
Map-and-Conquer: Energy-Efficient Mapping of
Dynamic Neural Nets onto Heterogeneous MPSoCs

Halima Bouzidi∗§, Mohanad Odema†§, Hamza Ouarnoughi∗, Smail Niar∗, Mohammad Abdullah Al Faruque†

∗LAMIH/UMR CNRS, Université Polytechnique Hauts-de-France, Valenciennes, France
†Department of Electrical Engineering and Computer Science, University of California, Irvine, USA

∗{firstname.lastname}@uphf.fr †{modema, alfaruqu}@uci.edu

Abstract—Heterogeneous MPSoCs comprise diverse processing
units of varying compute capabilities. To date, the mapping
strategies of neural networks (NNs) onto such systems are yet
to exploit the full potential of processing parallelism, made
possible through both the intrinsic NNs’ structure and underlying
hardware composition. In this paper, we propose a novel frame-
work to effectively map NNs onto heterogeneous MPSoCs in a
manner that enables them to leverage the underlying processing
concurrency. Specifically, our approach identifies an optimal
partitioning scheme of the NN along its ‘width’ dimension,
which facilitates deployment of concurrent NN blocks onto
different hardware computing units. Additionally, our approach
contributes a novel scheme to deploy partitioned NNs onto the
MPSoC as dynamic multi-exit networks for additional perfor-
mance gains. Our experiments on a standard MPSoC platform
have yielded dynamic mapping configurations that are 2.1x more
energy-efficient than the GPU-only mapping while incurring 1.7x
less latency than DLA-only mapping.

Index Terms—dynamic neural networks, heterogeneous MP-
SoCs, computation mapping, hardware scaling, DVFS

I. INTRODUCTION

The hardware era has witnessed the emergence of vari-

ous computing devices, from powerful GPUs to tiny Micro-

controllers. To meet the requirements of compute-intensive

applications, such as Deep Learning workloads, MPSoCs are

designed to incorporate heterogeneous computing units (CU)

within the same die, typically sharing the same system mem-

ory (DRAM). This hardware architecture paradigm enables

the collaborative usage of multiple CUs to accelerate different

operations of the same application, hence providing energy

savings and performance benefits. However, the causality be-

tween the hardware heterogeneity of MPSoC and the obtained

performance for similar and different operations remains an

open research question. Indeed, some CUs (e.g., GPUs) can

offer high execution speedup at the cost of being energy-

hungry, while others, such as NPUs, are power-friendly at

the cost of being slow. Conventional deployment schemes

lack a holistic overview of how heterogeneous CUs may

behave regarding various computing workloads. In addition,

the systematic approach of considering a single CU to deploy

an entire application is suboptimal since it overlooks opportu-

nities for further performance gains through maximizing the

utilization of the MPSoC’s hardware resources.

Latest research has shed light on the computation mapping

problem for MPSoC by providing comprehensive modeling

§ Denotes Equal Contribution
This work was partially supported by the NSF under award CCF-2140154.

methodologies in [1]–[4] to characterize computing workloads

performances. The resulting models are typically used to

map computations onto CUs in a sequential pipeline fashion.

However, for workloads exhibiting a high degree of paral-

lelism, such as Neural Networks (NN), there’s still room

for improvement by refashioning the execution pipeline into

parallel stages running concurrently on different CUs, espe-

cially considering the inherent capacity for concurrency within

NN layers such as convolutional and multi-head self-attention

layers [5]. Prior works [5]–[8] have considered the computa-

tion parallelism on model, data, and task levels. Nevertheless,

most works focus on model training rather than inference.

Although substantial studies exist for distributed edge devices,

few studies have contemplated the case of MPSoCs.

On the other hand, recent works have started to explore the

prospect of partitioning the NN model itself into separate

computing stages that can be invoked in a dynamic manner,

where simpler inputs can be classified at earlier model stages

(i.e., early-exiting), whereas the latter stages are instantiated

for more complex inputs. For instance, S2DNAS [9] demon-

strated the benefits from partitioning a model along its width

dimension (i.e., layer’s channels), and deploying the model as

a multi-exit neural network with support for parallelism. Still,

studying mapping such parallel neural network components

onto a heterogeneous MPSoC for dynamic inference is lacking.

