
SEO: Safety-Aware Energy Optimization Framework
for Multi-Sensor Neural Controllers at the Edge

Mohanad Odema, James Ferlez, Yasser Shoukry, Mohammad Abdullah Al Faruque
Department of Electrical Engineering and Computer Science

University of California, Irvine, CA, USA

Abstract—Runtime energy management has become quintessen-
tial for multi-sensor autonomous systems at the edge for achieving
high performance given the platform constraints. Typical for such
systems, however, is to have their controllers designed with formal
guarantees on safety that precede in priority such optimizations,
which in turn limits their application in real settings. In this
paper, we propose a novel energy optimization framework that
is aware of the autonomous system’s safety state, and leverages
it to regulate the application of energy optimization methods
so that the system’s formal safety properties are preserved. In
particular, through the formal characterization of a system’s safety
state as a dynamic processing deadline, the computing workloads
of the underlying models can be adapted accordingly. For our
experiments, we model two popular runtime energy optimization
methods, offloading and gating, and simulate an autonomous driv-
ing system (ADS) use-case in the CARLA simulation environment
with performance characterizations obtained from the standard
Nvidia Drive PX2 ADS platform. Our results demonstrate that
through a formal awareness of the perceived risks in the test
case scenario, energy efficiency gains are still achieved (reaching
89.9%) while maintaining the desired safety properties.

Index Terms—Edge Computing, Formal Methods, Autonomous
Systems, Safe Control, Multi-sensor Autonomous Driving Systems

I. INTRODUCTION

Today, autonomous systems are capable of running high

complexity neural networks (NNs) on self-sufficient edge plat-

forms with heterogeneous hardware units (e.g., GPUs, ASICs),

and integrate a wide variety of sensors (e.g., cameras, LiDAR,

and IMUs) to attain a robust control performance [1]. As such,

substantial computing power is required at the edge platform to

enable such high performance, a requirement that goes against

its other desired properties for the edge computing platform

(e.g., compactness and reduced battery sizes). Even more so,

having a power-hungry computing platform can worsen the

performance of other broader system functionalities, as in how

an autonomous driving system (ADS) can cause reductions in

a vehicle’s driving range by a factor reaching 12% [2].

In accordance, recent research efforts have targeted enhanc-

ing the energy efficiency of these edge platforms on both

the hardware and software levels. For instance, support for

processing and hardware reconfiguration has enabled effec-

tive resource management through computational workloads

adjustments [3], [4]. In a similar vein, advancements in the

wireless communication networking infrastructure have led to

the emergence of the remote edge computing paradigm [5]–[9],

which would equip autonomous systems with the flexibility to

manage their workloads through offloading task computations

to nearby servers existing at the edge of the networking

infrastructure in millisecond communication latencies.

§This work was partially supported by the NSF under awards CCF-2140154,
CNS-2002405, ECCS-2139781 and by C3.ai Digital Transformation Institute.

Encouraging as it may be, the consequences of adopting such

energy optimizations with regards to the safety properties of the

system are quite unclear. This is a major challenge for real-

world adoption scenarios as autonomous systems are required

to constantly react to continuously evolving environments,

prioritizing safety above all other aspects. In many cases, this

is achievable in autonomous systems through provably-safe

controllers in which raw control outputs are filtered so as to

be confined within the bounds of a formal safety function,

a function that is evaluated continuously through a complete,

precise estimation of the corresponding system state. To give a

practical example, a radar processing pipeline in an ADS can

support such safety filtering functionality, where radars inputs

are processed to evaluate the safety state of the system (e.g.,

distance to closest obstacle), and if certain safety conditions

are not satisfied (e.g., imminenet collision), the radar pipeline

can override the main control pipeline to enforce safe steering

or braking actions [1]. Accordingly, such a processing pipeline

with critical safety responsibilities must continuously operate at

maximum performance to realize as accurate state estimates as

possible for maintaining the desired control safety guarantees.

50% Gating

Full Operation

Increasing Risk

50 Hz Model 25 Hz Model

Fig. 1. Safety-aware gating optimization for two detector models across test
runs with different number of obstacles simulated in Carla [10].

