




EnergyShield: Provably-Safe Offloading of Neural Network Controllers for Energy Efficiency ICCPS ’23, May 9ś12, 2023, San Antonio, TX, USA

Note that at 𝜉 = ±𝜋/2, the vehicle is oriented tangentially to the

obstacle; and at 𝜉 = 𝜋 or 0, the vehicle is pointing directly at or

away from the origin, respectively (see Figure 2).

We assume that the KBM has a steering constraint, i.e. 𝛿𝑓 ∈
[−𝛿 𝑓 max

, 𝛿 𝑓 max
]. However, we may use 𝛽 directly as a control vari-

able, since it is an invertible function of 𝛿𝑓 . Thus, 𝛽 is also con-

strained as 𝛽 ∈ [−𝛽max, 𝛽max]. We define the state and control vec-

tors for the KBM as: 𝜒 ≜ (𝜉, 𝑟, 𝑣) and 𝜔 ≜ (𝑎, 𝛽), with 𝜔 ∈ Ωadmis.≜

R× [−𝛽max, 𝛽max] the set of admissible controls. Thus, the dynamics

of the KBM are given by ¤𝜒 = 𝑓KBM (𝜒,𝜔) with 𝑓KBM defined by (1).

2.3 Barrier Functions and Shielding

In the sequel, we will use a controller łshieldž, which is a methodol-

ogy for instantaneously correcting the outputs produced by a con-

troller in closed loop; the objective is to make corrections such that

the original controller, however it was designed or implemented,

becomes safe ś hence the łshieldž moniker. Specifically, a controller

shield is designed around a real-valued function over the state space

of interest, called a (Zeroing-) Barrier Function (ZBF). The ZBF di-

rectly encodes a set safe states by its sign: states for which the

ZBF is nonnegative are taken to be safe. The ZBF in turn indirectly

specifies safe controls (as a function of state) in such a way that the

sign of the ZBF is invariant along trajectories of the dynamics.

Formally, consider a control system ¤𝑥 = 𝑓 (𝑥,𝑢) in closed loop

with a state-feedback controller 𝜋 : 𝑥 ↦→ 𝑢. In this scenario, a

feedback controller in closed loop converts the control system into

an autonomous one ś the autonomous vector field 𝑓 (·, 𝜋 (·)). In this

context, recall the definition of a Zeroing-Barrier Function (ZBF):

Definition 1 (Zeroing Barrier Function (ZBF) [38, Defi-

nition 2]). Let ¤𝑥 = 𝑓 (𝑥, 𝜋 (𝑥)) be the aforementioned closed-loop,

autonomous system with 𝑥 (𝑡) ∈ R𝑛 . Also, let ℎ : R
𝑛 → R, and

define C ≜ {𝑥 ∈ R𝑛 : ℎ(𝑥) ≥ 0}. If there exists a locally Lipschitz,

extended-class-K function, 𝛼 such that:

∇𝑥ℎ(𝑥) · 𝑓 (𝑥, 𝜋 (𝑥)) ≥ −𝛼 (ℎ(𝑥)) for all 𝑥 ∈ C (2)

then ℎ is said to be a zeroing barrier function (ZBF).

Moreover, the conditions for a barrier function above can be

translated into a set membership problem for the outputs of such a

feedback controller. This is explained in the following proposition.

Proposition 1. Let ¤𝑥 = 𝑓 (𝑥,𝑢) be a control system that is Lip-

schitz continuous in both of its arguments on a set D × Ωadmis.;

furthermore, let ℎ : R
𝑛 → R with Cℎ ≜ {𝑥 ∈ R𝑛 |ℎ(𝑥) ≥ 0} ⊆ D,

and let 𝛼 be a class K function. If the set

𝑅ℎ,𝛼 (𝑥) ≜ {𝑢 ∈ Ωadmis. |∇T
𝑥ℎ(𝑥) · 𝑓 (𝑥,𝑢) + 𝛼 (ℎ(𝑥)) ≥ 0} (3)

is non-empty for each 𝑥 ∈ D, and a Lipschitz continuous feedback

controller 𝜋 : 𝑥 ↦→ 𝑢 satisfies

𝜋 (𝑥) ∈ 𝑅ℎ,𝛼 (𝑥) ∀𝑥 ∈ D (4)

then Cℎ is forward invariant for the closed-loop dynamics 𝑓 (·, 𝜋 (·)).
In particular, if 𝜋 satisfies (4) and 𝑥 (𝑡) is a trajectory of ¤𝑥 =

𝑓 (𝑥, 𝜋 (𝑥)) with ℎ(𝑥 (0)) ≥ 0, then ℎ(𝑥 (𝑡)) ≥ 0 for all 𝑡 ≥ 0.

Proof. A direct application of ZBFs [38, Theorem 1]. □

Proposition 1 is the foundation for controller shielding: (3) and

(4) establish that ℎ (and associated 𝛼) forms a ZBF for the closed-

loop, autonomous dynamics 𝑓 (·, 𝜋 (·)) . Note also that there is no
need to distinguish between a closed-loop feedback controller 𝜋 ,

and a composite of 𝜋 with a function that shields (or filters) its

output based on the current state. Hence, the following definition:

Definition 2 (Controller Shield). Let ¤𝑥 = 𝑓 (𝑥,𝑢), ℎ, ℭℎ , 𝛼

and D ×Ωadmis. be as in Proposition 1. Then a controller shield is a

Lipschitz continuous function𝔖 : D × Ωadmis. → Ωadmis. such that

∀(𝑥,𝑢) ∈ D × Ωadmis. .𝔖(𝑥,𝑢) ∈ 𝑅ℎ,𝛼 (𝑥) . (5)

2.4 A Controller Shield for the KBM

In this paper, we will make use of the existing ZBF and controller

shield designed for the KBM in [14]. These function in concert to

provide controller shielding for the safety property illustrated in

Figure 2: i.e., to prevent the KBM from entering a disk of radius 𝑟

centered at the origin. In particular, [14] proposes the following

class of candidate ZBFs for the KBM:

ℎ𝑟,𝜎 (𝜒) = ℎ𝑟,𝜎 (𝜉, 𝑟, 𝑣) = 𝜎 cos(𝜉/2)+1−𝜎
𝑟 − 1

𝑟 (6)

𝛼𝑣max (𝑥) = 𝐾 · 𝑣max · 𝑥 (7)

where 𝛼𝑣max is per se a class K function, and 𝜎 ∈ (0, 1) parameter-

izes the class. Note also that this class of ZBFs ignores the state

variable, 𝑣 ; it is a result in [14] that this class is useful as a barrier

function provided the vehicle velocity remains (is controlled) within

the range (0, 𝑣max]. Note also that the equation has ℎ𝑟,𝜎 (𝜒) = 0 has

a convenient solution, which we denote by 𝑟min for future reference:

𝑟min (𝜉) = 𝑟/(𝜎 cos(𝜉/2) + 1 − 𝜎) . (8)

One main result in [14] is a mechanism for choosing the parame-

ter 𝜎 as a function of KBM parameters (e.g. ℓ𝑟 ) and safety parameter,

𝑟 so that the resulting specific function is indeed a ZBF as required.

