
Exploring Memory Access Similarity to Improve
Irregular Application Performance for
Distributed Hybrid Memory Systems

Wenjie Liu , Student Member, IEEE, Xubin He , Senior Member, IEEE, and Qing Liu ,Member, IEEE

Abstract—With the increasing problem complexity, more irregular applications are deployed on high-performance clusters due to the

parallel working paradigm, and yield irregular memory access behaviors across nodes. However, the irregularity of memory access

behaviors is not comprehensively studied, which results in low utilization of the integrated hybrid memory system compositing of

stacked DRAM and off-chip DRAM. To address this problem, we devise a novel method called Similarity-Managed Hybrid Memory

System (SM-HMS) to improve the hybrid memory system performance by leveraging the memory access similarity among nodes in a

cluster. Within SM-HMS, two techniques are proposed,Memory Access Similarity Measuring and Similarity-based Memory Access

Behavior Sharing. To quantify the memory access similarity, memory access behaviors of each node are vectorized, and the distance

between two vectors is used as the memory access similarity. The calculated memory access similarity is used to share memory

access behaviors precisely across nodes. With the shared memory access behaviors, SM-HMS divides the stacked DRAM into two

sections, the sliding window section and the outlier section. The shared memory access behaviors guide the replacement of the sliding

window section while the outlier section is managed in the LRU manner. Our evaluation results with a set of irregular applications on

various clusters consisting of up to 256 nodes have shown that SM-HMS outperforms the state-of-the-art approaches, Cameo,

Chameleon, and Hyrbid2, on job finish time reduction by up to 58:6%, 56:7%, and 31:3%, with 46:1%, 41:6%, and 19:3% on average,

respectively. SM-HMS can also achieve up to 98:6% (91:9% on average) of the ideal hybrid memory system performance.

Index Terms—Cluster, irregular application, memory system, DRAM, hybrid memory system

Ç

1 INTRODUCTION

HIGH-PERFORMANCE clusters are widely deployed to pro-
cess massive data with the parallel working paradigm.

A common yet simplistic cluster workload is that all work
nodes are assigned to the same job executing the same binary
code with a different yet typically equal portion of data [1].
However, for a large portion of irregular applications (e.g.,
adaptive mesh refinement [2]), the application is divided
into smaller tasks and the assigned task for each work node
can be interpreted as the combination of various functions
and data structures, exhibiting more complex and heteroge-
neous memory access behaviors (MABs) across nodes.
Despite different tasks running among nodes, some common
functions and data structures are shared amongwork nodes,
and either execution shared functions or accessing shared
data structures yield similar MABs across nodes [3], [4],

which indicates various levels of memory access similarity
amongwork nodes running the same irregular application.

Targeting the well-known “memory wall” problem [5],
the stacked DRAM is integrated within the processor pack-
age via the 3D-stacking technology, providing substantially
higher bandwidth and lower access latency than the off-
chip DRAM. However, limited by the processor’s die size
and heating problem, the stacked DRAM usually works
cooperatively with the off-chip DRAM, and the stacked
DRAM utilization determines the overall performance of
the hybrid memory system [6]. To utilize the stacked
DRAM efficiently, two challenges exist. The first challenge
is to identify hot data. Existing approaches identify the hot
data by exploiting either the access history of each data
block [7], [8], [9] or hints provided by the operating systems
[10], [11], which ignore the shared MABs enabled by the
parallel working paradigm of the cluster and may not per-
form well in the cluster environment. The second challenge
is to manage metadata efficiently. Large bodies of work
address the metadata management by using different data
granularities for data movement [7], [8], [9], [12], [13], man-
aging the stacked DRAM as a cache [12], [13] or part of the
memory space [14], or dynamically shifting between as-a-
cache and part-of-memory [7], [8].

To improve the hybrid memory system utilization, we
devise a Similarity-Managed Hybrid Memory System (SM-
HMS) by taking advantage of the memory access similarity
of irregular applications in the cluster. When running an
irregular application, the task assigned to each node is rep-
resented as the combination of different functions, and each
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function yields differentMABs. Thus, nodes with more shared
functions exhibit higher similarity in MABs. Sharing such
MABs enables accurate and informed data placement in the
hybrid memory system. Based on this, two techniques are
included in the SM-HMS, Memory Access Similarity Measuring
and Similarity-based Memory Access Behavior Sharing (SMABS).
SM-HMS quantifies the memory access similarity by vectoring
MABs of each node andmeasures the distance between vectors
as the memory access similarity, while SMABS shares MABs
according to the calculated memory access similarity and
uses the shared MABs as “recipes” to perform accurate and
informed cache replacement for the stacked DRAM cache. In
doing so, the stacked DRAM utilization can be significantly
improved, alleviating the “memory wall” problem and thus
increasing the cluster performance. In summary, we make the
following contributions in this study:

� We propose a Similarity-Managed Hybrid Memory Sys-
tem (SM-HMS) method to address the under-utilized
hybrid memory systems by leveraging the various
degree of memory access similarity observed in the
irregular applications running on the cluster.

� Inside SM-HMS, two techniques, Memory Access Simi-
larity Measuring (MASM) and Similarity-based Memory
Access Behavior Sharing (SMABS), are included to
obtain and utilize thememory access similarity among
nodes.MASM quantifies thememory access similarity
by measuring the distance amongMAB vectors, while
the SMABS shares MABs across nodes according to
the memory access similarity and utilizes the shared
MABs as “recipes” to perform accurate and informed
stackedDRAMcache replacement.

� We conduct extensive experiments to evaluate the effi-
cacy of SM-HMS in a cluster of various configurations
consisting of up to 256 nodes with a variety of work-
loads and the results have demonstrated that SM-HMS
can effectively improve the stacked DRAM utilization
among work nodes and improve overall performance.
Moreover, our SM-HMS outperforms state-of-the-art
approaches Cameo, Chameleon, and Hybrid2, in terms of
stackedDRAMutilization and overall performance.

2 BACKGROUND

In this section, we first investigate memory access character-
istics of irregular HPC applications, followed by the design
challenges of the hybrid memory system.

