

Map-and-Conquer: Energy-Efficient Mapping of Dynamic Neural Nets onto Heterogeneous MPSoCs

Halima Bouzidi^{*§}, Mohanad Odema^{†§}, Hamza Ouarnoughi*, Smail Niar*, Mohammad Abdullah Al Faruque[†]

^{*}LAMIH/UMR CNRS, Université Polytechnique Hauts-de-France, Valenciennes, France

[†]Department of Electrical Engineering and Computer Science, University of California, Irvine, USA

^{*}{firstname.lastname}@uphf.fr

[†]{modema, alfaruqu}@uci.edu

Abstract—Heterogeneous MPSoCs comprise diverse processing units of varying compute capabilities. To date, the mapping strategies of neural networks (NNs) onto such systems are yet to exploit the full potential of processing parallelism, made possible through both the intrinsic NNs' structure and underlying hardware composition. In this paper, we propose a novel framework to effectively map NNs onto heterogeneous MPSoCs in a manner that enables them to leverage the underlying processing concurrency. Specifically, our approach identifies an optimal partitioning scheme of the NN along its ‘width’ dimension, which facilitates deployment of concurrent NN blocks onto different hardware computing units. Additionally, our approach contributes a novel scheme to deploy partitioned NNs onto the MPSoC as dynamic multi-exit networks for additional performance gains. Our experiments on a standard MPSoC platform have yielded dynamic mapping configurations that are 2.1x more energy-efficient than the GPU-only mapping while incurring 1.7x less latency than DLA-only mapping.

Index Terms—dynamic neural networks, heterogeneous MPSoCs, computation mapping, hardware scaling, DVFS

I. INTRODUCTION

The hardware era has witnessed the emergence of various computing devices, from powerful GPUs to tiny Microcontrollers. To meet the requirements of compute-intensive applications, such as Deep Learning workloads, MPSoCs are designed to incorporate heterogeneous computing units (CU) within the same die, typically sharing the same system memory (DRAM). This hardware architecture paradigm enables the collaborative usage of multiple CUs to accelerate different operations of the same application, hence providing energy savings and performance benefits. However, the causality between the hardware heterogeneity of MPSoC and the obtained performance for similar and different operations remains an open research question. Indeed, some CUs (e.g., GPUs) can offer high execution speedup at the cost of being energy-hungry, while others, such as NPUs, are power-friendly at the cost of being slow. Conventional deployment schemes lack a holistic overview of how heterogeneous CUs may behave regarding various computing workloads. In addition, the systematic approach of considering a single CU to deploy an entire application is suboptimal since it overlooks opportunities for further performance gains through maximizing the utilization of the MPSoC's hardware resources.

Latest research has shed light on the *computation mapping* problem for MPSoC by providing comprehensive modeling

methodologies in [1]–[4] to characterize computing workloads performances. The resulting models are typically used to map computations onto CUs in a sequential pipeline fashion. However, for workloads exhibiting a high degree of parallelism, such as Neural Networks (\mathcal{NN}), there's still room for improvement by refashioning the execution pipeline into parallel stages running concurrently on different CUs, especially considering the inherent capacity for concurrency within \mathcal{NN} layers such as convolutional and multi-head self-attention layers [5]. Prior works [5]–[8] have considered the computation parallelism on model, data, and task levels. Nevertheless, most works focus on model training rather than inference. Although substantial studies exist for distributed edge devices, few studies have contemplated the case of MPSoCs.

On the other hand, recent works have started to explore the prospect of partitioning the \mathcal{NN} model itself into separate computing stages that can be invoked in a *dynamic* manner, where simpler inputs can be classified at earlier model stages (i.e., early-exiting), whereas the latter stages are instantiated for more complex inputs. For instance, S2DNAS [9] demonstrated the benefits from partitioning a model along its width dimension (i.e., layer's channels), and deploying the model as a multi-exit neural network with support for parallelism. Still, studying mapping such parallel neural network components onto a heterogeneous MPSoC for dynamic inference is lacking.