Finally, we note that [14] also suggests an extremely lightweight

implementation of the barrier based on (6). That is, it contains a

łShield Synthesizerž that implements a controller shield by approxi-

mating a simple single-input/single-output concave function with

a ReLU NN [14, pp 6]. This construction will also prove advanta-

geous later. We denote by 𝔖KBM the resulting controller shield,

with associated barrier, KBM and safety parameters inferred from

the context.

3 FRAMEWORK

NOTE: In this section, we will denote by 𝑥 ,𝑦 and𝑢 the state, sensor and

control variables of an ADS, respectively; this abstract notation will

illustrate the EnergyShield framework free from specific modelling

details. A formal consideration of EnergyShield appears in Section 4.

3.1 EnergyShield Motivation and Context

The basic motivation for the EnergyShield framework is the fol-

lowing. Suppose that an ADS contains a large NN, NN𝑐 , that is

responsible for producing a control action,𝑢, in response to a sensor

signal,𝑦. Further assume that, by virtue of its size, computing an out-

put of NN𝑐 with on-vehicle hardware consumes significant energy.

Thus, it would be advantageous, energy-wise, to offload evaluations

of NN𝑐 to edge computing infrastructure: in other words, wire-

lessly transmit a particular sensor measurement, 𝑦, to off-vehicle

189



ICCPS ’23, May 9ś12, 2023, San Antonio, TX, USA Mohanad Odema∗ , James Ferlez∗ , Goli Vaisi, Yasser Shoukry, Mohammad Abdullah Al Faruque

edge computers, where the output 𝑢 = NN𝑐 (𝑦) is computed and

returned to the requesting ADS.

The problem with this approach is largely from a safety point of

view. In particular, the controller NN𝑐 was designed to operate in

real time and in closed-loop: i.e. the control action at discrete-time

sample 𝑛 is intended to be computed from the sensor measure-

ment at the same time sample2. In the notation of discrete-time

signals (see Section 2.1), this means: 𝑢 [𝑛] = NN𝑐 (𝑦 [𝑛]). However,
offloading a sensor measurement, 𝑦 [𝑛], to the edge entails that the

correct output of NN𝑐 (𝑦 [𝑛]) will not be back on-vehicle before

some non-zero number of samples, say Δ. Thus, NN𝑐 (𝑦 [𝑛]) will
not be available at time 𝑛 to set 𝑢 [𝑛] = NN𝑐 (𝑦 [𝑛]) as intended;
rather, the soonest possible use of the output NN𝑐 (𝑦 [𝑛]) will be at
time 𝑛 + Δ, or 𝑢 [𝑛 + Δ] = NN𝑐 (𝑦 [𝑛]). This delay creates obvious

safety issues, since the state of the vehicle ś and hence the correct

control to apply ś will have changed in the intervening Δ time sam-

ples. More importantly, even the łcorrectž control action applied

at 𝑛 + Δ may be insufficient to ensure safety: e.g., after Δ samples

have elapsed, it may be too late to apply adequate evasive steering.

3.2 EnergyShield Structure

If we assume the ADS has enough on-vehicle compute to obtain an

output NN𝑐 (𝑦 [𝑛]) in real time2, then the safety problem above is

one of making an offloading decision: ideally one that saves energy

without compromising safety. That is, should a particular evaluation

of NN𝑐 be offloaded to the edge? And how long should the ADS

wait for a response so as to ensure the situation is correctable?

The nature of the offloading decisionmeans that EnergyShieldmust

address two intertwined issues in order to ensure safety of the ADS

vehicle during offloading. On the one hand, EnergyShield must

be able to correct the control actions provided by NN𝑐 after an

offload decision (see explanation above). On the other hand, Ener-

gyShield must limit the duration it waits for each offloading request,

so that actions provided by NN𝑐 can be corrected in the first place;

i.e., among all possible offloading delays, Δ, it is not immediate

which may be corrected and which may not (e.g., Δ = ∞ likely

cannot be corrected). In this sense, knowing a particular response-

delay, Δ′, is correctable essentially characterizes how to take an

offloading decision, since it provides an expiration on safety: i.e.,

proceed to offload, and wait for a response until Δ′ samples have

elapsed ś at which point resume local evaluation of NN𝑐 .

In particular then, EnergyShield has two main components:

C1: Controller Shield. EnergyShield contains a controller shield

(see Section 2.3), which ensures that safety is maintained ir-

respective of offloading-delayed controller outputs; in other

words, it corrects unsafe behavior of NN𝑐 that results from

changes in vehicle state during offloading delays.

C2: Runtime SafetyMonitor. EnergyShield contains a runtime

safety monitor that provides the ADS an upper bound, Δmax

(in samples), on how long it should wait for a response to

one of its offloading requests to maintain safety, assuming no

updates to the control action in the meantime; i.e., provided the

offload delay is Δ ≤ Δmax, then C1, the controller shield, can

guarantee safe recovery after holding the last control signal

update through offload delay period (C1 may use on-vehicle

2In our formal consideration, we will model a one-sample computation delay.

computation if necessary). In other words, Δmax specifies

an expiration for the safety guarantee provided by C1

using on-vehicle computation.

Naturally, C1 and C2 need to be designed together, since their

objectives are mutually informed. Indeed, in the specific design of

EnergyShield, these components are designed from the same ZBF

(defined in Section 2.3): see Section 4 for formal details.