2.1 Memory Access Behaviors in Clusters

A simplistic cluster workload is that all work nodes
assigned to the same job are executing the same binary code
with a different equal portion of data [1]. As observed in a
recent study [3], MABs are identical across nodes since all
nodes execute the same binary code. However, memory
access is more complex for a large portion of irregular appli-
cations (e.g., adaptive mesh refinement [2]), where the sub-
mitted job is divided into multiple tasks and tasks running
on each node are different. As shown in Fig. 1, four func-
tions are mixed among five work nodes compositing differ-
ent tasks, and different mixed functions executed on each
work node lead to various combinations ofMAB. By captur-
ing the MAB at the page level, multiple pages related to the
same function show identical access behavior in terms of
cache line offset deltas [15], [16], e.g., 1200 pages related to
Func1 exhibit an access behavior ½þ1; þ32; �16; þ32�.
Then the MAB of Func1 can be represented with a tuple <
Sequence; Sequence coverage > , where Sequence is a list of
the frequently used cache line offset deltas, and
Sequence coverage is the number of pages following such a
sequence. From the view of each work node, the MAB of a
node can be viewed as the combined MAB of each page
since the memory page is the basic memory allocation unit,
e.g., the MAB for Node J can be described as the combined
MABs from both Func1 and Func2. Moreover, more over-
lapped combinations of functions result in higher similarity
as more pages across nodes share the sameMAB.

A Case Study on the Adaptive Mesh Refining. The Adaptive
Mesh Refining workload represents a typical irregular
application, as different tasks are running on each node
despite the shared exactly same binary code across work
nodes. At the initial stage, the entire dataset is divided into
equal portions which are later assigned to each work node
along with the shared binary code to maximum the parallel-
ism among all nodes. During the run-time, each work node
traverses the assigned dataset, and performs finer granular-
ity of refinement once a region of interest detected. With the
changes from both data access granularity and different
processing methods invoked, theMAB changes accordingly.
With the finer data access granularity, the strides exhibited
between consecutive memory requests can be different, as
the region of interest requires a mesh refinement at a higher
density. Moreover, different algorithms may be used to han-
dle the mesh refinement with different granularity, which
could changes theMABs of each node fundamentally. Addi-
tional, the job scheduler is not aware of the data variance

Fig. 1. An example of memory access similarity among work nodes. Each work node executes a different portion of the shared binary code, creating
various combinations of MABs. As shown, the similarity between two nodes is estimated by the overlapped MABs along with the number of pages
covered by eachMAB, e.g., nodeK and node S share the sameMABs and yield high similarity.
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and distributes tasks among nodes by assigning dataset
with equal portions, indicating that it is hard to address the
irregularMABs via an advanced scheduling policy.

On the other hand, since functions included in the shared
binary code is finite in a given Adaptive Mesh Refining
workload, some of the MABs commonly exist in multiple
nodes as the overlapped functions are executed among
nodes, which is observed in Fig. 2. Fig. 2 gives a breakdown
of the number of memory requests covered by the most fre-
quently used 6 MABs of each work node running an irregu-
lar application. As shown, different combinations of MABs
can be observed among work nodes, indicating the data
assigned on each node requires various levels of refinement
and different functions are called, which leads to irregular
memory access behaviors. However, a portion of MABs are
shared among nodes, e.g., MAB 0 and MAB 1, which evi-
dences that the level of memory access similarity still exists
at a random level between any two nodes in the cluster. It is
worth mentioning that the number of pages covered by a
shared MAB varies among nodes since the corresponding
function processes different amounts of data among such
nodes.

2.2 Challenges in Hybrid Memory Systems

To exploit the high performance enabled by the stacked
DRAM, two challenges are at the core of designing an effi-
cient hybrid memory system.

The first challenge is to determine the optimal data place-
ment at run-time. Due to the imbalanced performance
between stacked DRAM and off-chip DRAM, an intuitive
approach to utilizing the high-performance stacked DRAM
is to put the soon-to-be-accessed data in the stacked DRAM.
The more memory requests served by stacked DRAM, the
higher performance can be achieved. A majority of works
have focused on using historical memory accesses to guide
the data placement for future memory accesses [7], [8], [9].
However, a large portion of HPC applications’ memory
footprint is allocated to memory pages holding data, which
is only accessed for a limited time [17]. Furthermore, the
observed access history may be either too short to guide

data placement accurately or useless since pages are sel-
domly accessed afterward.

The second challenge is to reduce the overhead caused by
metadata. Since the data is distributed between stacked
DRAM and off-chip DRAM, it is vital to determine the data
location before access, and the metadata is used to track the
location of the requested data. As accessing the metadata
stands in the critical path of memory access, the performance
overhead caused bymetadata access significantly impacts the
performance of hybrid memory systems. On the other hand,
the metadata storage overhead can be as huge as several hun-
dreds of megabytes, and the recorded access history aggre-
gates the storage overhead depending on the management
data granularity [17]. The two challenges lead to a trade-off
between the data granularity and metadata overhead, as
more precise data placement incurs data movement at a finer
granularity between stacked DRAM and off-chip DRAM,
which exacerbates the metadata overhead. Fig. 3 compares
the stacked DRAM hit ratio and the accordingly performance
degradation caused by metadata for the state-of-the-arts. As
shown, the state-of-the-art approaches keep improving the
stacked DRAM hit ratio. At the same time, the performance
overhead caused by metadata increases dramatically for the
irregular HPC applications, which diminishes the perfor-
mance gain enabled by the stackedDRAM.

3 DESIGN OF THE SIMILARITY-MANAGED HYBRID

MEMORY SYSTEM

This section presents the detailed design of Similarity-Man-
aged Hybrid Memory System (SM-HMS). First, we give a
high-level overview of SM-HMS along with the two work-
flows,Memory Access Similarity Measuring (MASM) and Sim-
ilarity-based Memory Access Behavior Sharing (SMABS). Then,
we dive into the discussion of the three components that
enable the SM-HMS. For readability, Table 1 summarizes
the frequently used abbreviations.

3.1 SM-HMS Overview

Fig. 4 provides a topological view of an SM-HMS enabled
cluster. To enable SM-HMS, three components, namely Sim-
ilarity Monitor, Access Behavior Buffer, and Swap Executor, are
added to each node of the cluster at different levels. All
three components work cooperatively to enable two core

Fig. 2. Breakdown on memory pages covered by the most frequently used
6 MABs. Three observations can be drawn. First, an MAB, e.g., MAB 0,
can be shared by all nodes as executing the same binary code. Second,
identical MAB combination is observed on node 3; 4; 6; 7; 8; 11; 12

and 13, as such nodes may execute the same task. Third, MAB 5 only
shows on node 14 and a large amount of pages are covered by MAB 5,
implying the similarity not only exists among nodes but also across multi-
ple pages within a node.

Fig. 3. Comparison on performance overhead and stacked DRAM utili-
zation among state-of-the-art hybrid memory system designs. As
shown, existing approaches either yield low utilization of the integrated
stacked DRAM or suffer from significant performance caused by meta-
data querying.
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functions, Memory Access Similarity Measuring and Similar-
ity-based Memory Access Behavior Sharing.

