Check for
Updates

EnergyShield: Provably-Safe Offloading of Neural Network
Controllers for Energy Efficiency

Mohanad Odema®, James Ferlez*, Goli Vaisi, Yasser Shoukry, Mohammad Abdullah Al Faruque

Department of Electrical Engineering and Computer Science, University of California, Irvine, CA, USA

ABSTRACT

To mitigate the high energy demand of Neural Network (NN)
based Autonomous Driving Systems (ADSs), we consider the prob-
lem of offloading NN controllers from the ADS to nearby edge-
computing infrastructure, but in such a way that formal vehicle
safety properties are guaranteed. In particular, we propose the En-
ergyShield framework, which repurposes a controller “shield” as a
low-power runtime safety monitor for the ADS vehicle. Specifically,
the shield in EnergyShield provides not only safety interventions
but also a formal, state-based quantification of the tolerable edge
response time before vehicle safety is compromised. Using Ener-
gyShield, an ADS can then save energy by wirelessly offloading NN
computations to edge computers, while still maintaining a formal
guarantee of safety until it receives a response (on-vehicle hard-
ware provides a just-in-time fail safe). To validate the benefits of
EnergyShield, we implemented and tested it in the Carla simulation
environment. Our results show that EnergyShield maintains safe
vehicle operation while providing significant energy savings com-
pared to on-vehicle NN evaluation: from 24% to 54% less energy
across a range of wireless conditions and edge delays.

CCS CONCEPTS

« Computer systems organization — Embedded and cyber-
physical systems; - Computing methodologies;

KEYWORDS

Formal Methods, Vehicular, Edge Computing, Autonomous Vehicles,
Provable safety, Offloading, Autonomous Driving Systems

1 INTRODUCTION

Advances in the theory and application of Neural Networks (NN),
particularly Deep NNs (DNNs), have spurred revolutionary progress
on a number of Al tasks, including perception, motion planning and
control. As as result, DNNs have provided a feasible engineering
solution to supplant formerly human-only tasks, most ambitiously
in Autonomous Driving Systems (ADSs). However, state-of-the-
art ADSs require the use of very large DNN architectures to solve
essential perception and control tasks, which generally involve
processing the output of tens of cameras, LIDARs and other sensors.
As a result, contemporary ADSs are only possible with significant

* Equally contributing authors.

This work is licensed under a Creative Commons Attribution International 4.0 License.

ICCPS °23, May 9-12, 2023, San Antonio, TX, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0036-1/23/05.
https://doi.org/10.1145/3576841.3585935

187

EnergyShield
Eg { Provably-Safe ¥ Hgi E Q ! Provably-Safe N/
|] + Energy-Efficient 3] Energy-Efficient v
- I

Controller

Controller:::

Figure 1: Illustration of Provably-Safe Offloading of Neural
Network Controllers for Energy Efficiency.

computational resources deployed on the vehicle itself, since their
DNNs must process such high-bandwidth sensors in closed loop, in
real time. The practical energy impact of high-capacity on-vehicle
compute is understudied, but current research suggests that it is
profound: e.g., up to a 15% reduction in a vehicle’s range [21, 26].

At the same time, advances in semiconductor design and pack-
aging have made possible cheap, low-power silicon; and advances
in wireless networking have made high-bandwidth, low-latency
radio links possible even in challenging multi-user environments.
Together, these advances have led to increasingly ubiquitous, cheap,
wirelessly-accessible computational resources near the edge of con-
ventional hard-wired infrastructure. In particular, it is now possible
to achieve reliable, millisecond-latency wireless connections be-
tween connected ADSs and nearby edge computing [3, 23, 25].

The ubiquity of edge compute thus suggests a natural way to
reduce the local energy consumption on ADS vehicles: viz., by wire-
lessly offloading onerous perception and control DNN computations
to abundant nearby edge compute infrastructure. However, even
modern wireless networks and offloading-friendly DNN architec-
tures (e.g. encoder/decoders) cannot provide formal guarantees that
bringing edge computing “into the loop” will have equivalent (or
even acceptable) performance compared to on-vehicle hardware.
This is an unacceptable situation when human lives are at stake:
even relatively rare and short delays in obtaining a control action
or perception classification can have fatal consequences.

In this paper, we propose the EnergyShield framework as a mech-
anism to perform DNN-to-edge offloading of ADS controllers but in
a formal, provably safe way. Thus, EnergyShield is, to the best of our
knowledge, the first framework that enables significantly lower on-
vehicle energy usage when evaluating large DNNs by intelligently
offloading those calculations to edge compute in a provably safe
way; see Figure 1. The primary idea of EnergyShield is to perform
safety-aware (state-)contextual offloading of DNN calculations to
the edge, under the assumption that adequate on-vehicle computa-
tion is always available as a safety fallback. This is accomplished
using a controller “shield” as both a mechanism to enforce safety
and as anovel, low-power runtime safety monitor. In particular, this
shield-based safety monitor provides provably safe edge-compute
response times: i.e., at each instance, EnergyShield provides a time

ICCPS °23, May 9-12, 2023, San Antonio, TX, USA

interval within which the edge-compute must respond to an offload-
ing request in order to guarantee safety of the vehicle in the interim.
In the event that the edge resources don’t provide a response within
this time, on-board local compute proceeds to evaluate the relevant
DNN s before vehicle safety is no longer assured. Further energy
savings are obtained by incorporating an estimator to anticipate
edge-compute load and wireless network throughput; a more in-
telligent offloading decision is made by comparing this estimate
against the tolerable edge-compute delay provided by the runtime
safety monitor - thus avoiding offloads that are likely to fail.

The main technical novelty of EnergyShield is its shield-based
runtime safety monitor mentioned above. Although controller “shield-
ing” is a well-known methodology to render generic controllers
safe, the shielding aspect of EnergyShield contains two important
novel contributions of its own: first, in the use of a shield not only
to enforce safety but also as a runtime safety monitor to quantify
the time until the system is unsafe; and second, in the specific design
of that runtime monitor with regard to implementation complexity
and energy considerations. In the first case, EnergyShield extends
existing notions wherein the current value of a (Zeroing-)Barrier
Function (ZBF) is used as a runtime monitor to quantify the safety
of an agent: in particular, it is novel in EnergyShield to instead use
the current value of the ZBF to derive a sound quantification of the
time until the agent becomes unsafe. Moreover, EnergyShield im-
plements this sound quantification in an extremely energy efficient
way: i.e., via a small lookup table that requires only a small number
of FLOPS to obtain a guaranteed time-until-unsafe. This particular
aspect of the runtime safety monitor is also facilitated by using a
particular, but known, ZBF and shield [14] in EnergyShield: these
components are both extremely simple, and so implementable us-
ing small, energy efficient NNs [14]. Together, these design choices
ensure that any energy saved by offloading is not subsequently
expended in the implementation of EnergyShield itself.

We conclude the paper with a significant sequence of experi-
ments to validate both the safety and energy savings provided by the
EnergyShield framework. In particular, we tested EnergyShield in
the Carla simulation environment [10] with several Reinforcement
Learning (RL)-trained agents. Our experiments showed that Ener-
gyShield entirely eliminated obstacle collisions for the RL agents
we considered — i.e. made them safe — while simultaneously reduc-
ing NN energy consumption by as much as 54%. Additionally, we
showed that EnergyShield has intuitive, safety-conscious offloading
behavior: when the ADS is near an obstacle — and hence less safe
- EnergyShield’s runtime safety monitor effectively forced exclu-
sively on-vehicle NN evaluation; when the ADS was further from
an obstacle — and hence more safe — EnergyShield’s runtime safety
monitor allowed more offloading, and hence more energy savings.
Related Work: Formal Methods for Data-Trained Controllers. A
number of approaches exist to assert the safety of data-trained
controllers with formal guarantees; in most, ideas from control
theory are used in some way to augment the trained controllers to
this end. A good survey of these methods is [9]. Examples of this
approach include the use of Lyapunov methods [4, 7], safe model
predictive control [19], reachability analysis [1, 15, 16], barrier
certificates [24, 28, 31, 34, 35, 37], and online learning of uncer-
tainties [30]. Controller “shielding” [2] is another technique that
often falls in the barrier function category [6]. Another approach

188

Mohanad Odema*, James Ferlez*, Goli Vaisi, Yasser Shoukry, Mohammad Abdullah Al Faruque

Safe VEAAN

Figure 2: Obstacle specification and minimum barrier dis-
tance as a function of relative vehicle orientation, ¢.

tries to verify the formal safety properties of learned controllers
using formal verification techniques (e.g., model checking): e.g.,
through the use of SMT-like solvers [11, 22, 32] or hybrid-system
verification [12, 18, 36]. However, these techniques only assess the
safety of a given controller rather than design or train a safe agent.

Edge Computing for Autonomous Systems. A number of differ-
ent edge/cloud offloading schemes have been proposed for ADSs,
however none to date has provided formal guarantees. Some have
focused on scheduling techniques and network topology to achieve
effective offloading [8, 13, 29, 33, 39]. Others focused on split and
other NN architectures to make offloading more efficient [5, 25, 27].

