where the τ
comp
i and e

comp
i are the respective computational latency and energy consumption

experienced by Li given its corresponding mapping, πi . τ
in
i and τ outi are the latency overhead

sustained when loading and writing back graph features from and to the shared system memory on
the SoC, respectively. The indicator function I[·] evaluates to 1 only when the associated condition
is met; that is, no transmission overhead penalties are sustained between two consecutive layers
when they are both assigned the same computing unit. For the energy formula, the same logic of
notation applies for every layer Li .

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 108. Publication date: September 2023.

MaGNAS: A Mapping-Aware Graph Neural Architecture Search Framework 108:7

3.1.3 Mapping Problem Formulation. Define P (m) = f (Ttotal (m),Etotal (m)) to be a combined
evaluation function for a mapping configurationm. LetM be the set of feasible mapping configu-
rations. Then, we can formulate the mapping objective function for an architecture α deployed on
a heterogeneous SoC platform as follows:

m∗ = max
m∈M

P (m), s .t . Ttotal < TTRG , Etotal < ETRG (8)

where the goal is to identify an optimalmapping strategy,m∗, forα such that performance objective
function P is maximized with respect to latency and energy under user-specified constraints on
latency and energy consumption, TTRG and ETRG , respectively.

3.2 Nested Search Formulation

As the application of graph learning on embedded hardware is a relatively nascent field, the lack
of standardization in GNN architectures for edge deployment settings adds another dimension
to this design optimization problem. Together with the mapping formulation derived above, a
natural question arises as follows: Given an awareness of the ideal mapping strategy for a GNN

onto a heterogeneous MPSoC, can we leverage this information to guide further architectural design

optimizations such that the target task accuracy and resource efficiency are enhanced?

In light of this proposition, we refine our formulation to an architecture-mapping co-
optimization problem, where the goal is to identify the optimal set of design choices for the GNN
architecture and its mapping strategy. Since a Cartesian product of their combined search param-
eters can result in an enormous search space, we designate two separate subspaces to be managed
through a bi-level optimization approach as follows: (a) GNN architecture subspace (A); which
describes the set of architectural design choices associated with the GNN model, and (b) Map-
ping subspace (M); specifying the possible distributed mapping options given the underlying CUs.
Through this designation, mapping choices become conditioned on architectural choices, which
promotes the generality of this approach. Formally, the nested optimization formulation can be
given as follows:

α∗ = max
α ∈A

ψ [Acc (α), P (m∗ |α ,CU)] (9)

s .t .m∗ = max
m∈M

P (m |α ,CU) (10)

where the outer optimization equation targets identifying the optimal set of GNN architectural
parameters, α∗, that yield the best scores on a combined function, ψ , of both the accuracy, Acc (·),
and performance efficiency P (·). Evaluation of P (·) is contingent upon the results from the inner
optimization equation. That is, energy and latency performance evaluations used for scoring a can-
didate architecture, α , are those obtained for an optimal mapping strategy,m∗. Due to the conflict-
ing nature of the involved objectives, the problem can be solved as a multi-objective optimization
providing a Pareto-optimal set of solutions. For instance for the outer optimization objective, an
architecture α∗ is said to be Pareto-optimal iff for every objective u ∈ U :

uk (α
∗) ≥ uk (α)∀k,α and ∃j : uj (α

∗) > uj (α)∀(α) � (α∗) (11)

4 MAGNAS FRAMEWORK

To solve the above GNN architecture-mapping co-optimization problem, we present MaGNAS,
a mapping-aware Graph Neural Architecture Search framework for heterogeneous SoC deploy-
ment.MaGNAS employs two phases: (i) the construction and training of a ViG supernet to attain
a design space of diverse GNN architectural design choices; (ii) the development of a two-tier
evolutionary search framework to identify optimal architecture-mapping pairings.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 108. Publication date: September 2023.

108:8 M. Odema et al.

Fig. 2. The ViG supernet implementation for MaGNAS co-search framework. The supernet comprises D

ViG search super blocks, each of which constitutes a sequence of di Grapher and FFN computing modules.

Architectural search parameters characterizing A subspace are highlighted in red and detailed in the text.

4.1 Supernet Construction and Training

We extend the ViG architecture introduced in Section 2 to construct a supernet of various de-
sign choices to characterize an architectural search space A. Briefly, a supernet represents a net-
work of networks that can be trained simultaneously to facilitate providing diverse model designs
for different deployment scenarios [6]. In the context of ViGs, each subnet within a supernet is
defined by a unique set of architectural parameter choices (e.g., choice of GNN layers, #layers,
etc.). Additionally, supernets entertain the property of weight-sharing, meaning that during the
supernet’s training, weight updates for a candidate layer are applied and reused across all subnets
that share that particular layer, which enables the simultaneous training of all subnets within
it. Once the supernet is trained, a search algorithm can be employed to identify an ideal sub-
net that meets the target specifications. The ViG supernet is illustrated in Figure 2, where the
choice of architectural search parameters for A is based on observations from both related works
[13, 17, 39, 40] as well as from our initial experiments. The supernet construction is detailed in the
following:

4.1.1 ViG Superblocks. The backbone ViG-S architecture in [17] comprises 16 computing
blocks, each comprising a stack of a Grapher and an FFN module. On the one hand, character-
izing A on a per-layer or a per-block basis can lead to an explosion in the search space, given the
number and cardinality of various search parameters. Conversely, associating the parameters of
A with the entire backbone restricts fine-grained architectural optimizations, not fully exploiting
the power of diversified architectural settings at different model stages. As a compromise, we pro-
pose ViG superblocks to characterize A, where each ith superblock constitutes a collection of di
ViG blocks sharing the same design choices. Superblocks are inspired by the concept of neural
computing blocks in popular architectures (e.g., ResNets), where the same architectural parame-
ter value can be repeated for a stack of consecutive layers. Figure 2 illustrates the composition
of our ViG superblock and what architectural parameters are searchable within it. The merits of
the ViG superblocks are twofold: (i) they balance the trade-off between architectural diversity and
search space complexity; (ii) They facilitate effective management of the depth parameter through
di while preserving key architectural features.

4.1.2 A Search Parameters. For each superblock i , we specify the following parameters to con-
struct our architectural search space A:

• The depth, di , to indicate how many ViG blocks exist in the ith superblock i .
• Grapher pre-processing as a binary decision variable to indicate whether a pre-processing
layer exists before every graph processing layer.
• Graph Op to specify the graph operation employed throughout the ith superblock.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 108. Publication date: September 2023.

MaGNAS: A Mapping-Aware Graph Neural Architecture Search Framework 108:9

• FFN module as a binary decision variable to indicate whether FFN modules should exist in
this superblock.
• FC hidden layer dimension to specify the size of the intermediate features in the FFN module.

We do not include the Grapher’s post-processing layer as part of A since, in the ViG backbone, it
additionally contributes to maintaining the consistency of feature embedding dimensions.

4.1.3 Supernet Training. We train the supernet for our target task using a combination of Cross-
Entropy and knowledge distillation loss functions, where for the latter, we employ a pretrained
model as a teacher for more representative training on soft labels’ training [4, 42]. This training is
performed from scratch due to: (i) The ViG is a relatively new GNN architectural concept, and the
availability of pretrainedweights is still limited, and (ii) loading the exact pretrainedmodel weights
from the original ViG backbone [17] can introduce a bias towards certain design choices during
training. For instance, the original ViG architecture employed MRConv Graph Op throughout the
entirety of its graph processing layers. As such, loading their pretrained weights gives MRConv
operations an edge over the remaining Graph Op choices.

To train the supernet, we sample and train a set of subnets at each iteration. The choice of sub-
nets is realized through 3 separate samplers following the Sandwich sampling rule [42] as follows:

• Maximum Sampler: sample the largest subnet from A, that is, the one with the maximum
depth and width (i.e., hidden dimension features).
• Minimum Sampler: sample the smallest subnet from A.
• Balanced Sampler: sample a number of random subnets of different architectural features.

This scheme enables improving the performance of all subnets within the search space simulta-
neously by pushing the upper and lower performance bounds with every iteration. Furthermore,
given how numerous GNN architectures leverage a homogeneous structure, that is, one where
the choice of the Graph OP is kept consistent throughout the entire architecture, we modify the
Maximum/Minimum samplers so that they sample architectures of maximal/minimal sizes, but
constituting a randomly selected Graph Op repeated throughout the model. This ensures training
fairness by pushing the upper and lower boundaries of architectures of different graph operations
and avoids inducing a bias towards specific implementations.