Memory Access Similarity Measuring. To characterize the
task assigned on each work node, the memory access simi-
larity is used to describe the relationship between two
nodes from the perspective of memory access behavior. Fur-
thermore, the Swap Executor is used to monitor the fre-
quently used MABs for each work node (step �1 ). Then, the
observed MABs are submitted to the Similarity Monitor for
updating the memory access similarity among nodes (step
�2 ). By converging MABs across nodes, the Similarity Moni-
tor calculates the similarity between nodes and maintains a
Similarity Matrix for the similarity-basedMAB sharing.

Similarity-Based Memory Access Behavior Sharing. With the
similarity among nodes calculated, the Similarity Monitor
groups work nodes with high similarity and enable accurate
MAB sharing (step �3 ), which alleviates the unnecessary
data movement caused by inaccurate sharing in the scenario
of the irregular application. The shared MABs are buffered
by the Access Behavior Buffer, and guide the data placement
by the Swap Executor (step�4 ).

3.2 Similarity Monitor

To investigate the irregularity behavior of the irregular
applications, the Similarity Monitor is added into the cluster
and interprets the similarity of tasks performed on each
node as the similarity among MABs shown on each node.
To enable this, the responsibility of Similarity Monitor is
divided into two major workflows, Memory Access Similarity
Measuring (MASM) and Similarity-based Memory Access
Behavior Sharing (SMABS).

3.2.1 Memory Access Similarity Measuring

To discover the relationship among tasks assigned to each
node, we use memory access similarity to represent the dif-
ference of tasks among work nodes and propose a quantita-
tive method to measure the memory access similarity
among nodes which is described in Fig. 5. According to
Fig. 5, MASM measures similarity by three steps, converg-
ing MABs from all nodes as a Global Memory Access Behavior
Vector (GMABV), generating Per-node Memory Access Behav-
ior Vector (PMABV), and calculating distance among
PMABVs as the similarity.

Step �a : Converging MABs Sent by All Nodes as a GMABV.
Since each work node can execute a portion of the job’s
binary code, the MABs of one node represent a fraction of
the overall memory characteristics of the running job. To
accurately compare the similarity among nodes, the MABs
obtained from each work node are converged as a GMABV,
and each element in the GMABV represents a unique MAB.
By doing so, the running job is profiled from the aspect of
MAB, and the GMABV can be used to generate the memory
access behavior vector for each work node.

Step �b : Generating the PMABV for Each Node.With the
converged GMABV, MABs generated by each node can be
mapped with the GMABV and built as a MAB vector con-
sisting of all MABs encountered during run-time, namely a
Per-node MAB Vector (PMABV). To generate the PMABV of
a node, MASM cross-references MABs observed on the cor-
responding node with the generated GMABV, and marks
each PMABV entry as ‘1’ for the existence of the correspond-
ing MAB while ‘0’ for absence. It is worth mentioning that
multiple PMABV designs are applicable to extend the
usability, e.g., requests covered by theMAB, and using the
boolean existence bit can enable quickly determine nodes to
share for the SMABS. On the other hand, the Access Behavior
Buffer maintains a capacity-limited buffer to hold the most
useful MABs, which guarantees the less effective MABs will
soon be evicted. After the PMABVs generated, the memory
access behavior of each node can be represented as a dis-
crete binary vector, and the similarity calculation can be
performed.

Step �c : Using the Distance Between Two PMABVs as the
Similarity.With PMABV generated for each node, the mem-
ory access similarity between two nodes can be represented
as the distance between two vectors, and various distance
measuring methods can be employed to measure the dis-
tance between two vectors (e.g., Jensen-Shannon Diver-
gence [18], KL-Divergence [19], and Edit Distance [20]). A
larger distance between two vectors indicates lower similar-
ity as fewer MABs are shared between the two nodes, while
a smaller distance for higher similarity. The calculated
memory access similarity among nodes is maintained by
a Similarity Matrix (as shown in Fig. 6) within the Similar-
ity Monitor. The Similarity Matrix is updated during run-

TABLE 1
Frequently Used Abbreviations

Abbreviation Description

MAB Memory Access Behavior
GMABV Global Memory Access Behavior Vector
PMABV Per-node Memory Access Behavior Vector

Fig. 4. A schematic view of SM-HMS with n nodes (Node p is selected to
maintain memory access similarity). As shown, three components work
cooperatively to perform Memory Access Similarity Measuring (MASM)
and Similarity-based Memory Access Behavior Sharing (SMABS).

Fig. 5. Procedure of memory access similarity calculation. Each step is
described in Section 3.2.1.
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time to accommodate the changing workset on each node.
Fig. 7 gives the workflow of the Similarity Matrix update
process. When a “pending” MAB arrives, the GMABV is
first checked to verify if such a MAB has been shown
before. Suppose a MAB is found, then the MAB is
appended to the GMABV, which updates the PMABV for
each node and performs similarity calculation between
the sender node and other nodes. Note that the similarity
among other nodes will not change as the non-zero part
of the corresponding PMABV stays the same. Otherwise,
the sender node’s PMABV and the similarity between
other nodes will be updated depending on the previous
existence of such a MAB.

Fig. 8 shows the memory access similarity for both irreg-
ular and regular applications. The darker color indicates
higher memory access similarity between the corresponding
two nodes. As shown, the regular application achieves high
similarity among nodes due to the same binary code run-
ning on all nodes and yields highly similar access behaviors
across nodes. Unlike the regular application, the irregular
application exhibits different similarities among nodes.
Only a portion of nodes has shown high similarity, while
low similarity observed on other nodes.

3.2.2 Similarity-Based MAB Sharing

As illustrated in Section 2, the data placement policies of the
state-of-the-art hybrid memory system designs heavily rely
on the observed MABs, which leads to non-trivial metadata
overhead for both storage and access. Moreover, keeping
the metadata for all memory pages of the running job is not
efficient for both memory system performance and meta-
data storage, as only the memory pages within the current
working set matter. An intuitive method to amortize the
metadata overhead is to share MABs among nodes, and the
overhead caused by MAB monitoring can be amortized
among nodes sharing the same MAB. However, nodes run-
ning the same job may exhibit different combinations of
MAB in the scenario of irregular applications. Sharing
MABs with a random node can result in unnecessary data
movement, severely reducing the performance gain enabled
byMABs sharing and hurting the system performance.

To better understand the effectiveness of different shar-
ing schemes, Fig. 9 compares two intuitive sharing schemes,
Global Sharing (GS) and Selective Sharing (SS), in terms of
performance overhead and sharing accuracy (defined as the
percentage of shared MABs is actually helpful). Global Shar-
ing shares all MABs to all nodes in the same job, while Selec-
tive Sharing only shares MABs with nodes already exhibited
such MABs. Comparing both sharing schemes, Global Shar-
ing fails to provide high sharing accuracy for the irregular
application since not every MABs is helpful to other nodes.
In contrast, the Selective Sharing shares MABs on demand
which incurs performance overhead for the node deployed

the Similarity Monitor. Due to the inaccurate MABs sharing,
both methods suffer from performance loss, with up to
13:1% for GS and 15:4% for SS, indicating an efficient MAB
sharing scheme is needed in the scenario of irregular
applications.