A. Motivational Example

In fact, using the precise state estimates provided through

the critical safety-preserving pipelines (e.g., the Radar pipeline)

and the corresponding evaluation of the safety function, we can

further regulate the application of energy optimizations onto

the remaining subset of less-critical processing models in a

safety-aware fashion. We showcase this in Figure 1 through a

premature example from our experiments that illustrates how

this can be achieved in a formal manner, where the test case

scenario – implemented in Carla [10] – involves a simulated

autonomous vehicle with a pair of object detector models

that support gating of their processing models at specific

time intervals for energy optimization. The detectors operate

on different processing frequencies (e.g., 50 Hz and 25 Hz)

to reflect heterogeneous sensors of diverse specifications and

sampling frequencies [11]. In the Figure, the horizontal axis

2
0
2
3
 6

0
th

 A
C

M
/I

E
E

E
 D

es
ig

n
 A

u
to

m
at

io
n
 C

o
n
fe

re
n
ce

 (
D

A
C

)
| 9

7
9
-8

-3
5
0
3
-2

3
4
8
-1

/2
3
/$

3
1
.0

0
 ©

2
0
2
3
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/D

A
C

5
6
9
2
9
.2

0
2
3
.1

0
2
4
7
7
5
1

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 19,2023 at 04:29:32 UTC from IEEE Xplore. Restrictions apply.

reflects the risk in the simulated driving scenario, represented

by the number of obstacles along the vehicle’s route, whereas

the vertical axis represents the normalized energy consumption

of the ADS under gating optimizations. As shown, the key idea

is that gating optimizations are tuned based on the perceived

risk on the road, i.e., safety state, through a formally-derived

safe dynamic deadline, which evaluates to lower values at

higher perceived risks (i.e., increasing number of obstacles) to

prioritize robust processing over energy gains.

B. Novel Contributions

From here, we can summarize our novel contributions:

• We present SEO, a novel safety-aware energy optimization

framework for multi-sensor autonomous controllers at the

edge designed with specific safety properties

• Given the formal safety properties of an autonomous sys-

tem, SEO proposes to divide the set of sensory processing

models within the system into two subsets: a critical subset

that contributes to the preservation of safety guarantees,

and a normal subset leveraging energy optimizations.

• SEO regulates the application of energy optimizations to

the models in the normal subset through a safety dynamic

deadline that is estimated based on formal evaluations on

the outputs from the critical subset.

• We characterize the performance of the normal processing

models given dynamic safety deadlines for two popular

energy optimization methods: task offloading and gating

• Our experiments for an autonomous driving use case

simulated through Carla [10] across a variety of sensors

and risk scenarios show that energy efficiency gains up to

89.9% can be achieved under formal guarantees on safety.

II. RELATED WORKS

Energy Optimizations. Numerous methods have been pro-

posed to effectively manage energy consumption of edge au-

tonomous systems at runtime, most notably through: (i) Gating

[4], [12] in which components of the NN pipelines, if not

all, can be scaled/gated based on the corresponding system

state and runtime context. (ii) Task offloading [6], [8], [13]

in which compute-intensive kernels can be offloaded to be

processed at the nearby edge computing infrastructure, enabling

an effective management of the local compute resources. To

date, the matter of how adopting such optimizations can affect

the formal safety properties of the autonomous system is highly

understudied, especially considering the modular multi-sensory

pipeline structure of today’s autonomous system platforms.
Formal Methods for NN controllers. One research direction

has been to apply formal verification techniques to asses the

formal safety properties of neural network controllers [14],

[15]. Whereas another leverages control theory concepts to

augment NN controllers with formal safety guarantees on their

outputs, filtering them and applying necessary corrections if

needed [16], [17]. The scope of this work aligns with the latter.

Specifically, our analysis focus is on the prominent ‘controller-

shielding’ technique from that category [18], [19].

III. SYSTEM MODEL

In this section, we provide the system model to formally

regulate the application of energy optimizations for a controller

while satisfying specific safety properties.

A. Safety Guarantees for Closed-loop Controllers

Let ẋ = f(x, u) be a control system in a closed-loop with

a state feedback π : x �→ u, where an input state, x, can be

mapped into a control action, u. Let h(x, u) be a real-valued

function that characterizes the safety of f through a binary

variable, S, based on the x and u estimates as follows:

S =

{

1, if h(x, u) ≥ 0

0, otherwise
(1)

where S = 1 indicates that the system is in a safe state

whenever h evaluates to a non-negative value, and an unsafe

state otherwise. In order to enforce a safe state, control outputs,

u, are to be filtered through a safety filter, Ψ, that applies

necessary corrections to u if needed in order to prevent function

h(·) from evaluating to a negative value. (i.e., u remains within

the bounds of the formal safety function). Thus, the filtered

control output, u′ can be described as:

u′ = Ψ(x, u) =

{

u, if S = 1

ψ(x;U), otherwise
(2)

where ψ represents a function for applying corrective behavior

whenever the system is deemed to enter an unsafe state. U
represents the set of admissible control actions that the safety

filter can apply. When a solvable function is derived for ψ
capturing the underlying dynamics of motion of the physical

system (e.g., the physical dynamics of rotating a steering wheel

when changing steering angles) and exhibits a strong sense

of uniform continuity on the control outputs, then ẋ can be

characterized as a safe control system.