197 54

31

5915 69

30

1755
Energy

Savings No Fmap

Reuse 40%

less

Fig. 1. Performance comparison between different mapping and deployment
options for Visformer [10] on Cifar100 and AGX Xavier MPSoC

A. Motivational example

Figure 1 illustrates the underlying performance tradeoffs

obtained from deploying an NN onto a heterogeneous MP-

SoC. Specifically, the example compares different mapping

approaches for a Visformer architecture [10] (from the Vision-

Transformers class of NN) onto an AGX Xavier MPSoC with

a single GPU and two deep learning accelerators (DLAs). As

shown in the left subfigure, mapping the Visformer entirely to

either hardware computing unit, namely GPU-Only and DLA-

Only, yields a sub-optimal performance: with regards to energy

2
0
2
3
 6

0
th

 A
C

M
/I

E
E

E
 D

es
ig

n
 A

u
to

m
at

io
n
 C

o
n
fe

re
n
ce

 (
D

A
C

)
| 9

7
9
-8

-3
5
0
3
-2

3
4
8
-1

/2
3
/$

3
1
.0

0
 ©

2
0
2
3
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/D

A
C

5
6
9
2
9
.2

0
2
3
.1

0
2
4
7
7
2
2

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 19,2023 at 04:29:05 UTC from IEEE Xplore. Restrictions apply.

consumption for the former, and with regards to execution

latency for the latter. As an alternative, we implemented

a distributed static mapping strategy that aims to harvest

the best of both worlds – GPU’s speed and DLA’s energy

efficiency. More so, we implement the mapping strategy to

exploit the underlying parallelism through partitioning the

Visformer along its width dimension (i.e., the attention layer

heads), and distributing them along the CUs. Mildly, the static

mapping strategy leads to performance improvements over its

single-mapping counterpart with regards to each component’s

deficient metric (42.6% speedup over DLA-Only and 11.1%

energy gains over GPU-only). Accordingly, we alter our

implementation to attain a dynamic version of this mapping,

namely Map-Conquer, where the Visformer is deployed as a

multi-exit neural network on the MPSoC, leading to substantial

performance gains due to the nature of dynamic inference.

In fact, this dynamic mapping strategy dominates the DLA

with respect to both the latency (44.4% speedup) and energy

efficiency (14.5% gain). Still, one deficit from such distributed

mapping strategies is the additional inter-CU overheads experi-

enced across the MPSoC. In the right sub-figure, we show that

adopting a dynamic strategy can also aid in alleviating such

burden compared to the static mapping approach. Particularly,

our approach identifies the key feature subset from each stage,

and only involves those in any needed inter-CUs exchanges,

denoted by Fmap Reuse. This scheme leads to 40% less

Fmap Reuse compared to static mapping (which exchanges

all needed features) at the expense of 0.5% accuracy drop.

B. Novel Contributions

We provide the following novel contributions in this paper

• We present Map-and-Conquer, an energy-efficient execu-

tion scheme for Dynamic NN on MPSoCs.

• We leverage model-parallelism along the “width” dimen-

sion to partition the NN to multiple inference stages that

can be run dynamically and concurrently on the MPSoC.

• We derive a comprehensive system model to characterize

the performance of the concurrent inference stages on

heterogeneous CUs with support for DVFS features.

• We design an optimization framework to provide the best

partitioning and mapping strategies for Dynamic NN on

the available CUs of the MPSoC.

• On the NVIDIA Jetson AGX Xavier MPSoC and vari-

ous NN architectures, our experiments demonstrate that

Map-and-Conquer can achieve up to ∼ 2.1x more energy-

efficiency than the GPU-only mapping while incurring

∼ 1.7x less latency than DLA-only mapping, all while

preserving the desired level of accuracy.