2 PRELIMINARIES
2.1 Notation

Let R denote the real numbers; R* the non-negative real numbers;
N the natural numbers; and Z the integers. For a continuous-time
signal, x(t),t > 0, denote its discrete-time sampled version as x[n]
for some fixed sample period T (in seconds); i.e. let x[n] = x(n-T)
forn € Z. Let 15 : R — {a} be the constant function with value g;
ie., 14(x) = afor all x € R (interpreted as a sequence as needed).
Finally, let X = f(x, u) be a control system with x € R" andu € R™,
andlet 7 : R X R" — R™ be a (possibly) time-varying controller.
For this system and controller, consider a time fy > 0 and state xg,
and denote by /™ : R* — R" the t;-shifted state evolution of this
system controlled by 7 assuming x(ty) = xo. Let {;***[n] indicate
the same, except in discrete-time with zero-order hold of x. ||-|| and
[|-|l2 will denote the max and two-norms on R”, respectively.

2.2 Kinematic Bicycle Model

In this paper, we will use the kinematic bicycle model (KBM) as the
formal dynamical model for our autonomous vehicle [20]. However,
we consider the KBM model in terms of state variables relative to a
fixed point in the plane - the obstacle to be avoided - rather than
absolute Cartesian coordinates. That is, the positional states are the
distance to a fixed point, ||F||, and orientation angle, &, of the vehicle
with respect to the same. These evolve according to dynamics:

P vcos(&-F) N 1, e
(§)= (—%vsin(gfﬁ)—% sin(p) |5 f = tan” (g7 tan(dy)) (1)
g ‘

[
where r(t) £ ||F]| and ¢ are as described above; v is the vehicle’s
linear velocity; a is the linear acceleration input; & is the front-
wheel steering angle input!; and ¢y and ¢ are the distances of the
front and rear axles, respectively from the vehicle’s center of mass.

1That is, the steering angle can be set instantaneously with no steering rack dynamics.

EnergyShield: Provably-Safe Offloading of Neural Network Controllers for Energy Efficiency

Note that at & = +7/2, the vehicle is oriented tangentially to the
obstacle; and at £ = 7 or 0, the vehicle is pointing directly at or
away from the origin, respectively (see Figure 2).

We assume that the KBM has a steering constraint, ie. 65 €
[=0¢ 0> OF mae) - HOWeVer, we may use f directly as a control vari-
able, since it is an invertible function of 5f. Thus, f is also con-
strained as f# € [—fmax Pmax]- We define the state and control vec-
tors for the KBM as: y = (&,r,0) and w = (a, f), with © € Q4mis. =
R X [~ Prmaxs Pmax] the set of admissible controls. Thus, the dynamics
of the KBM are given by y = fkgm (), @) with fxkgm defined by (1).

2.3 Barrier Functions and Shielding

In the sequel, we will use a controller “shield”, which is a methodol-
ogy for instantaneously correcting the outputs produced by a con-
troller in closed loop; the objective is to make corrections such that
the original controller, however it was designed or implemented,
becomes safe — hence the “shield” moniker. Specifically, a controller
shield is designed around a real-valued function over the state space
of interest, called a (Zeroing-) Barrier Function (ZBF). The ZBF di-
rectly encodes a set safe states by its sign: states for which the
ZBF is nonnegative are taken to be safe. The ZBF in turn indirectly
specifies safe controls (as a function of state) in such a way that the
sign of the ZBF is invariant along trajectories of the dynamics.
Formally, consider a control system x = f(x,u) in closed loop
with a state-feedback controller 7 : x — wu. In this scenario, a
feedback controller in closed loop converts the control system into
an autonomous one - the autonomous vector field f(-, 7(+)). In this
context, recall the definition of a Zeroing-Barrier Function (ZBF):

DEFINITION 1 (ZEROING BARRIER FuNncTION (ZBF) [38, DEFI-
NITION 2]). Let x = f(x, n(x)) be the aforementioned closed-loop,
autonomous system with x(t) € R". Also, let h : R" — R, and
define C = {x € R" : h(x) > 0}. If there exists a locally Lipschitz,
extended-class-K function, a such that:

Vxh(x) - f(x, n(x)) = —a(h(x)) forallx € C (2)

then h is said to be a zeroing barrier function (ZBF).

Moreover, the conditions for a barrier function above can be
translated into a set membership problem for the outputs of such a
feedback controller. This is explained in the following proposition.

PROPOSITION 1. Let X = f(x,u) be a control system that is Lip-
schitz continuous in both of its arguments on a set D X Quamis;
furthermore, let h : R* — R withCp, = {x € R"|h(x) > 0} C D,
and let o be a class K function. If the set

Ry (x) 2 {u € Quamis |Vxh(x) - f(x,u) + a(h(x)) 2 0} (3)

is non-empty for each x € D, and a Lipschitz continuous feedback
controller 7t : x v u satisfies

m(x) € Rpqo(x) VxeD (4)

then Cy, is forward invariant for the closed-loop dynamics f (-, 7(-)).
In particular, if n satisfies (4) and x(t) is a trajectory of x =
f(x, m(x)) with h(x(0)) > 0, then h(x(t)) = 0 forallt > 0.

PRroOF. A direct application of ZBFs [38, Theorem 1]. O

189

ICCPS 23, May 9-12, 2023, San Antonio, TX, USA

Proposition 1 is the foundation for controller shielding: (3) and
(4) establish that h (and associated «) forms a ZBF for the closed-
loop, autonomous dynamics f(-, 7(-)) . Note also that there is no
need to distinguish between a closed-loop feedback controller 7,
and a composite of 7 with a function that shields (or filters) its
output based on the current state. Hence, the following definition:

DEFINITION 2 (CONTROLLER SHIELD). Let X = f(x,u), h, €y,
and D X Q yqmis. be as in Proposition 1. Then a controller shield is a
Lipschitz continuous function S : D X Quamis. — Qadmis. such that

V(x,u) € DX Quimis.-S(x,u) € Ry o(x). (5)

2.4 A Controller Shield for the KBM

In this paper, we will make use of the existing ZBF and controller
shield designed for the KBM in [14]. These function in concert to
provide controller shielding for the safety property illustrated in
Figure 2: i.e., to prevent the KBM from entering a disk of radius 7
centered at the origin. In particular, [14] proposes the following
class of candidate ZBFs for the KBM:

ho(x) = heo(&1,0) = M _ %

Aoyax (x) =K - 0max - X

(6)
™)
where . is per se a class K function, and o € (0, 1) parameter-
izes the class. Note also that this class of ZBFs ignores the state
variable, v; it is a result in [14] that this class is useful as a barrier
function provided the vehicle velocity remains (is controlled) within
the range (0, vmax]. Note also that the equation has h7 »(y) = 0 has
a convenient solution, which we denote by ry;y, for future reference:
rmin(§) =7/ (0 cos(£/2) +1 - o). ®)
One main result in [14] is a mechanism for choosing the parame-
ter o as a function of KBM parameters (e.g. ¢-) and safety parameter,
7 so that the resulting specific function is indeed a ZBF as required.
Finally, we note that [14] also suggests an extremely lightweight
implementation of the barrier based on (6). That is, it contains a
“Shield Synthesizer” that implements a controller shield by approxi-
mating a simple single-input/single-output concave function with
a ReLU NN [14, pp 6]. This construction will also prove advanta-
geous later. We denote by Gkppm the resulting controller shield,
with associated barrier, KBM and safety parameters inferred from
the context.

3 FRAMEWORK

NOTE: In this section, we will denote by x, y and u the state, sensor and
control variables of an ADS, respectively; this abstract notation will
illustrate the EnergyShield framework free from specific modelling
details. A formal consideration of EnergyShield appears in Section 4.

3.1 EnergyShield Motivation and Context

The basic motivation for the EnergyShield framework is the fol-
lowing. Suppose that an ADS contains a large NN, NN, that is
responsible for producing a control action, u, in response to a sensor
signal, y. Further assume that, by virtue of its size, computing an out-
put of NN, with on-vehicle hardware consumes significant energy.
Thus, it would be advantageous, energy-wise, to offload evaluations
of NN to edge computing infrastructure: in other words, wire-
lessly transmit a particular sensor measurement, y, to off-vehicle

ICCPS °23, May 9-12, 2023, San Antonio, TX, USA

edge computers, where the output u = NN, (y) is computed and
returned to the requesting ADS.

The problem with this approach is largely from a safety point of
view. In particular, the controller NN, was designed to operate in
real time and in closed-loop: i.e. the control action at discrete-time
sample n is intended to be computed from the sensor measure-
ment at the same time sample?. In the notation of discrete-time
signals (see Section 2.1), this means: u[n] = NN (y[n]). However,
offloading a sensor measurement, y[n], to the edge entails that the
correct output of NN, (y[n]) will not be back on-vehicle before
some non-zero number of samples, say A. Thus, NN (y[n]) will
not be available at time n to set u[n] = NN.(y[n]) as intended,;
rather, the soonest possible use of the output NN, (y[n]) will be at
time n + A, or u[n + A] = NN¢(y[n]). This delay creates obvious
safety issues, since the state of the vehicle — and hence the correct
control to apply — will have changed in the intervening A time sam-
ples. More importantly, even the “correct” control action applied
at n + A may be insufficient to ensure safety: e.g., after A samples
have elapsed, it may be too late to apply adequate evasive steering.