B. Safe Time Intervals Characterization

With the above safety characterization, We want to determine

for a system ẋ at S = 1 the following: Given a state (xt, ut) at

time t, denoted as xt and ut, what is the maximum allowable

time that ẋ can tolerate under the same applied control action,

ut, before ẋ transitions to an unsafe state (S → 0)?

From equation (1), let ẋ = f(x, u) be a controller in a safe

state S = 1 at (x, u). Under the application of the same control

u for a certain time period, the system is expected to enter an

unsafe state S = 0 at (x′, u). Formally, if we consider ẋ =
f(x, u) and Ψ enforce a strong form of uniform continuity on

control outputs, that is, changes from (xt, ut) to the immediate

next state (xt+Δ, ut+Δ) are bounded by a small constant (i.e.,

Lipshitz constant in control theory). Then, we can express the

maximum allowable safe time interval as such:

Δmax = ϕ(x, x′, u) (3)

where under the application of same control value u, the differ-

entiation from x to x′ through their encompassing continuous

function can be characterized in time units. At this stage, we

provide the following practical example for elaboration: Let

x and x′ characterize the respective position, velocity, and

orientation for both an autonomous vehicle and an obstacle

along its path. Then, given the vehicle’s applied control values,

u, (e.g., steering angle and throttle), we can compute the time,

Δmax, as the time-to-collision through numerical evaluations

of ϕ under the assumption that the uniform continuity property

holds. In truth, we also emphasize that x′ is not necessarily

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 19,2023 at 04:29:32 UTC from IEEE Xplore. Restrictions apply.

the exact state description of the obstacle per say, but rather

a characterization of its safety bound coordinates (e.g., the

minimum distance to a safety sphere around the obstacle).

C. Safe time Intervals as Dynamic Deadlines

Let Δmax be a real-time value representing the safety expira-

tion time given state (x, u) at a time t. Let ẋ be a control system

whose inputs are produced through N multi-sensory processing

models (e.g., N neural networks) constituting the model set,

Λ, contributing to the down-stream control task. Define subset

Λ′ ⊂ Λ as an N ′ subset of models in the pipeline that the safety

filter, Ψ, does not rely on for its state estimation, x. This means

that every Ni ∈ Λ′ does not influence the formal control safety

guarantees. Then, Λ′ can be designated as the set of models that

can benefit from incorporated runtime optimization methods

whose processing workloads can be adjusted in a safety-aware

manner in accordance with the Δmax values formally generated

through the remainder subset of models Λ′′ = Λ− Λ′.

Let each model Ni ∈ Λ′ be associated with a single sensor,

where the processing period of Ni ∈ Λ′ is synchronized to its

sensor’s sampling period, denoted as pi. In order to unify the

time scale ∀Ni ∈ Λ′, we define a period, τ , as the base time

window, and discretize the sampling periods as multiples of τ :

∀ Ni ∈ Λ′, δi =

{
pi

τ
, if (pi % τ) == 0

�pi

τ
	+ 1, otherwise

(4)

Similarly, Δmax can be discretized to its following multiplier:

δmax = �
Δmax

τ
	 (5)

From here, we can regulate the application of energy opti-

mizations for every model Ni ∈ Λ′ to obtain its safety-aware

optimized model version, N̂i:

N̂i[0:δmax−δi] =

{

Ωi[0:δmax−2δi] +Ni(δmax−δi) if δi < δmax

Ni[0:δmax−δi] otherwise

(6)

in which Ω represents the processing model under the applied

energy optimization. Thus, given a sequence of discrete time

intervals indexed by [0 : δmax− δi], Ω can be instantiated until

the last period preceding δmax − δi as long as δi < δmax.