4.2 Nested Evolutionary Search: Outer Optimization Engine (OOE)

In order to solve the bi-level architecture-mapping optimization problem formulated in Equa-
tions (9) and (10), we construct the two-tier evolutionary search framework illustrated in Figure 3
to identify optimal architecture-mapping pairings. Briefly, an evolutionary search is a metaheuris-
tic based on the concept of natural selection in biological evolution, where only the best individuals
survive. Specifically, an evolutionary search works by creating a population of candidate solutions
from a search space, evaluating each one, and propagating the top-performing solutions to the
gene pool of subsequent generations. These solutions can then endure and undergo the genetic
operations of mutation and crossover to contribute new derivative solutions for the following
generations. This search paradigm is widely used in NP-hard problems to quickly retain optimal
solutions while ensuring a broad exploration of gene diversity. In other words, an evolutionary
search relies on updating a non-dominated solutions archive with every generation. Thus with
each evolution, only new non-dominated solutions from the current population are added, and
the newly-dominated ones in the archive are removed.
We first describe the Outer Optimization Engine (OOE), which employs a higher-level evolution-

ary algorithm whose purpose is to: (i) search through the supernet to identify the most-promising
GNN subnets and (ii) rank candidate subnets according to their Acc (·) and P (·) evaluations.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 108. Publication date: September 2023.

108:10 M. Odema et al.

Fig. 3. MaGNAS two-tier evolutionary search framework.

4.2.1 Subspace A Description. By adopting a Once-For-All (OFA) NAS approach [6], the train-
ing and search stages within MaGNAS are decoupled, significantly reducing the search process
overheads as once the supernet has been trained, its search subspace, A, can be reused for the
search to identify beneficial subnets. Accordingly, subspace A in the search stage is encoded as a
sequence of 04 discrete vectors, each representing the architectural parameters for each ViG su-
perblock listed in 4.1.2, facilitating the sampling of subnets as GNN architectural design candidates,
α ∈ A.

4.2.2 OOE Evolutionary Search. The next step is to employ a search algorithm to solve the op-
timization objective in (9) by searching for optimal GNN architectural implementations, α∗. Here,
we implemented the NSGA-II evolutionary search algorithm to navigate through A and explore
the subspace of viable design choices. Typically, the search algorithm is run for a pre-specified
number of generations, where a new population of candidate architectural designs, P

д

A
, is sampled

with every generation, д. Then, ∀α ∈ P
д

A
, a fitness evaluation function, F (·), is applied as follows:

F (α) = f (Accα ,Tα ,Eα) (12)

which scores every α based on its target task accuracy, latency, and energy consumption on the
target platform denoted byAccα ,Tα , and Eα , respectively.Accα evaluation can be obtained directly
by evaluating the α model predictive performance on the test dataset, whereas estimates ofTα , and
Eα are provided by the inner optimization engine based on evaluations of the ideal mapping strat-
egy,m∗ (which will be detailed in the following subsection). Though we used for F (·) a weighted
product function of the objective evaluations in our implementation, we kept its definition here
abstract for generality. According to the fitness evaluation scores, every α ∈ P

д

A
is ranked via

the NSGA-II non-dominated sorting algorithm. Based on the rankings, an elimination process is
initiated afterward to yield a population subset P ′

д

A
⊂ P

д

A
. Subset P ′

д

A
then undergoes mutation

and crossover operations to provide a new population P
д+1

A
for the following generation д + 1. A

uniform mutation is employed on the superblock level by sampling new depth, width, graph op-
erators, etc., under a probability threshold of 0.4. The crossover is applied by randomly picking
two individuals from the Pareto set and swapping their superblocks under a probability threshold
of 0.5. This iterative search continues until the search budget expires (e.g., a given total number
of generations). At the last iteration, a Pareto-optimal set, {α∗ |m∗}, is provided. To provide some
perspective based on our experiments, we sample 100 architectures for P

д

A
out of a total |A| � 229

candidates. After fitness evaluations, we select a subset of 30% from the top-ranked candidates as
P ′

д

A
for the following mutation and crossover processes.

4.3 Nested Evolutionary Search: Inner Optimization Engine (IOE)

To estimateTα and Eα ∀α ∈ P
д

A
, we develop an Inner Optimization Engine (IOE) to specify an ideal

mapping strategy of α onto the underlying SoC (α → CU) and evaluate performance accordingly.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 108. Publication date: September 2023.

MaGNAS: A Mapping-Aware Graph Neural Architecture Search Framework 108:11

4.3.1 Subspace M Description. The mapping configuration,m, defined in Equation (5) reflects
the encoded discrete vector within the IOE search space that characterizes potential mapping op-
tions for each Grapher and FFN modules from α . We also extend the specification ofm in the IOE
to incorporate two further mapping options for the stem and prediction modules (see Figure 2).

4.3.2 IOE Evolutionary Search. Given how the mapping decision space is at least |CU|n (see
Equation (3)), a brute-force search to determine the ideal mapping,m∗, can be costly. As such, we
implement another NSGA-II evolutionary algorithm in the inner optimization level to effectively
explore mapping choices within M and identify the best candidates. Particularly, a population of
mapping configurations, denoted by P

д

M
, is sampled every generation д by the search algorithm.

Then for everym ∈ M, a fitness evaluation function P (·) is applied as given in the below formula:

P (m |α ,CU) =

(

Emα

max {ECUα }

)γ1

×

(

Lmα

max {LCUα }

)γ2

∀CU ∈ CU (13)

where Emα and Lmα are the respective energy and latency sustained byα when its components are de-
ployed onto the underlying hardware following a mapping strategym. Each of these values is then
normalized by the best standalone deployment option from CU, denoted here by ECUα and LCUα , re-
spectively. The reasons for this normalization are twofold: (i) To ensure fairness when comparing
various mapping options for α ; (ii) To enforce achieving comparable, if not improved, performance
scores over those obtained by the canonical standalone deployment options. For instance, if map-
ping the entirety of α onto a GPU component is the best option with respect to latency, then all
latency evaluations are normalized by LGPUα . γ1 and γ2 are user-specified tunable hyperparame-
ter values to enable prioritizing one performance objective or the other. For our experiments, we
constructed accessible lookup tables by benchmarking computing blocks of varying architectural
configurations onto the target CUs, allowing low-overhead estimations of latency and energy dur-
ing the search.
Based on these evaluations, another non-dominated sorting algorithm is instantiated to rank

mapping configurations, retaining the top-ranked configurations to provide population subset

P ′
д

M
⊂ P

д

M
. Afterwards, subset P ′

д

M
undergoes mutation and crossover to provide P

д+1
M

as the
new population for the next generation. The mutation is uniformly applied by flipping the CU
for each GNN computing block under a probability threshold of 0.4. The crossover is applied by
randomly selecting two individuals from the Pareto set and interchanging their CUs mapping un-
der a probability threshold of 0.8. Once the search budget expires, Em

∗

α and Lm
∗

α are returned as
evaluations for the best configuration,m∗, to be used for Eα and Tα in the OOE, respectively.

4.3.3 Constrained Search. To support specifying LTRG and ETRG as search constraints during
the search procedure as in Equation (8), we designate an additional option for the selection proce-
dure of the IOE non-dominated sorting algorithm to filter out mapping options from Pmα that do
not conform to the pre-specified constraints, allowing only compliant mapping options to proceed
to the next stage of mutation and crossover. If there were no compliant mappings, the standalone
evaluations are returned for Eα andTα . In general, LTRG and ETRG can also be instated at the selec-
tion process of the OOE, where α architectures whose Eα and Tα do not meet target performance
scores are eliminated from the population before the OOE’s mutation and crossover stage.

4.3.4 Performance Characterization. Generally, estimates of Emα and Lmα for every m ∈ P
д

M

can be provided through a multitude of approaches (e.g., predictive models). As was shown in
Equation (4), the dimensional consistency of graph features offered throughout the ViG backbone
has led to a tractable space of evaluation possibilities, enabling the construction of low-cost lookup
tables to directly retrieve performance estimates of various architecture-mapping configurations.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 108. Publication date: September 2023.

108:12 M. Odema et al.

Simply put, the lookup tables are indexed by the architectural parameters of a computing block, Li ,
and theCU to whom it is mapped. By invoking the tables for every block in α givenm, the perfor-
mance overheads of each block can be aggregated to estimate the totalEmα andLmα . Although lookup
tables work for our case, proxy prediction models can be more feasible for a different GNN archi-
tecture in which the graph features dimensions change as a result of inconsistent graph structures.