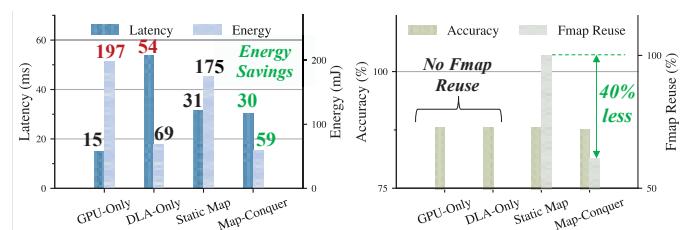


Fig. 1. Performance comparison between different mapping and deployment options for *Visformer* [10] on Cifar100 and AGX Xavier MPSoC

A. Motivational example

Figure 1 illustrates the underlying performance tradeoffs obtained from deploying an \mathcal{NN} onto a heterogeneous MPSoC. Specifically, the example compares different mapping approaches for a *Visformer* architecture [10] (from the Vision-Transformers class of \mathcal{NN}) onto an AGX Xavier MPSoC with a single GPU and two deep learning accelerators (DLAs). As shown in the left subfigure, mapping the *Visformer* entirely to either hardware computing unit, namely *GPU-Only* and *DLA-Only*, yields a sub-optimal performance: with regards to energy

[§] Denotes Equal Contribution

This work was partially supported by the NSF under award CCF-2140154.

consumption for the former, and with regards to execution latency for the latter. As an alternative, we implemented a *distributed static mapping* strategy that aims to harvest the best of both worlds – GPU’s speed and DLA’s energy efficiency. More so, we implement the mapping strategy to exploit the underlying parallelism through *partitioning the Visformer* along its width dimension (i.e., the attention layer heads), and distributing them along the CUs. Mildly, the *static mapping* strategy leads to performance improvements over its single-mapping counterpart with regards to each component’s deficient metric (42.6% speedup over *DLA-Only* and 11.1% energy gains over *GPU-only*). Accordingly, we alter our implementation to attain a *dynamic* version of this mapping, namely *Map-Conquer*, where the *Visformer* is deployed as a multi-exit neural network on the MPSoC, leading to substantial performance gains due to the nature of dynamic inference. In fact, this *dynamic* mapping strategy dominates the DLA with respect to both the latency (44.4% speedup) and energy efficiency (14.5% gain). Still, one deficit from such *distributed* mapping strategies is the additional inter-CU overheads experienced across the MPSoC. In the right sub-figure, we show that adopting a dynamic strategy can also aid in alleviating such burden compared to the static mapping approach. Particularly, our approach identifies the key feature subset from each stage, and only involves those in any needed inter-CUs exchanges, denoted by *Fmap Reuse*. This scheme leads to 40% less *Fmap Reuse* compared to static mapping (which exchanges all needed features) at the expense of 0.5% accuracy drop.

B. Novel Contributions

We provide the following novel contributions in this paper

- We present *Map-and-Conquer*, an energy-efficient execution scheme for Dynamic \mathcal{NN} on MPSoCs.
- We leverage model-parallelism along the “width” dimension to partition the \mathcal{NN} to multiple inference stages that can be run dynamically and concurrently on the MPSoC.
- We derive a comprehensive system model to characterize the performance of the concurrent inference stages on heterogeneous CUs with support for DVFS features.
- We design an optimization framework to provide the best partitioning and mapping strategies for Dynamic \mathcal{NN} on the available CUs of the MPSoC.
- On the NVIDIA Jetson AGX Xavier MPSoC and various \mathcal{NN} architectures, our experiments demonstrate that *Map-and-Conquer* can achieve up to $\sim 2.1x$ more energy efficiency than the GPU-only mapping while incurring $\sim 1.7x$ less latency than DLA-only mapping, all while preserving the desired level of accuracy.

II. RELATED WORKS

A. Dynamic Neural Networks

Dynamic Neural Networks serve as attractive solutions to scale computation according to the input complexity, providing latency speedup and energy gains. Incorporating dynamicity into NN inference has been widely studied for CNN architectures through early-exiting along the architecture’s depth

[11] or width [9]. Recently, early-exiting is emerging to Vision Transformers (ViT) as they exhibit many computation redundancies [12], [13]. For instance, MIA-Former [13] dynamically adapts the number of heads in attention layers. This latter approach can also be exploited for model partitioning, as it represents the width in ViT. However, most existing works still need to catch the hardware dimension when designing a *dynamic* ViT, which is a vital factor given their complexity.

B. Computation mapping on MPSoCs

Recent MPSoCs contain diverse heterogeneous CUs that usually share system memory, making them more flexible for collaborative execution. Recent works have explored this specificity of MPSoC to optimize the execution of \mathcal{NN} . AxoNN and MEPHESTO [2]–[4] propose modeling strategies to characterize execution latency and energy consumption for computation mapping on the AGX Xavier MPSoC. Jedi [14] provides a framework built upon TensorRT to accelerate \mathcal{NN} via model parallelism to maximize throughput for batched inference. [15], [16] proposes evolutionary-based scheduling for NN layers on heterogeneous MPSoCs with DVFS by exploiting both data and model parallelism to optimize the throughput. DistrEdge [8] provides a detailed analysis of different model parallelism schemes for distributed computing over edge devices. However, none of the prior works have considered the design of dynamic NN in the computation mapping problem for collaborative execution on MPSoCs.