After that, the original Ni needs to be instantiated at δmax−δi
to meet the safety deadline at δmax. Otherwise, if δi ≥ δmax

(i.e., no viable optimization periods under the current deadline),

N̂i proceeds to evaluate as the original Ni to maximize

downstream control performance in the lesser safe states

IV. SEO OPTIMIZATION FRAMEWORK

In this section, we present our safety-aware energy optimiza-

tion framework (SEO) for an autonomous system with guaran-

tees on safe control. Figure 2 provides an illustration of how an

abstract modular pipeline of a multi-sensor autonomous system

would look with the supported safety-aware optimizations. As

safety properties vary from one autonomous system to the other

due to varying dynamics of motion and control actions, we will

breakdown the different framework components below with a

specific emphasis on autonomous driving systems considering

how the existing literature derived and proposed methods to

maintain formal safety guarantees for such systems.

N1

Nk

Model Subset

p1

pk

Nk+1

NK

Model Subset

pk+1

pK

Downstream

Controller
Safety

Filter

Control

Deadline

Mapping

Fig. 2. Overview of a multi-sensor autonomous system pipeline supporting
safety-aware optimizations as obtained provided through our SEO framework

A. Optimization and State Estimation Subsets

To realize energy efficiency gains while preserving the de-

sired safety guarantees, the set of processing models deployed

on an autonomous computing system are to be divided into

Λ′ and Λ′′ subsets according to their criticality (as defined in

Section III-C) where critical models in Λ′′ are the ones tasked

with providing state estimates, x, to the safety controller in

order to uphold the formal safety guarantees. Therefore, models

in Λ′′ need to be constantly operating at full processing capacity

to ensure that updated state estimates, x, are constantly fed to

the safety filter. As for Λ′, its models’ evaluations are not used

for safety state estimation, and thus can benefit from supported

runtime performance optimizations to adapt their computational

workloads. Still, these models are crucial to realize a smooth

and robust end-to-end control performance along the main

control pipeline, which involves the controller π processing

aggregate predictions Θ from either subset of models (see

Figure 2). In other words, proposed optimizations should be

applied in a context-aware, adaptive manner to limit the need

for the overriding control procedures by the safety controller.

B. The Safety Filter

A safety filter ensures that raw control predictions are

confined within the boundaries of a safety function while

accounting for the system dynamics of motion. As shown

in Figure 2, the filter evaluates its safety boundaries on the

corresponding state estimates generated from the model subset

Λ′′, and accordingly filters control predictions u as u′ to be

fed to the control unit. An example of such a filter is the

controller shield proposed in [19] which was designed to filter

steering angle outputs for autonomous driving control. This

filter modeled the vehicle’s dynamics relative to a fixed point in

the plane (i.e., an obstacle), and extracted the relative distance

and orientation angle as the x inputs to the filter. These x
values are then used to evaluate the safety function h with

respect to the obstacle, i.e., specifying the set of safe states and

control with respect to the obstacle. With that characterization,

the controller shield is able to receive vehicle steering angles,

and apply the necessary corrections if needed.

C. Characterization of Safe Interval Times

Given the strong sense of continuity exhibited by an au-

tonomous system with regards to its dynamics of motion,

an expression for the vehicle’s progression as a function of

time can be derived. Where based on the system state with

respect to a reference point in the plane (e.g., an obstacle),

safety expiration times, Δmax, can be obtained. In [20], such a

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 19,2023 at 04:29:32 UTC from IEEE Xplore. Restrictions apply.

mapping function has been formally derived for the autonomous

driving controller shield from the previous subsection, where

the autonomous vehicle’s relative states with respect to an

obstacle can be mapped to a corresponding safety expiration

times. Specifically, computed Δmax values based on the corre-

sponding state (distance to obstacle and its relative orientation

angle) can be leveraged as dynamic execution deadlines for the

models in Λ′. For instance, a vehicle driving head on towards an

obstacle within a short distance would lead to low Δmax values,

which in turn would cause the models in Λ′ to process inputs

at near-full capacity due to the higher perceived risk. Lastly,

through enough evaluations of the safety expiration function, a

low-cost proxy lookup table, denoted as T(x, u), is constructed

to enable real-time sampling of Δmax values at runtime.