Algorithm 1. Similarity-Based Node Grouping

Un-group all nodes
while find an un-grouped node i having similarity larger

than SimThresholdwith at least one node do
Mark node i asHigh Similarity node
if node i has high similarity with existing groups then
Assign node i to the found group

else
Create a new group Gi

end if
end while
for AccBhv in GMABV do
Create a behavior group BAccBhv

Assign nodes with access behavior AccBhv and labeling as
Low Similarity to group BAccBhv

end for

To accurately share MABs among nodes, the memory
access similarity maintained by the Similarity Matrix is used
to guide the sharing among nodes, and a Similarity-based
Memory Access Behavior Sharing (SMABS) scheme is proposed
to achieve both high sharing accuracy and low metadata
overhead. Since the memory access similarity marks the per-
centage of overlapped MABs between two nodes, the accu-
racy of MAB sharing can be estimated by the similarity
between sharing/receiving nodes, and sharing MABs among
nodes with high similarity yields high sharing accuracy.
Based on this, SMABS groups nodes with high similarity
together and applies GS among such nodes, while Selective

Fig. 6. An example of AMRGodunov’s Similarity Matrix. Each entry
denotes the similarity between two corresponding nodes.

Fig. 7. Procedure of Similarity Matrix update. Depending on the exis-
tence of the received MAB, the Similarity Monitor updates a Similarity
Matrix accordingly.

Fig. 8. Similarity Matrix of irregular (AMRGodunov) and regular (dmilc)
applications. As shown, AMRGodunov shows various memory access
similarities among nodes, while dmilc exhibits high similarity across
nodes.
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Sharing is used for the rest of the nodes. With fewer nodes
involved in Selective Sharing, the overhead caused by
MABs querying can be ignored for the node with Similar-
ity Monitor enabled. Algorithms 1 and 2 give the pseudo-
code of SMABS for both Similarity-based Node Grouping
and Similarity-based Sharing. As illustrated, a grouping
threshold SimThreshold is defined to balance the sharing
accuracy and performance overhead, and the SMABS
falls into Global Sharing when the grouping threshold is
set to 0 while 1.0 for Selective Sharing. To find a suitable
grouping threshold, SMABS adjusts SimThreshold
dynamically according to feedbacks of the recipient
nodes. SMABS increases SimThreshold to improve the
effectiveness of shared MABs for decreased sharing
accuracy while decreasing SimThreshold to maximize
performance improvement when the sharing accuracy is
increased or unchanged.

Algorithm 2. Similarity-Based Sharing

Input: Receiving access behavior AccBhv from node k
if AccBhv in GMABV then
if node k belongs to a Similarity Group then

Forward AccBhv to nodes within the group with global
sharing

else
Perform selective sharing with all Low Similarity nodes

end if
Update metadata

else
Update PMABV , GMABV and Similarity Matrix

end if

Scalability of the SM-HMS.Withmore work nodes assigned
to the workload with a large amount of data, the SM-HMS
can suffer from performance degradation caused by both
increased network traffic from the MAB sharing and heavier
performance overhead from the Similarity Monitor. To extend
the SM-HMS with more nodes, all work nodes assigned to
the same job are divided on a rack basis, and one node in
each rack is selected as a local Similarity Monitor, which is
only responsible for the similarity management of nodes
within the same rack. Since the job scheduler is unaware of
the data variance on each node, nodes with high similarity
can be distributed among multiple racks, which requires the
synchronization of memory access similarity among racks to

utilize the potential performance improvement enabled by
the SM-HMS. To sync across racks, each local Similarity Moni-
tor treats other ranks as a special node and uses the aggregated
MABs to represent the characteristic of all nodes within the
corresponding rack. Also, the sharing of MABs will only be
issued and received by the local Similarity Monitor, which sig-
nificantly reduces the network traffic caused by theMAB shar-
ing among nodes. Moreover, the number of nodes involved in
similarity calculation and maintenance is greatly reduced, eas-
ing the performance overhead for nodes deployed the Similar-
ity Monitor. By doing so, the SM-HMS can support more
nodes without causing tremendous network traffic and ensure
the enabled performance improvement benefits applications
with the demand of high scalability.

3.3 Access Behavior Buffer

According to the design of SMABS, only the MABs of the
current workset are shared among nodes, which alleviates
the overhead caused by MAB monitoring on each node.
Additionally, multiple memory pages across nodes share
the same MAB due to the extensive structured data proc-
essed by each node and the abundant loops in the HPC
applications. Thus, even a single shared MAB can describe
the access behavior of multiple pages within the corre-
sponding node. Based on such an idea, an Access Behavior
Buffer is added in the memory controller of each work node
to buffer the shared MABs and use the buffered MABs to
guide data placement in the hybrid memory system.

Fig. 10 gives the structure of the Access Behavior Buffer. As
shown, theMAB stores a cache line access sequence to guide
cache replacement for the covered pages. The Covered Page
is used to aid the Swap Executor in determining if the corre-
sponding MAB covers the targeting page. Since the array is
widely used in HPC applications, memory pages with iden-
tical access behavior are often located closely [21]. The Start-
ing Address records the address of the first page covered by
the corresponding MAB. The uncovered page compares its
address with the corresponding Starting Address to deter-
mine if it is covered or not. The Status bits and a coverage
count are used to mark the metadata of each Access Behavior
Buffer entry. Depending on the origination of each Access
Behavior Buffer entry, different behaviors are performed. For
MABs shared by other nodes, the status bits are marked as
“00”. The coverage count provides a feedback to the Similar-
ity Monitor for the corresponding MAB. The status bits are
set to “01” for a MAB generated locally, indicating a
“pending” MAB discovered. Suppose more memory pages
are linked to a “pending” MAB entry, then the status bits
are set to “10” indicating that such aMAB is sent to the Simi-
larity Monitor for sharing. Additionally, the Access Behavior
Buffer is managed in an LRU manner, and MABs not used
for a long time are evicted to maximize the effectiveness of
newly shared or discoveredMABs.

Fig. 9. Comparison between different sharing schemes in terms of shar-
ing utilization and performance overhead. The sharing utilization marks
the percentage of useful shared MABs, and can be calculated by
Useful MABs
Shared MABs .