II. RELATED WORKS

A. Dynamic Neural Networks

Dynamic Neural Networks serve as attractive solutions to

scale computation according to the input complexity, providing

latency speedup and energy gains. Incorporating dynamicity

into NN inference has been widely studied for CNN archi-

tectures through early-exiting along the architecture’s depth

[11] or width [9]. Recently, early-exiting is emerging to Vision

Transformers (ViT) as they exhibit many computation redun-

dancies [12], [13]. For instance, MIA-Former [13] dynamically

adapts the number of heads in attention layers. This latter

approach can also be exploited for model partitioning, as it

represents the width in ViT. However, most existing works

still need to catch the hardware dimension when designing a

dynamic ViT, which is a vital factor given their complexity.

B. Computation mapping on MPSoCs

Recent MPSoCs contain diverse heterogeneous CUs that

usually share system memory, making them more flexible

for collaborative execution. Recent works have explored this

specificity of MPSoC to optimize the execution of NN .

AxoNN and MEPHESTO [2]–[4] propose modeling strategies

to characterize execution latency and energy consumption for

computation mapping on the AGX Xavier MPSoC. Jedi [14]

provides a framework built upon TensorRT to accelerate NN
via model parallelism to maximize throughput for batched

inference. [15], [16] proposes evolutionary-based scheduling

for NN layers on heterogeneous MPSoCs with DVFS by

exploiting both data and model parallelism to optimize the

throughput. DistrEdge [8] provides a detailed analysis of

different model parallelism schemes for distributed computing

over edge devices. However, none of the prior works have

considered the design of dynamic NN in the computation

mapping problem for collaborative execution on MPSoCs.

To the best of our knowledge, our work is the first to address

the problem of dynamic NN design and mapping onto het-

erogeneous MPSoC in a collaborative manner. Thus exploiting

NN dynamicity, MPSoC heterogeneity, and reconfigurability

(DVFS) for an energy-efficient execution on MPSocS. Table I

highlights the key differences between related works and Ours.

TABLE I
COMPARISON BETWEEN RELATED-WORKS AND OURS

Related Work
Early

Exiting
Model

Parallelism
Collaborative

execution
DVFS

Training
free

AxoNN [4] x x
Jedi [14] x x x

DistrEdge [8] x x x
Kang et al. [15] x x x x

S2DNAS [9] x x x
HADAS [17] x x
Edgebert [18] x x x

Ours x x x x x

III. SYSTEM MODEL

In this section, we model the components needed to conduct

a static-to-dynamic transformation of NN , and characterize its

performance overheads when executing on the heterogeneous

MPSoC accordingly.

A. Dynamic Transformation of NNs on MPSoC

Consider an unaltered basic neural network, NN , consti-

tuting a sequence of n computational layers as follows:

NN = Ln ◦ Ln−1 ◦ ... ◦ L1 (1)

in which each computing layer, Lj , consists of weight param-

eter matrices whose count represents the ‘width’ of the layer.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 19,2023 at 04:29:05 UTC from IEEE Xplore. Restrictions apply.

Without losing generality, we refer to these weight matrices

here as ‘channels’, such as those in a convolutional NN .

Therefore, we can define the jth layer as:

Lj = {Cj
1 , C

j
2 , ..., C

j
W } (2)

in which C
j
i represents the ith channel in the jth layer.

Now, consider an SoC that comprises M computing units

= {CU1, CU2, ..., CUM}, the goal is to devise a strategy

to partition every Lj into M subsets according to its width

dimension (i.e., the channels), and thus, Lj is redefined as:

Lj = {lj1, l
j
2, ..., l

j
M} (3)

which enables every contiguous subset of channels, ljm, to be

mapped onto one of the computing units, CUm ∈ . In this

sense, we define two operations to characterize this mapping

problem: (i) Partitioning; to divide layers and generate the

subsets ljm, and (ii) Concatenation; to reuse the generated

intermediate features, F j
m, in set of the immediate next layer

in all subsequent stages, {lj+1

m+1:M}. In accordance, we define

two parameter matrices to characterize these operations:

=

⎡

⎢

⎢

⎣

p11 · · · pn1
...

. . .
...

p1M · · · pnM

⎤

⎥

⎥

⎦

, =

⎡

⎢

⎢

⎣

I11 · · · In1
...

. . .
...