4.3.5 DVFS Search Support. We also include the option to supplement M subspace with the
configuration setting choices of dynamic voltage and frequency scaling (DVFS) features. Predom-
inantly, numerous standard heterogeneous SoC components integrate this feature to support a
diverse set of operational modes serving different execution contexts, as in to enable switching be-
tween low-power and high performance modes. Here, to better capture the fine-grained effects of
altering DVFS settings, we specify a DVFS search block in the IOE as a third optional optimization
level contingent upon the choices ofm and α . This is convenient as the search space of the DVFS
is small compared to A and M and does not incur as much search overhead. In typical real-time
operational contexts, DVFS settings are kept the same across all the computing blocks of α . This
made a direct brute-force search through DVFS options sufficient to identify configurations that
maximize the IOE fitness score in objective (13). Formally, if we denote a single set of DVFS con-
figuration settings as ϑ and the overall DVFS search space as Ψ, then the DVFS search objective is
given as:

ϑ ∗ = max
ϑ ∈Ψ

P (m |α ,CU,ϑ) (14)

where the performance evaluation ofm becomes also contingent upon the choice of ϑ ∈ Ψ.

5 EXPERIMENTS

In this Section, we conduct extensive experiments, in-depth analysis, and ablation studies using
a real MPSoC platform and hardware simulation on four(04) state-of-the-art image classification
datasets to assess the merit of MaGNAS in designing ViG architectures and mapping them onto
heterogeneous CUs, as well as its ability to scale with an increasing degree of problem complexity.

5.1 Experimental Setup

5.1.1 Supernet Design. We build our supernet on top of the ViG-S variant [17] with 16 comput-
ing blocks, each a Grapher and an FFN block. We group every four (04) computing blocks into a
ViG superblock, and assign to each K nearest neighbor values of 12, 16, 20, and 24, respectively,
which enables aggregation of features from farther nodes with each superblock. To support dy-
namic width and depth configurations, we transform each ViG superblock into a slimmable neural
network following [41]. To support varying graph operations, we specify a dynamic graph pro-
cessing layer in the Grapher with four concurrent branches reflecting different GCN operational
choices for Graph Op: (1) EdgeConv [31], (2) GIN [34], (3) GraphSAGE [16], and (4) Max-Relative
GraphConv [23]. As mentioned in Section 4.1, the GNN search space also includes options to skip
the Grapher’s pre-processing layer and the entirety of the FFN module throughout a given ViG
superblock.

5.1.2 Datasets and Training. We employ four (04) image classification datasets of CIFAR-10,
CIFAR-100, Tiny-Imagenet, and Oxford-Flowers. To transform the images to graphs, images are
first scaled to 224 × 224 × 3 resolution, and transformed through the Stem block into a graph of
nodes N = 196, each of dimension D = 14 × 14 × 320. The supernet training for each dataset is
run for 150, 150, 250, and 250 for each respective dataset in the order in which they were stated.
The training is performed using an Adam optimizer with a momentum of 0.9, weight decay of

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 108. Publication date: September 2023.

MaGNAS: A Mapping-Aware Graph Neural Architecture Search Framework 108:13

Table 1. Search Space Parameters for GNN Architectures

Decision variables Values Cardinality

Supernet Search Space (A)

Superblock depth (d) {2, 3, 4} 3
Graph Op {Max-Relative, EdgeConv, GraphSAGE, GIN} 4
Skip pre-process (fc_use) {False, True} 2
Skip post-process (ffn_use) {False, True} 2
FFN hidden features (w) {96, 192, 320} 3

Mapping Search Space (M) for NVIDIA Xavier AGX

Computing units {GPU, DLA} 2
Mapping granularity {Stem, Grapher, FFN, Cls} O(1.7×1012)

DVFS Settings Search space (Ψ) for NVIDIA Xavier AGX

CPU clock frequency {1728MHz, 2265MHz} 2
GPU clock frequency {520MHz, 900MHz, 1377MHz} 3
EMC clock frequency {1065MHz, 2133MHz} 2
DLA clock frequency {1050MHz, 1395MHz} 2

0.05, and dropout set to 0.2. We use co-
sine as a learning rate scheduler with
an initial LR of 0.003 and batch size of
320 on a cluster of 20 GPUs of Nvidia
RTX 2080 Ti (11 GB).

5.1.3 Evolutionary Search Settings.

Table 1 lists the search sub-spaces ofA,
M, and Ψ designated within our opti-
mization framework. For the optimiza-
tion process, we fix the population size
to 100 and 200 and the number of gen-
erations to 50, and 10 for the OOE and IOE, respectively.We adopt uniformmutation and crossover
with respective probabilities of 0.8 and 0.4. We employ a dynamic encoding scheme in which
the IOE evolutionary algorithm changes the size of the genome vector -for the mapping strat-
egy encoding- according to the architectural parameters of the sampled GNN to avoid sampling
meaningless decision variables (e.g., mapping choices for skipped FFN and FC-pre layers). Com-
bining the OOE and IOE, we explored ∼1.6×106 candidates of GNN architectures and deployment
settings on an Nvidia Xavier AGX platform. The search process takes around ∼1–2 GPU days to
complete, depending on the complexity of the accuracy evaluation for each dataset.

5.1.4 Hardware Experimental Settings. We evaluate our approach using two hardware experi-
mental setups presenting a variety of computing units and architectural features: (i) NVIDIA Jetson
AGX Xavier [1], as a real target MPSoC platform; (ii) MAESTRO [20, 21], as a hardware simulator
tool.
1© NVIDIA Jetson AGX Xavier: We employ the NVIDIA Jetson AGX Xavier MPSoC [1] as our
primary experimental testbed. The platform is equipped with a high-performance Volta GPU of
512 GPU cores and 64 Tensor cores, and an energy-efficient DLA. We specify both components
as the usable computing units of CU and characterize them as the feasible deployment options
ofM. Both components share the same 16 GB 256 bits LPDDR4x 136,5 GB/s system memory and
are orchestrated by the same CPU NVIDIA Carmel Arm 64 bits. To run workloads on GPU/DLA,
we use the TensorRT 8.4 compiler running on top of CUDA 11.4 and cuDNN 8.3.2. As TensorRT
is limited by the set of operations that can be executed on DLA, we consider this limitation in
our performance characterization by enabling the GPU fallback feature for the non-supported
operations. The AGX Xavier also supports hardware reconfiguration of the clock frequencies of
CPU, GPU, EMC, and DLA to emulate different hardware settings and power budgets, which we
use to implement the DVFS search space Ψ. Unless otherwise stated, performance evaluations in
our experiments are performed under the high-performance DVFS setting (MaxN).
2©MAESTRO: For the hardware scalability analysis, we leverage the MAESTRO tool [20, 21] to
simulate a use-case of an SoC with three (03) heterogeneous CUs, where the heterogeneity is ex-
pressed by varying the dataflow configuration on each accelerator given how different neural net-
work workloads exhibit different affinities towards dataflow choices for maximizing performance
efficiency. For example, a weight stationary dataflow (like kcp_ws from MAESTRO and that of the
DLA accelerator in the Nvidia Xavier) maximizes filter weights’ reuse which is useful for layers
whose same filters are used to compute multiple outputs, limiting the number of times weights
need to be fetched from the main memory and improving energy efficiency in the interim [9]. We
use the native dataflows in MAESTRO of kcp_ws, ykp_os, and dpt for our 3 CUs, which for simplic-
ity, we denote by DSA-k, DSA-y, and DSA-d. We also use for this experiment the PyramidViG-M
architecture detailed in the following.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 108. Publication date: September 2023.

108:14 M. Odema et al.

5.1.5 Baselines. The efficacy of our approach is assessed regarding the following GNN archi-
tectural and hardware mapping baseline:

1© GNN architectures baselines: These include the original isotropic ViG-S model in [17] as
well as its variants by altering Graph Op (i.e., the GCN operation) where the Graph Op remains
consistent across all the layers. Specifically, we identify the baselines by their recurring Graph Op

operation: (1) b0: ViG-S/Max-Relative, (2) b1: ViG-S/EdgeConv, (3) b2: ViG-S/GIN, and (4) b3: ViG-
S/GraphSage. For the scalability analysis of the IOE, we also consider the PyramidViG-M as the
alternative ViG backbone that sustains graph features dimensional reductions as the network deep-
ens. We implemented PyramidViG-M to follow the feature dimensional reductions across stages
as in [17] and fixed four (04) blocks within each superblock in the supernet (recall 5.1.1).
2© HW-mapping baselines: We consider the default standalone deployment options – i.e., the
full mapping of an entire ViG model to a singular CU (e.g., to the GPU only). We also consider
hybrid mapping strategies in which inter-CU transitions are limited, as proposed in [10].
3© MAESTRO GNN baseline: We use the aforementioned PyramidViG-M GIN-variant for our
hardware scalability experiments using the MAESTRO simulator. For the convenience of MAE-
STRO, we define the GIN operation by its low-level implementations of the aggregation and com-

bination phases. That is, the aggregation entails a matrix multiplication between the adjacency
matrix and the feature embedding matrix, whereas the combination entails another matrix multi-
plication to transform the aggregated graph features to another representation for the following
layer.

