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AbstractÐAutonomous systems (AS) are systems that can
adapt and change their behaviors in response to unanticipated
events and include systems such as aerial drones, autonomous
vehicles, and ground/aquatic robots. AS require a wide array of
sensors, deep learning models, and powerful hardware platforms
to perceive the environment and safely operate in real-time.
However, in many contexts, some sensing modalities negatively
impact perception while increasing the system’s overall energy
consumption. Since AS are often energy-constrained edge devices,
energy-efficient sensor fusion methods have been proposed. How-
ever, existing methods either fail to adapt to changing scenario
conditions or to optimize system-wide energy efficiency. We
propose CARMA, a context-aware sensor fusion approach that
uses context to dynamically reconfigure the computation flow
on a field-programmable gate array (FPGA) at runtime. By
clock gating unused sensors and model sub-components, CARMA
significantly reduces the energy used by a multi-sensory object
detector without compromising performance. We use a deep
learning processor unit (DPU) based reconfiguration approach to
minimize the latency of model reconfiguration. We evaluate multi-
ple context identification strategies, propose a novel system-wide
energy-performance joint optimization, and evaluate scenario-
specific perception performance. Across challenging real-world
sensing contexts, CARMA outperforms state-of-the-art methods
with up to 1.3× speedup and 73% lower energy consumption.

I. INTRODUCTION

Autonomous systems (AS) radically improve productivity,

logistics, and safety by enabling systems such as aerial drones,

ground and aquatic robots, and consumer autonomous vehicles

(AVs) to operate without direct human control. These applica-

tions require closely coupled perception and state estimation

algorithms to navigate complex and unpredictable real-world

scenarios in real time. Advanced deep learning models and

multiple heterogeneous sensors (cameras, radars, and LiDARs)

are necessary for perception across different weather and

lighting conditions. However, the increasing complexity of

modern AS comes with rising energy costs [1], which can

be fatal for energy-constrained AS. The thermal design power

of modern AS System-on-Chips (SoCs) can exceed 800 W [2],

and the combined sensing, computation, and thermal loads can

reduce operating range by over 11.5% [3].

Since the perception system is a major energy consumer in

AS [1], [4], several efficient sensor fusion methods have been

proposed. However, these methods use static architectures

§Equal contribution

(e.g., early or late fusion) that can fail in complex visual

contexts where one or more sensors may be compromised [5].

To address these limitations, context-aware dynamic architec-

tures for sensor fusion have been proposed [5], [6], where the

model adapts to changing environmental conditions to enable

robust and energy-efficient perception across diverse sensing

conditions. Still, existing methods only focus on reducing

algorithmic energy usage and ignore large energy consumers,

such as the sensors and the hardware computation platforms.
In summary, the key challenges include: (i) effectively per-

ceiving complex and adverse driving scenarios; (ii) reducing

the energy consumption of the complete perception system,

including sensors, hardware, and algorithms; and (iii) adapt-

ing the system configuration to different contexts, improving

energy efficiency without compromising performance.
To overcome these challenges, we propose CARMA, a

context-aware dynamic sensor fusion approach that uses run-

time model reconfiguration to adapt its architecture on an

FPGA. CARMA uses deep learning processing unit (DPU) [7]

on FPGA for efficient, low-latency runtime reconfiguration.

CARMA implements a tunable energy-performance optimiza-

tion over the whole system, including sensors, model archi-

tecture, and hardware platform, to maximize energy savings

without compromising performance. To our knowledge, this

is the first work to propose energy-efficient sensor fusion via

context-aware runtime model reconfiguration on FPGAs.
Our major contributions can be summarized as follows:

1) We propose CARMA, an approach for dynamically

reconfiguring a complete sensor fusion system for ob-

ject detection at runtime using contextual information.

CARMA uses DPUs on FPGA to enable runtime model

reconfiguration with negligible model switching latency.

2) We propose a method for intermittently performing

context identification to enable intelligent sensor and

submodel clock gating to maximize energy efficiency.