3.2 EnergyShield Structure

If we assume the ADS has enough on-vehicle compute to obtain an
output NN¢(y[n]) in real time?, then the safety problem above is
one of making an offloading decision: ideally one that saves energy
without compromising safety. That is, should a particular evaluation
of NN, be offloaded to the edge? And how long should the ADS
wait for a response so as to ensure the situation is correctable?
The nature of the offloading decision means that EnergyShield must
address two intertwined issues in order to ensure safety of the ADS
vehicle during offloading. On the one hand, EnergyShield must
be able to correct the control actions provided by NN, after an
offload decision (see explanation above). On the other hand, Ener-
gyShield must limit the duration it waits for each offloading request,
so that actions provided by NN, can be corrected in the first place;
i.e., among all possible offloading delays, A, it is not immediate
which may be corrected and which may not (e.g., A = oo likely
cannot be corrected). In this sense, knowing a particular response-
delay, A’, is correctable essentially characterizes how to take an
offloading decision, since it provides an expiration on safety: i.e.,
proceed to offload, and wait for a response until A’ samples have
elapsed — at which point resume local evaluation of NN,.
In particular then, EnergyShield has two main components:

C1: Controller Shield. EnergyShield contains a controller shield
(see Section 2.3), which ensures that safety is maintained ir-
respective of offloading-delayed controller outputs; in other
words, it corrects unsafe behavior of NN, that results from
changes in vehicle state during offloading delays.

C2: Runtime Safety Monitor. EnergyShield contains a runtime
safety monitor that provides the ADS an upper bound, Apax
(in samples), on how long it should wait for a response to
one of its offloading requests to maintain safety, assuming no
updates to the control action in the meantime; i.e., provided the
offload delay is A < Amax, then C1, the controller shield, can
guarantee safe recovery after holding the last control signal
update through offload delay period (C1 may use on-vehicle

2In our formal consideration, we will model a one-sample computation delay.

190

Mohanad Odema*, James Ferlez*, Goli Vaisi, Yasser Shoukry, Mohammad Abdullah Al Faruque

computation if necessary). In other words, Amax specifies
an expiration for the safety guarantee provided by C1
using on-vehicle computation.

Naturally, C1 and C2 need to be designed together, since their
objectives are mutually informed. Indeed, in the specific design of
EnergyShield, these components are designed from the same ZBF
(defined in Section 2.3): see Section 4 for formal details.

Unfortunately, neither component C1 nor C2 can operate effec-
tively on the same raw sensor measurements, y[n], used by the
controller; this is especially true given our intention to implement
them via ZBFs and controller shields. In particular, both require
some (limited) state information about the ADS in order to perform
their tasks. Thus, EnergyShield requires a perception/estimator
component to provide state information to C1 and C2. Note that
we deliberately exclude the design of such an estimator from the
EnergyShield framework in order to provide additional flexibility:
in particular, since the controller NN, may effectively contain an
estimator, we wish to allow for estimation to be offloaded, too —
provided it is executed locally just-in-time before informing C1 and
C2 (see Section 3.3). Nevertheless such an estimator is necessary
for EnergyShield, so we include it as component:

C3: State Estimator. EnergyShield requires (minimal) state esti-
mates as input to C1 and C2. By convention, this estimator
will be a NN denoted by NN, : y > x. We assume that NN,
can be computed by on-vehicle hardware in one sample period.

The interface of C3 with both C1 and C2 makes the latter two com-
ponents (state-)context aware. That is, EnergyShield makes context-
aware offloading decisions based on the current vehicle state. More-
over, it is important to note that since the prior control action will be
held during offload Amax, the output of C2 is control in addition to
state dependent: that is, C2 actually produces an output Amax (X, ©)
for (arbitrary) state x and the control u applied just before offload.

EnergyShield has one further important component, but one that
is motivated purely by energy savings with no effect on safety. Cru-
cially, the known expiration of safety provided by C2,i.e. Amax (x, u),
affords the opportunity to use additional information in making an
offload decision. In particular, an estimate of the anticipated edge
response time, A, can be used to forego offloads that are unlikely to
complete before the expiration of the safety deadline, Amax (x, u).
For this reason, EnergyShield contains an estimator of edge re-
sponse time to preemptively skip offloads that are likely to fail:

C4: Edge-Response Estimator. EnergyShield specifies that an
estimate of the current edge response time, A, is provided to
inform offloading decisions.

We note that EnergyShield doesn’t specify a particular estimator to
be used in this component: any number of different estimators may
be appropriate, and each estimator may lead to different energy
profiles. Moreover, since A is never used to override Apmayx (x,u),
safety is preserved irrespective of the specific estimator used.

The interconnection of the components C1 through C4 in Ener-
gyShield is illustrated in Figure 3. Note that component C3, the state
estimator, is connected to components C1 and C2, the controller
shield and safety runtime monitor, respectively. Also note that the
output of C2 provides a signal Apax (x, u) to the offloading decision
switch; also informing that decision is the estimate of immediate
edge-response times provided by component C4.

EnergyShield: Provably-Safe Offloading of Neural Network Controllers for Energy Efficiency

C4: Edge A (2, 1) C2: Runtime Safety Monitor|
Response 7]
Estimator
= AttheEdge A
3 Bax ! i ma
i |
* NN,
Offload | 5, [! c e Totmoaa
Decision _| O3 NN, = | End
\ —) (x, u)
Yy ——Y" y D ’ ~
- . u] N
A<Bny? NN, & u)| |Bewr < Amar?|
C: NN,
Cl: Shield

Gy |

Figure 3: EnergyShield Framework

3.3 Semantics of an EnergyShield Offloading
Decision

In this subsection, we consider the timeline of a single, hypothetical
EnergyShield offloading decision to illustrate the details of the inter-
play between the components described in Section 3.2. In particular,
suppose that an offloading interval has just been completed, and at
time index no a new offloading decision is to be taken.

We call the time between the initialization of an offloading de-
cision and the time that offloading decision has been resolved an
offloading period (the resolution is either by a response from the
edge or a fail-over to on-vehicle compute).

Timeline:

[no—-11]
e Assumption: X[no] = x[no—1] =NN, (y[n9—1]) is computed
locally in the last sample of the prior offloading period.
[no] Initial time index of new offload period.

o The first sample of the new offload period inherits a locally
computed %[ng] from the previous offloading period.
e x[ng] is provided to C1 to correct u[ng] as calculated by the
previous offloading. Let this correct control action be 7[ng]
o Fix control action applied at ng: i.e. ug.y, = ti[ng], with @i[ng]
as calculated above.
e x[ng] and ug.y, are provided to C2, the runtime safety moni-
tor, to generate Amax(%[no], ug-n)
e C4 generates an estimate for the edge response time, A based
on all packets exchanged so far.
o Offloading Decision:
— Proceed with offload, if: A < Amax(%[no], uy.,) AND
Amax(X[no], ug-n) = 1; i.e., proceed to transmit y[ng] to
the edge. Initialize offload duration counter: Acpyr = 1
— Otherwise, terminate offload period, and use local fail-safe.
Skip to Unsuccessful Offload with Amax(%[no], ug-n)=1.

[]

[no+Acnt]

Last time index of previous offload period.

Offload in progress; no edge response and Acpt <
Amax(%[no])
e Maintain zero-order hold of u[ng + Acnt] = ug-p-
e Increment Acpt: Acnt <— Acnt + 1.

[]

Now, the current offload period ends in one of two ways:

191

ICCPS 23, May 9-12, 2023, San Antonio, TX, USA

I) Successful Offload: (resume timeline from ny + Acnt)
[]
[no+A]

e Maintain control u[ng+Acnt] =ug.p-

e Initiate local evaluation of NN, for next time interval.

o Use received control action in next offloading period in lieu
of evaluating NN, i.e. u[ng+ A+ 1] = u[n1] = NN¢(y[no]).
no + A becomes time nj — 1 for the starting index of the next
offload period. (See ny — 1 time index above.)

II) Unsuccessful Offload: (resume timeline from ny + Acpt)
[

[no +Amax]

Edge response received; A = Acpy < Amax(X[no], ug-p)

No edge response received, and safety expired;

Acnt = Amax(X[nol, ug-p)

Maintain control u[ng+Amax(X[n0o], uo-n)] =uo-n

Initiate local evaluation of NN, for next time interval.
Initiate local evaluation of NN, for next time interval.

no + Amax (x[no]) becomes time nq — 1 for the starting index
of the next offload period. (See ng — 1 time index above.)

In particular, note two crucial facts. First, if C2 returns Amax (%, u) =
0, then it effectively forces pure on-vehicle evaluation of NN, and
NN. Second, we ensured that an up-to-date estimate of the state
is always available for both C1 and C2 before they have to act.