I1M · · · InM

⎤

⎥

⎥

⎦

(4)

where is the partitioning matrix in which every p
j
i represents

the fraction of channels in a layer Lj (equation 2) are to be

assigned to l
j
i . is an indicator matrix in which I

j
i ∈ {0, 1}

indicates whether the intermediate features, F
j
i , are to be used

in the j + 1 layers in the following stages. Figure 2 provides

an illustration for how these matrices govern the partitioning

and concatenation operations of a neural network. As shown,

each CUm on the SoC can host a unique sequence of channel

subsets, which we denote as a stage, Si, given as:

Si = lni ◦ ln−1

i ◦ ... ◦ l1i (5)

and ultimately, we obtain the following set of stages:

S = {S1, S2, ..., SM} (6)

if we augment each stage Si with an exit at its tail (e.g., a

classifier layer), each stage can now act as a separate inference

sub-model, to be invoked based on some established runtime

criteria during deployment (e.g., input processing difficulty).

Lastly, we define an additional vector, M, to parameterize

the mapping of stages onto the SoC: Si → CUm ∀ Si ∈
S, CUm ∈ . M can by given as:

M = [π1, . . . , πM] s.t. πk �= πk′ ∀ 1 ≤ k ≤ k′ ≤ M (7)

in which every entry πk is one CUm ∈ to whom Sk is

mapped. The condition is for enforcing that no two stages are

mapped onto the same CUm.

CU1

CU1

CU2

CU3

S1

S3

S2

CUm: Compute Unit Si: stage : split ratio : Indicator

CU1C
3

CU1

CU2

CU3

S1

S3S

S2S

Fig. 2. Transformation of NNstatic into NNdyn based on s and I , and
mapping NNdyn onto a MPSoC with multiple CUs

CU1

CU2 stall

No dependence on S1

Fig. 3. Concurrent execution of S2 and S1 considering timing dependencies

B. Distributed Performance Modelling for Dynamic Inference

Here, we model the dynamic inference execution overheads

given the partitioned deployment of a model on a heteroge-

neous MPSoC with regards to latency and energy consumption.

Given the scope of this work, we assume ideal input mapping

in which the number of stages needed to process an input

sample i is known apriori. In practice, input mappings can be

determined using runtime controllers as those stated in [17].

Execution Latency. Let τ
j
i denotes the execution latency over-

head of sublayer l
j
i in Si. We first aim to derive an expression

for the latency overhead of every stage, denoted by TSi
. At

this point, we highlight that stages are indexed by the order

of their execution. For example, S2 is only instantiated if S1

is deemed insufficient to terminate the processing. Thus, there

exists inter-stage dependencies of Si on its predecessors S1:i−1

(as indicated by Ii) whose overheads need to be accounted for,

especially when stages are mapped onto different hardware

units. To avoid the demerits of a sequential execution model,

we leverage the underlying separation of the compute units and

propose a concurrent model of execution that considers these

dependencies. Specifically, any sublayer l
j
i in an ‘instantiated’

Si can immediately proceed to execute its inputs once all of its

required input features, {(F j−1

1:i−1 · I
j−1

1:i−1)∪F
j−1

i }, are readily

available within its local vicinity. From here, we can give the

cumulative latency overhead at l
j
i by:

T
j
i = τ

j
i +max{T j−1

i , T
j−1

k + u
j−1

k→i | Ik = ∀ 1 ≤ k < i}
(8)

where the second term captures the maximum cumulative la-

tency experienced in a previous layer from all stages preceding

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 19,2023 at 04:29:05 UTC from IEEE Xplore. Restrictions apply.