5.2 OOE Results: GNN Architecture Optimization

We first examine the merit of the OOE in identifying GNN architectures that can achieve favor-
able performance trade-offs compared to the baselines. In Figure 4, the first two rows depict the
explored GNN architectures fromA by the OOE on the four (04) datasets given standalonemapping
strategies on GPU-only (top row) and DLA-only (middle row). Compared to the baselines defined
above, our obtained Pareto-optimal GNN architectures generally dominate all baselines on the
four image classification datasets with regard to the three performance metrics of accuracy, la-
tency, and energy consumption. Specifically, the OOE can identify GNN architectures that achieve
up to ∼3.6× latency speedup than baselines when deployed onto the GPU; can realize up to ∼2.8×
more energy efficiency gains compared to the baselines when deployed onto the DLA – all while
maintaining comparable accuracy scores. As will be emphasized in the subsequent Section 5.4, the
reasons for this dominance by the OOE’s GNN architectures is attributed to the allowed diversi-
fication of Graph Op across the different ViG superblocks (as specified in A from Table 1), which
has facilitated achieving better accuracy-performance trade-offs. Moreover, skipping the FFN and
the Grapher’s FC pre-processing layers offers attractive design choices to avoid unnecessary com-
putation, especially when the set of features is limited and can be already captured by the basic
layers of the Grapher modules – which is the case for the simpler datasets (e.g., CIFAR-10). Our
OOE recognized this property and leveraged its knowledge to concentrate its search on identifying
GNN architectural parameters that achieve the best accuracy levels with the minimal number of
FFN and FC pre-processing layers.

5.3 IOE Results: Hardware Mapping Optimization

We further assess the efficacy of the IOE in identifying effective mapping configurations for
provided GNN architectures. The bottom row of Figure 4 shows the optimization results when
exploring mapping strategies from M for the top-performing GNN architectures (as ranked by
Equation (12)) provided to the IOE. The results are reported for CIFAR-10 and grouped by TOP-1

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 108. Publication date: September 2023.

MaGNAS: A Mapping-Aware Graph Neural Architecture Search Framework 108:15

Fig. 4. The first two rows show the performance of the explored GNNs in (A) by the OOE on four datasets

(from left to right : (a) CIFAR-10, (b) CIFAR-100, (c) Oxford-Flowers, and (d) Tiny-ImageNet. The Hardware

metrics (i.e., latency and energy) are shown for GPU-only deployment in the first row and for DLA-only

deployment in the second row. The third row shows the IOE results on CIFAR-10 grouped by prediction

error intervals.

error intervals in each sub-figure. A similar trend has also been observed in the other datasets. At
each top-1 error interval, we can observe that the IOE explored various mapping strategies, as illus-
trated by the latency-energy trade-offs. The bulk of these trade-offs are captured within the range
of performance values from the standalone deployment options, that is, between the GPU-only and
DLA-only mapping options’ latency/energy consumption values, as depicted by the middle sub-
figures. Remarkably, the explored configurations form distinguishable contours, each showing a
specific GNN architecture alongside its explored mapping options – represented by the different
latency-energy trade-off values. Specifically, the GPU-only and DLA-only mapping configurations
for each GNN architecture are located at the boundaries of its curved line. The intermediate points
between the extremes illustrate the performance of the distributed deployment settings and show
how each mapping configuration results in different latency-energy trade-offs.
Furthermore, as both GNNs and mappings are considered together in the IOE design space, su-

perior energy gains can be realized through more compact GNN architectures. For instance, as
illustrated in the third sub-Figure, an energy gain up to ∼3.42× can be attained compared to the
b2-gpu while preserving comparable latency and accuracy levels by opting for another GNN ar-
chitecture and distributed mapping. Upon comparing the curve lines, we can observe that GNN

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 108. Publication date: September 2023.

108:16 M. Odema et al.

Table 2. Detailed Performance Results, GNN Architectural Parameters, and Mapping Strategies of our

Pareto Optimal Models (a0-a3)

Datasets GNN Models
TOP-1 Acc

(%)
Graph-Ops
(M, E, G, S)

FFN-use
(%)

FC pre-use
(%)

Latency
(ms)

Energy
(mJ)

GPU-use
(%)

DLA-use
(%)

All-datasets Φ Baseline-b0
C10: 94.15, C100: 82.13

F: 89.71, Ti: 68.12 M-M-M-M 100 100
G: 25.28
D: 40.11

G: 459.44
D: 224.41 - -

� Baseline-b1
C10: 94.15 C100: 82.13

F: 90.29, Ti: 68.15 E-E-E-E 100 100
G: 33.74
D: 62.11

G: 770.36
D: 323.70 - -

�� Baseline-b2
C10: 94.20, C100: 81.49

F: 86.37, Ti: 67.62 G-G-G-G 100 100
G: 22.49
D: 39.62

G: 429.07
D: 214.35 - -

Ω Baseline-b3
C10: 94.27, C100: 82.10

F: 88.92, Ti: 68.32 S-S-S-S 100 100
G: 29.57
D: 57.77

G: 623.76
D: 263.48 - -

CIFAR-10
(C10) © Ours-a0 94.25 G-G-G-G 25 25 16.02 97.0 09 91

© Ours-a1 94.46 G-G-G-G 100 0 19.49 118.00 17 83
© Ours-a2 94.32 G-M-G-G 25 0 11.19 121.14 75 25
© Ours-a3 94.32 G-M-G-G 25 0 14.18 105.11 33 67

CIFAR-100
(C100) © Ours-a0 82.13 S-G-S-G 100 25 17.72 180.56 50 50

© Ours-a1 82.17 S-S-S-S 100 75 34.72 271.62 30 70
© Ours-a2 81.63 G-G-G-G 50 50 15.06 131.81 50 50
© Ours-a3 82.13 S-G-S-G 100 25 17.29 197.80 55 45

Oxford-Flowers
(F) © Ours-a0 89.90 M-G-M-M 75 75 14.37 153.54 69 31

© Ours-a1 88.43 G-G-G-G 0 50 9.60 119.07 90 10
© Ours-a2 88.43 G-G-G-G 0 50 12.30 105.88 40 60
© Ours-a3 89.02 M-G-G-G 25 25 12.82 116.63 50 50

Tiny-ImageNet
(Ti) © Ours-a0 68.40 M-G-G-G 25 0 13.07 114.89 50 50

© Ours-a1 68.40 M-G-G-G 25 0 15.47 102.06 17 83
© Ours-a2 68.51 M-G-G-G 75 25 16.37 122.56 38 62
© Ours-a3 68.51 M-G-G-G 75 25 17.87 115.78 19 81

The original ViG-S and its variants (b0-b3) on the four datasets on the NVIDIA Jetson Xavier AGX SoC platform.

’G’ and ’D’ in the latency and energy columns indicate GPU and DLA, respectively.

architectures that outperformed the baselines in the OOE (i.e., in the standalone deployment op-
tions shown by the extremes) typically maintain their dominance within the IOE and proves that
rank is preserved across GNN architectures and mapping schemes in this joint search space.

5.4 Analysis of Pareto Search and Models

5.4.1 Results Discussion. In Table 2, we provide a detailed analysis of performances, architec-
tural parameters, and mapping strategies of the ViG baselines [b0-b3] and a selection of our final
Pareto optimal models from the two-tier search [a0-a3] for each dataset. As shown, although
our models maintain comparable accuracy scores to the baselines, they generally achieve better
speedups and energy efficiency results. To be more precise, our models achieve on average ∼1.57×
and ∼2.49× latency speedups; ∼3.38× and ∼1.65×more energy efficiency when compared against
the original ViG baseline fully-deployed onto the GPU and DLA, respectively. This dominance is
primarily attributed to 3 factors: (i) the enabled diversification of Graph Op parameter through-
out the ViG superblocks, which enables interleaving both powerful and resource-efficient opera-
tors within a model architecture. For instance, examining the Oxford-Flowers results in the Table,
model a0 interleaves both Max-Relative and GIN operators. The former contributes to the model’s
representational capacity and compensates for the inadequacy of GIN operators in capturing long-
range dependencies from the graph nodes features, ultimately leading the model to surpass base-
line b0’s accuracy score (89.9% to 89.71%). On the other hand, the employment of GIN operator –
alongside other factors – leads a0 to achieve superior latency and energy efficiency scores. (ii) The
additional varying architectural parameters from A (e.g., FFN-use) enable tuning the model’s size
and learning capacity to the task and dataset complexity. (iii) The distributed mapping strategies,
as indicated by the GPU-use and DLA-use columns in Table 2, further balance the latency-energy
trade-offs by effectively utilizing different CUs.

5.4.2 Hypervolume and Pareto Composition Analysis. To appraise the efficiency of our nested
evolutionary search algorithm in identifying meaningful and mapping configurations, we com-
pare its Hypervolume [27] against those of baseline OOE searches conducted on the standalone

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 108. Publication date: September 2023.