To the best of our knowledge, our work is the first to address the problem of dynamic \mathcal{NN} design and mapping onto heterogeneous MPSoC in a collaborative manner. Thus exploiting \mathcal{NN} dynamicity, MPSoC heterogeneity, and reconfigurability (DVFS) for an energy-efficient execution on MPSoCs. Table I highlights the key differences between related works and Ours.

TABLE I
COMPARISON BETWEEN RELATED-WORKS AND OURS

Related Work	Early Exiting	Model Parallelism	Collaborative execution	DVFS	Training free
AxoNN [4]			x		x
Jedi [14]		x	x		x
DistrEdge [8]	x		x		x
Kang et al. [15]	x		x	x	x
S2DNAS [9]	x	x		x	
HADAS [17]	x			x	
Edgebert [18]	x			x	x
Ours	x	x	x	x	x

III. SYSTEM MODEL

In this section, we model the components needed to conduct a static-to-dynamic transformation of \mathcal{NN} , and characterize its performance overheads when executing on the heterogeneous MPSoC accordingly.

A. Dynamic Transformation of NNs on MPSoC

Consider an unaltered basic neural network, \mathcal{NN} , constituting a sequence of n computational layers as follows:

$$\mathcal{NN} = \mathcal{L}^n \circ \mathcal{L}^{n-1} \circ \dots \circ \mathcal{L}^1 \quad (1)$$

in which each computing layer, \mathcal{L}^j , consists of weight parameter matrices whose count represents the ‘width’ of the layer.

Without losing generality, we refer to these weight matrices here as ‘channels’, such as those in a convolutional \mathcal{NN} . Therefore, we can define the j^{th} layer as:

$$\mathcal{L}^j = \{C_1^j, C_2^j, \dots, C_W^j\} \quad (2)$$

in which C_i^j represents the i^{th} channel in the j^{th} layer. Now, consider an SoC that comprises M computing units $\mathbb{CU} = \{\mathcal{CU}_1, \mathcal{CU}_2, \dots, \mathcal{CU}_M\}$, the goal is to devise a strategy to partition every L^j into M subsets according to its width dimension (i.e., the channels), and thus, \mathcal{L}^j is redefined as:

$$\mathcal{L}^j = \{l_1^j, l_2^j, \dots, l_M^j\} \quad (3)$$

which enables every contiguous subset of channels, l_m^j , to be mapped onto one of the computing units, $\mathcal{CU}_m \in \mathbb{CU}$. In this sense, we define two operations to characterize this mapping problem: (i) **Partitioning**; to divide layers and generate the subsets l_m^j , and (ii) **Concatenation**; to reuse the generated intermediate features, F_i^j , in set of the immediate next layer in all subsequent stages, $\{l_{m+1:M}^{j+1}\}$. In accordance, we define two parameter matrices to characterize these operations:

$$\mathbb{P} = \begin{bmatrix} p_1^1 & \dots & p_1^n \\ \vdots & \ddots & \vdots \\ p_M^1 & \dots & p_M^n \end{bmatrix}, \quad \mathbb{I} = \begin{bmatrix} I_1^1 & \dots & I_1^n \\ \vdots & \ddots & \vdots \\ I_M^1 & \dots & I_M^n \end{bmatrix} \quad (4)$$

where \mathbb{P} is the *partitioning matrix* in which every p_i^j represents the fraction of channels in a layer L^j (equation 2) are to be assigned to l_i^j . \mathbb{I} is an *indicator matrix* in which $I_i^j \in \{0, 1\}$ indicates whether the intermediate features, F_i^j , are to be used in the $j+1$ layers in the following stages. Figure 2 provides an illustration for how these matrices govern the partitioning and concatenation operations of a neural network. As shown, each \mathcal{CU}_m on the SoC can host a unique sequence of channel subsets, which we denote as a stage, S_i , given as:

$$S_i = l_i^n \circ l_i^{n-1} \circ \dots \circ l_i^1 \quad (5)$$

and ultimately, we obtain the following set of stages:

$$\mathbb{S} = \{S_1, S_2, \dots, S_M\} \quad (6)$$

if we augment each stage S_i with an exit at its tail (e.g., a classifier layer), each stage can now act as a *separate inference sub-model*, to be invoked based on some established runtime criteria during deployment (e.g., input processing difficulty).