Unfortunately, neither component C1 nor C2 can operate effec-

tively on the same raw sensor measurements, 𝑦 [𝑛], used by the

controller; this is especially true given our intention to implement

them via ZBFs and controller shields. In particular, both require

some (limited) state information about the ADS in order to perform

their tasks. Thus, EnergyShield requires a perception/estimator

component to provide state information to C1 and C2. Note that

we deliberately exclude the design of such an estimator from the

EnergyShield framework in order to provide additional flexibility:

in particular, since the controller NN𝑐 may effectively contain an

estimator, we wish to allow for estimation to be offloaded, too ś

provided it is executed locally just-in-time before informing C1 and

C2 (see Section 3.3). Nevertheless such an estimator is necessary

for EnergyShield, so we include it as component:

C3: State Estimator. EnergyShield requires (minimal) state esti-

mates as input to C1 and C2. By convention, this estimator

will be a NN denoted byNN𝑝 : 𝑦 ↦→ 𝑥 .We assume thatNN𝑝

can be computed by on-vehicle hardware in one sample period.

The interface of C3with both C1 and C2makes the latter two com-

ponents (state-)context aware. That is, EnergyShield makes context-

aware offloading decisions based on the current vehicle state.More-

over, it is important to note that since the prior control action will be

held during offload Δmax, the output of C2 is control in addition to

state dependent: that is, C2 actually produces an output Δmax (𝑥,𝑢)
for (arbitrary) state 𝑥 and the control 𝑢 applied just before offload.

EnergyShield has one further important component, but one that

is motivated purely by energy savings with no effect on safety. Cru-

cially, the known expiration of safety provided byC2, i.e.Δmax (𝑥,𝑢),
affords the opportunity to use additional information in making an

offload decision. In particular, an estimate of the anticipated edge

response time, Δ̂, can be used to forego offloads that are unlikely to

complete before the expiration of the safety deadline, Δmax (𝑥,𝑢).
For this reason, EnergyShield contains an estimator of edge re-

sponse time to preemptively skip offloads that are likely to fail:

C4: Edge-Response Estimator. EnergyShield specifies that an

estimate of the current edge response time, Δ̂, is provided to

inform offloading decisions.

We note that EnergyShield doesn’t specify a particular estimator to

be used in this component: any number of different estimators may

be appropriate, and each estimator may lead to different energy

profiles. Moreover, since Δ̂ is never used to override Δmax (𝑥,𝑢),
safety is preserved irrespective of the specific estimator used.

The interconnection of the components C1 through C4 in Ener-

gyShield is illustrated in Figure 3. Note that componentC3, the state

estimator, is connected to components C1 and C2, the controller

shield and safety runtime monitor, respectively. Also note that the

output of C2 provides a signal Δmax (𝑥,𝑢) to the offloading decision

switch; also informing that decision is the estimate of immediate

edge-response times provided by component C4.

190





ICCPS ’23, May 9ś12, 2023, San Antonio, TX, USA Mohanad Odema∗ , James Ferlez∗ , Goli Vaisi, Yasser Shoukry, Mohammad Abdullah Al Faruque

4.1.2 Component Design Problems. There are two central problems

that need to be solved: i.e., corresponding to the design of the two

main components of EnergyShield, C1 and C2 (see Section 3).

The solutions to these problems are deferred to Sections 4.2 and

Section 4.3, respectively. We state them here in order to facilitate

the statement of our main result in the next subsection.

Problem 1 (Controller Shield Design (C1)). Let Assumptions

1 - 5 hold. Then the problem is to design: first, design functions ℎ and 𝛼

such that they constitute a ZBF for the KBM (see Section 2.3); and then

using this ZBF, design a controller shield,𝔖 for the KBM model. The

resulting controller shield must have the following additional property

for a discrete-time version of the KBMwith zero-order-hold inputs:

• Let 𝜒 [𝑛0 − 1] and 𝜒 [𝑛0] be KBM states such that ℎ(𝜒 [𝑛0 −
1]), ℎ(𝜒 [𝑛0]) > 0, and let 𝜒 [𝑛0] result from a feasible input

𝜔̂ [𝑛0 − 1] applied in state 𝜒 [𝑛0 − 1]. Then the control action

𝜔̂ [𝑛0] = 𝔖(𝜒 [𝑛0 − 1], 𝜔 [𝑛0]) (9)

must yield a state 𝜒 [𝑛0 + 1] such that ℎ(𝜒 [𝑛0 + 1]) > 0; i.e.,

the controller shield preserves safety under discretization of the

KBM and one-step estimation delay (associated with NN𝑝 ), as

in the case of no computations being offloaded.

Problem 2 (Runtime Safety Monitor Design (C2)). Let As-

sumptions 1 - 5 hold, and assume that ℎ, 𝛼 and𝔖 solve Problem 1.

Then the problem is to design a runtime safety monitor:

Δmax : R
3 × Ωadmis. → N (10)

with the following property:

• Let 𝜒 [𝑛0−1] be such that ℎ(𝜒 [𝑛0−1]) > 0. Then for constant

control, 𝜔 = 𝜔 [𝑛0], applied to the discretized KBM starting

from 𝜒 [𝑛0 − 1] the following is true:
∀𝑛 = 0, . . . ,Δmax (𝜒 [𝑛0 − 1], 𝜔 [𝑛0]) . ℎ(𝜒 [𝑛0 − 1 + 𝑛]) > 0 (11)

i.e. the constant control 𝜔 = 𝜔 [𝑛0] preserves safety for at least
Δmax (𝜒 [𝑛0 − 1], 𝜔 [𝑛0]) samples from state 𝜒 [𝑛0 − 1].

(The delay in 𝜒 [𝑛0 − 1] accounts for the computation time of NN𝑝 .)

4.1.3 Main Result. We can now state our main result.

Theorem 1. Let Assumptions 1 - 5 hold, and assume a ZBF for the

KBM dynamics, using which Problem 1 and Problem 2 can be solved.

Then the offloading policy described in Section 3.3 preserves safety

of the KBM-modeled ADS (Assumptions 1 and 2).

Proof. The proof follows largely by construction. Each offload

period is limited in duration by the runtime safety monitor; thus, a

safety monitor that solves Problem 2 will ensure safety under the

specified constant control action during the offload period. Then by

the additional property of the controller shield in Problem 1, safety

can be maintained after the offloading period ends: i.e., either by

performing a new offload if there remains significant safety margin,

or by executing locally if there is no offload safety margin. □

Corollary 1. Let Assumptions 1 - 5 hold, and consider the ZBF

for the KBM dynamics specified in Section 2.4. Then the controller

shield in Section 4.2 uses this ZBF and solves Problem 1; likewise, the

runtime monitor in Section 4.3 uses this ZBF and solves Problem 2.