4 ENERGYSHIELD: PROVABLY SAFE
OFFLOADING

4.1 Main Formal Result

4.1.1 Formal Assumptions. We begin this section with a list of
formal assumptions about the ADS. These are largely based around
the structure of EnergyShield, as described in Section 3.

AssUMPTION 1 (ADS SAFETY). Consider a fixed point in the plane
as a stationary obstacle to be avoided by the ADS, and a disk of radius
7 around the origin to be a set of unsafe states; see Figure 2.

AssuMPTION 2 (ADS MobkL). Let Assumption 1 hold. Thus, sup-
pose that the ADS vehicle is modeled by the KBM dynamics in (1).
Suppose further that interactions with this model happen in discrete
time with zero-order hold. Let T be the sampling period.

ASSUMPTION 3 (ADS SENSORS). Let Assumptions 1 and 2 hold.
Suppose the KBM-modeled ADS has access to samples of a sensor
signal, s[n] € RN, at each discrete time step, and there is a perception
NN, NN : s[n] = x[n], which maps the sensor signal at each
discrete time to the (exact) KBM state at the same time instant, y[n].

AssuMPTION 4 (ADS CoNTROL). Let Assumptions 1 - 3 hold. Sup-
pose this KBM-modeled ADS vehicle has a NN controller, NN, : s —
®, which at each sample has access to the sensor measurement s.

AssuMPTION 5 (ADS LocAL COMPUTATION). Let Assumptions 1 -
4 hold. Suppose that the output of NN, and NN can be computed
by ADS on-vehicle hardware in less than T seconds — i.e., not instan-
taneously. Thus, suppose that the control action is obtained with a
one-sample computation delay when using on-vehicle hardware: i.e.,
the control action applied at sample n + 1 is w[n + 1] = NN¢(s[n]).

ICCPS °23, May 9-12, 2023, San Antonio, TX, USA

4.1.2 Component Design Problems. There are two central problems
that need to be solved: i.e., corresponding to the design of the two
main components of EnergyShield, C1 and C2 (see Section 3).

The solutions to these problems are deferred to Sections 4.2 and
Section 4.3, respectively. We state them here in order to facilitate
the statement of our main result in the next subsection.

PROBLEM 1 (CONTROLLER SHIELD DESIGN (C1)). Let Assumptions
1-5 hold. Then the problem is to design: first, design functions h and o
such that they constitute a ZBF for the KBM (see Section 2.3); and then
using this ZBF, design a controller shield, S for the KBM model. The
resulting controller shield must have the following additional property
for a discrete-time version of the KBM with zero-order-hold inputs:

e Let y[no — 1] and y[no] be KBM states such that h(y[no —
1]), h(x[no]) > 0, and let y[no] result from a feasible input
&[ng — 1] applied in state y[no — 1]. Then the control action

@[no] = S(x[no — 1], @[no]) ©)

must yield a state y[ng + 1] such that h(y[no + 1]) > 0; i.e.,
the controller shield preserves safety under discretization of the
KBM and one-step estimation delay (associated with NNy,), as
in the case of no computations being offloaded.

PROBLEM 2 (RUNTIME SAFETY MONITOR DESIGN (C2)). Let As-
sumptions 1 - 5 hold, and assume that h, « and S solve Problem 1.
Then the problem is to design a runtime safety monitor:

Amax RS X Qadmis. - N

(10)
with the following property:

o Let y[no—1] be such that h(y[no—1]) > 0. Then for constant
control, w = w[ng], applied to the discretized KBM starting
from y[no — 1] the following is true:

Vn=0,...,Amax(x[no — 1], w[no]) . A(x[no —1+n]) >0 (11)

i.e. the constant control w = w|[ng] preserves safety for at least
Amax(x[no — 1], w[no]) samples from state y[ng — 1].
(The delay in x[no — 1] accounts for the computation time of NNp.)

4.1.3 Main Result. We can now state our main result.

THEOREM 1. Let Assumptions 1 - 5 hold, and assume a ZBF for the
KBM dynamics, using which Problem 1 and Problem 2 can be solved.

Then the offloading policy described in Section 3.3 preserves safety
of the KBM-modeled ADS (Assumptions 1 and 2).

ProoF. The proof follows largely by construction. Each offload
period is limited in duration by the runtime safety monitor; thus, a
safety monitor that solves Problem 2 will ensure safety under the
specified constant control action during the offload period. Then by
the additional property of the controller shield in Problem 1, safety
can be maintained after the offloading period ends: i.e., either by
performing a new offload if there remains significant safety margin,
or by executing locally if there is no offload safety margin. O

COROLLARY 1. Let Assumptions 1 -5 hold, and consider the ZBF
for the KBM dynamics specified in Section 2.4. Then the controller
shield in Section 4.2 uses this ZBF and solves Problem 1; likewise, the
runtime monitor in Section 4.3 uses this ZBF and solves Problem 2.
Hence, our implementation of EnergyShield is safe.

192

Mohanad Odema*, James Ferlez*, Goli Vaisi, Yasser Shoukry, Mohammad Abdullah Al Faruque

4.2 KBM Controller Shield

Fortunately, we have access to a preexisting ZBF and controller
shield designed for the KBM: see Section 2.4 [14]. That is, the ZBF is
available after using the design methodology in [14] to choose the
parameter o (see Section 2.4); for simplicity, we will omit further
discussion this design process. Thus, for this section, we refer to a
fully implemented controller shield as Sgppg, with the understand-
ing that it has been designed for the relevant KBM model and safety
parameter 7 (see Figure 2); viz. Assumptions 1 and 2.

Thus, Gkgpm must be altered so that it satisfies the additional
property required in Problem 1, hence the following Lemma.

LEMMA 1. Let Assumptions 1 - 5 hold as usual, and let Skppr be a
controller shield designed under these assumptions as per Section 2.4.
Then there exists a p > 0 such that the following controller shield:

”_PZVmin(sz)

r=p<rmin(&)AE20
r=p<fmin (&) ANE<O

Skm((r-p,&,0),0)
S (1, £0),0) 5 1 o
_ﬁmax

solves Problem 1; parameters other than p are defined in Section 2.

(12)

The proof of this Lemma is deferred to Appendix A.

A further remark is in order about Lemma 1. Note that the altered
controller shield GI?BM maintains the energy efficient implementa-
tion of the controller shield Sgpp as designed in [14]; the modified
shield in (12) amounts to a threshold override of the original shield,
SkBM, using p and the value of ryj, (&), which is trivial to compute.

4.3 KBM Runtime Safety Monitor

Recall that the runtime safety monitor of EnergyShield must provide
an expiration on the safety of the vehicle during an offload period,
throughout which only a single, fixed control input is applied. This
expiration must come with a provable guarantee that the vehicle
safety is not compromised in the interim. In the formulation of
EnergyShield and Problem 2, this means only that h7 , must remain
non-negative until the expiration of the deadline provided by the
runtime safety monitor: see the condition (11) of Problem 2.

This formulation is convenient because it means that the problem
can again be analyzed in continuous time, unlike our consideration
of Problem 1 above: the conversion back to discrete time involves a
floor operation; and compensating for the one-sample state delay
induced by computing NN, involves subtracting one sample from
the result. That is, to solve Problem 2 and design an EnergyShield-
safety monitor, it is sufficient provide a (real) time, v, s.t.:

vt € [0,v] . h(ZP (1)) > o.

Loo[ng)

(13)

That is, the flow of fkppm started from y[ng — 1] and using constant
control w[no] maintains A > 0 for the duration [0, v]. We emphasize
that such a v can be converted into the sample units expected for
Amax(x[no — 1], w[ng]) by using a floor operation and subtracting
one. Thus, we have the following Lemma, which solves Problem 2.

LEMMA 2. Let Assumptions 1 -5 hold as usual. Let
Amax(x[no = 1, @[ng]) = max([v(x[no - 1], w[nol)] - 1,0) (14)
where v = v(x[no — 1], w[no]) solves the equation:

V2L, - feanxlno=11, @ lmo])llz-v-elion ™ = h(x[no-11) (15)

EnergyShield: Provably-Safe Offloading of Neural Network Controllers for Energy Efficiency

Local outputs
Continuous Local _{#zZz7z s, 2,

! HT 2T +3T 4t 5T

EnergyShield Bpar <27 Apgr < 37 U Ap ST |

(eager) s e e M A) |
t HT =21 #3t 4t H5T

EnergyShield | Apar =21 »le Apar = 37 N|

(uniform) fo— idle —»| e e, S

T =21 #3t 4T

Figure 4: The operational policies in our experiments given
base time window 7. Darker instances imply local execution.

for Ly, . and Ly, upper bounds on the Lipschitz constants of hr.&
and figy, respectively. Then Apax(x[no — 1, w[ng]) solves Problem 2.

The proof of Lemma 2 is deferred to Appendix B.