Fig. 10. An entry of the Access Behavior Buffer. As shown, both the Sta-
tus and Coverage bits determine if the newly observed MAB will be sent
to the Similarity Monitor for similarity update. And the Starting Address
and Covered Pages are used to quickly identify memory requests can
be served by the sliding window section.
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3.4 Swap Executor

To utilize MABs buffered in Access Behavior Buffer, a Swap
Executor is used to perform data placement for the underly-
ing hybrid memory system by using the shared MABs as
“recipes”.

3.4.1 Memory Layout and Data Placement of SM-HMS

With MABs buffered in the Access Behavior Buffer, the Swap
Executor is designed to perform cache replacement for the
stacked DRAM. The stacked DRAM is used as a cache
between the last-level cache and the off-chip DRAM in the
core of SM-HMS. Fig. 11 shows the memory layout of SM-
HMS. To utilize the stacked DRAM efficiently, n interleaved
off-chip DRAM pages are mapped with one stacked DRAM
page to form a page group (n denotes the capacity ratio
between off-chip DRAM and stacked DRAM). As a shared
MAB marks the access sequence of cache lines in each cov-
ered page, memory requests targeting such pages can be
well forecasted and served with stacked DRAM by perform-
ing timely cache replacement. Each stacked DRAM page is
divided into the sliding window section and the outlier section.
Within a page group, each off-chip page is linked with a
cache line within the corresponding stacked DRAM page’s
sliding window section. The Swap Executor performs accurate
and timely swapping for the sliding window section based on
the recently accessed cache line and the MAB covering the
target off-chip page. For requests that do not follow the
given MAB, the outlier section serves such requests and per-
forms replacement with LRU. Since n off-chip pages share
the outlier section, the capacity assigned to each off-chip
page is determined by the Coverage segment of the corre-
sponding entry in the Access Behavior Buffer. Pages with a
higher amount of requests benefit more from the outlier sec-
tion. Additionally, cache lines retired from the sliding win-
dow section are swapped to the outlier section to increase the
chance of stacked DRAM hit [22], and metadata of the out-
lier section is updated accordingly.

3.4.2 Serving Memory Requests

The Access Behavior Buffer and Swap Executor work coopera-
tively to quickly determine the data location and reduce
unnecessary traffic between stacked DRAM and off-chip
DRAM.

The Access Behavior Buffer is accessed for each memory
request to determine if the targeting page is linked to a buff-
ered MAB. Suppose the requesting page is linked with an
existing MAB. In that case, the corresponding MAB and the
most recently accessed cache line offset are used to deter-
mine whether the about to be accessed cache line resides in
the sliding window section. For a hit in the sliding window

section, the Swap Executor retires the accessed cache line and
moves it to the outlier section for future access. The Swap
Executor chooses and buffers the next to be accessed cache
line from either the outlier section or the off-chip DRAM fol-
lowing the given MAB. Suppose the sliding window section
cannot satisfy the incoming request. Then, the outlier section
is accessed to serve the request with the LRU policy.

In case the requesting page is not covered by any buff-
ered MABs, the Swap Executor monitors the access behavior
of such a page for MAB discovering and adds the observed
MAB to the Access Behavior Buffer with status bits of “01”
(represents a pending MAB). If more pages share the same
MAB, the Swap Executor updates the status bits to “10”, and
the Access Behavior Buffer sends such a MAB to the Similarity
Monitor for both similarity update and MAB sharing. For a
requesting page not linked with any MAB entries, the page
address is compared with the starting address of entries in
the Access Behavior Buffer, since memory pages sharing iden-
tical MAB are located near each other. Suppose an entry
with a nearby starting address is founded. In that case, the
Swap Executor proactively performs data replacement
according to the corresponding MAB while keeps monitor-
ing the effectiveness of the preemptive applied MAB. Thus,
the MAB monitoring process is shortened, and pages with
fewer accesses can still benefit from the integrated stacked
DRAM.

4 EVALUATION

In this section, we conduct experiments to evaluate the
effectiveness of the SM-HMS. We first introduce our evalua-
tion methodology, including experimental testbed, related
simulation parameters, and workloads. Then we present
and discuss the evaluation results using various metrics.

4.1 Experimental Methodology

To evaluate the proposed SM-HMS, we implement its
design in the cycle-accurate DRAMSim2 [23] memory simu-
lator. We use the Simics [24] full-system simulator as the
front-end to simulate the cluster and integrate the modified
DRAM simulator with Simics. To calculate the memory
access similarity, we represent memory access behavior
with frequently used cache line offset delta sequence, and
employs JS Divergence [18] to calculate the distance
between two PMABVs. For the computation framework,
OpenMPI [25] is used as the computation framework, and
some necessary modifications are made to the framework in
order to implement the functions provided by the Similarity
Monitor. For cluster configuration, we use Simics to simulate
a cluster with 16 nodes (the node with the smallest node
index is selected to enable the Similarity Monitor), where
each node shares the same configuration as shown in
Table 2. The network of the simulated cluster is configured
with 10 GB=s bandwidth and 5 ms latency. For access over-
head of the Access Behavior Buffer, CACTI tool [26] estimates
the access latency, which assumes a 3.5 ns latency for each
Access Behavior Buffer access.

For benchmarks, a wide range of irregular HPC applica-
tions are selected, including Chombo [27], NASA Parallel
Benchmark [28], Graph500 [29], and Coral2 [30]. During the
run-time, OpenMPI is used as the computation framework.

Fig. 11. Memory layout of SM-HMS. Every n (n denotes the capacity
ratio between off-chip DRAM and stacked DRAM) off-chip pages is
mapped with one stacked DRAM page, and the total number of page
groups is K (K marks the number of pages within the stacked DRAM).
Each stacked DRAM page is divided into two parts, sliding window sec-
tion and outlier section.
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Within each node, all processor cores are utilized with the
OpenMP to provide parallelism and accelerate the execu-
tion of the running application. Table 3 summarizes the
ground truth of selected benchmarks, including Missed per
Kilo Instructions (MPKI) of the LLC and the size of memory
footprints.1 Before starting the simulation, we fast forward
one billion memory accesses for cache warm-up. We then
simulate 100 million memory accesses for statistics. To eval-
uate the effectiveness of SM-HMS, a cluster with only off-
chip DRAM enabled is used as the baseline (denoted as Off-
chip DRAM only), and we compare the SM-HMS with the
state-of-the-art hybrid memory system designs, Cameo [7],
Chameleon [8], and Hybrid2 [9], to justify whether the single
node-based solution is able to improve the performance in a
cluster scenario. In addition, we compare the SM-HMS with
the ideal hybrid memory system (Ideal HMS) that all mem-
ory requests are served by the stacked DRAM to show the
exceptional efficiency of SM-HMS.