Hence, our implementation of EnergyShield is safe.

4.2 KBM Controller Shield

Fortunately, we have access to a preexisting ZBF and controller

shield designed for the KBM: see Section 2.4 [14]. That is, the ZBF is

available after using the design methodology in [14] to choose the

parameter 𝜎 (see Section 2.4); for simplicity, we will omit further

discussion this design process. Thus, for this section, we refer to a

fully implemented controller shield as𝔖KBM, with the understand-

ing that it has been designed for the relevant KBMmodel and safety

parameter 𝑟 (see Figure 2); viz. Assumptions 1 and 2.

Thus, 𝔖KBM must be altered so that it satisfies the additional

property required in Problem 1, hence the following Lemma.

Lemma 1. Let Assumptions 1 - 5 hold as usual, and let𝔖KBM be a

controller shield designed under these assumptions as per Section 2.4.

Then there exists a 𝜌 > 0 such that the following controller shield:

𝔖
𝜌

KBM
: ((𝑟, 𝜉, 𝑣), 𝜔) ↦→





𝔖KBM ( (𝑟−𝜌,𝜉,𝑣),𝜔 ) 𝑟−𝜌≥𝑟min (𝜉 )

𝛽max 𝑟−𝜌<𝑟min (𝜉 )∧𝜉≥0

−𝛽max 𝑟−𝜌<𝑟min (𝜉 )∧𝜉<0

(12)

solves Problem 1; parameters other than 𝜌 are defined in Section 2.

The proof of this Lemma is deferred to Appendix A.

A further remark is in order about Lemma 1. Note that the altered

controller shield𝔖
𝜌
KBM

maintains the energy efficient implementa-

tion of the controller shield𝔖KBM as designed in [14]; the modified

shield in (12) amounts to a threshold override of the original shield,

𝔖KBM, using 𝜌 and the value of 𝑟min (𝜉), which is trivial to compute.

4.3 KBM Runtime Safety Monitor

Recall that the runtime safetymonitor of EnergyShieldmust provide

an expiration on the safety of the vehicle during an offload period,

throughout which only a single, fixed control input is applied. This

expiration must come with a provable guarantee that the vehicle

safety is not compromised in the interim. In the formulation of

EnergyShield and Problem 2, this means only that ℎ𝑟,𝜎 must remain

non-negative until the expiration of the deadline provided by the

runtime safety monitor: see the condition (11) of Problem 2.

This formulation is convenient because it means that the problem

can again be analyzed in continuous time, unlike our consideration

of Problem 1 above: the conversion back to discrete time involves a

floor operation; and compensating for the one-sample state delay

induced by computing NN𝑝 involves subtracting one sample from

the result. That is, to solve Problem 2 and design an EnergyShield-

safety monitor, it is sufficient provide a (real) time, 𝜈 , s.t.:

∀𝑡 ∈ [0, 𝜈] . ℎ
(
𝜁
0,𝜒[𝑛0−1]
1𝜔 [𝑛0 ]

(𝑡)
)
> 0. (13)

That is, the flow of 𝑓KBM started from 𝜒 [𝑛0 − 1] and using constant
control𝜔 [𝑛0] maintainsℎ > 0 for the duration [0, 𝜈]. We emphasize

that such a 𝜈 can be converted into the sample units expected for

Δmax (𝜒 [𝑛0 − 1], 𝜔 [𝑛0]) by using a floor operation and subtracting

one. Thus, we have the following Lemma, which solves Problem 2.

Lemma 2. Let Assumptions 1 - 5 hold as usual. Let

Δmax (𝜒 [𝑛0 − 1, 𝜔 [𝑛0]) ≜ max(⌊𝜈 (𝜒 [𝑛0 − 1], 𝜔 [𝑛0])⌋ − 1, 0) (14)

where 𝜈 = 𝜈 (𝜒 [𝑛0 − 1], 𝜔 [𝑛0]) solves the equation:
√
2·𝐿ℎ𝑟,𝜎 ·∥ 𝑓KBM (𝜒 [𝑛0−1], 𝜔 [𝑛0])∥2 ·𝜈 ·𝑒

𝐿𝑓KBM ·𝜈
= ℎ(𝜒 [𝑛0−1]) (15)

192









ICCPS ’23, May 9ś12, 2023, San Antonio, TX, USA Mohanad Odema∗ , James Ferlez∗ , Goli Vaisi, Yasser Shoukry, Mohammad Abdullah Al Faruque

Proceedings of the 31st International Conference on Neural Information Processing
Systems. Curran Associates Inc., NY, USA, 908ś919.

[5] Luke Chen, Mohanad Odema, and Mohammad Abdullah Al Faruque. 2022. Ro-
manus: Robust Task Offloading in Modular Multi-Sensor Autonomous Driv-
ing Systems. In Proceedings of the 41st IEEE/ACM International Conference on
Computer-Aided Design (ICCAD ’22). Association for Computing Machinery, New
York, NY, USA, Article 162, 8 pages. https://doi.org/10.1145/3508352.3549356

[6] Richard Cheng, Gábor Orosz, Richard M. Murray, and Joel W. Burdick. 2019. End-
to-End Safe Reinforcement Learning through Barrier Functions for Safety-Critical
Continuous Control Tasks. In Proceedings of the Thirty-Third AAAI Conference
on Artificial Intelligence (AAAI’19). AAAI Press, Article 416, 9 pages. https:
//doi.org/10.1609/aaai.v33i01.33013387

[7] Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad
Ghavamzadeh. 2018. A Lyapunov-Based Approach to Safe Reinforcement Learn-
ing. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems. Curran Associates Inc., NY, USA, 8103ś8112.

[8] Mingyue Cui, Shipeng Zhong, Boyang Li, Xu Chen, and Kai Huang. 2020. Offload-
ing Autonomous Driving Services via Edge Computing. IEEE Internet of Things
Journal 7, 10 (2020), 10535ś10547. https://doi.org/10.1109/JIOT.2020.3001218

[9] Charles Dawson, Sicun Gao, and Chuchu Fan. 2023. Safe Control With Learned
Certificates: A Survey of Neural Lyapunov, Barrier, and Contraction Methods
for Robotics and Control. IEEE Transactions on Robotics (2023), 1ś19. https:
//doi.org/10.1109/TRO.2022.3232542

[10] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. 2017. CARLA: An Open Urban Driving Simulator. In Proceedings of the
1st Annual Conference on Robot Learning. 1ś16.