MaGNAS: A Mapping-Aware Graph Neural Architecture Search Framework 108:17

Fig. 5. Left : Hypervolume analysis when including the IOE against those of the standalone OOE for the DLA

and GPU. Right : Breakdown of the combined Pareto Fronts constituents on the basis of mapping options.

Table 3. Details and Comparison of the GNN Workload Assignment

Mapping option Stem Grapher FFN Cls #transit Lat. Enrg.
DLA-only D D-D-D-D-D-D-D-D D-D-D-D-D-D-D-D D 0 25.56 121.74
GPU-only G G-G-G-G-G-G-G-G G-G-G-G-G-G-G-G G 0 13.42 273.22
constr-transit1 D D-G-G-G-G-G-G-G D-G-G-G-G-G-G-G G 1 16.31 232.60
constr-transit1 G G-G-G-G-G-D-D-D G-G-G-G-G-D-D-D D 1 17.42 226.79
constr-transit2 D D-G-G-G-G-G-G-D D-G-G-G-G-G-G-D D 2 17.58 220.23
constr-transit2 G G-G-D-D-D-G-G-G G-G-D-D-D-G-G-G G 2 17.11 227.15
Ours (IOE) D G-G-G-G-G-G-G-G G-D-D-D-D-G-D-D D 12 17.29 197.8

‘G’ and ‘D’ indicate GPU and DLA assignment, respectively. Note that each Grapher block is first succeeded by a

corresponding FFN block.

deployment options on the GPU and DLA. Succinctly, the Hypervolume measures the volume of
the dominated area in the objective space by the estimated Pareto fronts. In Figure 5 (left), we
can observe that the nested search (w/IOE) improves the Hypervolume scores over the baseline
OOE_GPU search by ∼5.7% on average across the four (04) datasets, indicating the IOE’s merit in
extending the dominated area in the search space. In Figure 5 (right), we complement the Hypervol-
ume analysis with a breakdown of the Pareto front composition with regard to the mapping strate-
gies. Specifically, we consider the non-dominated solutions by combining Pareto fronts obtained at
every generation. As seen, the distributed mapping options constitute 23.5%–53.7% of the solutions
on the Pareto front, indicating their value in elevating resource efficiency for the various models.

5.4.3 Analysis of GNN Workload Distribution. In this subsection, we showcase how different
GNN workload assignments across the GPU and DLA influence the latency-energy tradeoffs. In
Table 3, we select one of the Pareto-optimal models, Ours-a3 on CIFAR-100, and compare three
mapping configurations: (i) Standalone options in which the model is fully deployed on either
GPU or DLA. (ii) Constrained transition options (as introduced in [10]) where the number of al-
lowable inter-CU transitions is limited to those that offer the best tradeoffs in order to mitigate
data transmission overheads (i.e., the write-back and initial cold cache misses). (iii) Ours (IOE) are
the mapping options provided through our IOE with unconstrained inter-CU transitions.
As no single optimal solution exists for any distributed mapping strategy, we ensure a fair com-

parison between our approach and the constrained transition strategies by comparing evaluations
of one objective function (energy) while fixing the other (latency). As such, for each constrained
transition option, we use two (02) Pareto optimal solutions whose latency values are closest to our
solution – i.e., solutions with latency closest to 17.29 ms. From the reported results in Table 3, we
can observe that with our unconstrained mapping strategy, a single inference sustains 197.8 mJ on
average, which is more efficient than the best energy numbers, 226.79 mJ and 220.23 mJ, experi-
enced by each of the other distributed mapping baselines, ‘constr-transit1’ and ‘constr-transit2’,
respectively. The reasons for this improvement can be attributed to the following: (i) graph
feature sizes are relatively small throughout the ViG models, leading to low inter-CU transmission

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 108. Publication date: September 2023.

108:18 M. Odema et al.

Fig. 6. Results of the two constrained optimization: Latency and power consumption numbers are reported

under variation of (Left) the allowable latency increase ratio compared to GPU-only, and (right) the available

power budget. Numbers indicate median values.

overhead penalties to be experienced on the Xavier SoC. As Such, our IOE optimization strategy
was able to exploit this property to identify more efficient mapping configurations with a larger
number of transitions. (ii) Each computing block type within the ViG exhibits different affinities
towards the underlying CUs. Thus, our IOE optimization strategy leveraged the other property of
unconstrained transitions to map as many Grapher blocks to the GPU as feasible and as many FFN
blocks to the DLA as possible before transmission costs become non-negligible.

5.5 Constraint-aware Optimization

As many embedded systems employ real-time execution requirements, we test the effectiveness of
our frameworkwhen the search algorithm is performed under strict latency and power constraints.
In particular, we specify two experiments, each associated with one of the following constraints:
(1) Latency, in which the constraint specifies the max allowable increase in latency compared
to the standalone deployment option on the fastest SoC component (i.e., GPU-only). (2) Power

budget; by fixing low values of clock frequencies and a limited number of CPU cores and memory
speed transmission [2]. The first constraint is common for real-time systems governed by strict
execution deadlines, whereas the second constraint is more common for battery-powered systems
operating on limited power budgets. We conduct the two constrained optimization on the IOE
using baselines [b0-b3] and our models [a0-a3] on the CIFAR-100. We report the absolute latency

Table 4. Workload Distribution

Workload
Distribution

Allowable latency increase ratio (%)
5 10 20 40 60 80 100

Avg. GPU
utilization 0.97 0.91 0.74 0.56 0.50 0.50 0.50

Avg. DLA
utilization 0.03 0.09 0.26 0.44 0.50 0.50 0.50

and average power consumption values in Figure 6.
We also characterize the latency constraint by en-
forcing a max allowable increase ratio from the
fastest CU (i.e., the GPU). As shown in left Figure 6,
low latency increase ratio (≤ 20%) leads the IOE to-
wards delegating more computation kernels to the
GPU, resulting in more power-demanding mapping strategies. Compared to the soft-constraint
case (i.e.,w/ tolerance of 100% increase in latency), the power demands at an allowed increase ratio
of 5% are 1.75× more.
As the tolerable increase ratio rises (≥ 30%), the constraint on the search is gradually relaxed.

As shown in Table 4, the optimizer gains more freedom in exploring mapping options and favors
delegating more computation kernels to the DLA for energy efficiency. The power efficiency gains
start to plateau around a 50% increase ratio, indicating that the IOE has converged onto mapping
strategies that maximize the fitness formula (as defined in (13)) by balancing latency and power
efficiency. This convergence is sensible given how between the GPU and DLA, one component is
roughly twice as effective as the other with regards to one performance objective, i.e., execution
latency on the GPU is almost 2× less than the DLA, and the DLA incurs 2× less power consump-
tion than the GPU (see Table 2); given that we assigned equivalent weights for the objectives in

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 108. Publication date: September 2023.

MaGNAS: A Mapping-Aware Graph Neural Architecture Search Framework 108:19

Table 5. Workload Distribution

Workload
Distribution

Available Power Budget (mW)
10 15 20 25 30

Avg. GPU
utilization 0.74 0.76 0.88 0.88 0.81

Avg. DLA
utilization 0.26 0.24 0.13 0.13 0.19

the fitness evaluation formula in (13), i.e., γ1 = γ2 = 1. The
second experiment depicted in the right Figure 6 shows
that at tighter power budget constraints, the IOE focuses
on identifying power-efficient mapping options at the ex-
pense of a slight decrease in latency, resulting in mappings
that assign more GNN workloads to the DLA as depicted
in Table 5. We note that in this experiment, we also maintain the latency minimization as objective,
which also explains the low DLA utilization ratio values reported in Table 5. For instance, to satisfy
the 10 Watts power constraint, the IOE specifies mapping settings with a median latency of 45.8%
– 1.71× more than the latency experienced at a power budget of 30 Watts. More latency-efficient
mappings are identified with refined workload distribution as the power budgets are relaxed.

Fig. 7. Ablation on the impact of including DVFS optimization within the IOE. Searched DVFS is compared

against theMinN,MaxN, andDefault settings with regards to (Left): Latency-Power trade-offs, and (Right):

Latency-Energy trade-offs. Numbers in the right Figure indicate percentage change in values.