Shared Memory: MStored for

subsequent

stages

S1 exit

activate activate

terminate terminateterminate

Each CU

can activate

or terminate

CU2CU1 CU3

S2 exit S3 exit

Fig. 4. Illustration of data movement and feature storage on the MPSoC

Si. Thus, T
j
i captures the cumulative latency estimate in stage

i at j while accounting for inter-stage dependencies, while

u
j−1

k→i is the data transmission overhead of the features F
j−1

k

to the local buffer of the computing resource assigned to Si

(See Figure 3 for an illustrative example). Given n layers in

Si, the execution latency of Si can be estimated:

TSi
= Tn

i (9)

Energy Consumption. For every CUm ∈ , we first

characterize its power consumption as follows:

Pm = P s
m + P d

m(ϑm) ≈ α+ β · ϑm (10)

P s
m and P d

m are the static and dynamic components, respec-

tively. The latter is parameterized by the scaling factor ϑm

based on the supported DVFS features on CUm, where αm and

βm are constants. From here, the energy required to complete

processing at sublayer l
j
i during inference is given by:

e
j
i = τ

j
i · Pm (11)

and as such the total energy consumed by Si is:

ESi
=

n
∑

j=1

e
j
i (12)

Overall Characterization. Under the concurrent model of

execution, the overall performance characterization is given

by the following two equations:

T , ,M,ϑ = max{TSi
∀ Si ∈ S} (13)

E , ,M,ϑ =

M ′

∑

i=1

ESi
s.t. 1 ≤ i ≤ M ′ ≤ M (14)

where for a dynamic inference on a MPSoC, described through

the parameters choices of (, ,M, ϑ), its execution latency is

the maximum from all its stages due to concurrency, whereas

its energy consumption is the aggregation of energy consumed

by the M ′ ‘instantiated’ stages to process an input sample.

IV. PROBLEM FORMULATION

Let Π = (, ,M, ϑ) combine all parameters that char-

acterize a neural network’s mapping onto an MPSoC. Our

main optimization goal is to find the ideal parameters that can

enhance a performance objective, P , given a set of constraints:

Π∗ = min
Π

P(Π) (15)

s.t. TΠ∗ < TTRG, EΠ∗ < ETRG, Π∗(F, I) < M

Search Space:

Const.: M, TTRG, ETRG

MPSoC NN

Acc. Lat. Ergy

Objectives: P

Mutation &

Crossover

Evaluate

HW Performance

Characterization

Elite Selection

Channel

Ranking

Rankings P Evaluation
Const.

Filter

N1:M

Fig. 5. Overview of our proposed optimization framework

where TTRG and ETRG are the respective target latency and

energy constraints as set by the practitioner. The constraint

Π(F, I) < M is to bound the size of the intermediate

features that need to be made readily available for the duration

of the inference (denoted as F), for they are limited by the

MPSoC’s shared memory size, M (see Figure 4). P is kept

generic and can be tuned to the designers’ objectives.

V. PROPOSED FRAMEWORK

In this section, we propose an optimization framework to

solve the mapping problem. Figure 5 gives an overview of our

framework, whose key components are detailed below.

A. Search Space

Here we describe how to generate a search space, X of

mapping strategy parameters, namely the space of (P, I,M, ϑ).

Firstly, given a pretrained NN and an MPSoC with M CUs,

we can generate X based on the NN ’s layer specifications

and the MPSoC’s underlying hardware composition. For the

former, the attainable depth and width parameters of every

layer Lj ∈ NN define the (,) parameter matrices. For

the latter, M = | | specifies its mapping space and the

total number of inference stages. Lastly, ϑ is specified through

the hardware reconfiguration parameters (DVFS). For instance,

the mapping search space complexity of one layer from the

Visformer [10] is O(1.5×105) = O(83×3!×50), considering

8 channel partitioning ratios, M = 3, and |ϑ| = 50.

B. Performance Objectives

Next, a performance objective needs to be designated as

P for the main optimization function in equation (15), to be

specifically used for the candidate mapping evaluation. For our

case, we used the following expression for P:

P = (
Accbase

AccSM

)× (
M
∑

i=1

TSi
·Ni)× (

M
∑

i=1

ES1:i
·Ni) (16)

In which Accbase is the baseline accuracy of the pretrained

NN model; AccSM
is the accuracy of the last stage of the

dynamic version of NN as its base accuracy. The aforemen-

tioned terms are included to ensure that no accuracy drops

ensue when a model’s structure changes through the I matrix.