Lastly, we define an additional vector, \mathbb{M} , to parameterize the mapping of stages onto the SoC: $S_i \rightarrow \mathcal{CU}_m \forall S_i \in \mathbb{S}, \mathcal{CU}_m \in \mathbb{CU}$. \mathbb{M} can be given as:

$$\mathbb{M} = [\pi_1, \dots, \pi_M] \text{ s.t. } \pi_k \neq \pi_{k'} \forall 1 \leq k \leq k' \leq M \quad (7)$$

in which every entry π_k is one $\mathcal{CU}_m \in \mathbb{CU}$ to whom S_k is mapped. The condition is for enforcing that no two stages are mapped onto the same \mathcal{CU}_m .

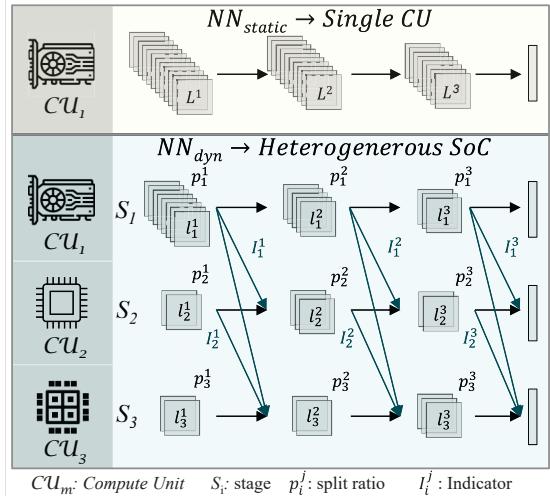


Fig. 2. Transformation of NN_{static} into NN_{dyn} based on s and I , and mapping NN_{dyn} onto a MPSoC with multiple CU's

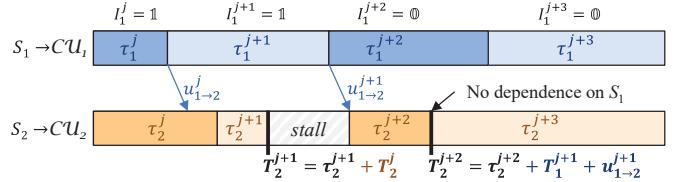


Fig. 3. Concurrent execution of S_2 and S_1 considering timing dependencies

B. Distributed Performance Modelling for Dynamic Inference

Here, we model the dynamic inference execution overheads given the partitioned deployment of a model on a heterogeneous MPSoC with regards to *latency* and *energy consumption*. Given the scope of this work, we assume *ideal input mapping* in which the number of stages needed to process an input sample i is known apriori. In practice, input mappings can be determined using runtime controllers as those stated in [17].

Execution Latency. Let τ_i^j denotes the execution latency overhead of sublayer l_i^j in S_i . We first aim to derive an expression for the latency overhead of every stage, denoted by T_{S_i} . At this point, we highlight that stages are indexed by the order of their execution. For example, S_2 is only instantiated if S_1 is deemed insufficient to terminate the processing. Thus, there exists inter-stage dependencies of S_i on its predecessors $S_{1:i-1}$ (as indicated by I_i) whose overheads need to be accounted for, especially when stages are mapped onto different hardware units. To avoid the demerits of a sequential execution model, we leverage the underlying separation of the compute units and propose a *concurrent* model of execution that considers these dependencies. Specifically, any sublayer l_i^j in an ‘instantiated’ S_i can immediately proceed to execute its inputs once all of its required input features, $\{(F_{1:i-1}^{j-1} \cdot I_{1:i-1}^{j-1}) \cup F_i^{j-1}\}$, are readily available within its local vicinity. From here, we can give the *cumulative* latency overhead at l_i^j by:

$$T_i^j = \tau_i^j + \max\{T_i^{j-1}, T_k^{j-1} + u_{k \rightarrow i}^{j-1} \mid I_k = 1 \forall 1 \leq k < i\} \quad (8)$$

where the second term captures the maximum cumulative latency experienced in a previous layer from all stages preceding

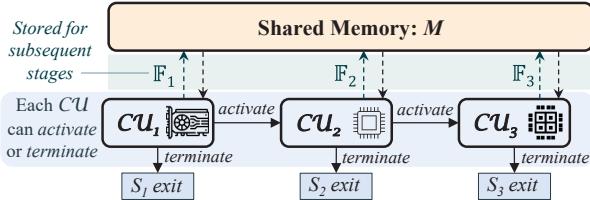


Fig. 4. Illustration of data movement and feature storage on the MPSoC

S_i . Thus, T_i^j captures the cumulative latency estimate in stage i at j while accounting for inter-stage dependencies, while $u_{k \rightarrow i}^{j-1}$ is the data transmission overhead of the features F_k^{j-1} to the local buffer of the computing resource assigned to S_i (See Figure 3 for an illustrative example). Given n layers in S_i , the execution latency of S_i can be estimated:

$$T_{S_i} = T_i^n \quad (9)$$

Energy Consumption. For every $\mathcal{CU}_m \in \mathbb{CU}$, we first characterize its power consumption as follows:

$$P_m = P_m^s + P_m^d(\vartheta_m) \approx \alpha + \beta \cdot \vartheta_m \quad (10)$$