5.6 Ablation Study on the Impact of DVFS

In this experiment, we assess the merit of including DVFS optimization within the IOE. We reuse
the baselines [b0-b3] and our models [a0-a3] from the CIFAR-100 experiment. Their mappings are
kept fixed, and we run the models through the DVFS optimization engine to assess how perfor-
mance can be further enhanced. Specifically, we consider the following DVFS settings: (i) MaxN,
which resembles the high-performance mode on the Jetson Xavier SoC with clock frequencies
set to the maximum. (ii)MinN, which is an opposing best-effort mode for low-power operation in
which clock frequencies are set to the minimum. (iii) Searched; in which DVFS settings are search-
able within the IOE (see Table 1 for the values). iv) Default; in which we use the default dynamic
DVFS heuristic with CPU and GPU governors fixed to Schedutil, nvhost podgov, respectively. In this
last setting, clock frequencies are dynamically adjusted at runtime depending on the underlying
resources utilization, where clock frequencies are ranged from 0 to the maximum value on each
component. We note that in addition to the GPU and DLA frequency variations, we also scale the
CPU and EMC clock frequencies as both influence data transmissions between the shared system
memory and private memories of GPU/DLA. We run the IOE with the same optimization param-
eters to ensure a fair evaluation. In Figure 7, we illustrate the performance trade-offs as incurred
by the explored (GNN architectures × HWmappings) under the 04 DVFS settings. As expected, the
left subfigure shows that the Searched mode exhibits a balanced trade-off between latency and
power compared to the MinN and MaxN modes. More interestingly, however, the Searched setting
is able to identify configurations that yield superior energy gains to the fixed DVFS modes. In
particular, the median latency and energy consumption values of Searched are 37.42% and 32.47%
less than MinN, respectively. On the other hand, though Searched incurs a 4.3% increase in its
median latency compared to MaxN, it can achieve an order of magnitude more energy savings
reaching 30.47%. This implies that the IOE identified the DVFS as a viable tuning knob to enhance
energy efficiency by scaling clock frequencies across the different components. Moreover, latency

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 108. Publication date: September 2023.

108:20 M. Odema et al.

in Searched is improved by 40.02% compared to the default DVFS governor. This is explained
by the underlying logic of the dynamic heuristic, which only considers the hardware utilization
and overlooks workload properties such as computation and memory requirements. For instance,
memory-bounded workloads may benefit from GPU/DLA core downscaling with reduced energy
at the same latency level. These properties are captured in our Search mode as we adjust the fre-
quencies according to the GNN and mapping configurations. In addition, The default governors
are set to avoid the idle state when the computing unit is not used, by lowering the frequency to 0,
which helps in minimizing the power consumption (as shown in the left subfigure) but also wors-
ens the execution latency as computing units usually need a warm-up stage to operate steadily
after swapping between low and high frequencies.

5.7 Generality and Scalability

Employing an evolutionary algorithm (EA) for the IOE may seem excessive when the backbone
ViG architecture is an isotropic one that does not experience feature map sizes change and when
the mapping is performed across merely 02 CUs. As such, we perform an additional set of exper-
iments in which we assess the scalability and generality of the IOE on the search-space levels of:
(i) the ViG architectural backbone; where the supernet’s backbone is implemented as a pyramid
variant that allows dimensional reductions from one superblock to the next (recall Figure 2), unlike
the aforementioned isotropic counterpart, and (ii) the hardware CUs; by simulating a case with
03 heterogeneous CUs. The details are provided below.

5.7.1 On the ViG Architectural Level. Using the Nvidia Xavier SoC with GPU and DLA, we com-
pare themapping results from the IOE between the isotropic (ViG-S) and pyramid (PyramidViG-M)
variants (recall Section 5.1.5). As we analyze the effectiveness of the inner EA, we fix the GNN from
the OOE for both variants by setting the design parameters, A, in Table 1 (i.e., d=4, Graph Op=GIN,
fc_use=False, ffn_use=False, w=192), and specify an optimization budget of 2×104 evaluations.

Fig. 8. The results of the IOE EA optimization on the Isotropic

Vision GNN (left) and Pyramid Vision GNN (right).

As depicted in Figure 8, we can ob-
serve in the left subfigure that for the
isotropic ViG, the explored mapping
options follow well-defined spaced
patterns between the two mapping ex-
tremes of GPU-only and DLA-only, of-
fering almost uniform linear trade-offs
between the energy efficiency and ex-
ecution latency across various map-
ping options on the Pareto front. This
results from the Grapher and FFN
blocks being replicated throughout an
isotropic architecture. As such, the per-
formance evaluation of the different mapping options becomes predominantly influenced by the
percentage of Grapher/FFN blocks assigned to each CU, irrespective of their order. Given such a
setting, a scalarization method can be sufficient to determine the Pareto front by varying the ratio
of mappable workloads on either CU. However, for the PyramidViG on the right, this property
does not hold as each Grapher/FFN block entertains different dimensions of their input and out-
put features depending on its position, leading to varying performance characterizations. As such,
we observe that the sampled mapping options are more diverse in their energy and latency char-
acterizations and that the Pareto front exhibits stronger convexity than its isotropic counterpart,
reflecting a diverse, more complex mapping space.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 108. Publication date: September 2023.

MaGNAS: A Mapping-Aware Graph Neural Architecture Search Framework 108:21

5.7.2 On the Hardware CU Level. Using the PyramidViG-M, we investigate how MaGNAS
scales when the search space is further compounded with an increasing number of viable CUs.
We simulate such use-case using MAESTRO tool [21] to specify 3 DSAs of diverse dataflows for
CU heterogeneity (see the details in 5.1.4). As every layer withinMAESTRO is defined via low-level
implementations (including aggregation and combination layers), we can characterize processing
overheads within PyramidViG-M on a layerwise basis and combine them to characterize larger
blocks (e.g., Grapher). At this point, we find that each ‘layer’ rather than ‘block’ can exhibit dif-
ferent performance characteristics at different ViG stages. For instance, the aggregation sustains
a substantial overhead when processing the sizable graph feature matrices at earlier blocks. This
is predominantly due to the DSAs in MAESTRO not being implemented initially to support graph
acceleration – similar to hownumerous SoC platforms (e.g., the Xavier) do notwidely integrate spe-
cialized graph acceleration engines. As such, we can simulate an additional case to study the map-
ping on a layerwise granularity to assess further how the EA in the IOE scales when the number of
mappable options dramatically increase. To provide context, themapping space of the PyramidViG-
M is O(1.72 × 1012) in the blockwise using 2 CUs; O(1.67 × 1016) in the blockwise using 3 CUs; and
O(1.67 × 1023) in the layerwise 3 CUs case, indicating an increasing level of problem complexity. In

Fig. 9. The results of the IOE optimization onMAESTRO [21]

with: (i) Block-wise mapping granularity (left) and (ii) Layer-

wise mapping granularity (right).

Figure 9, we demonstrate how the inner
EA scales effectively as the search space
is expanded from the blockwise to the
layerwise mapping granularity. We first
specify a fixed optimization budget of
6 × 104 evaluations for both. Moreover,
although fully deploying the architec-
ture on DSA-d completely dominates
DSA-k deployment, the latter is still in-
cluded since it represents the optimal
mapping option for some individual lay-
ers. In the blockwise case (left), we ob-
serve that the EA focuses on exploring
more mapping solutions at the energy
consumption extremes due to coarse-grained characterization of the Grapher block, leading it to
identify distributed mapping options that dominate the standalone extreme, i.e., the EA identifies
a distributed mapping configuration that achieves 1.25× energy gains over DSA-y for the same
latency level. The opposite occurs for the layerwise search, where despite the much larger opti-
mization space, the EA was capable of recognizing benefits from distributing the aggregation and
combination across different DSAs, leading it to concentrate the search more at the centralized
latency-energy trade-off region. For example, at execution latency of ∼ 2.2 × 108 cycles, the lay-
erwise search by the IOE was able to identify a mapping option that incurs 28.6 mJ compared to
31.9 mJ from the blockwise search.

Fig. 10. Evolutionary Vs. Random search.

5.7.3 On the Power of Evolution. We further ana-
lyze the hypervolume improvement when using an EA
compared to a random search. We fix an optimization
budget of 5000 evaluations for each and showcase the
results in Figure 10 at different evolution stages for
the mapping onto 3 CUs experiment. Normalized by a
maximum achievable value from our previous results,
we observe that the normalized hypervolume in the

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 108. Publication date: September 2023.

108:22 M. Odema et al.

Figure reaches ∼92% improvement for the EA compared to ∼75% for the random search. We also
notice that both blockwise and layerwise converge to proximate values despite the larger gap at
the earlier evolutions (i.e., generations), further indicating the EA’s capacity to scale.