[11] Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. 2018.
Output Range Analysis for Deep Feedforward Neural Networks. In NASA Formal
Methods, Aaron Dutle, César Muñoz, and Anthony Narkawicz (Eds.). Springer,
Cham, 121ś138. https://doi.org/10.1007/978-3-319-77935-5_9

[12] Mahyar Fazlyab, Alexander Robey, HamedHassani, ManfredMorari, and George J.
Pappas. 2019. Efficient and Accurate Estimation of Lipschitz Constants for Deep
Neural Networks. Curran Associates Inc., NY, USA. https://doi.org/10.5555/
3454287.3455312

[13] Jingyun Feng, Zhi Liu, Celimuge Wu, and Yusheng Ji. 2019. Mobile Edge Com-
puting for the Internet of Vehicles: Offloading Framework and Job Scheduling.
IEEE Vehicular Technology Magazine 14, 1 (2019), 28ś36. https://doi.org/10.1109/
MVT.2018.2879647

[14] James Ferlez, Mahmoud Elnaggar, Yasser Shoukry, and Cody Fleming. 2020.
ShieldNN: A provably safe NN filter for unsafe NN controllers. arXiv preprint
arXiv:2006.09564 (2020).

[15] Jaime F. Fisac, Anayo K. Akametalu, Melanie N. Zeilinger, Shahab Kaynama,
Jeremy Gillula, and Claire J. Tomlin. 2019. A General Safety Framework for
Learning-Based Control in Uncertain Robotic Systems. IEEE Trans. Automat.
Control 64, 7 (2019), 2737ś2752. https://doi.org/10.1109/TAC.2018.2876389

[16] Vijay Govindarajan, Katherine Driggs-Campbell, and Ruzena Bajcsy. 2017. Data-
driven reachability analysis for human-in-the-loop systems. In 2017 IEEE Con-
ference on Decision and Control (CDC). 2617ś2622. https://doi.org/10.1109/CDC.
2017.8264039

[17] Junxian Huang, Feng Qian, Alexandre Gerber, Z. Morley Mao, Subhabrata Sen,
and Oliver Spatscheck. 2012. A Close Examination of Performance and Power
Characteristics of 4G LTENetworks (MobiSys ’12). Association for ComputingMa-
chinery, New York, NY, USA, 225ś238. https://doi.org/10.1145/2307636.2307658

[18] Radoslav Ivanov, James Weimer, Rajeev Alur, George J. Pappas, and Insup Lee.
2019. Verisig: Verifying Safety Properties of Hybrid Systems with Neural Network
Controllers. In Proceedings of the 22nd ACM International Conference on Hybrid
Systems: Computation and Control (HSCC ’19). Association for Computing Ma-
chinery, New York, NY, USA, 169ś178. https://doi.org/10.1145/3302504.3311806

[19] Torsten Koller, Felix Berkenkamp, Matteo Turchetta, and Andreas Krause. 2018.
Learning-Based Model Predictive Control for Safe Exploration. In 2018 IEEE
Conference on Decision and Control (CDC). 6059ś6066. https://doi.org/10.1109/
CDC.2018.8619572

[20] Jason Kong, Mark Pfeiffer, Georg Schildbach, and Francesco Borrelli. 2015. Kine-
matic and dynamic vehicle models for autonomous driving control design. In
2015 IEEE Intelligent Vehicles Symposium (IV). 1094ś1099. https://doi.org/10.1109/
IVS.2015.7225830

[21] Shih-Chieh Lin, Yunqi Zhang, Chang-HongHsu,Matt Skach,Md E. Haque, Lingjia
Tang, and Jason Mars. 2018. The Architectural Implications of Autonomous Driv-
ing: Constraints and Acceleration. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’18). Association for Computing Machinery, New York, NY,
USA, 751ś766. https://doi.org/10.1145/3173162.3173191

[22] Changliu Liu, Tomer Arnon, Christopher Lazarus, Clark Barrett, and Mykel J
Kochenderfer. 2019. Algorithms for verifying deep neural networks. arXiv
preprint arXiv:1903.06758 (2019).

[23] Shaoshan Liu, Liangkai Liu, Jie Tang, Bo Yu, Yifan Wang, and Weisong Shi. 2019.
Edge Computing for Autonomous Driving: Opportunities and Challenges. Proc.
IEEE 107, 8 (2019), 1697ś1716. https://doi.org/10.1109/JPROC.2019.2915983

[24] Christian Llanes, Matthew Abate, and Samuel Coogan. 2022. Safety from Fast,
In-the-Loop Reachability with Application to UAVs. In 2022 ACM/IEEE 13th
International Conference on Cyber-Physical Systems (ICCPS). 127ś136. https:
//doi.org/10.1109/ICCPS54341.2022.00018

[25] Arnav Malawade, Mohanad Odema, Sebastien Lajeunesse-degroot, and Moham-
mad Abdullah Al Faruque. 2021. SAGE: A Split-Architecture Methodology for
Efficient End-to-End Autonomous Vehicle Control. ACM Trans. Embed. Comput.
Syst. 20, 5s, Article 75 (sep 2021), 22 pages. https://doi.org/10.1145/3477006

[26] Aniruddh Mohan, Shashank Sripad, Parth Vaishnav, and Venkatasubramanian
Viswanathan. 2020. Trade-offs between automation and light vehicle electrifi-
cation. Nature Energy 5, 7 (2020), 543ś549. https://doi.org/10.1038/s41560-020-
0644-3

[27] Mohanad Odema, Luke Chen, Marco Levorato, and Mohammad Abdullah Al
Faruque. 2022. Testudo: Collaborative Intelligence for Latency-Critical Au-
tonomous Systems. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (2022), 1ś1. https://doi.org/10.1109/TCAD.2022.3211480

[28] Alexander Robey, Haimin Hu, Lars Lindemann, Hanwen Zhang, Dimos V. Di-
marogonas, Stephen Tu, and Nikolai Matni. 2020. Learning Control Barrier
Functions from Expert Demonstrations. In 2020 59th IEEE Conference on Decision
and Control (CDC). 3717ś3724. https://doi.org/10.1109/CDC42340.2020.9303785

[29] Kengo Sasaki, Naoya Suzuki, Satoshi Makido, and Akihiro Nakao. 2016. Vehicle
control system coordinated between cloud and mobile edge computing. In 2016
55th Annual Conference of the Society of Instrument and Control Engineers of Japan
(SICE). 1122ś1127. https://doi.org/10.1109/SICE.2016.7749210