D. Runtime Control and Safety-Aware Optimization

In Algorithm 1, we describe the overall runtime control loop

experienced by the autonomous system with support for safety-

aware optimizations. An additional notation is yi representing

the input to the ith sensory model. Line 3 shows the estimation

of a new state, x, and features, Θ′′, from the Λ′′ models

to be fed to the safety component and the main controller,

respectively. Lines 4-6, show the main control execution path

in which generated controls u are filtered through Ψ to attain

safe control actions. Lines 7-11 indicate the start of a new safe

optimization interval in which a new Δmax value is sampled

from T and discretized to δmax based on the unified timing

axis, whereas all Δmax expiration flags are reset for the Λ′

models. The Lines 13-21 presents our safety-aware model

optimization for each involved pipeline Ni ∈ Λ′ based on its

discretized operational period, δi, following equation (6). As

detailed, the full model version, Ni, will be invoked either when

pi > δmax (no surplus optimization periods), or when δmax

expires. Otherwise, energy optimizations are applicable in that

time step through Ωn. Prediction outputs are constantly added

from each model to Θ′ for π’s control outputs predictions in

the following control loop. Lastly, Lines 22-23 show that once

the optimization interval has expired for all deadlines, newΔ

flag is set to sample new Δmax value in the next time step.

V. SAFE ENERGY OPTIMIZATION METHODS

In this section, we describe two common methods for Ω and

how they influence the operation of N̂ in equation (6).

A. Task Offloading

Through wirelessly offloading compute-intensive tasks to be

processed at compute-capable servers at the edge, task offload-

ing can offer considerable energy efficiency gains for the local

computing systems [5], [6], [8]. To conduct task offloading

for critical workloads (such as perception kernels affecting

downstream control decisions of an autonomous vehicle), there

are two aspects to be incorporated:

• Server response times (δ̂) should be estimated to avoid

offloads that are not expected to meet processing deadlines

• a safety fall back mechanism to re-invoke the local model

if server responses after an offloading decision were

delayed beyond δ̂ due to wireless uncertainty, and are

projected to miss the critical deadline (e.g., δmax)

Algorithm 1: Safe Runtime Control and Optimization

Input: Controller: π, Safety filter: Ψ, Lookup Table: T, Base Period:
τ , Optimization Subset: Λ′, State Estimation Subset: Λ′′

1 Initialize: n=0, Δmax=0, Θ′={}, new∆=True
2 while True do

// state estimation and safe control

3 x, Θ′′ ← Nl(yl, x, u)∀Nl ∈ Λ′′ // state estimation

4 Θ ← aggregate(Θ′,Θ′′)
5 u ← π(Θ) // main control

6 u′ ← Ψ(x, u) // safe control

// sample new safety deadline

7 if new∆ == True then
8 Δmax ← T(x, u) // probe lookup table

9 δmax = �∆max

τ
�

10 n = 0, new∆ = False // new interval

11 donei == False ∀Ni ∈ Λ′ // reset done flags

// optimized safe processing

12 Θ′={}
13 for Ni ∈ Λ′ do
14 if δi ≥ δmax or n == (δmax − δi) then

15 N̂i(n) = Ni(n) // invoke processing

16 θi ← N̂i(n)(yi)
17 Θ′ ∪ {θi} // update aggregates

18 if n == (δmax − δi) then
19 donei = True

20 else

21 N̂i(n) = Ωn // invoke optimization

22 if donei == True ∀Ni ∈ Λ′ then
// safe interval ended for all

23 new∆=True

24 n = n + 1

Accordingly, we demonstrate how this offloading logic can

be incorporated within our primary optimization function in

(6). Figure 3 provides examples of the potential experienced

operational outcomes through this logic detailed below. At the

start of every time interval, every model that meets the global

safety deadline (δi < δmax), proceeds to compare its δi against

δ̂. If δi ≤ δ̂, then offloading is not feasible as there exists no

fallback periods, and the model proceeds to evaluate locally.

Otherwise, offloading is chosen with two potential outcomes:

(i) if responses are received before (δmax−δi), then they can be

applied directly as processing outputs, and thus, local compute

was avoided and energy gains were realized (ii) if (δmax − δi)
expired before receiving server responses, then the local model

is instantiated to compute in the last period for safety.

From here, given an optimizable model N̂ (see equation 6),

we can characterize its energy consumption when offloading

(case 1 in equation 6) at discrete period, n, as follows:

E
N̂

= Ttx · Ptx
︸ ︷︷ ︸

EΩ

+ I[n==(δmax − δi)] · TN · PN
︸ ︷︷ ︸

EN

(7)

where Ttx and Ptx are the respective transmission latency and

power; I[·] is an indicator function to invoke local processing

if the guarantee on safety expires. In this case, the system

incurs additional energy consumption equal to the product of

N ’s local processing overheads in terms of latency, TN and

power consumption, PN . We remark that although we omitted

subscript, n, for notational simplicity, TTx and PTx evaluations

are dependent on it since some offloading overheads may

traverse multiple windows.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 19,2023 at 04:29:32 UTC from IEEE Xplore. Restrictions apply.