3) We use tunable joint optimization between perception

performance and energy consumption to maximize en-

ergy efficiency while minimizing perception impacts.

4) We show that CARMA significantly reduces system-

wide energy usage compared to state-of-the-art sensor

fusion methods and achieves equivalent or better object

detection performance across diverse autonomous driv-

ing scenarios with up to 1.3× inference speedup and

73% lower energy consumption.979-8-3503-1175-4/23/$31.00 ©2023 IEEE
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II. RELATED WORKS

A. Adaptive Computing Systems on FPGA

Self-adaptive systems can modify their runtime behavior

according to changing environments and system goals. [8]

presents a dynamically reconfigurable convolutional neural

network (CNN) accelerator optimized for throughput. In [9],

an FPGA reconfigures at runtime to use a lower power design

when the battery level decreases. However, its reconfiguration

latency is proportional to the bitstream size, which limits

it from applying to large components. The DPUs enable

users to reconfigure CNN models at runtime with minimal

latency overhead. [10] explored a DPU-based energy-efficient

hardware accelerator. However, it does not optimize energy

efficiency system-wide or handle complex environments.

B. Energy-Performance Optimization

Several works have explored methods on energy-

performance trade-off of deep learning algorithms at runtime

targeting single-modality image classification task [11],

[12], [13]. Recent works have extended these optimizations

to multi-sensor fusion for perception [14]. [6] proposes a

dynamic-width sensor fusion model that aims to select lower

energy submodels while maintaining performance. Although

this approach incorporates multimodality, it only optimizes

the object detection model parameters and omits system-wide

energy optimizations. In contrast, we propose using runtime

model reconfiguration on a heterogeneous FPGA-driven

computing platform to maximize the energy saved by

dynamic model selection while applying system-wide energy

optimizations to reduce energy usage further.

C. Intermittent Sensing and Control in Autonomous Systems

Due to the energy constraints of many AS, several methods

for intermittent sensing and control have been proposed to

reduce energy consumption without compromising perfor-

mance [15], [16]. [17] proposes using an intermittent control

strategy for autonomous driving to emulate human-like control

behavior. Like these works, CARMA targets energy efficiency

by intermittently reconfiguring the model architecture and the

set of active sensors to match the current environment context.

III. METHODOLOGY

A. Problem Formulation

1) Object Detection Model: AS use object detection to

avoid collisions, predict motion, and enable safe path plan-

ning. The goal of the object detector ϕ is to use the sensor

measurements X to accurately identify the objects Y in the

environment:

Y = ϕ(X), where Y = {Yi
class,Y

i
reg}i=1...d (1)

where Y
i
class,Y

i
reg denote the class and bounding box, re-

spectively, of object i. Extending this framework to multi-

sensor perception, early fusion across s sensors can be mod-

eled as:
Ŷ = ϕ(ψ(X1,X2, . . . ,Xs)), (2)

where ψ is the function for fusing the sensor data before

the object detector processes it, and Ŷ represents the object

predictions. Similarly, late fusion across s sensors can be

modeled as fusing the outputs of an ensemble of independent

object detectors:

Ŷ1, Ŷ2, . . . , Ŷs = ϕ1(X1), ϕ2(X2), . . . , ϕs(Xs) (3)

Ŷ = ϕf (Ŷ1, Ŷ2, . . . , Ŷs), (4)

where (ϕ1, ϕ2, ..., ϕs) represent independent object detectors,

and ϕf represents the late fusion function for combining their

outputs. Our proposed approach uses context to identify the

best combination of early and late fusion to improve the

accuracy of the resultant predictions across driving contexts.

As such, the object detection model becomes:

Ŷ = ϕf (ϕ1(X1), ϕ2(X2), . . . , ϕ3(ψ(X2, Xs))) (5)

Where ϕ1 and ϕ2 represent single-sensor object detectors, ϕ3
is a multi-sensor object detector using early fusion, and ϕ is

the late fusion function for fusing the detectors’ outputs to

obtain Ŷ . Section III-B2 describes how CARMA identifies

context and selects the appropriate model configuration.