[30] Guanya Shi, Xichen Shi, Michael O’Connell, Rose Yu, Kamyar Azizzadenesheli,
Animashree Anandkumar, Yisong Yue, and Soon-Jo Chung. 2019. Neural Lander:
Stable Drone Landing Control Using Learned Dynamics. In 2019 International
Conference on Robotics and Automation (ICRA). IEEE Press, 9784ś9790. https:
//doi.org/10.1109/ICRA.2019.8794351

[31] Mohit Srinivasan, Amogh Dabholkar, Samuel Coogan, and Patricio A. Vela. 2020.
Synthesis of Control Barrier Functions Using a Supervised Machine Learning
Approach. In 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 7139ś7145. https://doi.org/10.1109/IROS45743.2020.9341190

[32] Xiaowu Sun, Haitham Khedr, and Yasser Shoukry. 2019. Formal Verification of
Neural Network Controlled Autonomous Systems. In Proceedings of the 22nd
ACM International Conference on Hybrid Systems: Computation and Control (HSCC
’19). Association for Computing Machinery, New York, NY, USA, 147ś156. https:
//doi.org/10.1145/3302504.3311802

[33] Sihai Tang, Bruce Chen, Harold Iwen, Jason Hirsch, Song Fu, Qing Yang, Paparao
Palacharla, Nannan Wang, Xi Wang, and Weisong Shi. 2021. VECFrame: A
Vehicular Edge Computing Framework for Connected Autonomous Vehicles. In
2021 IEEE International Conference on Edge Computing (EDGE). 68ś77. https:
//doi.org/10.1109/EDGE53862.2021.00019

[34] Andrew J. Taylor, Andrew Singletary, Yisong Yue, and Aaron D. Ames. 2021. A
Control Barrier Perspective on Episodic Learning via Projection-to-State Safety.
IEEE Control Systems Letters 5, 3 (2021), 1019ś1024. https://doi.org/10.1109/
LCSYS.2020.3009082

[35] Li Wang, Evangelos A. Theodorou, and Magnus Egerstedt. 2018. Safe Learning
of Quadrotor Dynamics Using Barrier Certificates. In 2018 IEEE International
Conference on Robotics and Automation (ICRA). 2460ś2465. https://doi.org/10.
1109/ICRA.2018.8460471

[36] Weiming Xiang, Diego Manzanas Lopez, Patrick Musau, and Taylor T. Johnson.
2019. Reachable Set Estimation and Verification for Neural Network Models of
Nonlinear Dynamic Systems. Springer, Cham, 123ś144. https://doi.org/10.1007/
978-3-319-97301-2_7

[37] Wei Xiao, Noushin Mehdipour, Anne Collin, Amitai Y. Bin-Nun, Emilio Frazzoli,
Radboud Duintjer Tebbens, and Calin Belta. 2021. Rule-Based Optimal Control
for Autonomous Driving (ICCPS ’21). Association for Computing Machinery,
New York, NY, USA, 143ś154. https://doi.org/10.1145/3450267.3450542

[38] Xiangru Xu, Paulo Tabuada, Jessy W. Grizzle, and Aaron D. Ames. 2015. Robust-
ness of Control Barrier Functions for Safety Critical Control. IFAC-PapersOnLine
48, 27 (2015), 54ś61. https://doi.org/10.1016/j.ifacol.2015.11.152 Analysis and
Design of Hybrid Systems ADHS.

[39] Xumiao Zhang, Anlan Zhang, Jiachen Sun, Xiao Zhu, Y. Ethan Guo, Feng Qian,
and Z. Morley Mao. 2021. EMP: Edge-Assisted Multi-Vehicle Perception. In
Proceedings of the 27th Annual International Conference on Mobile Computing and
Networking (MobiCom ’21). Association for Computing Machinery, New York,
NY, USA, 545ś558. https://doi.org/10.1145/3447993.3483242

196



EnergyShield: Provably-Safe Offloading of Neural Network Controllers for Energy Efficiency ICCPS ’23, May 9ś12, 2023, San Antonio, TX, USA

A PROOF OF LEMMA 1

Proof. In this proof, let 𝜒 [𝑛′] = (𝑟 [𝑛′], 𝜉 [𝑛′], 𝑣 [𝑛′]), 𝑛′ ∈ Z.
The proof will be constructive. To this end, recall that we have

assumed a capped (controlled) maximum vehicle velocity of 𝑣max.

Thus, let 𝛾 = 2 · 𝑣max ·𝑇 , where 𝑇 is the sample period (see Section

2.1). As a consequence, also note that for 𝑟 [𝑛0−1] > 𝑟min (𝜉 [𝑛0−1]):
𝑟 [𝑛0 + 1] > 𝑟 [𝑛0 − 1] − 2 · 𝑣max ·𝑇 > 𝑟 − 𝛾 (16)

so that on any two-sample period

| ¤𝜉 | ≤ 𝑣max ·
(

1

𝑟−𝛾 + 1

ℓ𝑟

)
(17)

Then observe that the Lipschitz constant of the function 𝑟min is

bounded by 𝐿𝑟min ≤ 𝑟 ·𝜎
2· (1−2·𝜎 )2 . Finally, conclude that

|𝑟min (𝜉 [𝑛0 − 1]) − 𝑟min (𝜉 [𝑛0 + 1]) |

≤ 𝑟 ·𝜎
2· (1−2·𝜎 )2 · 𝑣max ·

(
1

𝑟−𝛾 + 1

ℓ𝑟

)
· 2 ·𝑇 ≜ 𝜂 (18)

Then choose 𝜌 ≜ 𝜂 + 𝛾 .
Now, given the structure of the amended shield in (12), establish-

ing the conclusion of Problem 1 can be broken into three cases:

(i) 𝑟 [𝑛0] ≥ 𝑟min (𝜉 [𝑛0]) + 𝜌 ; (irrespective of the position of

𝑟 [𝑛0 − 1])
(ii) 𝑟 [𝑛0] < 𝑟min (𝜉 [𝑛0]) + 𝜌 and 𝑟 [𝑛0 − 1] ≥ 𝑟min (𝜉 [𝑛0 − 1]) + 𝜌 ;
(iii) 𝑟 [𝑛0] < 𝑟min (𝜉 [𝑛0]) + 𝜌 and 𝑟 [𝑛0 − 1] < 𝑟min (𝜉 [𝑛0 − 1]) + 𝜌 .