6 DISCUSSION AND FUTURE DIRECTIONS

1© Key Takeaways. Hardware-software design optimizations and workloads mappings are in-
creasingly studied in the literature [4, 5, 10, 11]. What distinguishes this work is its specialization
in considering the details of: (i) GNNs’ computational flow irregularity; (ii) workload distribution
across heterogeneous CUs with varying degrees of support for graph operators. Furthermore, ViG
is a relatively emergent class of GNNs, and there remains room for improvement along the design,
characterization, and training of ViG supernets, which can only improve as the application of ViGs
– and GNNs in general – at the Edge continues to proliferate. All things considered, MaGNAS has
demonstrated encouraging results that can help pave the way for future lines of research.
2© Generality and scalability. In analyzing the generality of MaGNAS (Section 5.7), we have
demonstrated the heterogeneity of hardware accelerators through diversifying dataflows across
HW accelerators. In practice, heterogeneity can also occur through varying other factors such
as processing engines per accelerator, shared buffer size, off-chip memory bandwidth, etc., all of
which can influence the hardware efficiency of the workloads. MaGNAS has been shown capable
of generalizing to the different forms of heterogeneity as it relies on high-level performance char-
acterization that abstracts underlying hardware compositions. Furthermore, experiments on real
SoCs with different HW accelerators and levels of heterogeneity from that of the Nvidia Xavier is
still needed to corroborate that MaGNAS can scale effectively to diverse platforms.
3© Graph operation support limitations. As MAESTRO does not natively support the sparse
matrix multiplications, we implemented GNN operations within the simulator as generic matrix
multiplications, which has led to considerable execution overheads for the aggregation phase re-
garding latency and energy. This is indeed a situation akin to the case when GNN workloads are
to be run on generic, uncustomized edge devices that lack proper support for specialized accel-
erators for GNN operations. In such cases, mapping optimizations can be particularly beneficial
in mitigating the impact of such hardware deficiencies. Furthermore, as GNNs grow in popular-
ity, promising steps are being taken towards developing new dataflows for reconfigurable spatial
accelerators to support irregular graph computational sequences, which will also bring about the
need for new architectural simulators to effectively model their performance overheads.
4© Other Application Domains. Vision-based applications provided practical, tangible use case
motivations for the GNNs-on-SoCs scenario, and accordingly, they have become the primary target
application of this work. With that being said, the manner in which MaGNAS has been developed
enables it to generalize to other emerging applications on edge SoCs that employ GNNs for their
primary computational workloads. For instance, the support for mapping on both the blockwise
and layerwise levels of granularity within MaGNAS enables it, with some fine-tuning, to serve
other types of emerging GNN-based applications at the edge by maximizing GNNs’ efficiency
across a broad range of diverse CUs integrated onto the same chip.

7 RELATEDWORKS

1© GNNs for vision. Through learning graph-level features, GNNs achieved remarkable perfor-
mance on a variety of computer vision tasks, such as activity recognition [37] and point clouds
classification [22, 31]. Traditionally, the success of GCNs in computer vision applications relied
on the graph construction technique, which in many cases was tailored to suit the input data se-
mantics and downstream task. Scene graph generation [25, 33, 43] emerged as a viable approach to
generate a graph of objects and their relations from an image through cascading an object detector

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 108. Publication date: September 2023.

MaGNAS: A Mapping-Aware Graph Neural Architecture Search Framework 108:23

and a GCN model. The ViG [17], a generic architecture upon which our framework is constructed,
represents a standard GCN backbone to generate and process graphs from raw images to serve
general computer vision applications.
2©Hardware acceleration for GNNs The two phases of GNN favor different classes of accelera-
tors: GNN acceleration favors MIMD architectures to address the irregularity of graph operations
by providing high random access memory bandwidth and small data access sizes, whereas DNN
acceleration is achieved through SIMD architectures for exploiting data locality through caches or
local scratchpads. As such, numerous works [3, 7, 19, 29, 36, 39] have proposed hybrid accelera-
tor architectures comprising separate engines and specialized hardware components to effectively
manage the non-uniform GNN dataflow on both an intra- and inter-phase level. However, such
proposed accelerator designs are acutely specialized ASICs, complicating their integration into
numerous commodity hardware platforms and SoCs. Since GNNs are becoming increasingly pop-
ular, recent research efforts [15] have directed their approach towards characterizing the design
space of dataflow choices to enable running GNNs on customary reconfigurable spatial accelera-
tors, intending to identify convenient dataflows to service various GNN use cases. The philosophy
behind our method follows the latter trend. However, it is complementary to both approaches
since it abstracts the underlying accelerator architecture and adds another layer of design space
exploration to characterize joint search space of GNN architectures and the inter-phase pipelining
across heterogeneous computing components in an SoC.
3© Distributed Computing of GNNs. Distributing DNN workloads across the heterogeneous
computing resources of CPU, GPU, DLAs, and FPGAs, is an active field of research [5, 10, 18, 26, 35].
Researchers have recently explored how to distribute GNN workloads to enhance performance
efficiency by exploiting the underlying heterogeneous hardware composition via task-level, data-
level, and pipelining forms of parallelism [8]. For instance, the work in [44] proposed to decouple
GNNs onto CPU-FPGA heterogeneous platform to speedup GNN inference.
4© Graph Neural Architecture Search. Recent research works investigated how to leverage
the power of Neural Architecture Search to automate the design process of GNNs. Earlier works
adopted search approaches like Reinforcement Learning [13, 14, 47] or Evolutionary algorithms
[28]. The work in [40] further proposed a generalized GNNs’ design space with a knowledge dis-
tillation method from GNN model-task pairs. However, these approaches mostly fall under the
training-in-the-loop NAS category. Furthermore, limited or no awareness of the underlying hard-
ware computing platform capabilities was taken. As such, more recent works in [45, 46] proposed
to move towards the once-for-all approach [6], which employs a supernet that characterizes the
design space of the GNN architectures. Specifically, the training of the supernet can be conducted
only once by leveraging the property of weight-sharing. On the hardware side, [45] adopts a co-
design NAS approach for GNN and hardware accelerator, whereas [46] optimizes the GNN design
to suit underlying commodity edge computing platforms. Our work falls under the same category

Table 6. Comparison between Related Graph Neural Architecture Search Works and Ours

[14] [13] [47] [28] [45] [46] MaGNAS

Training-in-the-loop NAS � � � �

Once-for-all NAS � � �

Vision GNN �

Hardware Awareness � � �

GNN-Hardware co-design �

Edge Computing Setting � �

Distributed Mapping �

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 108. Publication date: September 2023.

108:24 M. Odema et al.

of HW-aware NAS for GNNs as these two. However, several features distinguish this work from
others: (i) our supernet is designed to consider the emerging class of vision-based GNNs (ViGs);
(ii) support for evaluating candidate ViG subnets during the search process based on their best
mapping options that leverage pipelining parallelism across diverse computing units within the
MPSoC edge platform; (iii) our two-tier search algorithm implementation allows the inner opti-
mization engine to be extensible to other MPSoCs and GNN supernets serving other tasks. We
summarize the differences in Table 6.

8 CONCLUSION

In this paper, we presented MaGNAS, a mapping-aware Graph Neural Architecture Search
framework for the distributed deployment of vision GNN onto heterogeneous SoCs. MaGNAS
characterizes a GNN architectural design space boundwith prospective mapping options, enabling
the identification of model designs optimized to the distributed deployment scheme. MaGNAS em-
ploys a two-tier evolutionary search framework to identify optimal architecture andmapping pair-
ings that provide the best performance trade-offs. Extensive experimentation, in-depth analysis,
and ablation studies using a real MPSoC platform and hardware simulation have showcased the
merit of MaGNAS in designing ViG architectures and mapping them onto heterogeneous MPSoCs.

ACKNOWLEDGEMENT

This work was supported by the National Science Foundation (NSF) under award CCF-2140154.

REFERENCES

[1] [n.d.]. NVIDIA Jetson AGX Xavier Delivers 32 TeraOps for New Era of AI in Robotics. https://developer.nvidia.com/

blog/nvidia-jetson-agx-xavier-32-teraops-ai-robotics/

[2] [n.d.]. Power management and clock frequency scaling. https://docs.nvidia.com/jetson/archives/r34.1/

DeveloperGuide/text/SD/PlatformPowerAndPerformance.html

[3] Adam Auten, Matthew Tomei, and Rakesh Kumar. 2020. Hardware acceleration of graph neural networks. In 2020

57th ACM/IEEE Design Automation Conference (DAC’20). IEEE, 1–6.

[4] Halima Bouzidi, Mohanad Odema, Hamza Ouarnoughi, Smail Niar, and Mohammad Abdullah Al Faruque. 2023.

HADAS: Hardware-aware dynamic neural architecture search for edge performance scaling. In Design, Automation

& Test in Europe Conference & Exhibition (DATE’23).

[5] Halima Bouzidi, Mohanad Odema, Hamza Ouarnoughi, Smail Niar, and Mohammad Abdullah Al Faruque. 2023. Map-

and-conquer: Energy-efficient mapping of dynamic neural nets onto heterogeneous MPSoCs. In Proceedings of the

60th ACM/IEEE Design Automation Conference (DAC).

[6] Han Cai et al. 2019. Once-for-all: Train one network and specialize it for efficient deployment. In International Con-

ference on Learning Representations (ICLR’19).