2) Energy Model: We model the energy usage of the com-

plete AV driving system Esys as the total energy consumed

by the sensors Es and the execution of the algorithm Ea on

the hardware platform.

Esys = Es + Ea (6)

We omit factors such as drivetrain energy usage and battery

lifetime as these factors have been studied in existing work

[18], [19] and can be used in conjunction with our approach.

Typical AS contain some combination of static sensors (e.g.,

cameras, ultrasonic sensors, front-facing radar) and rotating

sensors (e.g., spinning top-mounted LiDAR). The energy

consumption per sensor s ∈ S can be computed from the

measurement power Pmeas.
s , measurement frequency fs, and,

for spinning sensors, the motor power Pmotor
s , as follows:

Es = (Pmeas.
s + Pmotor

s ) ∗ 1/fs (7)

To reduce the energy consumption of the complete system,

we clock gate sensors unused in the current visual context.

The LiDAR and radar sensors in our testbed, discussed in

Section IV-A, are top-mounted spinning sensors, while the

cameras are fixed sensors without motors. Since the LiDAR

and radar have inertia and require several seconds to start

and stop rotating, we assume that we only clock gate the

measurement components while keeping the motor spinning

so they can be quickly re-enabled to ensure safety. The total

power consumption of the Navtech CTS350-X radar is 24 W

[20], while the Velodyne HDL-32E LiDAR uses 12 W [21]

and the ZED camera uses 1.9 W [22]. The Navtech CTS350-X

needs 2.4 W to spin the motor, so Pmeas.
radar = 21.6 W. Using

comparable LiDAR motor models for the Velodyne HDL-32E,

we estimate Pmeas.
LiDAR = 9.6 W.

Since our object detection model is reconfigurable, the

algorithm energy consumption Ea can be computed as:

Ea(ϕ,X) = Pa(ϕ,X) ∗ t(ϕ,X), (8)

where t(ϕ,X) represents the processing latency in seconds

and Pa(ϕ,X) represents the power consumption in Watts of

processing input X through the current model configuration ϕ
on the hardware platform. We measured the power and latency

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 19,2023 at 04:29:49 UTC from IEEE Xplore.  Restrictions apply. 



Sensors Z

A A+Z

Branches

…

Stem Z Stem B Stem A 

Features

…

D
P

U

Sensors A Sensors B

A B

Stem B Stem A 

Features

*

D
P

U

Branches

Sensors A

A A+Z

Stem A 

Features

*

D
P

U

Branches

Sensors Z

Stem Z 

Previous Configuration Context-ID Frame New Configuration

R
ec

o
n

fi
g

u
re

.

R
ec

o
n

fi
g

u
re

.

Joint Optim.

Context ID

Branch 

Selection

C
lo

ck
 G

a
ti

n
g

Fusion

C
P

U

Fusion

C
P

U

Fusion

C
P

U

Sensors BSensors A

Fig. 1: CARMA System Architecture and Reconfiguration

Workflow

of each model configuration on our hardware platform, the

Xilinx Kria KV260 FPGA, to compute Ea offline for use in

our multi-objective optimization.

3) Multi-Objective Optimization: We implement a tunable

joint optimization between system-wide energy consumption

and model performance to enable our approach to minimize

energy without compromising performance. Since there is

typically a trade-off between these two objectives, we use a

λE term to allow model designers to specify the preference for

energy efficiency over performance depending on the applica-

tion of the system. Given that we know the expected prediction

performance L of configuration ϕ for an input X, denoted as

L(ϕ,X), and the expected system-wide energy consumption

of that configuration Esys(ϕ,X), our optimization can be

formulated as:

Lopt(ϕ,X) = L(ϕ,X) ∗ (1− λE) + Esys(ϕ,X) ∗ λE (9)

ϕ∗(X) = argmin
ϕ∈Φ

(Lopt(ϕ,X)), (10)

where ϕ∗(X) represents the model configuration that best min-

imizes the joint optimization loss Lopt for input X for the given

λE . [6] used a similar optimization to select which branches

to execute, with all other system components remaining fixed.