The evaluation of SM-HMS is conducted as follows. For
performance improvement, both job finish time and IPC are
used to compare the performance improvement of SM-
HMS with clusters armed with the state-of-the-art hybrid
memory system designs along with a cluster with the ideal
hybrid memory system deployed. Then, results on stacked
DRAM hit ratio, memory access latency, and traffic between
stacked DRAM and off-chip DRAM are presented to reason
the performance improvement enabled by SM-HMS. Also,
sensitivity studies are performed to show the adaptiveness
of the proposed SM-HMS among various cluster configura-
tions. Moreover, experiments on regular applications are
conducted to show that the SM-HMS can also achieve per-
formance improvement in regular applications.

4.2 Job Finish Time & IPC

Areasonablemetric tomeasure performance improvement of a
cluster is the finish time of the running application, which is
also the finish time of the slowest node in the corresponding
cluster. Fig. 12 compares the finish time of each benchmark,
where the upper edge of each bar represents the benchmark’s
finish timewhile the lower edge for the finish time of the fastest
node for each run. As shown, the proposed SM-HMSdelivers a
finish time reduction for up to 67:4%with 61% on average, and

outperforms the state-of-the-art approaches, Cameo, Chameleon,
and Hyrbid2, by up to 58:6%, 56:7%, and 31:3%, with 46:1%,
41:6%, and 19:3% on average, respectively. Moreover, SM-
HMS achieves a finish time reduction efficiency (91:9% on aver-
age) compared with the cluster with an ideal hybrid memory
system. The reason behind this lies in three aspects. First, more
memory requests can be served by the stacked DRAM, which
contributes to an overall performance improvement of the
entire cluster. By sharing MABs across nodes, the sliding win-
dow section serves memory requests following a given MAB
with aMAB-guided cache replacement policy. By doing so, the
cache replacement for the stacked DRAM cache is performed
accurately, which also reduces unnecessary traffic between the
stacked DRAM and off-chip DRAM. Moreover, the shared
MABs alleviate the cost of MAB discovering for pages with
fewer accesses. Memory requests targeting such pages can also
benefit from the stacked DRAM, which is hard to realize in the
existing state-of-the-art approaches due to insufficient histori-
cal memory accesses. For benchmarks with fewer memory
requests following the discovered MABs, e.g., AMRGodunov,
the outlier section takes over and serves memory requests with
LRU policy. Second, overhead caused bymetadata querying is
significantly reduced, contributing to the overall cluster perfor-
mance improvements. Since theAccess Behavior Buffer only buf-
fers MABs used by each node during run-time, the buffered
MABs can deliver an average coverage of 84:1% of the current
working set, which indicates that only theAccess Behavior Buffer
will be accessed to acquire the metadata of pages within the
current working set. Also, the linkage between a page and a

TABLE 2
Work Node Configurations

Processor 8 cores, L1 cache 32KB/32KB L2 cache
512KB per core, L3 cache 64MB

Memory
Controller

64/64-entry read/write request queue FR-
FCFS, writes are scheduled in batches

Stacked DRAM HBM2 with 4GB capacity
Off-chip DRAM DDR4-1600, 2 channels, 1 rank per channel

Capacity: 32GB
Access Behavior
Buffer

Capacity: 512KB Read/Write Latency
3.5ns/3.5ns

Network Bandwidth 10Gb/s with latency 5 ms
Framework OpenMPI-2.1.6 with OpenMP

TABLE 3
Benchmark Characteristics

Benchmark Benchmark Suite Memory Footprint (GB) MPKI

AMR-G Chombo 31.35 25.86
AMR-P Chombo 30.24 11.90
EBAMR Chombo 19.68 28.38
CG NPB 22.36 11.77
MG NPB 18.91 9.04
UA NPB 14.85 14.68
Graph500 Graph 20.61 7.38
LAMMPS CORAL 2 28.64 9.30
AMG CORAL 2 24.61 5.22

Fig. 12. Comparison on job finish time among the six memory schemes.
SM-HMS outperforms the three state-of-the-art approaches by 46:1%,
41:6%, and 19:3% on average, respectively.

1. We also present the sensitivity studies with different memory
footprint sizes and capacity ratios in Section 4.6 to demonstrate that
SM-HMS is adaptive to various memory configurations.
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MAB is recorded in the Access Behavior Buffer to accelerate the
Access Behavior Buffer querying and minimize the performance
overhead caused bymetadata querying. On the other hand, the
address of an unknown page (the page that does not link to
anyMABs) is cross-referencedwith the StartingAddress of exist-
ing entries in the Access Behavior Buffer, and the matchedMAB
will be applied preemptively to accelerate the process ofMAB
matching. By doing so, more memory requests can be quickly
benefited by the stacked DRAM, contributing to both stacked
DRAM hit ratio and overall performance. Fig. 13 compares the
performance improvements for the six memory schemes in
terms of IPC. As shown, SM-HMS outperforms the three state-
of-the-art approaches for up to 2:22� , 2:12� , and 1:25� ,
with 1:62� , 1:55� , and 1:16� on average, respectively.Addi-
tionally, the SM-HMS significantly reduces the metadata over-
head (2:1% on average) compared with 7:9%, 6:8%, and 13:1%
for the three state-of-the-art solutions. With the combination of
the two factors, SM-HMS can effectively utilize the stacked
DRAMand improve the cluster performance. Last, the dynam-
ically adjusted node grouping tunes the similarity grouping at
a finer granularity, which reduces the network traffic caused
by MAB sharing and relaxes the performance degradation
caused by similarity monitoring. To demonstrate the effective-
ness of the dynamic adjustment of SimThreshold, we compare
the dynamically adjusted SimThreshold with fixed values in
the termof finish time reduction as shown in Fig. 14. As shown,
each line represents the finish time reduction with various
fixed SimThreshold, and the point with a bigger marker indi-
cates the finish time reduction for the dynamically adjusted
SimThreshold, which outperforms the fixed SimThreshold
configurations. The reason behind this is that the dynamically
adjusted SimThreshold can quickly adjust the node grouping
according to the changes in memory access characteristics dur-
ing run-time, which yields a good balance between the sharing
accuracy and the performance overhead caused by sharing.