[7] Cen Chen, Kenli Li, Xiaofeng Zou, and Yangfan Li. 2021. Dygnn: Algorithm and architecture support of dynamic

pruning for graph neural networks. In 2021 58th ACM/IEEE Design Automation Conference (DAC’21). IEEE, 1201–1206.

[8] Chaoqi Chen and ohers. 2022. A survey on graph neural networks and graph transformers in computer vision: A

task-oriented perspective. arXiv preprint arXiv:2209.13232 (2022).

[9] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A spatial architecture for energy-efficient dataflow for

convolutional neural networks. ACM SIGARCH Computer Architecture News 44, 3 (2016), 367–379.

[10] Ismet Dagli et al. 2022. AxoNN: Energy-aware execution of neural network inference on multi-accelerator heteroge-

neous SoCs. In Proceedings of the 59th ACM/IEEE Design Automation Conference (DAC’22).

[11] Nael Fasfous et al. 2022. Anaconga: Analytical hw-cnn co-design using nested genetic algorithms. In 2022 Design,

Automation & Test in Europe Conference & Exhibition (DATE’22). IEEE, 238–243.

[12] Brian Gaide et al. 2019. Xilinx adaptive compute acceleration platform: VersalTM architecture. In Proceedings of the

2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 84–93.

[13] Yang Gao et al. 2020. Graph neural architecture search.. In IJCAI, Vol. 20. 1403–1409.

[14] Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, and Yue Hu. 2020. Graph neural architecture search. In Proceedings

of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20. 1403–1409.

[15] Raveesh Garg et al. 2022. Understanding the design-space of sparse/dense multiphase GNN dataflows on spatial ac-

celerators. In 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS’22). IEEE, 571–582.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 108. Publication date: September 2023.

MaGNAS: A Mapping-Aware Graph Neural Architecture Search Framework 108:25

[16] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation learning on large graphs. Advances in

Neural Information Processing Systems 30 (2017).

[17] Kai Han, Yunhe Wang, Jianyuan Guo, Yehui Tang, and Enhua Wu. 2022. Vision GNN: An image is worth graph of

nodes. In Advances in Neural Information Processing Systems.

[18] Jangryul Kim and Soonhoi Ha. 2022. Energy-aware scenario-based mapping of deep learning applications onto het-

erogeneous processors under real-time constraints. IEEE Trans. Comput. (2022).

[19] Kevin Kiningham et al. 2022. GRIP: A graph neural network accelerator architecture. IEEE Trans. Comput. (2022).

[20] Hyoukjun Kwon et al. 2019. Understanding reuse, performance, and hardware cost of dnn dataflow: A data-centric

approach. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture. 754–768.

[21] Hyoukjun Kwon, Prasanth Chatarasi, Vivek Sarkar, Tushar Krishna, Michael Pellauer, and Angshuman Parashar. 2020.

Maestro: A data-centric approach to understand reuse, performance, and hardware cost of dnn mappings. IEEE Micro

40, 3 (2020), 20–29.

[22] Loic Landrieu and Martin Simonovsky. 2018. Large-scale point cloud semantic segmentation with superpoint graphs.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 4558–4567.

[23] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. 2019. Deepgcns: Can gcns go as deep as cnns?. In

Proceedings of the IEEE/CVF International Conference on Computer Vision. 9267–9276.

[24] Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach, Md E. Haque, Lingjia Tang, and Jason Mars. 2018. The

architectural implications of autonomous driving: Constraints and acceleration. In Proceedings of the Twenty-Third

International Conference on Architectural Support for Programming Languages and Operating Systems. 751–766.

[25] Arnav Vaibhav Malawade, Shih-Yuan Yu, Brandon Hsu, Deepan Muthirayan, Pramod P. Khargonekar, and Moham-

mad Abdullah Al Faruque. 2022. Spatiotemporal scene-graph embedding for autonomous vehicle collision prediction.

IEEE Internet of Things Journal 9, 12 (2022), 9379–9388.

[26] Roger Pujol, Hamid Tabani, Leonidas Kosmidis, Enrico Mezzetti, Jaume Abella Ferrer, and Francisco J Cazorla. 2019.

Generating and exploiting deep learning variants to increase heterogeneous resource utilization in the nvidia xavier.

In 31st Euromicro Conference on Real-Time Systems (ECRTS’19), Vol. 23.

[27] Ke Shang, Hisao Ishibuchi, Linjun He, and Lie Meng Pang. 2020. A survey on the hypervolume indicator in evolution-

ary multiobjective optimization. IEEE Transactions on Evolutionary Computation 25, 1 (2020), 1–20.

[28] Min Shi, Yufei Tang, Xingquan Zhu, Yu Huang, David Wilson, Yuan Zhuang, and Jianxun Liu. 2022. Genetic-gnn:

Evolutionary architecture search for graph neural networks. Knowledge-Based Systems 247 (2022), 108752.

[29] Jacob R. Stevens et al. 2021. GNNerator: A hardware/software framework for accelerating graph neural networks. In

2021 58th ACM/IEEE Design Automation Conference (DAC’21). IEEE, 955–960.

[30] Emil Talpes et al. 2020. Compute solution for tesla’s full self-driving computer. IEEE Micro 40, 2 (2020), 25–35.

[31] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M. Solomon. 2019. Dynamic

graph cnn for learning on point clouds. Acm Transactions On Graphics (tog) 38, 5 (2019), 1–12.

[32] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S. Yu Philip. 2020. A comprehensive

survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems 32, 1 (2020), 4–24.

[33] Danfei Xu, Yuke Zhu, Christopher B. Choy, and Li Fei-Fei. 2017. Scene graph generation by iterative message passing.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 5410–5419.

[34] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How powerful are graph neural networks?. In

International Conference on Learning Representations.

[35] Lei Xun et al. 2020. Optimising resource management for embedded machine learning. In 2020 Design, Automation &

Test in Europe Conference & Exhibition (DATE). IEEE, 1556–1561.

[36] Mingyu Yan, Lei Deng, Xing Hu, Ling Liang, Yujing Feng, Xiaochun Ye, Zhimin Zhang, Dongrui Fan, and Yuan Xie.

2020. Hygcn: A gcn accelerator with hybrid architecture. In 2020 IEEE International Symposium on High Performance

Computer Architecture (HPCA’20). IEEE, 15–29.

[37] Sijie Yan, Yuanjun Xiong, and Dahua Lin. 2018. Spatial temporal graph convolutional networks for skeleton-based

action recognition. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32.

[38] Jianwei Yang, Jiasen Lu, Stefan Lee, Dhruv Batra, and Devi Parikh. 2018. Graph r-cnn for scene graph generation. In

Proceedings of the European Conference on Computer Vision (ECCV’18). 670–685.

[39] Haoran You et al. 2022. Gcod: Graph convolutional network acceleration via dedicated algorithm and accelerator co-

design. In 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA’22). IEEE, 460–474.

[40] Jiaxuan You, Zhitao Ying, and Jure Leskovec. 2020. Design space for graph neural networks. Advances in Neural

Information Processing Systems 33 (2020), 17009–17021.

[41] Jiahui Yu et al. 2019. Slimmable neural networks. In International Conference on Learning Representations.

[42] Jiahui Yu et al. 2020. Bignas: Scaling up neural architecture search with big single-stage models. In Computer Vision–

ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part VII 16. Springer.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 108. Publication date: September 2023.

108:26 M. Odema et al.

[43] Shih-Yuan Yu, Arnav Vaibhav Malawade, Deepan Muthirayan, Pramod P. Khargonekar, and Mohammad Abdullah

Al Faruque. 2021. Scene-graph augmented data-driven risk assessment of autonomous vehicle decisions. IEEE Trans-

actions on Intelligent Transportation Systems 23, 7 (2021), 7941–7951.

[44] Bingyi Zhang et al. 2022. Low-latency mini-batch GNN inference on CPU-FPGA heterogeneous platform. In 2022 IEEE

29th International Conference on High Performance Computing, Data, and Analytics (HiPC’22). 11–21.

[45] Yongan Zhang et al. 2021. G-CoS: Gnn-accelerator co-search towards both better accuracy and efficiency. In 2021

IEEE/ACM International Conference On Computer Aided Design (ICCAD’21). IEEE, 1–9.

[46] Ao Zhou et al. 2023. Hardware-aware graph neural network automated design for edge computing platforms. In

Proceedings of the 60th ACM/IEEE Design Automation Conference (DAC’23).

[47] Kaixiong Zhou et al. 2022. Auto-gnn: Neural architecture search of graph neural networks. Frontiers in Big Data (2022).

Received 23 March 2023; revised 2 June 2023; accepted 30 June 2023

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 108. Publication date: September 2023.