Lemma 2 specifies a complete solution to Problem 2, as claimed.
However in its immediate form, it requires numerically solving (15)
with each evaluation of Amax(y[no — 1], @[no]); i.e., each time a
safety expiration time is requested from the runtime safety monitor
(every sample in the case where the offloading period is terminated
before offload). The nature of (15) is such that solving it numerically
is not especially burdensome — especially compared to the NN
evaluations it replaces; however, it is also possible to implement
soundly as a LUT to achieve greater energy efficiency.

5 EXPERIMENTS AND FINDINGS

The purpose of this section is to assess the following key aspects
of EnergyShield: (i) the extent of energy savings achievable com-
pared to the conventional continuous local execution mode given a
wide variety of network conditions and server delays, (ii) its abil-
ity to enforce the safety through obstacle collision avoidance, (iii)
how representative the upper bounds of the edge response time
(Amax) are of the inherent risks existing in the corresponding driv-
ing context, and (iv) its generality across different controllers, i.e.
controllers with different learned driving characteristics.

5.1 Experimental Setup

5.1.1 Operational Policies: In addition to the baseline continuous
local execution, we designate two EnergyShield offloading modes:
e Eager: a new offloading period is immediately started if the
edge response has been received at the ADS or Ap,4x expired.
o Uniform: the start of a new offloading interval is always
delayed until Ap,qx expires, regardless of whether edge re-
sponses have been received or not.
We define both these modes to reflect the attainable behavioral
trade-offs of EnergyShield with regards to realizing an ideal control
behavior or maximizing energy efficiency. This distinction is illus-
trated through the first offloading interval in Figure 4 in which the
uniform EnergyShield idles upon its retrieval of the edge responses
until Apygx expires unlike the eager EnergyShield mode.

5.1.2 Experimental Scenario: We perform our experiments using
the CARLA open-source simulator for autonomous driving research
[10]. We follow the setup proposed in [14], and implement a simi-
lar experimental scenario®. Basically, the scenario involves a four-
wheeled vehicle travelling from a starting position A to destination
B along a 100m motorway track with 4 pedestrian obstacles in its
path. The first obstacle spawns after 40m of the track, while the
remaining spawning positions are uniformly spaced between the

3https://github.com/shieldNN/shiel ANN2020

193

ICCPS 23, May 9-12, 2023, San Antonio, TX, USA

first obstacle’s position and that of the final destination — with a
potential +10m variation along the longitudinal axis.

5.1.3 Experimental Settings: Throughout this section, all of our
experiments are conducted under different combinations of the
following two binary configuration parameters:

o S: this binary variable indicates whether the Controller Shield
component is active (see Section 3.2).

o N: this binary variable indicates whether this is a more chal-
lenging, “noisy” version of the experimental test case.

In particular, the noisy version entails perturbing the obstacles’
spawning positions by adding values sampled from a normal distri-
bution N (0, 1.5m) along both the longitudinal and latitudinal axis.
For example, the configuration settings (S = 1, N = 0) indicate that
the experiment was performed with Controller Shield active and
with no perturbations in the obstacles’ spawning positions.

5.1.4 Simulation Setup: For the controller model, its first stage
entails two concurrent modules: an object detector as the large NN
model of the ADS and a f§ Variational Autoencoder ($-VAE) provid-
ing additional latent feature representations of the driving scene.
Both components operate on 160x80 RGB images from the vehicle’s
attached front-facing camera. In the subsequent stage, a Reinforce-
ment Learning (RL) agent aggregates the detector’s bounding box
predictions, latent features, and the inertial measurements (5}, v,

and a) to predict vehicle control actions (steering angle and throttle).
The inertial measurements can be fetched directly from CARLA,
whose positional and orientation measurements are also used di-
rectly to calculate r and £ relative the vehicle’s current nearest
obstacle for obstacle state estimation. We trained the RL controller
agents using a reward function, R, that aims to maximize track
completion rates through collision avoidance while minimizing the
vehicle’s center deviance from the primary track. For the definition
of R as well as details of the RL agents see Appendix C.

5.1.5 Performance Evaluations: We use a pretrained ResNet-152
for our object detector and benchmark its performance in terms of
latency and energy consumption when deployed on the industry-
grade Nvidia Drive PX2 Autochauffer ADS. We found that a single
inference pass on the ResNet-152 took ~ 16 ms, and accordingly,
we fixed the time-step in CARLA at 20 ms since the detector-in-the-
loop was the simulation’s computational bottleneck. To evaluate
the wireless transmission power, we use the data transfer power
models in [17] and assume a Wi-Fi communication link.

5.1.6 Wireless Channel Model: 'We model the communication
overheads between the ego vehicle and edge server as: Leomm =

data_size
Lrx + Lgye s-t. Lty = —5—

, Where Lgye represents potential
queuing delays at the server whereas Lty is the transmission la-
tency defined by the size of the transmission data, data_size, over
the experienced channel throughput, ¢. Here, we assume ¢ as the
“effective” channel throughput experienced at the ego vehicle, which
takes into consideration potential packet drops, retransmissions,
etc. We leverage a Rayleigh distribution model as in [27] to sam-
ple throughput values ¢ ~ Rayleigh(0, o) with zero mean and oy
scale (default 55 =20 Mbps). The modelling of queuing delays, g, and

the server response time estimation, A, are detailed in Appendix C.

ICCPS °23, May 9-12, 2023, San Antonio, TX, USA

5.2 EnergyShield Evaluations

The purpose of this experiment is to assess the controller’s perfor-
mance when supplemented with EnergyShield in terms of energy
efficiency and safety. For every configuration of S and N, we run the
test scenario for 35 episodes and aggregate their combined results.
Energy Efficiency: We first assess the energy efficiency gains
offered by EnergyShield compared to the baseline continuous local
execution. As illustrated Figure 5, the left barplot demonstrates that
both modes of EnergyShield substantially reduce the energy con-
sumption footprint of the NN compared to local execution across
all S and N configurations. For instance, under the default configu-
ration (S = 0, N = 0), EnergyShield energy reductions reach 20% and
40.4% for the eager and uniform modes, respectively. These num-
bers further improve for the subsequent configurations in which
N =1 or S = 1. Upon inspection, we find that this is the result of
the ego vehicle encountering more instances in which obstacles are
not in the direct line-of-sight of its heading. The reasons being that
at N = 1, some obstacles can be displaced out of the primary lane
that the ego vehicle follows to complete the track, whereas at S = 1,
such instances result from the Controller Shield applying corrective
behaviors on the NN’s predicted steering outputs, resulting in more
tangential orientations of the vehicle with respect to the obstacles
(i.e., & = +m/2). Accordingly, large values of Apax — about 4-5
time samples (equivalent to 80-100 ms) — are increasingly sampled,
and that automatically translates into more offloading decisions.
For instance at (S = 1, N = 0), the energy efficiency gains reach
24.3% and 54.6% for the respective eager and uniform modes.
Safety Evaluation: To assess the EnergyShield’s ability to
enforce safety, we designate track completion rates (TCR %) as a
comparison metric to signify the proportion of times the vehicle
was able to complete the track without collisions. Taking the local
execution mode as the test scenario, the right barplot of Figure 5
shows that without an active Controller Shield (S = 0), collisions
with the pedestrian obstacles cause the TCR% to be 65.7% at N =
0, and even less at 22.9% for the noisy test case (N = 1). However,
when the Controller Shield is active (S = 1), collisions are completely
avoided and the TCR (%) values jump to 100% for both cases. This
is also visible through the respective improvements in R which
reached 13.3% and 61.1%. To further demonstrate such occurrences,
we analyze in Figure 6 the ego vehicle’s chosen trajectories across
3 episodes of dissimilar (S, N) configurations. As shown, the (S =
0, N = 0) instance incurs a collision with the pedestrian object and
does not complete the track. An active Controller Shield (S = 1),
however, enforces a left or right corrective maneuvering action for
obstacle avoidance and maintaining safety; see also Figure 6.
Energy vs. Distance: To assess how representative the Ay qx
upper bounds provided by the Runtime Safety Monitor are of the
corresponding driving scene context, we examine EnergyShield’s
energy consumption at different distances from the nearest obstacle
(r). The hypothesis is that larger r values imply relatively “safer”
driving situations, which would result in larger values of A4 to
be sampled, and accordingly more offloading instances enhancing
the NN’s energy efficiency. As shown in Figure 7, we plot the
average experienced normalized energy ratings of the two modes of
EnergyShield with respect to local execution against r across every
configuration’s set of 35 episodes. Each tick on the horizontal axis

194

Mohanad Odema*, James Ferlez*, Goli Vaisi, Yasser Shoukry, Mohammad Abdullah Al Faruque

Local BN Eager [~ Uniform

o
%

F x x x
53.2%5

100 140.4%i 46.6%! 54.6%!
i i

Energy (mJ)
o
Q

o
=
Reward (lineplot)

TCR (%) (barplot)

om D ox) gD e
Figure 5: EnergyShield’s energy efficiency gains with respect
to continuous local execution (left) and safety analysis in

terms of the R evaluation and % TCR (right).