In each of the three cases, we need to show that for the next state,

ℎ(𝜒 [𝑛0 + 1]) > 0, or equivalently 𝑟 [𝑛0 + 1] > 𝑟min (𝜉 [𝑛0 + 1]).
Case (i) and Case (ii). The claim follows for these cases for es-

sentially directly by the choice of 𝜌 above. In Case (ii), we have

that

𝑟 [𝑛0 + 1] − 𝑟min (𝜉 [𝑛0 + 1]) ≥
(
𝑟 [𝑛0 − 1] − 𝑟min (𝜉 [𝑛0 − 1])

)

−
(
𝑟 [𝑛0 + 1] − 𝑟min (𝜉 [𝑛0 + 1]) − 𝑟 [𝑛0 − 1] − 𝑟min (𝜉 [𝑛0 − 1])

)
.

(19)

From the above calculations, we see that the second term on the

right-hand side of (19) is bounded below by −𝜌 (using the triangle

inequality). Thus

𝑟 [𝑛0 +1] −𝑟min (𝜉 [𝑛0 +1]) ≥
(
𝑟 [𝑛0−1] −𝑟min (𝜉 [𝑛0−1])

)
−𝜌 (20)

and the desired conclusion follows since 𝑟 [𝑛0−1]−𝑟min (𝜉 [𝑛0−1]) ≥
𝜌 by assumption. A similar approach proves Case (i): simply repeat

the calculations in the definition of 𝜌 , only over one sample.

Thus, it remains to consider Case (iii). This case is somewhat

easier, because the control signal is being overridden, so the state

delay presents technical difficulties as above. Thus, it follows almost

directly from the properties of the controller shield as designed

in [14]. In particular, the ShieldNN verifier establishes that the

boundary between łsafež and łunsafež controls is a concave (resp.

convex) function of 𝜉 for 𝜉 ∈ [0, 𝜋] (resp. 𝜉 ∈ [−𝜋, 0]). Hence, by
[14, Theorem 1], the constant control 𝛽max (resp. −𝛽max) always

preserves safety for any duration of time starting from a state 𝜉 ∈
[0, 𝜋] (resp. 𝜉 ∈ [−𝜋, 0]). □

B PROOF OF LEMMA 2

Proof. By the arguments above, the form of Δmax in (14) will

solve Problem 2, provided (15) implies (13). Thus, we confine the

proof to showing this fact.

To begin, observe that:

ℎ𝑟,𝜎 (𝜁 0,𝜒[𝑛0−1]
1𝜔 [𝑛0 ]

(𝑡)) ≥
���
��ℎ𝑟,𝜎 (𝜁 0,𝜒[𝑛0−1]

1𝜔 [𝑛0 ]
(𝑡)) − ℎ𝑟,𝜎 (𝜒 [𝑛0 − 1])

��

−
��ℎ𝑟,𝜎 (𝜒 [𝑛0 − 1])

��
��� (21)

by the triangle inequality. Consequently:

��ℎ𝑟,𝜎 (𝜁 0,𝜒[𝑛0−1]
1𝜔 [𝑛0 ]

(𝑡)) − ℎ𝑟,𝜎 (𝜒 [𝑛0 − 1])
�� ≤

��ℎ𝑟,𝜎 (𝜒 [𝑛0 − 1])
��

=⇒ ℎ𝑟,𝜎 (𝜁 0,𝜒[𝑛0−1]
1𝜔 [𝑛0 ]

(𝑡)) ≥ 0 (22)

Hence define 𝑧 (𝜁 0,𝜒[𝑛0−1]
1𝜔 [𝑛0 ]

(𝑡)) ≜
��ℎ𝑟,𝜎 (𝜁 0,𝜒[𝑛0−1]

1𝜔 [𝑛0 ]
(𝑡)) −ℎ𝑟,𝜎 (𝜒 [𝑛0 − 1])

��.
By the Grönwall inequality, we have further that:

𝑧 (𝜁 0,𝜒[𝑛0−1]
1𝜔 [𝑛0 ]

(𝑡)) ≤
√
2 · 𝐿ℎ𝑟,𝜎 · ∥ 𝑓KBM (𝜒 [𝑛0 − 1], 𝜔 [𝑛0])∥2 · 𝑡 · 𝑒𝐿𝑓KBM ·𝑡

(23)

where 𝐿ℎ𝑟,𝜎 and 𝐿𝑓KBM are as in the statement of the Lemma. Observe

that the function on the right-hand side of (23) is monotonic in 𝑡 .

Thus, we can use (22) to claim that if 𝜈 solves (15) (derived immedi-

ately from (23) and (22)), then the claim of the Lemma holds. □

C ADDITIONAL EXPERIMENTAL DETAILS

C.1 Training Details

The primary RL agent training was conducted under the (S = 0, N

= 0) configuration settings using the Proximal Policy Optimization

(PPO) algorithm for a total of 1800 episodes. In the last 400 training

episodes, we randomized the ego vehicle’s spawning position and

orientation along its lateral dimension to aid the agent in learning

how to recover from maneuvering moves. For the 𝛽-VAE, we used

the pretrained model from [14] which was trained to generate a

64-dimensional latent feature vector from Carla driving scenes.

C.2 Reward Function

For the reward function R, we defined:

R =





−𝑃, collision or 𝐶𝐷 > 𝐶𝐷𝑡ℎ

+𝑃, track completed successfully

𝑓R (𝑣,𝐶𝐷, 𝜗, 𝑟 ), otherwise

(24)

in which 𝑃 is large positive number, 𝑣 is the vehicle’s velocity,𝐶𝐷 is

the vehicle’s center deviance from the center of the track,𝐶𝐷𝑡ℎ is a

predetermined threshold value, 𝜗 represents the angle between the

heading of the vehicle and the tangent to the curvature of the road

segment, and 𝑟 is the distance to the closest obstacle. As shown, R
can evaluate to: (i) (+𝑃 ) if it completes the track successfully (large

positive reward), (ii) (−𝑃 ) if it incurs a collision or deviates from

the center of the road beyond 𝐶𝐷𝑡ℎ , or (iii) a function 𝑓R (·) of the
aforementioned variables given by:

𝑓R (𝑣,𝐶𝐷, 𝜗, 𝑟 ) = 𝜔1 · 𝑓1 (𝑣) + 𝜔2 · 𝑓2 (CD) + 𝜔3 · 𝑓3 (𝜗) + 𝜔4 · 𝑓4 (𝑟 )

197



ICCPS ’23, May 9ś12, 2023, San Antonio, TX, USA Mohanad Odema∗ , James Ferlez∗ , Goli Vaisi, Yasser Shoukry, Mohammad Abdullah Al Faruque

Table 1: EnergyShield Performance across 4 different RL controllers. Each RL agent learnt to travel the route through a

distinctive policy represented by its center deviance (CD) from the primary track. The RL Controllers are numerically arranged

in the increasing order of CD with Controller 1 being the main RL controller used in all evaluations.