Ni represents the number of input samples -from the validation

dataset- correctly classified at Si, given that every prior stage

misclassifies them. TSi
is the latency experienced by the

MPSoC at stage Si based on equation (9); ES1:i
is the energy

consumed by the system as the result of executing i stages of

the model – each Ei is evaluated as in equation (12).

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 19,2023 at 04:29:05 UTC from IEEE Xplore. Restrictions apply.

TABLE II
PERFORMANCES BREAKDOWN OF THE PARETO OPTIMAL MODELS

OBTAINED BY MAP-AND-CONQUER AND THE BASELINES

Opt.

Strategy

NN

Implment.

TOP-1 Acc

(%)

Avg. Enrg.

(mJ)

Avg. Lat.

(ms)

Fmap. reuse.

(%)

Visformer (ViT-based Architecture)

None
GPU

88.09
197.35 15.01 -

DLA 69.22 53.71 -

No Fmap

Constr.

Ours-L 86.12 108.44 25.58 68.75

Ours-E 87.58 59.21 30.40 61.25

75% Fmap

Constr.

Ours-L 84.64 102.67 24.65 65.00

Ours-E 87.67 65.12 29.46 75.00

50% Fmap

Constr.

Ours-L 82.69 116.00 24.51 50.00

Ours-E 84.16 82.44 32.70 50.00

VGG19 (CNN-based Architecture)

None
GPU

80.55
630.11 25.23 -

DLA 164.89 114.41 -

No Fmap

Constr.

Ours-L 84.81 251.63 25.67 52.94

Ours-E 84.63 153.97 34.02 70.58

75% Fmap

Constr.

Ours-L 84.76 247.34 26.07 64.70

Ours-E 82.64 136.31 37.22 47.05

50% Fmap

Constr.

Ours-L 84.62 250.80 25.83 50.00

Ours-E 82.53 136.41 37.24 50.00

C. Search Algorithm

We develop an evolutionary-based algorithm to effectively

explore the search space. Following the workflow in Figure

5, every new search iteration entails a new population, say

X ′

i ⊂ X . Then for every configuration Π ∈ X ′, its corre-

sponding dynamic NN and hardware settings are evaluated

using a predefined objective function, P . Based on results,

configurations that do not meet the search constraints (e.g.,

memory usage) are omitted, whereas the remaining ones are

ranked according to P , and a subset of elite configurations is

taken for a mutation and crossover stage to obtain the new

population X ′

i+1. Once the search budget expires, a Pareto set

in calculated from all the generated populations from which

the ideal dynamic mapping strategy is extracted.

D. Channel Partitioning and Reordering

Before a candidate configuration Π ∈ X ′ is evaluated on the

objective function P , the NN should be partitioned according

to the ratios in P. Yet to maximize performance when parti-

tioning, the width channels in each model layer are arranged

according to their degree of importance. The logic being that

given the sampled partitioning matrix P for a configuration Π,

it would be beneficial to assign the most important channels in

the layer to the earlier inference stages for dynamic inference.

This would enable numerous samples to terminate processing

prematurely if deemed feasible, which will consequently aid

in enhancing the dynamic inference performance of the NN
with regards to experienced latency and energy on the MPSoC.

This reordering method is feasible as all channels within the

same layer share the same dimensions. Channel ranking is

widely used for network pruning, and we follow the approach

in [19] to estimate each channel’s importance.

E. Performance Evaluation

Once a model is transformed to its dynamic version through

P and I, the hardware measurements needed for the perfor-

mance evaluation of each NN in equation (16) need to be

estimated for each input sample. One way to achieve this is

through surrogate models, which are able to predict τ
j
i and

e
j
i of each layer j mapped onto stage i (also CU i) based on

input configurations while abiding by any inter-stage execution

dependencies, and taking into account the computation cost

and feature map communication overheads. Hence, a predictor

(XGBoost [20] in our case) is first trained on a benchmarked

dataset of diverse layer specifications, deployment hardware

and DVFS settings. Afterwards, the predictor is deployed to

characterize the performance of each model sampled within

the population, providing estimates for its base latency, τ
j
i ,

and energy consumption, e
j
i . In our case, we use the TensorRT

library to first evaluate performance overheads on a layer-wise

granularity, construct the dataset, and then deploy the predictor

to provide hardware evaluations to involved models.