-120

— (S=LI.N=1) ~
_1404 \ — (S=1, N= O)! _wol T Obstacle \ \
| “ —— Obstacle | --= Route \ \
» —1604 ‘ \\-_:'_ Route V2 160 e -
2 | m—— | & (_-—--— —-—-—
E T Collision _.~" £ . \
g —1804 -\- ./_7 | E 150 \\ _
3 ——-— 2 18 N .
%’ZOOJ 1) l ™ 200 > \
2201 s - | 220 \ i
Lo \ "
240 —-— - — e —
4(')6_ 468_ 41; 41; 402 404 406 408
x-coordinates x-coordinates
T—

. P,
-

Figure 6: Top: Example trajectories followed by the ego ve-
hicle with the start point at the top. Bottom: illustration of
how the ego vehicle under the aforementioned operational
modes behaved in reaction to the first encountered obstacle.

accounts for an entire range of 1m distances rather than a single
value - e.g., a value of 2 on the horizontal axis encompasses all
distances in the range [2 - 3). At close distances (r < 4m), we find that
EnergyShield modes incur almost the same energy consumption
overhead as that from the default local execution. This is mainly
accredited to the Runtime Safety Monitor recognizing the higher
risks associated with the close proximity from the objects, and
accordingly outputting smaller values of A4y that can only be
satisfied by local execution. As the distance from obstacles increases,
so do the values of Ay, 4x, causing a gradual increase in the number
of offloading instances, followed by a progressive reduction in
energy consumption. For instance, the eager and uniform modes
achieve 32% and 66% respective reductions in energy consumption
at r = 13 m for the (S = 1, N = 1) configuration. Even more so, all
configurations of the respective eager and uniform modes at the (r
> 20m) bracket realize 33% and 67% respective energy gains.

5.3 Wireless Channel Variations

In this experiment, we assess how the performance gains of En-
ergyShield are affected given variations of the wireless channel
conditions. Specifically, given potential changes in the channel
throughput, ¢, or the queuing delays, g, we investigate to what
extent do the energy savings offered by EnergyShield vary. Ad-
ditionally, we examine for every set of experimental runs what

EnergyShield: Provably-Safe Offloading of Neural Network Controllers for Energy Efficiency

10 ==+ (S=0,N=0) === (S=0,N=0)
——- (S=0,N=1) ——= (S=0,N=1)
(S=1,N=0) ——- (S=1,N=0)

(8=1,N=1) (S=1,N=1)

0.8

0.6 1 ‘ ~32% Reduction

W

AS ‘ ~66% Reduction ‘

> SN2~
N

Normalized Energy Consumption

\\\\:.."__;;‘__:/\ \
0.4 1 No instances of ey EN
r <2 when S=1 F \
0 2 4 6 8 10 12 14 16 18 >=20

Distance from Obstacle (r) in m

Figure 7: Normalized Energy Gains for the eager (solid) and
uniform (dashed) EnergyShield modes with respect to the
distance from obstacle (r) in m.

2 1
g |
£ ’ I %
R 1
1

& 1
g ,

10 1 1
: Effective : More L(‘)cal
E 5 Offloading h Execution
= L .

¢=20MDPS; —10MDPS =SMbPS | g=10mS =00 MS =50 ™S

Figure 8: Analyzing the % extra transit windows over 35
episodes of uniform EnergyShield given various o and g.

percentage of their total elapsed time windows were extra tran-
sition windows needed to complete a single offloading instance,
which we denote by the % Extra Transit Windows metric. From here,
we first analyze such effects when varying o4 € {20, 10,5} Mbps
given a fixed ¢ = 1 ms, and then when varying q € {10, 20,50}
ms given a fixed o5 = 10 Mbps. For the uniform EnergyShield,
we notice in Figure 8 that the % Extra Transit Windows drops for
the contrasting conditions of high throughput (o,p; = 20 Mbps)
and high queuing delays (g = 50 ms), reaching medians of 7% and
8%, respectively. This can be justified in light of how the benign
channel conditions (o4 = 20 Mbps) indicate that the majority of
offloading instances are concluded in a single time window with
no considerable need for extra transmission windows. Whereas at
unfavorable wireless conditions (g = 50 ms), A values often exceed
Amax, leading EnergyShield to opt for local execution more often
so as to avoid wireless uncertainty, lowering the total number of
transmission windows alltogether. Such effects are also visible in
the twin Figure 9 as EnergyShield’s energy consumption varies
across these contrasting conditions, reaching respective medians
of 45% and 93% of the local execution energy at 04=20 and g=50.

5.4 Generality

To assess the generality of EnergyShield, we train 3 additional RL
controllers to evaluate how consistent EnergyShield is with regards
to maintaining safety guarantees, and how the energy efficiency
gains would vary given a distinctive driving behavior for each
agent. Hence, we repeat the primary test runs for the additional
controllers in which we average the energy consumption and TCR

195

ICCPS 23, May 9-12, 2023, San Antonio, TX, USA

1.0 1 !
& i Reduced Uncertainty @
3 1
=] 0.8 1
5 0.
% | Efficient == | %
= 0.6 {Offloading : %
E + :
z .
0.4 1

- . . - . .
s ¢=20MbP55 ¢=10MbP5 G ¢=5Mbps: q=10 ms q=20 ms q=50 ms

Figure 9: Analyzing the Normalized Energy cons. over 35

episodes of uniform EnergyShield given various o and g.

across 35 episodes of each viable (S, N) configuration. We also report
the average center deviance (CD) experienced by the ego vehicle
from the primary track lane as a metric to characterize the different
driving behaviors of each controller. In our experimental test case,
larger CD imply larger r values, that is, controllers with low values
of CD tend to drive closer to the obstacles at higher risks of collisions
(maximizing R through minimizing CD), whereas larger values of
CD indicate the agents have learnt to take the farther lanes of the
track so as to maximize track completions by prioritizing collision
avoidance (maximizing R by maximizing TCR). We highlight the
key findings here; detailed results appear in Table 1 of Appendix C.
Our first key finding is that given S = 0, TCR (%) is dependent
on CD ratings as only the controllers with CD > 5m consistently
achieve the 100% TCR. At S = 1, however, this dependency no longer
holds at S = 1 when the Controller Shield enforces the obstacle avoid-
ance safety guarantees, pushing all controllers to achieve 100% TCR
irrespective of CD values. The other interesting finding here is that
across both modes of EnergyShield, the average energy consump-
tion is less for controllers with larger CD ratings. For instance at
(S = 1, N = 1), when the RL controllers are arranged in an increas-
ing order of their CD values 2.8—3.6—5.4—5.7 m, the average
energy consumption per inference decreases in the respective order
53.1—45.7—42.1—39.8 m]. Indeed, this highlights EnergyShield’s
capability of conducting safe and effective context-aware offloading,
especially given how the Runtime Safety Monitor provides large
Amax to realize more energy gains in the safer situations (e.g., larger
distances from obstacles), and how the Controller Shield always
maintains safety guarantees independent of offloading decisions.

ACKNOWLEDGMENTS

This work was supported by National Science Foundation under
awards CCF-2140154, CNS-2002405 and ECCS-2139781; and by the
C3.ai Digital Transformation Institute.

REFERENCES

[1] Anayo K Akametalu, Jaime F Fisac, Jeremy H Gillula, Shahab Kaynama, Melanie N
Zeilinger, and Claire J Tomlin. 2014. Reachability-based safe learning with
Gaussian processes. In 53rd IEEE Conference on Decision and Control. IEEE, 1424—
1431. https://doi.org/10.1109/CDC.2014.7039601

Mohammed Alshiekh, Roderick Bloem, Rudiger Ehlers, Bettina Konighofer, Scott
Niekum, and Ufuk Topcu. 2018. Safe Reinforcement Learning via Shielding.
In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence
(AAAI'18). AAAI Press, Article 326, 10 pages.

Sabur Baidya, Yu-Jen Ku, Hengyu Zhao, Jishen Zhao, and Sujit Dey. 2020. Ve-
hicular and Edge Computing for Emerging Connected and Autonomous Vehicle
Applications. In 2020 57th ACM/IEEE Design Automation Conference (DAC). 1-6.
https://doi.org/10.1109/DAC18072.2020.9218618

Felix Berkenkamp, Matteo Turchetta, Angela P. Schoellig, and Andreas Krause.
2017. Safe Model-Based Reinforcement Learning with Stability Guarantees. In

ICCPS °23, May 9-12, 2023, San Antonio, TX, USA

(5

[10

[11

[12

(13

[14

[16

[17

(18

[19

[20

[21

[22

[23

=

]

]

]

]

]

]

]

]

Proceedings of the 31st International Conference on Neural Information Processing
Systems. Curran Associates Inc., NY, USA, 908-919.