However, our proposed approach includes clock gating of

unused sensors and stems, drastically increasing the potential

energy savings and enabling system-wide optimization.

B. System Architecture

CARMA’s architecture is shown in Fig. 1. CARMA consists

of a runtime reconfigurable multi-branch sensor fusion model

for object detection. Section III-D elaborates on our runtime

reconfiguration approach on hardware, while the following text

describes our sensor fusion model. The model consists of four

key components, (i) feature extraction, (ii) context identifica-

tion, (iii) submodel selection, and (iv) output fusion. First,

multi-modal sensor data is processed by modality-specific

Stem models to extract an initial set of features for each sensor.

These features are then used by the Gate model to identify the

current visual context. This context is used to select the set of

submodels (Branches) to execute that optimizes performance

and energy efficiency. Each active branch outputs a set of

object detections collected and fused by the Fusion Block to

produce a final set of refined detections.
1) Stem and Branches: We utilize the single shot multibox

detector (SSD) [23] for object detection, known for its superior

speed and performance compared to Faster R-CNN [24]. SSD

employs a single-pass CNN to perform region proposal and

object detection, eliminating the need for a separate Region

Proposal Network. With a smaller model size and fewer inter-

mediate feature maps, SSD requires fewer hardware resources

and has lower memory bandwidth, making it faster to execute

on FPGAs. Our proposed architecture incorporates SSD’s

ResNet-18 backbone, using the first six layers as modality-

specific preprocessors (stem) and the remaining 23 layers

as branches. We implement single-sensor branches for four

inputs (two cameras, one LiDAR, and one radar) and three

early-fusion branches that take multiple sensors as input: dual

camera, LiDAR and radar, and dual camera with LiDAR.

These branches include a single merge convolution layer to

combine the sensors across the channel dimension before

continuing with processing.
2) Context Identification and Gating: To identify the cur-

rent visual context and perform branch selection, we pro-

pose three variants of context-identification, or gate, models.

The knowledge gate uses fixed domain-knowledge rules to

select submodels using external contextual information (e.g.,

weather, time of day, road type). The rules encode domain

knowledge on the sensor modalities least likely to be degraded

by current environmental factors such as rain, snow or fog.

The deep gate uses a 3-layer CNN to infer the current context

from the stem output features and directly output the set

of branches it infers will perform best in the current visual

context. Here, context refers to an abstract visual state estimate

generated within the CNN’s hidden layers, while the gate

output indicates which branches to execute. The attention gate

is the same as the deep gate with the addition of a self-attention

layer. Given the set of all possible model configurations Φ, the

objective of the gate is to estimate the performance L of each

configuration ϕ for the current set of input features F :

L(Φ,F) = π(ϕ,F), ∀ϕ ∈ Φ (11)

ρ(L(Φ,F), γ) = {ϕ ∈ Φ s.t. L(ϕ,F) ≤ L(ϕ′,F) + γ} (12)

Φ∗ = ρ(L(Φ,F), γ), (13)

where π represents the gating model and ρ represents a func-

tion for identifying the set Φ∗ of top performing configurations

with an estimated error within γ of the best configuration ϕ′.
3) Fusion Block: The fusion block in CARMA combines

object detections from active branches to produce more ac-

curate final bounding box predictions. We employ weighted

boxes fusion [25], which averages proposed boxes based on

confidence scores. In CARMA, the fusion block runs on

the CPU due to its complex program logic, which is better

supported on the CPU than the DPU. It can also utilize idle

CPU resources during DPU inference.

C. Hardware Design Choices

CARMA is adaptive to various platforms. Still, safety-

critical real-time tasks require careful hardware design choices.
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the joint optimization to identify the optimal configuration ϕ∗.