Policy (S, N)
Controller 1 Controller 2 Controller 3 Controller 4

CD(m) TCR(%) E(mJ) CD (m) TCR(%) E(mJ) CD(m) TCR(%) E(mJ) CD(m) TCR(%) E(mJ)

Local

(0, 0) 0.92 65.7

113.5

2.3 100

113.5

5.5

100 113.5

5.8

100 113.5
(0, 1) 0.8 22.9 2.3 97.1 5.5 5.8

(1, 0) 2.87 100 3.5 100 5.5 5.9

(1, 1) 2.91 100 3.6 100 5.4 5.7

EnergyShield

(0, 0) 0.8 68.6 90.8 2.3 100 90

5.5 100

79.7 5.8

100

77.6

(eager)

(0, 1) 0.8 34.3 90 2.3 100 89 80 5.7 78.9

(1, 0) 2.8 100 85.8 3.5 100 81.6 79.6 5.7 77.5

(1, 1) 2.8 100 85.9 3.6 100 81.9 78.5 5.8 77.9

EnergyShield

(0, 0) 0.9 74.3 67.7 2.3 100 63.5 5.5

100

43.7 5.8

100

39.7

(uniform)

(0, 1) 0.7 22.9 60.6 2.3 97.1 63.1 5.5 44.4 5.7 40.8

(1, 0) 2.9 100 51.5 3.5 100 44.5 5.5 43.6 5.8 40.1

(1, 1) 2.8 100 53.1 3.6 100 45.7 5.4 42.1 5.7 39.8

s.t., 𝑓1 (𝑣) =




𝑣
𝑣𝑚𝑖𝑛

, 𝑣 < 𝑣𝑚𝑖𝑛

1 − 𝑣−𝑣𝑡𝑎𝑟𝑔𝑒𝑡
𝑣𝑚𝑎𝑥−𝑣𝑡𝑎𝑟𝑔𝑒𝑡 𝑣 > 𝑣𝑡𝑎𝑟𝑔𝑒𝑡

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑓2 (𝐶𝐷) = max(1 − 𝑙𝑐𝑒𝑛𝑡𝑒𝑟

𝑙𝑚𝑎𝑥
, 0)

𝑓3 (𝜗) = max(1 − | 𝜗
𝜋/9 |, 0)

𝑓4 (𝑑𝑖𝑠𝑡) = max(min( | |𝑟 | |
𝑟𝑚𝑎𝑥

, 1), 0)

inwhich 𝑣𝑚𝑖𝑛 , 𝑣𝑚𝑎𝑥 , 𝑣𝑡𝑎𝑟𝑔𝑒𝑡 are theminimum,maximum, and target

velocities, respectively. 𝑙𝑐𝑒𝑛𝑡𝑒𝑟 is the lateral distance from the center

of the vehicle to the designated track. 𝜗 is the angle between the

head of the vehicle and the track’s tangent. For our experiments,

we set 𝑣𝑚𝑖𝑛=35 km/hr, 𝑣𝑡𝑎𝑟𝑔𝑒𝑡=40 km/hr, 𝑣𝑚𝑎𝑥=45 km/hr, 𝑟𝑚𝑎𝑥 =

20 m, 𝑙𝑚𝑎𝑥 = 10 m, and 𝑃= 100.

C.3 Performance Evaluations

We use the standard TensorRT library to compile our models on the

Nvidia Drive PX2 ADS platform as an optimized inference engine

and measure its execution latency. To evaluate the local execution

power, we measure the difference in average power drawn by the

Nvidia Drive PX2 when processing and idling.

C.4 Queuing Delays

We leverage the The M/M/1/k model for the queuing delays, 𝐿𝑞𝑢𝑒 ,

which entails 𝑞𝑐 =
(1−𝜌 ) (𝜌 )𝑐
1−𝜌𝐶+1 representing the probability that an

offloaded task will find 𝑐 tasks stored in the server’s buffer of size

𝐶 upon arrival with 𝜌 being the average server load. We assume

each task contributes an extra 1 ms delay, and thus, 𝑞𝑐 positions

directly translate to 𝐿𝑞𝑢𝑒 in ms. The default settings for queuing

delays entail C = 4000 and 𝜌 = 0.97 unless otherwise was stated.

C.5 Edge Response Estimation

As offloading decisions are made based on estimates of the prior

edge response times, the estimated communication latency, 𝐿̂𝑐𝑜𝑚𝑚 ,

at time 𝑛 can be defined as a function of the 𝑘 previous values

of the effective throughput 𝜙 and queuing delays 𝑞 as follows:

𝐿̂𝑐𝑜𝑚𝑚 (𝑛) = Φ(𝜙𝑛−𝑘 :𝑛−1, 𝑞𝑛−𝑘 :𝑛−1). For our experiments, we set

𝑘 = 5 and employ a moving average function to evaluate Φ.

198


	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Kinematic Bicycle Model
	2.3 Barrier Functions and Shielding
	2.4 A Controller Shield for the KBM

	3 Framework
	3.1 EnergyShield Motivation and Context
	3.2 EnergyShield Structure
	3.3 Semantics of an EnergyShield Offloading Decision

	4 EnergyShield: Provably Safe Offloading
	4.1 Main Formal Result
	4.2 KBM Controller Shield
	4.3 KBM Runtime Safety Monitor

	5 Experiments and Findings
	5.1 Experimental Setup
	5.2 EnergyShield Evaluations
	5.3 Wireless Channel Variations
	5.4 Generality

	Acknowledgments
	References
	A Proof of Lemma 1
	B Proof of Lemma 2
	C Additional Experimental Details
	C.1 Training Details
	C.2 Reward Function
	C.3 Performance Evaluations
	C.4 Queuing Delays
	C.5 Edge Response Estimation