VI. EXPERIMENTS

A. Experimental Setup

Our experiments are conducted on the MPSoC provided by

NVIDIA: Jetson AGX Xavier. This platform embeds CPU,

GPU, and DLA cores on the same chip, sharing the same

system memory. To run the NN workloads on the DLA, we

use TensorRT and ONNX to build inference engines from the

PyTorch model. As NN s, we use Visformer [10] as ViT-based

architecture and VGG19 [21] as CNN-based architecture to

validate our approach for both cases. The dataset used for

accuracy assessment is CIFAR100. Regarding the optimiza-

tion framework, we run the optimization algorithm for 200

generations, each with a population size of 60, resulting in

12K overall evaluations. Furthermore, the evaluation step is

performed on a cluster of 12 GPUs taking up to ∼ 10 GPU

hours to run the entire optimization process.

B. Search Process Analysis

In this section, we analyze the results of the search process

conducted by our framework under two main cases: 1) When

no constraint is set to limit the feature map reuse between

inference stages, 2) When only less than 75%, 50% of feature

maps can be reused, respectively. In Figure 6, we show the

optimization results for each case. Firstly, we observe that

most of the explored configurations achieve a good tradeoff

between DLA energy efficiency and GPU latency speedup.

Furthermore, under the same baseline accuracy of Visformer,

we notice an energy gain up to ∼ 2.1x compared to the

GPU-only mapping with latency � 30ms. Similarly, a latency

speedup up to ∼ 1.7x compared to the DLA-only mapping,

with comparable energy efficiency. Secondly, we can notice

an accuracy drop of ∼ 6% when setting up hard constraints

on the feature map reuse (See the 50% case). Hence, defining

the optimal inter-stages concatenation strategy that determines

the feature maps reuse ratio is crucial to maintain the desired

level of accuracy while minimizing inter-CUs dependencies.

C. Pareto Optimal Models Analysis

In this section, we delve further into the performance break-

down of the Pareto optimal models obtained from the three

search strategies. We select the most energy-oriented models

and compare them with the baseline Visformer mapped entirely

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 19,2023 at 04:29:05 UTC from IEEE Xplore. Restrictions apply.

No reuse

const.

75% reuse

const.

50% reuse

const.

2
.1

x

1.7x 1.6x

1
.5

x

1.6x

1
.4

x

Fig. 6. Results of three different search strategies: Left) No constraint is set on the Fmap Reuse. Middle) Under a constraint of reusing only less than 75%
of feature maps. Right) Under a constraint of reusing only less than 50% of feature maps. All the results are reported for Visformer on the AGX Xavier
MPSoC. In the three plots, we highlight the configurations that exhibit the highest latency-energy tradeoff while preserving less than 0.5% drop in accuracy

14.4% less energy

up to 1.83x

Speedup

40% less

than static

Fig. 7. Comparison between the most energy-oriented models selected from
the obtained Pareto sets by each search strategy and the baseline on DLA

on the DLA. Figure 7 and Table II detail the obtained results.

By exploring neural network dynamicity and concurrency on

heterogeneous CUs, our models achieve better latency-energy

tradeoff, providing latency speedup of ∼ 1.83x and up to

∼ 14.4% of energy gain as shown in the left sub-figure.

In addition, the correlation between feature maps reuse and

accuracy is highlighted in the right sub-figure. Reducing the

feature maps reuse across stages decreases the inter-CUs data

transmission at the cost of accuracy drops. However, some

models can achieve comparable accuracy to the baseline while

only reusing 60% of the necessary feature maps (See No

constr. and 75% constr. cases)

D. Generalization to other architecture

To further demonstrate our approach’s applicability, we

evaluate our optimization framework on a typical CNN ar-

chitecture, VGG19. Table II details the obtained results. Re-

garding the baseline performances, VGG19 depicts a high

energy consumption on GPU and slow execution latency on

DLA. This is explained by its many weights and large feature

maps, which entail high memory footprints for both CUs.