The outputs of the active branches are fused to produce Ŷ.

After this step, we clock gate the unused sensors, switch to

the new model configuration ϕ∗, and continue executing Alg.

1 with the new ϕ∗ and active sensors at the next time step.

Algorithm 2: Context ID and Reconfigure Algorithm

Input: t, λE , Φ, γ, Esys(Φ), all sensors

Output: Object Detections (Ŷ), ϕ∗, active sensors

1 Initialize feature vec. F and output vec. Ŷ∗

2 for s in all sensors do
3 Xs ← s(t) // data input

4 F[s]← stems(Xs) // extract features

5 L(Φ)← π(F,Φ) // estimate model losses

6 Φ∗ ← ρ(L(Φ), γ) // select candidates

7 for ϕ in Φ∗ do
8 Ljoint(ϕ)← (1− λE) ∗ L(ϕ) + λE ∗ Esys(ϕ)

9 ϕ∗ ← argmin∀φ∈Φ∗(Ljoint(ϕ)) // joint opt.

10 load branches(ϕ∗) // reconfiguration

11 for branch in ϕ∗ do

12 Ŷ
∗[branch]← branch(F∗) // pass subset of

F

13 Ŷ ← fusion block(Ŷ∗) // fuse detections

14 Initialize empty set active sensors
15 for s in all sensors do
16 if ϕ∗ requires s then
17 active sensors← active sensors ∪ {s}

18 else
19 clock gate(s) // clock gate sensors

20 disable stem(stems) // reconfiguration

IV. EXPERIMENTS

A. Experimental Setup

CARMA can be applied to any multi-sensor AS to enable

energy-efficient perception. In our experiments, we evaluate

CARMA on a popular AS use case: autonomous driving for

AVs. Our hardware testbed is shown on the left side of Fig. 2.

We use the Xilinx Kria KV260 FPGA as our computing plat-

form. Due to its portability and compatibility, our design could

feasibly be implemented on Xilinx automotive-grade FPGAs

in a similar manner. Each model is trained on the RADIATE

dataset [26], which contains three hours of high-resolution

radar, LiDAR, and stereo camera data across challenging

perception contexts. We compare against Faster R-CNN object

detectors for single sensor inputs, early and late multi-sensor

fusion, and the state-of-the-art method, EcoFusion [6]. To

measure the object detection performance of each model,

we use the object detection loss function from [27], which

combines bounding box loss with classification loss. The

object detection metrics we present are for a Faster R-CNN

variant of our model trained using the same hyperparameters

as [6] for fairer comparison with EcoFusion [6]. However,

we verified experimentally that the SSD-based model achieves

50% lower average loss and consumes 15% less energy than

the Faster R-CNN version. We used built-in functions in the

host code and system commands to measure the end-to-end

latency and power consumption of different configurations.

B. Performance on FPGA

We compare the object detection performance and energy

consumption of different fusion techniques in Table I. Across

different gating and λE configurations, CARMA achieves

lower average energy usage and loss than almost every early

fusion, late fusion, and single sensor model. The only excep-

tions were the camera-only configurations, which had higher

losses than our method but lower energy usage due to the

efficiency of the camera sensors. Notably, with an equivalent

model loss, CARMA (λE = 0, deep) achieves a 41.3%

reduction in energy compared to EcoFusion (λE = 0, attn).

With a higher λE = 0.01 for both models, CARMA achieves

73.7% lower energy usage with only a 3.2% higher loss

than EcoFusion. EcoFusion’s inability to account for sensor

energy or apply sensor and model clock gating leads to higher

average energy consumption, putting it on par with high-

energy early fusion and late fusion variants. CARMA also

exhibits faster speeds, achieving 6%-33% speed-up compared

to EcoFusion, with lower model latencies for higher λE values.

The results highlight trade-offs among sensing modalities,

with radar branches consuming more energy but providing

reliability in camera failure contexts, as supported by lower

loss in the late fusion model.

Fusion

Type

Configuration Avg.