=1 1

=2

Interval 1 (local) Interval 3 (offload)

=4

Interval 2 (offload)

=3 =2

Interval 1 (local) Interval 2 (offload) nterval 3 (offload)

Reinvoke

Local for N2

Successful

Offloads

N2

N1

Local

Tx

Fig. 3. Demonstration of task offloading under safety guarantees

=1 1

=2

Interval 1 Interval 3

=4

Interval 2

=3 =2

N2

N1

Local

Gate Gate Gate

Gate

GateGate Gate

Interval 1

Loc

N2NN Ga

Fig. 4. Demonstration of gating optimizations under safety guarantees

B. Gating Mechanisms

Gating (Figure 4) is another scheme for energy efficiency that

benefits from the determinism offered by on-device computing.

The mechanism is straightforward in the sense given δi < δmax,

we can gate the processing model until the final interval period

for energy efficiency. Even more so, we can also gate the sensor

measurements themselves when the timeline is synchronized to

their sampling periods, τ . In such case, we can model energy

consumption for both gating and computing periods as:

EΩ = τ ·Pmech, EN = τ · (Pmech +Pmeas)+TN ·PN (8)

in which Pmech and Pmeasure are the power drawn by the

sensor due to its mechanical and measurement operations. This

separation is because gating cannot be directly applied to the

mechanical aspects of the sensor, such as a rotating motor, due

to inertia considerations. For instance, a LiDaR sensor motor

needs to keep on rotating even if sensor measurement is gated.

VI. EXPERIMENTS AND RESULTS

A. Experimental Setup

We use Carla simulation environment to implement an exper-

imental scenario similar to the one proposed in [19] in which

we have a Reinforcement Learning (RL) agent trained as an

autonomous vehicle controller to travel along a 100m road

that is populated with obstacles in the final third. We train

the agent using the same reward function for 2000 episodes

to output steering and throttle control actions. To reflect the

Λ′′ and Λ′ components that feed inputs into the agent, we first

reuse the Variational Autoencoder in [19] for Λ′′, and deploy

two pretrained ResNet-152 object detectors for Λ′, where they

operate at respective periods p = τ and p = 2τ to imitate

sensor operational diversity [11]. Unless otherwise stated, we

set τ to 20 ms based on practical numbers from the literature

and benchmark datasets [11].

Our forthcoming analysis for energy optimizations is con-

ducted under both cases for when the safety component tasked

with filtering steering angle outputs (recall Subsection IV-B)

is active and inactive, referred to by respective filtered and

unfiltered. Our main results are the average from 25 test runs in

which the agent successfully completed the route without any

collisions in either of the above cases. We retrieve the state

estimates (i.e., distance and relative orientation) needed by the

safety component directly from Carla for simplicity.

65.9%

24.1%
20.3%

37.2%

22.7%
8%9.5%

== ==

Fig. 5. Energy gains relative to local execution for the ResNet-152 detectors
with different p when offloading (left) and model gating (right) at τ = 20ms

TABLE I
OFFLOADING AND GATING ENERGY GAINS OVER LOCAL AT τ=25 MS

Mode Control (p = τ) gains (p = 2τ) gains Average gains

Offload
unfiltered 15.3% 7.5% 11.8%

filtered 27.1% 14.1% 21.1%

Gating
unfiltered 13.4% 0% 6.6%

filtered 23.8% 4.3% 14.5%

For performance comparisons, we follow the scheme pro-

posed in [13] for both local and offloaded performance char-

acterizations in terms of latency and energy consumption. Due

to space considerations, we only provide a high-level overview

where for the former, we deploy the ResNet-152 models on

an Nvidia Drive PX2 ADS platform, and benchmark their

local execution overheads using TensorRT in terms of latency

and energy (17 ms latency and 7 Watts execution power

consumption). For offloading, we assume a Wi-Fi link in which

effective data rate values are sampled from a Rayleigh channel

distribution model with scale 20 Mbps.

B. Energy Gains under Safety Guarantees

To analyze the extent of energy gains under the dynamic

safety execution deadlines, δmax, we illustrate in Figure 5

the extent of energy gains that can be realized across our

two ResNet-152 detectors using offloading and model gating

optimization methods in both the unfiltered and filtered cases.