Luke Chen, Mohanad Odema, and Mohammad Abdullah Al Faruque. 2022. Ro-
manus: Robust Task Offloading in Modular Multi-Sensor Autonomous Driv-
ing Systems. In Proceedings of the 41st IEEE/ACM International Conference on
Computer-Aided Design (ICCAD °22). Association for Computing Machinery, New
York, NY, USA, Article 162, 8 pages. https://doi.org/10.1145/3508352.3549356
Richard Cheng, Gabor Orosz, Richard M. Murray, and Joel W. Burdick. 2019. End-
to-End Safe Reinforcement Learning through Barrier Functions for Safety-Critical
Continuous Control Tasks. In Proceedings of the Thirty-Third AAAI Conference
on Artificial Intelligence (AAAI'19). AAAI Press, Article 416, 9 pages. https:
//doi.org/10.1609/aaai.v33i01.33013387

Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad
Ghavamzadeh. 2018. A Lyapunov-Based Approach to Safe Reinforcement Learn-
ing. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems. Curran Associates Inc., NY, USA, 8103-8112.

Mingyue Cui, Shipeng Zhong, Boyang Li, Xu Chen, and Kai Huang. 2020. Offload-
ing Autonomous Driving Services via Edge Computing. IEEE Internet of Things
Journal 7, 10 (2020), 10535-10547. https://doi.org/10.1109/JI0T.2020.3001218
Charles Dawson, Sicun Gao, and Chuchu Fan. 2023. Safe Control With Learned
Certificates: A Survey of Neural Lyapunov, Barrier, and Contraction Methods
for Robotics and Control. IEEE Transactions on Robotics (2023), 1-19. https:
//doi.org/10.1109/TRO.2022.3232542

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. 2017. CARLA: An Open Urban Driving Simulator. In Proceedings of the
1st Annual Conference on Robot Learning. 1-16.

Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. 2018.
Output Range Analysis for Deep Feedforward Neural Networks. In NASA Formal
Methods, Aaron Dutle, César Muiioz, and Anthony Narkawicz (Eds.). Springer,
Cham, 121-138. https://doi.org/10.1007/978-3-319-77935-5_9

Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George J.
Pappas. 2019. Efficient and Accurate Estimation of Lipschitz Constants for Deep
Neural Networks. Curran Associates Inc., NY, USA. https://doi.org/10.5555/
3454287.3455312

Jingyun Feng, Zhi Liu, Celimuge Wu, and Yusheng Ji. 2019. Mobile Edge Com-
puting for the Internet of Vehicles: Offloading Framework and Job Scheduling.
IEEE Vehicular Technology Magazine 14, 1 (2019), 28-36. https://doi.org/10.1109/
MVT.2018.2879647

James Ferlez, Mahmoud Elnaggar, Yasser Shoukry, and Cody Fleming. 2020.
ShieldNN: A provably safe NN filter for unsafe NN controllers. arXiv preprint
arXiv:2006.09564 (2020).

Jaime F. Fisac, Anayo K. Akametalu, Melanie N. Zeilinger, Shahab Kaynama,
Jeremy Gillula, and Claire J. Tomlin. 2019. A General Safety Framework for
Learning-Based Control in Uncertain Robotic Systems. IEEE Trans. Automat.
Control 64, 7 (2019), 2737-2752. https://doi.org/10.1109/TAC.2018.2876389
Vijay Govindarajan, Katherine Driggs-Campbell, and Ruzena Bajcsy. 2017. Data-
driven reachability analysis for human-in-the-loop systems. In 2017 IEEE Con-
ference on Decision and Control (CDC). 2617-2622. https://doi.org/10.1109/CDC.
2017.8264039

Junxian Huang, Feng Qian, Alexandre Gerber, Z. Morley Mao, Subhabrata Sen,
and Oliver Spatscheck. 2012. A Close Examination of Performance and Power
Characteristics of 4G LTE Networks (MobiSys ’12). Association for Computing Ma-
chinery, New York, NY, USA, 225-238. https://doi.org/10.1145/2307636.2307658
Radoslav Ivanov, James Weimer, Rajeev Alur, George J. Pappas, and Insup Lee.
2019. Verisig: Verifying Safety Properties of Hybrid Systems with Neural Network
Controllers. In Proceedings of the 22nd ACM International Conference on Hybrid
Systems: Computation and Control (HSCC ’19). Association for Computing Ma-
chinery, New York, NY, USA, 169-178. https://doi.org/10.1145/3302504.3311806
Torsten Koller, Felix Berkenkamp, Matteo Turchetta, and Andreas Krause. 2018.
Learning-Based Model Predictive Control for Safe Exploration. In 2018 IEEE
Conference on Decision and Control (CDC). 6059-6066. https://doi.org/10.1109/
CDC.2018.8619572

Jason Kong, Mark Pfeiffer, Georg Schildbach, and Francesco Borrelli. 2015. Kine-
matic and dynamic vehicle models for autonomous driving control design. In
2015 IEEE Intelligent Vehicles Symposium (IV). 1094-1099. https://doi.org/10.1109/
1VS.2015.7225830

Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach, Md E. Haque, Lingjia
Tang, and Jason Mars. 2018. The Architectural Implications of Autonomous Driv-
ing: Constraints and Acceleration. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS °18). Association for Computing Machinery, New York, NY,
USA, 751-766. https://doi.org/10.1145/3173162.3173191

Changliu Liu, Tomer Arnon, Christopher Lazarus, Clark Barrett, and Mykel J
Kochenderfer. 2019. Algorithms for verifying deep neural networks. arXiv
preprint arXiv:1903.06758 (2019).

Shaoshan Liu, Liangkai Liu, Jie Tang, Bo Yu, Yifan Wang, and Weisong Shi. 2019.
Edge Computing for Autonomous Driving: Opportunities and Challenges. Proc.
IEEE 107, 8 (2019), 1697-1716. https://doi.org/10.1109/JPROC.2019.2915983

196

[24

[25

[26

~
=

[28

[29

'S
=

(31]

[32

[33

(34

[35

[36

[37

[38

[39

Mohanad Odema*, James Ferlez*, Goli Vaisi, Yasser Shoukry, Mohammad Abdullah Al Faruque

Christian Llanes, Matthew Abate, and Samuel Coogan. 2022. Safety from Fast,
In-the-Loop Reachability with Application to UAVs. In 2022 ACM/IEEE 13th
International Conference on Cyber-Physical Systems (ICCPS). 127-136. https:
//doi.org/10.1109/ICCPS54341.2022.00018

Arnav Malawade, Mohanad Odema, Sebastien Lajeunesse-degroot, and Moham-
mad Abdullah Al Faruque. 2021. SAGE: A Split-Architecture Methodology for
Efficient End-to-End Autonomous Vehicle Control. ACM Trans. Embed. Comput.
Syst. 20, 5s, Article 75 (sep 2021), 22 pages. https://doi.org/10.1145/3477006
Aniruddh Mohan, Shashank Sripad, Parth Vaishnav, and Venkatasubramanian
Viswanathan. 2020. Trade-offs between automation and light vehicle electrifi-
cation. Nature Energy 5, 7 (2020), 543-549. https://doi.org/10.1038/s41560-020-
0644-3

Mohanad Odema, Luke Chen, Marco Levorato, and Mohammad Abdullah Al
Faruque. 2022. Testudo: Collaborative Intelligence for Latency-Critical Au-
tonomous Systems. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (2022), 1-1. https://doi.org/10.1109/TCAD.2022.3211480
Alexander Robey, Haimin Hu, Lars Lindemann, Hanwen Zhang, Dimos V. Di-
marogonas, Stephen Tu, and Nikolai Matni. 2020. Learning Control Barrier
Functions from Expert Demonstrations. In 2020 59th IEEE Conference on Decision
and Control (CDC). 3717-3724. https://doi.org/10.1109/CDC42340.2020.9303785
Kengo Sasaki, Naoya Suzuki, Satoshi Makido, and Akihiro Nakao. 2016. Vehicle
control system coordinated between cloud and mobile edge computing. In 2016
55th Annual Conference of the Society of Instrument and Control Engineers of Japan
(SICE). 1122-1127. https://doi.org/10.1109/SICE.2016.7749210

Guanya Shi, Xichen Shi, Michael O’Connell, Rose Yu, Kamyar Azizzadenesheli,
Animashree Anandkumar, Yisong Yue, and Soon-Jo Chung. 2019. Neural Lander:
Stable Drone Landing Control Using Learned Dynamics. In 2019 International
Conference on Robotics and Automation (ICRA). IEEE Press, 9784-9790. https:
//doi.org/10.1109/ICRA.2019.8794351

Mohit Srinivasan, Amogh Dabholkar, Samuel Coogan, and Patricio A. Vela. 2020.
Synthesis of Control Barrier Functions Using a Supervised Machine Learning
Approach. In 2020 IEEE/RSF International Conference on Intelligent Robots and
Systems (IROS). 7139-7145. https://doi.org/10.1109/IROS45743.2020.9341190
Xiaowu Sun, Haitham Khedr, and Yasser Shoukry. 2019. Formal Verification of
Neural Network Controlled Autonomous Systems. In Proceedings of the 22nd
ACM International Conference on Hybrid Systems: Computation and Control (HSCC
’19). Association for Computing Machinery, New York, NY, USA, 147-156. https:
//doi.org/10.1145/3302504.3311802