P_m^s and P_m^d are the static and dynamic components, respectively. The latter is parameterized by the scaling factor ϑ_m based on the supported DVFS features on \mathcal{CU}_m , where α_m and β_m are constants. From here, the energy required to complete processing at sublayer l_i^j during inference is given by:

$$e_i^j = \tau_i^j \cdot P_m \quad (11)$$

and as such the total energy consumed by S_i is:

$$E_{S_i} = \sum_{j=1}^n e_i^j \quad (12)$$

Overall Characterization. Under the concurrent model of execution, the overall performance characterization is given by the following two equations:

$$T_{\mathbb{P}, \mathbb{I}, \mathbb{M}, \vartheta} = \max\{T_{S_i} \mid S_i \in \mathbb{S}\} \quad (13)$$

$$E_{\mathbb{P}, \mathbb{I}, \mathbb{M}, \vartheta} = \sum_{i=1}^{M'} E_{S_i} \text{ s.t. } 1 \leq i \leq M' \leq M \quad (14)$$

where for a dynamic inference on a MPSoC, described through the parameters choices of $(\mathbb{P}, \mathbb{I}, \mathbb{M}, \vartheta)$, its execution latency is the *maximum* from all its stages due to concurrency, whereas its energy consumption is the *aggregation* of energy consumed by the M' ‘instantiated’ stages to process an input sample.

IV. PROBLEM FORMULATION

Let $\Pi = (\mathbb{P}, \mathbb{I}, \mathbb{M}, \vartheta)$ combine all parameters that characterize a neural network’s mapping onto an MPSoC. Our main optimization goal is to find the ideal parameters that can enhance a performance objective, \mathcal{P} , given a set of constraints:

$$\Pi^* = \min_{\Pi} \mathcal{P}(\Pi) \quad (15)$$

$$\text{s.t. } T_{\Pi^*} < T^{TRG}, \quad E_{\Pi^*} < E^{TRG}, \quad \text{size}_{\Pi^*}(\mathbb{F}, \mathbb{I}) < M$$

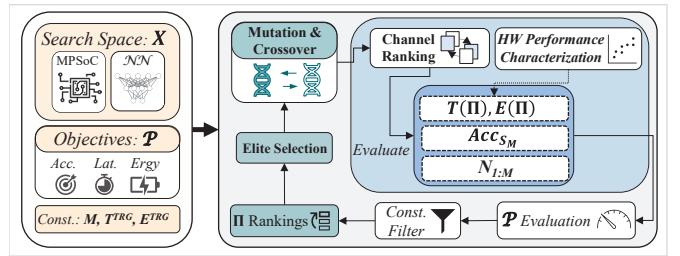


Fig. 5. Overview of our proposed optimization framework

where T^{TRG} and E^{TRG} are the respective target latency and energy constraints as set by the practitioner. The constraint $\text{size}_{\Pi}(\mathbb{F}, \mathbb{I}) < M$ is to bound the size of the intermediate features that need to be made readily available for the duration of the inference (denoted as \mathbb{F}), for they are limited by the MPSoC’s shared memory size, M (see Figure 4). \mathcal{P} is kept generic and can be tuned to the designers’ objectives.

V. PROPOSED FRAMEWORK

In this section, we propose an optimization framework to solve the mapping problem. Figure 5 gives an overview of our framework, whose key components are detailed below.

A. Search Space

Here we describe how to generate a search space, X of mapping strategy parameters, namely the space of $(\mathbb{P}, \mathbb{I}, \mathbb{M}, \vartheta)$. Firstly, given a pretrained \mathcal{NN} and an MPSoC with M CUs, we can generate X based on the \mathcal{NN} ’s layer specifications and the MPSoC’s underlying hardware composition. For the former, the attainable depth and width parameters of every layer $L^j \in \mathcal{NN}$ define the (\mathbb{P}, \mathbb{I}) parameter matrices. For the latter, $M = |\mathbb{CU}|$ specifies its mapping space and the total number of inference stages. Lastly, ϑ is specified through the hardware reconfiguration parameters (DVFS). For instance, the mapping search space complexity of one layer from the *Visformer* [10] is $\mathcal{O}(1.5 \times 10^5) = \mathcal{O}(8^3 \times 3! \times 50)$, considering 8 channel partitioning ratios, $M = 3$, and $|\vartheta| = 50$.