Based on the results, two key observations can be made: 1)

models synchronized to sensors with higher sampling frequen-

cies are naturally more likely to benefit more from proposed

optimizations, as in the 65.9% energy gains experienced by the

detector at p = τ compared to the 20.3% gains experienced

by its p = 2τ counterpart in the filtered offloading case, which

is attributed to the former’s higher prospect of optimizations

under lower values of δmax. 2) Energy gains in the filtered

case are more than unfiltered (e.g., 65.9% vs 24.1% at p=τ for

offloading). This is mainly because the safety component forces

the RL agent to maintain a healthy distance from the obstacles

through effective maneuvering, which in turn causes higher

values of δmax being sampled and more optimizations for both

models. We repeat our experiments in Table I when varying the

base period τ as a case of more limited hardware settings. As

shown, considerable energy gains, are still be attainable, 21.1%

and 14.5% on average for respective offloading and gating.

C. Energy Efficiency gains under varying risk levels

To assess our approach under varying degrees of risk, we

vary the number of obstacles on the vehicle’s trajectory, and

analyze how performance efficiency would change. Figure 6

illustrates this for the unfiltered case through a histogram of

the sampled δmax values for each variation of number of

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 19,2023 at 04:29:32 UTC from IEEE Xplore. Restrictions apply.

88.6%

efficiency 24.6%

efficiency

16.8%

efficiency

42.9%

efficiency 17.5%

efficiency

11.9%

efficiency

=4=2=1=3 =4 =3=2=1

Offloading

Fig. 6. Average δmax experienced in the unfiltered control case when varying
number of obstacles for offloading (left) and model gating (right)

TABLE II
AVERAGE ENERGY GAINS AND δmax AT τ=20 MS UNDER OBSTACLE

VARIATION FOR TWO COMBINED (p=τ) AND (p=2τ) MODELS

Control #Obst. Offloading Gains Gating Gains δmax

unfiltered

0 88.58% 42.92% 3.67

2 24.6% 17.47% 2.29

4 16.82% 11.89% 1.92

filtered

0 89.89% 43.82% 3.7

2 39.49% 24.26% 2.61

4 43.1% 22.57% 2.53

obstacles, coupled with the average energy efficiency gain over

the two detectors. Across both potential optimization cases, the

histogram shows that lesser values of δmax are sampled more

frequently as the number of obstacles increase. For instance,

δmax=4 occurrence frequency decreases from 33.3% to 6.48%

to 2.3% in the model gating approach as the number of obsta-

cles increase from 0 to 2 to 4. That, of course, influences energy

efficiency gains accordingly as indicated by the progressive

drop in the average energy efficiency numbers. In Table II,

we also provide the results for the filtered case. Interestingly,

we find that the average energy gains and experienced δmax

values start to saturate when the number of obstacles ≥2. This

is again attributed to minimum safety distance imposed by the

safety filter leading to more evaluations of δmax > 1.

D. Sensor Gating

In this experiment, we extend our gating model analysis to

encompass a broader energy consumption model of both the

neural network processing model and the sensor itself (equation

8). Firstly, we retrieve the measurement power specifications for

industry-grade sensors commonly used in autonomous systems:

ZED Stereo Camera [21], a Navtech CTS350-X Radar [22], and

a Velodyne HDL-32e LiDAR [23]. We also specify Pmeas=2.4

W for LiDAR’s rotation power consumption based on common

LiDAR motors [4]. The numbers are provided in Table III,

where we compare energy gains experienced by each sensor

model, both on average during the test run and and when δmax

was sampled equivalent to 4τ . As shown, energy gains for

the camera pipeline achieves the best scores (37.5% and 8.2%

on average) compared to the other sensory pipelines, this is

because the absence of any residual energy consumption due

to Pmech enhances gating efficiency considerably. Between the

Radar and LiDAR, we find that the RADAR is more efficient

(e.g., 34.84% vs. 32.72% on average at p = τ) as a result of

the higher Pmeas (21.6 W) rating which means that it is more

susceptible to benefit from sensor gating optimizations.