4.3 Stacked DRAM Hit Ratio

To better understand the performance improvement of SM-
HMS, Fig. 15 compares the stacked DRAM hit ratio among
Cameo, Chameleon, Hybrid2, and our proposed SM-HMS.
With the guidance provided by the shared MABs, SM-HMS
delivers a hit ratio of up to 98:8% with 95:9% on average,

which outperforms the three state-of-the-art approaches by
48%, 36:6%, and 8:9% on average, respectively. The reason
behind is that the shared MABs exploit the connections
among memory pages across nodes to enable highly accu-
rate data replacement, which is ignored by existing solu-
tions as they heavily rely on the MAB observation for each
separate page. The high stacked DRAM hit ratio of SM-
HMS can be attributed to two aspects. First, using accurately
shared MABs as “recipes” guides the cache replacement.
The sliding window section fulfills such requests with the
accurate and informed cache replacement with the corre-
sponding MAB for memory requests covered by an Access
Behavior Buffer entry. Meanwhile, the outlier section is allo-
cated to pages based on the number of outlier cache lines
within each page, and more outlier cache lines can be
cached in the outlier section, maximizing the possibility of
stacked DRAM hit. Second, pages with fewer accesses can
also benefit from the stacked DRAM by observing thatMAB
can be similar among pages located near each other. With
the starting address of each Access Behavior Buffer entry, the
incoming memory request may find a match in the Access
Behavior Buffer and presumably apply theMAB to serve more
memory requests. By doing so, the previously unable to be
benefited memory pages can be served by the stacked
DRAM, which enlarges the beneficiaries of the stacked
DRAM and improves the overall stacked DRAM hit ratio.
Among the three existing approaches, Hybrid2 achieves a
similar stacked DRAMhit ratio as SM-HMS, as the dual-layer
design keeps the hot data in stacked DRAM longer and
yields more stacked DRAM hits. However, the improved hit
ratio of Hybrid2 comes with a penalty caused by metadata

Fig. 13. IPC comparison for the six memory schemes. SM-HMS
achieves up to 98:6% (91:9% on average) of the performance improve-
ment of the ideal hybrid memory system.

Fig. 14. Finish time reduction with various SimThreshold configurations.
As shown, the point with larger marker on each line identifies the corre-
sponding average SimThreshold and the finish time reduction, which
outperforms the fixed SimThreshold and indicates the effectiveness of
the dynamically adjusting SimThreshold.

Fig. 15. Stacked DRAM hit ratio for the four hybrid memory system
designs. For our SM-HMS, we further breakdown the stacked DRAM hit
ratio achieved, and sliding window section contributes to an average hit
ratio of 65:6% while 23:5% for the outlier section.
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querying, which prolongs the memory access latency, as
shown in Fig. 16.

4.4 Memory Access Latency

Fig. 16 gives the memory access latency comparison among
the six memory schemes. Compared with the three state-of-
the-art approaches, SM-HMS reduces the memory access
latency by up to 51:3%, 47:9%, and 28:1%, with 38:3%,
35:2%, and 20:4% on average, respectively. The low memory
access latency of SM-HMS comes from the efficacy of the
Access Behavior Buffer. As the Access Behavior Buffer only
keeps the currently in-use MABs, MABs in the Access Behav-
ior Buffer cover 84:1% of memory pages on average, and
only 3:2% of memory requests incurring additional meta-
data queries, while on average 23:7%, 14:8%, and 21:3%
incurred by the three state-of-the-art approaches respec-
tively, which explains the high memory access latency for
the three existing approaches since more metadata querying
sits on the critical path of memory accessing. Additionally,
compared with the ideal hybrid memory system, SM-HMS’s
average memory access latency is higher than the ideal
hybrid memory by 12:6%, while 86:7%, 78:2%, and 41:7%
for the three state-of-the-art approaches, respectively.

4.5 Bandwidth Consumption

Fig. 17 compares the bandwidth consumption (normalized
against Cameo) between the stacked DRAM and off-chip
DRAM among the four hybrid memory system designs.
SM-HMS achieves the least bandwidth consumption in all
applications and reduces the memory traffic compared with
the three state-of-the-art approaches by up to 52:1%, 89%,
and 79:8%, with 7:1%, 80:5%, and 60:8% on average, respec-
tively. The reduced traffic comes from two aspects. First,
cache replacement can be performed accurately with the
help of SMABS, and the sliding window section only caches
soon-be-accessed cache lines according to shared MABs.
Also, the cache line retired from the sliding window section
does not get evicted immediately, while it is swapped into
the outlier section and can be used to serve future requests.
Second, stacked DRAM miss will not trigger a cache
replacement immediately, while the Swap Executor and
Access Behavior Buffer collaboratively decide the replacement
candidate and ensure only useful cache lines will be cached.

4.6 Sensitivity Study

To better understand how SM-HMS behaves with various
cluster configurations, the sensitive studies on the cluster
size, memory footprint and stacked DRAM capacity are
conducted to investigate the effectiveness of SM-HMS.

4.6.1 Cluster Size

Fig. 18a compares the average performance improvement
with various numbers of nodes in the cluster and the rack.
For a fair comparison, the total job size is proportional to
the number of nodes within the cluster. As shown, the pro-
posed SM-HMS scales well in most cluster configurations,
evidenced by the performance improvements with a reason-
able number of nodes in each rack. For rack sizes varying
from 8 to 64 nodes, the performance of SM-HMS keeps
increasing with the number of nodes within the cluster,
which is due to more nodes can be benefited from the
shared MAB, enabling high-performance hybrid memory
system. Also, the scalability of SM-HMS comes from the col-
laboration among multiple local Similarity Monitors, dramat-
ically reducing the intra-rack network traffic. In the extreme
case that all nodes are located within a rack, e.g., 256 nodes,
the performance delivered by the SM-HMS begins to drop
due to either increased network traffic or heavier similarity
computation overhead.

4.6.2 Memory Footprint

In the design of Cameo, Chameleon, and SM-HMS, each
stacked DRAM page is shared by multiple off-chip DRAM
pages. A concern is that multiple pages may compete for a
stacked DRAM page, leading to unnecessary performance
overhead. To investigate the effectiveness of SM-HMS
under various sizes of memory footprint, the input parame-
ters of the selected benchmarks are adjusted to generate dif-
ferent memory footprints. Fig. 18b compares the stacked
DRAM hit ratio with various memory footprints. SM-HMS
maintains a relatively high stacked DRAM hit ratio (97:2%
on average) with various memory footprints, indicating that
SM-HMS can benefit a broader range of applications with
different memory usage. Two main reasons take the credit.
First, “hot” cache lines from multiple pages are co-existed
within each stacked DRAM page and unnecessary cache
replacement is significantly reduced, since SM-HMS per-
forms cache replacement at cache line granularity. Second,
the sliding window section serves memory requests with a
single cache line, enabling more spaces of the stacked
DRAM page are used to serve the hard-to-predicted outlier

Fig. 16. Comparison on memory access latency for the six memory
schemes. SM-HMS reduces the memory access latency by up to 51:3%,
47:9%, and 28:1%, with 38:3%, 35:2%, and 20:4% on average compared
with the three state-of-the-art approaches, Cameo, Chameleon, and
Hybrid2, respectively.