B. Performance Objectives

Next, a performance objective needs to be designated as \mathcal{P} for the main optimization function in equation (15), to be specifically used for the candidate mapping evaluation. For our case, we used the following expression for \mathcal{P} :

$$\mathcal{P} = \left(\frac{Acc_{base}}{Acc_{SM}} \right) \times \left(\sum_{i=1}^M T_{S_i} \cdot N_i \right) \times \left(\sum_{i=1}^M E_{S_{1:i}} \cdot N_i \right) \quad (16)$$

In which Acc_{base} is the baseline accuracy of the pretrained \mathcal{NN} model; Acc_{SM} is the accuracy of the last stage of the dynamic version of \mathcal{NN} as its base accuracy. The aforementioned terms are included to ensure that no accuracy drops ensue when a model’s structure changes through the \mathbb{I} matrix. N_i represents the number of input samples -from the validation dataset- correctly classified at S_i , given that every prior stage misclassifies them. T_{S_i} is the latency experienced by the MPSoC at stage S_i based on equation (9); $E_{S_{1:i}}$ is the energy consumed by the system as the result of executing i stages of the model – each E_i is evaluated as in equation (12).

TABLE II
PERFORMANCES BREAKDOWN OF THE PARETO OPTIMAL MODELS
OBTAINED BY MAP-AND-CONQUER AND THE BASELINES

Opt. Strategy	NN Implant.	TOP-1 Acc (%)	Avg. Enrg. (mJ)	Avg. Lat. (ms)	Fmap. reuse. (%)
Visformer (ViT-based Architecture)					
None	GPU	88.09	197.35	15.01	-
	DLA		69.22	53.71	-
No Fmap	Ours-L	86.12	108.44	25.58	68.75
Constr.	Ours-E	87.58	59.21	30.40	61.25
75% Fmap	Ours-L	84.64	102.67	24.65	65.00
Constr.	Ours-E	87.67	65.12	29.46	75.00
50% Fmap	Ours-L	82.69	116.00	24.51	50.00
Constr.	Ours-E	84.16	82.44	32.70	50.00
VGG19 (CNN-based Architecture)					
None	GPU	80.55	630.11	25.23	-
	DLA		164.89	114.41	-
No Fmap	Ours-L	84.81	251.63	25.67	52.94
Constr.	Ours-E	84.63	153.97	34.02	70.58
75% Fmap	Ours-L	84.76	247.34	26.07	64.70
Constr.	Ours-E	82.64	136.31	37.22	47.05
50% Fmap	Ours-L	84.62	250.80	25.83	50.00
Constr.	Ours-E	82.53	136.41	37.24	50.00

C. Search Algorithm

We develop an evolutionary-based algorithm to effectively explore the search space. Following the workflow in Figure 5, every new search iteration entails a new population, say $X'_i \subset X$. Then for every configuration $\Pi \in X'$, its corresponding dynamic \mathcal{NN} and hardware settings are evaluated using a predefined objective function, \mathcal{P} . Based on results, configurations that do not meet the search constraints (e.g., memory usage) are omitted, whereas the remaining ones are ranked according to \mathcal{P} , and a subset of elite configurations is taken for a mutation and crossover stage to obtain the new population X'_{i+1} . Once the search budget expires, a Pareto set is calculated from all the generated populations from which the ideal dynamic mapping strategy is extracted.

D. Channel Partitioning and Reordering

Before a candidate configuration $\Pi \in X'$ is evaluated on the objective function \mathcal{P} , the \mathcal{NN} should be partitioned according to the ratios in \mathbb{P} . Yet to maximize performance when partitioning, the width channels in each model layer are arranged according to their *degree of importance*. The logic being that given the sampled partitioning matrix \mathbb{P} for a configuration Π , it would be beneficial to assign the most important channels in the layer to the earlier inference stages for dynamic inference. This would enable numerous samples to terminate processing prematurely if deemed feasible, which will consequently aid in enhancing the *dynamic inference* performance of the \mathcal{NN} with regards to experienced latency and energy on the MPSoC. This reordering method is feasible as all channels within the same layer share the same dimensions. Channel ranking is widely used for network pruning, and we follow the approach in [19] to estimate each channel's importance.