TABLE III
SENSOR GATING AT τ=20MS FOR FILTERED CONTROL CASE

Sensor Pmeas Pmech Avg. Gains 4τ Gains

ZED Camera (p=τ)
1.9 W 0

37.5% 75%

ZED Camera (p=2τ) 8.2% 50%

Navtech Radar (p=τ)
21.6 W 2.4 W

34.84% 68.93%

Navtech Radar (p=2τ) 7.57% 45.53%

Velod. LiDAR (p=τ)
9.6 W 2.4 W

32.72% 64.82%

Velod. LiDAR (p=2τ) 6.9% 41.91%

VII. CONCLUSION

We proposed SEO a novel safety-aware energy optimization

framework for multi-sensor autonomous systems at the edge

that regulates how runtime energy optimizations are applied

onto the involved processing pipelines. Our experiments using

two common energy optimization techniques for a simulated

multi-sensor autonomous vehicle in Carla environment has

shown that substantial energy gains, reaching 89.9%, can be

achieved while preserving the desired safety properties.

REFERENCES

[1] S. Liu et al., “Computer architectures for autonomous driving,” Computer,
vol. 50, no. 8, pp. 18–25, 2017.

[2] S.-C. Lin et al., “The architectural implications of autonomous driving:
Constraints and acceleration,” in ASPLOS’18.

[3] S. Yi et al., “Energy-efficient adaptive system reconfiguration for dynamic
deadlines in autonomous driving,” in ISORC’21, 2021.

[4] A. V. Malawade et al., “Ecofusion: Energy-aware adaptive sensor fusion
for efficient autonomous vehicle perception,” in DAC’22, 2022.

[5] S. Liu et al., “Edge computing for autonomous driving: Opportunities
and challenges,” Proceedings of the IEEE, vol. 107, no. 8, 2019.

[6] S. Baidya et al., “Vehicular and edge computing for emerging connected
and autonomous vehicle applications,” in DAC’20, 2020.

[7] M. Cui et al., “Offloading autonomous driving services via edge com-
puting,” IEEE Internet of Things Journal, vol. 7, no. 10, 2020.

[8] A. Malawade et al., “Sage: A split-architecture methodology for efficient
end-to-end autonomous vehicle control,” ACM TECS’21, vol. 20, no. 5s,
2021.

[9] B. Zamirai et al., “Sieve: Speculative inference on the edge with versatile
exportation,” in DAC’20, 2020.

[10] A. Dosovitskiy et al., “Carla: An open urban driving simulator,” in
Conference on robot learning. PMLR, 2017, pp. 1–16.

[11] I. Gog et al., “Pylot: A modular platform for exploring latency-accuracy
tradeoffs in autonomous vehicles,” in ICRA’21, 2021.

[12] S. Lee et al., “Accuracy–power controllable lidar sensor system with 3d
object recognition for autonomous vehicle,” Sensors, vol. 20, no. 19.

[13] M. Odema et al., “Testudo: Collaborative intelligence for latency-critical
autonomous systems,” IEEE TCAD’22, 2022.

[14] X. Sun et al., “Formal verification of neural network controlled au-
tonomous systems,” in Proceedings of the 22nd ACM International
Conference on Hybrid Systems: Computation and Control, 2019.

[15] W. Xiang et al., “Reachable set estimation and verification for neural
network models of nonlinear dynamic systems,” in Safe, Autonomous
and Intelligent Vehicles, 2019.

[16] C. Dawson, S. Gao, and C. Fan, “Safe Control with Learned Certificates:
A Survey of Neural Lyapunov, Barrier, and Contraction methods,” 2022.

[17] R. Cheng et al., “End-to-end safe reinforcement learning through barrier
functions for safety-critical continuous control tasks,” 2019.

[18] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and
U. Topcu, “Safe Reinforcement Learning via Shielding,” 2017.

[19] J. Ferlez et al., “Shieldnn: A provably safe nn filter for unsafe nn
controllers,” arXiv preprint arXiv:2006.09564, 2020.

[20] M. Odema et al., “EnergyShield: Provably-Safe Offloading of Neural
Network Controllers for Energy Efficiency,” in ICCPS’23, 2023.

[21] Stereolabs, “ZED Camera and SDK Overview.” [Online]. Available:
https://cdn.stereolabs.com/assets/datasheets/zed-camera-datasheet.pdf

[22] “Navtech CTS Series.” [Online]. Available:
https://navtechradar.com/clearway-technical-specifications/compact-
sensors

[23] “Velodyne HDL-32e Datasheet,” May 2021. [Online]. Available:
https://velodynelidar.com/products/hdl-32e/

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 19,2023 at 04:29:32 UTC from IEEE Xplore. Restrictions apply.