Moreover, the large number of weights may exhibit a high

degree of redundancy. Our approach has exploited these two

properties of VGG19 well, resulting in up to ∼ 4.62x energy

gain and ∼ 4.44x latency speedup. Furthermore, according

to our analysis, more than 80% of samples were correctly

classified in earlier stages with fewer channels, which results

in considerable latency and energy gains.

VII. CONCLUSION

We have presented Map-and-Conquer, an energy-efficient

execution scheme for dynamic neural networks on heteroge-

neous MPSoCs by jointly optimizing the model partitioning

along the width, hardware mapping, and DVFS. Map-and-

Conquer’s awareness of the NN dynamicity and hardware

computing units capabilities allows it to realize better per-

formance trade-off over conventional single-platform mapping

schemes. On CIFAR-100 and the AGX Xavier MPSoC, Map-

and-Conquer achieved up to 2.1x energy gains over GPU-only

mapping and up to 1.7x speedup over DLA-only mapping.

REFERENCES

[1] Y. Song et al., “Sara: Self-aware resource allocation for heterogeneous
mpsocs,” in DAC, 2018.

[2] M. A. H. Monil et al., “Mephesto: Modeling energy-performance in
heterogeneous socs and their trade-offs,” in PACT, 2020, pp. 413–425.

[3] Y. Xu et al., “Pccs: Processor-centric contention-aware slowdown model
for heterogeneous system-on-chips,” in MICRO, 2021.

[4] I. Dagli et al., “AxoNN: energy-aware execution of neural network
inference on multi-accelerator heterogeneous SoCs,” in Proceedings of
the 59th ACM/IEEE Design Automation Conference (DAC), 2022.

[5] R. Hadidi et al., “Toward collaborative inferencing of deep neural net-
works on internet-of-things devices,” IEEE Internet of Things Journal,
vol. 7, no. 6, pp. 4950–4960, 2020.

[6] J. Mao et al., “Modnn: Local distributed mobile computing system
for deep neural network,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2017.

[7] E. Shamsa et al., “Goal-driven autonomy for efficient on-chip resource
management: Transforming objectives to goals,” in Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2019.

[8] X. Hou et al., “Distredge: Speeding up convolutional neural network
inference on distributed edge devices,” in IPDPS. IEEE, 2022.

[9] Z. Yuan et al., “S2dnas: Transforming static cnn model for dynamic
inference via neural architecture search,” in ECCV. Springer, 2020.

[10] Z. Chen et al., “Visformer: The vision-friendly transformer,” in Proc. of
the IEEE/CVF international conference on computer vision, 2021.

[11] S. Teerapittayanon et al., “Branchynet: Fast inference via early exiting
from deep neural networks,” in ICPR, 2016.

[12] Y. Rao et al., “Dynamicvit: Efficient vision transformers with dynamic
token sparsification,” NeurIPS, vol. 34, 2021.

[13] Z. Yu et al., “Mia-former: Efficient and robust vision transformers via
multi-grained input-adaptation,” in AAAI, vol. 36, no. 8, 2022.

[14] E. Jeong et al., “Tensorrt-based framework and optimization methodol-
ogy for deep learning inference on jetson boards,” ACM Transactions
on Embedded Computing Systems (TECS), 2022.

[15] D. Kang et al., “Scheduling of deep learning applications onto hetero-
geneous processors in an embedded device,” IEEE Access, vol. 8, 2020.

[16] S.-C. Kao et al., “Gamma: Automating the hw mapping of dnn models
on accelerators via genetic algorithm,” in ICCAD. IEEE, 2020.

[17] H. Bouzidi et al., “HADAS: Hardware-Aware Dynamic Neural Archi-
tecture Search for Edge Performance Scaling,” in Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2023.

[18] T. Tambe and al., “Edgebert: Sentence-level energy optimizations for
latency-aware multi-task nlp inference,” in MICRO, 2021.

[19] P. Molchanov et al., “Importance estimation for neural network pruning,”
in CVPR, 2019.

[20] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
ser. KDD ’16, 2016.

[21] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in ICLR, Y. Bengio et al., Eds., 2015.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 19,2023 at 04:29:05 UTC from IEEE Xplore. Restrictions apply.