E. Performance Evaluation

Once a model is transformed to its dynamic version through \mathbb{P} and \mathbb{I} , the hardware measurements needed for the performance evaluation of each \mathcal{NN} in equation (16) need to be estimated for each input sample. One way to achieve this is through surrogate models, which are able to predict τ_i^j and

e_i^j of each layer j mapped onto stage i (also CU i) based on input configurations while abiding by any inter-stage execution dependencies, and taking into account the computation cost and feature map communication overheads. Hence, a predictor (XGBoost [20] in our case) is first trained on a benchmarked dataset of diverse layer specifications, deployment hardware and DVFS settings. Afterwards, the predictor is deployed to characterize the performance of each model sampled within the population, providing estimates for its base latency, τ_i^j , and energy consumption, e_i^j . In our case, we use the TensorRT library to first evaluate performance overheads on a layer-wise granularity, construct the dataset, and then deploy the predictor to provide hardware evaluations to involved models.

VI. EXPERIMENTS

A. Experimental Setup

Our experiments are conducted on the MPSoC provided by NVIDIA: *Jetson AGX Xavier*. This platform embeds CPU, GPU, and DLA cores on the same chip, sharing the same system memory. To run the \mathcal{NN} workloads on the DLA, we use TensorRT and ONNX to build inference engines from the PyTorch model. As \mathcal{NN} s, we use *Visformer* [10] as ViT-based architecture and *VGG19* [21] as CNN-based architecture to validate our approach for both cases. The dataset used for accuracy assessment is CIFAR100. Regarding the optimization framework, we run the optimization algorithm for 200 generations, each with a population size of 60, resulting in 12K overall evaluations. Furthermore, the evaluation step is performed on a cluster of 12 GPUs taking up to ~ 10 GPU hours to run the entire optimization process.

B. Search Process Analysis

In this section, we analyze the results of the search process conducted by our framework under two main cases: 1) When no constraint is set to limit the feature map reuse between inference stages, 2) When only less than 75%, 50% of feature maps can be reused, respectively. In Figure 6, we show the optimization results for each case. Firstly, we observe that most of the explored configurations achieve a good tradeoff between DLA energy efficiency and GPU latency speedup. Furthermore, under the same baseline accuracy of *Visformer*, we notice an energy gain up to $\sim 2.1x$ compared to the GPU-only mapping with latency $\leq 30ms$. Similarly, a latency speedup up to $\sim 1.7x$ compared to the DLA-only mapping, with comparable energy efficiency. Secondly, we can notice an accuracy drop of $\sim 6\%$ when setting up hard constraints on the feature map reuse (See the 50% case). Hence, defining the optimal inter-stages concatenation strategy that determines the feature maps reuse ratio is crucial to maintain the desired level of accuracy while minimizing inter-CUs dependencies.

C. Pareto Optimal Models Analysis

In this section, we delve further into the performance breakdown of the Pareto optimal models obtained from the three search strategies. We select the most energy-oriented models and compare them with the baseline *Visformer* mapped entirely



Fig. 6. Results of three different search strategies: **Left**) No constraint is set on the *Fmap Reuse*. **Middle**) Under a constraint of reusing only less than 75% of feature maps. **Right**) Under a constraint of reusing only less than 50% of feature maps. All the results are reported for *Visformer* on the AGX Xavier MPSoC. In the three plots, we highlight the configurations that exhibit the highest latency-energy tradeoff while preserving less than 0.5% drop in accuracy

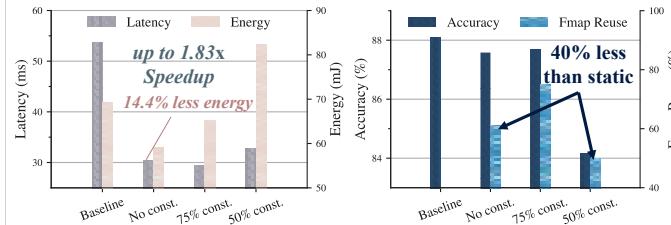


Fig. 7. Comparison between the most energy-oriented models selected from the obtained Pareto sets by each search strategy and the baseline on DLA

on the DLA. Figure 7 and Table II detail the obtained results. By exploring neural network dynamicity and concurrency on heterogeneous CUs, our models achieve better latency-energy tradeoff, providing latency speedup of $\sim 1.83x$ and up to $\sim 14.4\%$ of energy gain as shown in the left sub-figure. In addition, the correlation between feature maps reuse and accuracy is highlighted in the right sub-figure. Reducing the feature maps reuse across stages decreases the inter-CUs data transmission at the cost of accuracy drops. However, some models can achieve comparable accuracy to the baseline while only reusing **60%** of the necessary feature maps (See *No constr.* and *75% constr.* cases)

D. Generalization to other architecture

To further demonstrate our approach’s applicability, we evaluate our optimization framework on a typical CNN architecture, *VGG19*. Table II details the obtained results. Regarding the baseline performances, *VGG19* depicts a high energy consumption on GPU and slow execution latency on DLA. This is explained by its many weights and large feature maps, which entail high memory footprints for both CUs. Moreover, the large number of weights may exhibit a high degree of redundancy. Our approach has exploited these two properties of *VGG19* well, resulting in up to $\sim 4.62x$ energy gain and $\sim 4.44x$ latency speedup. Furthermore, according to our analysis, more than 80% of samples were correctly classified in earlier stages with fewer channels, which results in considerable latency and energy gains.