Fig. 17. Normalized bandwidth consumption among Cameo, Chame-
leon, Hybrid2, and SM-HMS.
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cache lines. On the contrary, Cameo and Chameleon suffer
from dramatically decreased stacked DRAM hit ratio, on
average from 81:4% and 86:3% (for low memory usage) to
17:9% and 22% (for high memory usage), respectively. The
stacked DRAM hit ratio decreases slowly for Hybrid2, due
to the dual-layer design keeping the hot data in the stacked
DRAM longer and results in more stacked DRAM hits.

4.6.3 Stacked DRAM Capacity

Fig. 18c compares the normalized average IPC across all
work nodes with various stacked DRAM capacities. With
decreasing stacked DRAM capacity, fewer memory requests
can be served via the stacked DRAM, which leads to
degraded performance improvements. Among the four
hybrid memory system designs, the performance gain of
SM-HMS slightly decreases from 2:45� to 2:36� , compared
to the state-of-the-art approaches dramatically drops from
1:52� , 1:65� , 2:27� to 1:10� , 1:14� , 1:67� , respec-
tively. The reason behind is that more off-chip pages are
competing with the stacked DRAM in the state-of-the-art
designs, which aggregates the degraded performance bene-
fit enabled by the stacked DRAM. On the other hand, SM-
HMS utilizes theMAB of each memory page and maximizes
the stacked DRAM hit ratio by utilizing both sliding window
section and outlier section, which is proven to be more adap-
tive with various stacked DRAM capacities than existing
approaches.

4.7 Effectiveness on Regular Applications

Since the SM-HMS heavily relies on memory access similar-
ity for sharing MABs across nodes, regular applications also
benefit from the proposed SM-HMS due to the high mem-
ory access similarity across nodes. Fig. 19 compares the fin-
ish time of the fastest node (the lower edge of each bar) and
the slowest node (the upper edge of each bar) for four regu-
lar applications. As shown, SM-HMS delivers a finish time
reduction of up to 54:7% (with 30:7% on average) compared
with the baseline cluster. At the same time, the three state-
of-the-art approaches achieve 5:9%, 11:8%, and 15:9% on
average, respectively. Compared with irregular applica-
tions, the finish time difference among nodes is significantly
smaller, indicating that each node runs similar tasks and
can be well balanced among nodes by the job scheduler.
Additionally, pages sharing the same MAB benefit from the
reduced metadata overhead and the effectiveness of both
sliding window section and outlier section.

5 RELATED WORK

Optimization for Irregular Applications. Existing researches
target at the irregular applications by either exposing the
irregularity to the job scheduler for adaptively scheduling
[31], [32] or utilizing the irregularity for better resource allo-
cation in the heterogeneous clusters [33], [34]. Nozal et al.
propose to balance the loads assigned to different hardware
when executing irregular applications with the OneAPI
framework [31]. Also, Dai et al. detect the unevenly distrib-
uted irregular workload during run-time, and migrate
workloads of the overwhelmed nodes to nodes with less
workload assigned [32]. On the other hand, the irregularity
is utilized to refine resource allocation in the cluster. Yang
et al. observe the random and irregular network traffic
caused by the irregular applications running in the cluster,
and propose to utilize data compression techniques to mini-
mize the network bandwidth consumption [34]. Also, Shin
et al. analyze the performance degradation caused by the
irregular applications running on the GPU, and propose to
accelerate the address translation processes to minimize the
data preparation time for the SIMD instructions [33].

Similarity in the System. The similarity exists in many
aspects of the computing systems, and prior works explore
the similarity to improve the system performance. Koller
et al. propose an I/O deduplication method based on the
observed highly-similar I/O content for both stored and
accessed data [35]. In the meanwhile, Xiao et al. utilize the
abundant self-similar in the high-level programs to acceler-
ate the data communications among chips [36]. By taking
advantage of the parallel working paradigm of the clusters,
Liu et al. propose to improve the performance of straggling

Fig. 18. Sensitivity study on the cluster size, memory footprint and stacked DRAM capacity. Three conclusions can be drawn. First, the local Similarity
Monitor alleviates performance degradation caused by MAB sharing with reasonable rack size. Second, SM-HMS maintains the performance
improvement with various sizes of memory footprint. Third, with the sharedMAB and sliding window section, SM-HMS can benefit the system perfor-
mance with various sizes of the stacked DRAM.

Fig. 19. Comparison on job finish time for the regular applications. SM-
HMS outperforms the three state-of-the-art approaches by up to 29:5%,
25:9%, and 24:3%, with 22:5%, 19:7%, and 11:3% on average, respectively.
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nodes in the cluster with the observed high similarity
among nodes running the same job [3].

Hybrid Memory Systems. Existing works identify the hot
data by either monitoring the memory access behavior of
each data block or relying on the information discovered by
the operating system. By monitoring the memory access
behavior of each data block, the obtained access behavior
can be used to identify the following accessed cache line,
and accurate data migration/caching can be performed [7],
[8], [9]. On the other hand, Prodromou et al. propose to
leverage the memory access behavior observed by the oper-
ating systems and use Majority Element Algorithm to pre-
dict the hot pages[11]. Moreover, researchers integrate
computation capability to the stacked DRAMwhich further-
more reduces the memory traffic and enables higher effi-
ciency for memory-intensive applications [37], [38].

Fundamentally, SM-HMS distinguishes itself from exist-
ing works by sharing memory access behavior among work
nodes according to the quantified memory access similarity
and using the shared memory access behavior as the
“recipe” to perform accurate and informed cache replace-
ment, which improve the stacked DRAM utilization and
reduce the metadata overhead accordingly.

6 CONCLUSION

In this paper, We propose a Similarity-Managed Hybrid Mem-
ory System (SM-HMS) method to address the under-utilized
hybrid memory systems by leveraging the various degree
of memory access similarity observed in the irregular appli-
cations running on the cluster. Inside SM-HMS, two techni-
ques, Memory Access Similarity Measuring (MASM) and
Similarity-based Memory Access Behavior Sharing (SMABS),
are included to obtain and utilize the memory access simi-
larity among nodes, where MASM quantifies the memory
access similarity by measuring the distance among MAB
vectors, while the SMABS shares MABs across nodes
according to the memory access similarity and utilizes the
shared MABs as “recipes” to perform accurate and
informed stacked DRAM cache replacement. Our evalua-
tion results with a set of irregular applications on various
cluster configurations consisting of up to 256 nodes have
shown that SM-HMS outperforms the state-of-the-art
approaches, Cameo, Chameleon, and Hyrbid2, on finish time
reduction by up to 58:6%, 56:7%, and 31:3%, with 46:1%,
41:6%, and 19:3% on average, respectively. Comparing with
the ideal hybrid memory system, SM-HMS achieves up to
98:6% (91:9% on average) efficiency. Moreover, experiments
on regular applications show that the proposed SM-HMS is
beneficial to a broader range of HPC applications.
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