Loss

Energy

(J)

Latency

(ms)

None
Radar (R) 2.858 6.73 14.2
LiDAR (L) 4.682 3.73 14.2
Camera (C) 1.680 1.81 14.2

Early
R+ L 2.784 9.16 17.1
CL + CR 1.203 2.31 17.1
L+ CL + CR 3.476 3.73 19.7

Late R+ L+ CL + CR 0.967 10.48 42.6

EcoFusion
[6]

λE = 0, attn 0.915 10.41 54.0
λE = 0.01, attn 0.924 10.36 48.0
λE = 0.1, attn 1.147 10.18 27.7

CARMA

(Ours)

λE = 0, attn 0.915 7.35 51.9
λE = 0, deep 0.915 6.12 51.2
λE = 0.0001, attn 0.920 6.68 50.2
λE = 0.001, deep 0.944 3.31 42.6
λE = 0.001, attn 0.959 3.23 38.5

λE = 0.01, deep 0.954 2.73 36.1

TABLE I: Performance and energy comparison between dif-

ferent fusion methods (Tc = 30 samples)

Fig. 3 illustrates the trade-off between system-wide energy

consumption and model performance for each gate module

at different values of λE . Both deep and attn gates present

a clear trade-off between performance and energy efficiency

as λE increases. However, the large flat region along the

right side of both Pareto frontiers illustrates how system-

wide energy can be reduced significantly with a minimal

performance impact. The results for loss-based gating indicate

the performance of an optimal gate module and serve as a

theoretical upper bound, since it uses the posteriori ground

truth loss to select branch. The knowledge gate is ineffective

in minimizing either objective. Overall, the deep and attn gate

reduce energy consumption by over 55% while maintaining

an average loss within 5% of the λE = 0 models.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 19,2023 at 04:29:49 UTC from IEEE Xplore.  Restrictions apply. 



Theoretical 

best

More efficient

More accurate

Attention

beats Deep

Sub-optimal

Less energy, same loss

Fig. 3: System-wide energy consumption vs. object detection

loss of different gate modules for varying values of λE .

1

3

5

7

9

11

A
V

 S
y
st

em
 E

n
er

g
y
  

(J
)

City Fog Jct. Mwy. Night Rain Rural Snow All

Low energy 

across contextsHigh energy usage

None Early Fusion       Late Fusion       EcoFusion [6] CARMA (λE=0.01)

0

2

4

6

8

A
v

g
.

L
o

ss

City Fog Jct. Mwy. Night Rain Rural Snow All

High loss in challenging 

scenarios

Losses match SOTA

Fig. 4: Scenario-specific energy usage and object detection

loss for: No Fusion (CR), Early Fusion (L+CL +CR), Late

Fusion (R + L + CL + CR), EcoFusion (λE = 0, attn), and

CARMA (λE = 0.01, attn).

C. Scenario-Specific Performance

Fig. 4 shows how different driving scenarios affect the

energy consumption and performance of different fusion

methods. The results show that CARMA can reduce energy

consumption below that of early fusion, late fusion, and

EcoFusion across all scenarios. Interestingly, our model min-

imizes energy consumption in the Snow scenario by selecting

camera branches only throughout the context (CL, CR, and

CL +CR). Early fusion is especially weak in the Fog, Rural,

and Snow contexts, likely due to its susceptibility to sensor

noise. Late fusion, EcoFusion, and CARMA are robust across

all scenarios, with Rural being the most challenging.

V. CONCLUSION

In this work, we proposed a context-aware sensor fusion

approach that uses context to reconfigure the perception model

on an FPGA at runtime dynamically. CARMA is capable of

switching model computation paths with negligible latency

while intermittent context identification, system-wide energy-

performance optimization, and sensor clock gating maximize

energy savings without compromising performance. Overall,

CARMA achieves up to 1.3× speedup and reduces energy

consumption by over 73% over leading static and dynamic

sensor fusion techniques across complex driving contexts.
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