VII. CONCLUSION

We have presented *Map-and-Conquer*, an energy-efficient execution scheme for dynamic neural networks on heterogeneous MPSoCs by jointly optimizing the model partitioning

along the width, hardware mapping, and DVFS. *Map-and-Conquer*’s awareness of the \mathcal{NN} dynamicity and hardware computing units capabilities allows it to realize better performance trade-off over conventional single-platform mapping schemes. On CIFAR-100 and the AGX Xavier MPSoC, *Map-and-Conquer* achieved up to 2.1x energy gains over GPU-only mapping and up to 1.7x speedup over DLA-only mapping.

REFERENCES

- [1] Y. Song *et al.*, “Sara: Self-aware resource allocation for heterogeneous mpsoCs,” in *DAC*, 2018.
- [2] M. A. H. Monil *et al.*, “Mephisto: Modeling energy-performance in heterogeneous socs and their trade-offs,” in *PACT*, 2020, pp. 413–425.
- [3] Y. Xu *et al.*, “Pccs: Processor-centric contention-aware slowdown model for heterogeneous system-on-chips,” in *MICRO*, 2021.
- [4] I. Dagli *et al.*, “AxoNN: energy-aware execution of neural network inference on multi-accelerator heterogeneous SoCs,” in *Proceedings of the 59th ACM/IEEE Design Automation Conference (DAC)*, 2022.
- [5] R. Hadidi *et al.*, “Toward collaborative inferencing of deep neural networks on internet-of-things devices,” *IEEE Internet of Things Journal*, vol. 7, no. 6, pp. 4950–4960, 2020.
- [6] J. Mao *et al.*, “Modnn: Local distributed mobile computing system for deep neural network,” in *Design, Automation & Test in Europe Conference & Exhibition (DATE)*, 2017.
- [7] E. Shamsa *et al.*, “Goal-driven autonomy for efficient on-chip resource management: Transforming objectives to goals,” in *Design, Automation & Test in Europe Conference & Exhibition (DATE)*, 2019.
- [8] X. Hou *et al.*, “Distredge: Speeding up convolutional neural network inference on distributed edge devices,” in *IPDPS*. IEEE, 2022.
- [9] Z. Yuan *et al.*, “S2dnas: Transforming static cnn model for dynamic inference via neural architecture search,” in *ECCV*. Springer, 2020.
- [10] Z. Chen *et al.*, “Visformer: The vision-friendly transformer,” in *Proc. of the IEEE/CVF international conference on computer vision*, 2021.
- [11] S. Teerapittayanan *et al.*, “Branchynet: Fast inference via early exiting from deep neural networks,” in *ICPR*, 2016.
- [12] Y. Rao *et al.*, “Dynamicvicit: Efficient vision transformers with dynamic token sparsification,” *NeurIPS*, vol. 34, 2021.
- [13] Z. Yu *et al.*, “Mia-former: Efficient and robust vision transformers via multi-grained input-adaptation,” in *AAAI*, vol. 36, no. 8, 2022.
- [14] E. Jeong *et al.*, “Tensorrt-based framework and optimization methodology for deep learning inference on jetson boards,” *ACM Transactions on Embedded Computing Systems (TECS)*, 2022.
- [15] D. Kang *et al.*, “Scheduling of deep learning applications onto heterogeneous processors in an embedded device,” *IEEE Access*, vol. 8, 2020.
- [16] S.-C. Kao *et al.*, “Gamma: Automating the hw mapping of dnn models on accelerators via genetic algorithm,” in *ICCAD*. IEEE, 2020.
- [17] H. Bouzidi *et al.*, “HADAS: Hardware-Aware Dynamic Neural Architecture Search for Edge Performance Scaling,” in *Design, Automation & Test in Europe Conference & Exhibition (DATE)*, 2023.
- [18] T. Tambe and al., “Edgebert: Sentence-level energy optimizations for latency-aware multi-task nlp inference,” in *MICRO*, 2021.
- [19] P. Molchanov *et al.*, “Importance estimation for neural network pruning,” in *CVPR*, 2019.
- [20] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in *KDD ’16*, 2016.
- [21] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in *ICLR*, Y. Bengio *et al.*, Eds., 2015.