Sihai Tang, Bruce Chen, Harold Iwen, Jason Hirsch, Song Fu, Qing Yang, Paparao
Palacharla, Nannan Wang, Xi Wang, and Weisong Shi. 2021. VECFrame: A
Vehicular Edge Computing Framework for Connected Autonomous Vehicles. In
2021 IEEE International Conference on Edge Computing (EDGE). 68-77. https:
//doi.org/10.1109/EDGE53862.2021.00019

Andrew]. Taylor, Andrew Singletary, Yisong Yue, and Aaron D. Ames. 2021. A
Control Barrier Perspective on Episodic Learning via Projection-to-State Safety.
IEEE Control Systems Letters 5, 3 (2021), 1019-1024. https://doi.org/10.1109/
LCSYS.2020.3009082

Li Wang, Evangelos A. Theodorou, and Magnus Egerstedt. 2018. Safe Learning
of Quadrotor Dynamics Using Barrier Certificates. In 2018 IEEE International
Conference on Robotics and Automation (ICRA). 2460-2465. https://doi.org/10.
1109/ICRA.2018.8460471

Weiming Xiang, Diego Manzanas Lopez, Patrick Musau, and Taylor T. Johnson.
2019. Reachable Set Estimation and Verification for Neural Network Models of
Nonlinear Dynamic Systems. Springer, Cham, 123-144. https://doi.org/10.1007/
978-3-319-97301-2_7

Wei Xiao, Noushin Mehdipour, Anne Collin, Amitai Y. Bin-Nun, Emilio Frazzoli,
Radboud Duintjer Tebbens, and Calin Belta. 2021. Rule-Based Optimal Control
for Autonomous Driving (ICCPS ’21). Association for Computing Machinery,
New York, NY, USA, 143-154. https://doi.org/10.1145/3450267.3450542
Xiangru Xu, Paulo Tabuada, Jessy W. Grizzle, and Aaron D. Ames. 2015. Robust-
ness of Control Barrier Functions for Safety Critical Control. IFAC-PapersOnLine
48, 27 (2015), 54-61. https://doi.org/10.1016/j.ifacol.2015.11.152 Analysis and
Design of Hybrid Systems ADHS.

Xumiao Zhang, Anlan Zhang, Jiachen Sun, Xiao Zhu, Y. Ethan Guo, Feng Qian,
and Z. Morley Mao. 2021. EMP: Edge-Assisted Multi-Vehicle Perception. In
Proceedings of the 27th Annual International Conference on Mobile Computing and
Networking (MobiCom °21). Association for Computing Machinery, New York,
NY, USA, 545-558. https://doi.org/10.1145/3447993.3483242

EnergyShield: Provably-Safe Offloading of Neural Network Controllers for Energy Efficiency

A PROOF OF LEMMA 1

Proor. In this proof, let y[n'] = (r[n’], &[n’],0v[n’]),n’ € Z.

The proof will be constructive. To this end, recall that we have
assumed a capped (controlled) maximum vehicle velocity of vpax.
Thus, let y = 2 - max - T, where T is the sample period (see Section
2.1). As a consequence, also note that for r[ng—1] > ryin (£[no—1]):

rlno+1] >r[ng—1] —2-omax - T >7F—y (16)
so that on any two-sample period
; 1 1
€] < vmax - (fTY + Z) (17)

Then observe that the Lipschitz constant of the function ry;y is
bounded by L, < ﬁ. Finally, conclude that

S o
|rm1n(§ no —1)—rmm(é‘_’ n0+1])|
S2-(1i—.—;7-cr)2'Umax'(ﬁ [i) 2. T2y (18)

Then choose p = n+7.
Now, given the structure of the amended shield in (12), establish-
ing the conclusion of Problem 1 can be broken into three cases:

(i) r[no]l = rmin(&[no]) + p; (irrespective of the position of
rlno —1])
(ii) r[no] < rmin(£[no]) +p and r[ng —1] = rmin(£[no —11) + p;
(iii) r[no] < rmin(&[nol) + p and r[ng — 1] < rmin(&[no —11) + p.
In each of the three cases, we need to show that for the next state,
h(x[no +1]) > 0, or equivalently r[ng + 1] > ryin (€[no + 1]).
Case (i) and Case (ii). The claim follows for these cases for es-
sentially directly by the choice of p above. In Case (ii), we have
that

rlno + 1] = rmin (£[no +11) = (r[no — 1] — rmin(é[no — 11))

— (r[no + 1] = rmin(£[no + 11) = r[no — 1] = rmin (E[no — 11)).
(19)
From the above calculations, we see that the second term on the

right-hand side of (19) is bounded below by —p (using the triangle
inequality). Thus

rlno+1] = rmin(é[no+1]) > (r[no —1] = rmin (é[no — 1])) —p (20)
and the desired conclusion follows since r[ng—1] —rpin (£[no—1]) >
p by assumption. A similar approach proves Case (i): simply repeat
the calculations in the definition of p, only over one sample.

Thus, it remains to consider Case (iii). This case is somewhat
easier, because the control signal is being overridden, so the state
delay presents technical difficulties as above. Thus, it follows almost
directly from the properties of the controller shield as designed
in [14]. In particular, the ShieldNN verifier establishes that the
boundary between “safe” and “unsafe” controls is a concave (resp.
convex) function of ¢ for & € [0, 7] (resp. £ € [—,0]). Hence, by
[14, Theorem 1], the constant control fmax (resp. —fmax) always
preserves safety for any duration of time starting from a state ¢ €
[0, 7] (resp. & € [—m, 0]). O

B PROOF OF LEMMA 2

Proor. By the arguments above, the form of A,y in (14) will
solve Problem 2, provided (15) implies (13). Thus, we confine the
proof to showing this fact.

197

ICCPS 23, May 9-12, 2023, San Antonio, TX, USA

To begin, observe that:

e (G20 (1)) = hr.g (x[mo = 1D)|

~hroxlno - 1D|| @)

hro (G200 (0) =

by the triangle inequality. Consequently:

|hr.o (G200 () -

(o[n

h#o(x[no — 1])i |hra()(0_1])|
= oG (0) 20 (22)

Hence define z({M"0 T(p)) 2 OX["O !l (t)) —hio(x[no - 1])\.
By the Gronwall 1nequahty, we have further that:

o[no])lz - t - et

(23)
where Ly, and L, are as in the statement of the Lemma. Observe
that the functlon on the right-hand side of (23) is monotonic in t.
Thus, we can use (22) to claim that if v solves (15) (derived immedi-
ately from (23) and (22)), then the claim of the Lemma holds. O

2(G00(0) < V2- Ly, , -l e (x[no = 11,

C ADDITIONAL EXPERIMENTAL DETAILS

C.1 Training Details

The primary RL agent training was conducted under the (S = 0, N
= 0) configuration settings using the Proximal Policy Optimization
(PPO) algorithm for a total of 1800 episodes. In the last 400 training
episodes, we randomized the ego vehicle’s spawning position and
orientation along its lateral dimension to aid the agent in learning
how to recover from maneuvering moves. For the -VAE, we used
the pretrained model from [14] which was trained to generate a
64-dimensional latent feature vector from Carla driving scenes.

C.2 Reward Function

For the reward function R, we defined:

-P, collision or CD > CDyy,
R =1+P, track completed successfully (24)
fr(v,CD, 3, 7), otherwise

in which P is large positive number, v is the vehicle’s velocity, CD is
the vehicle’s center deviance from the center of the track, CD,y, is a
predetermined threshold value, 3 represents the angle between the
heading of the vehicle and the tangent to the curvature of the road
segment, and r is the distance to the closest obstacle. As shown, R
can evaluate to: (i) (+P) if it completes the track successfully (large
positive reward), (ii) (—P) if it incurs a collision or deviates from
the center of the road beyond CD;y, or (iii) a function fg(-) of the
aforementioned variables given by:

Jr(0,CD,9,r) = w1 - fi(v) + w2+ 2(CD) + w3 - f5(I) + wa - fa(r)

ICCPS °23, May 9-12, 2023, San Antonio, TX, USA

Mohanad Odema*, James Ferlez*, Goli Vaisi, Yasser Shoukry, Mohammad Abdullah Al Faruque

Table 1: EnergyShield Performance across 4 different RL controllers. Each RL agent learnt to travel the route through a
distinctive policy represented by its center deviance (CD) from the primary track. The RL Controllers are numerically arranged
in the increasing order of CD with Controller 1 being the main RL controller used in all evaluations.

Polic . N) Controller 1 Controller 2 Controller 3 Controller 4
Y ’ CD(m) TCR(%) E(mJ]) | CD(m) TCR(%) E(mJ) | CD(m) TCR(%) E(m]) | CD(m) TCR(%) E(m])
(0, 0) 0.92 65.7 2.3 100 55 5.8
0,1) 0.8 22.9 2.3 97.1 5.5 5.8
Local (1, 0) 9,87 100 113.5 35 100 113.5 55 100 113.5 5.9 100 113.5
(1,1) 291 100 3.6 100 5.4 5.7
(0, 0) 0.8 68.6 90.8 2.3 100 90 79.7 5.8 77.6
EnergyShield (0, 1) 0.8 34.3 90 2.3 100 89 55 100 80 5.7 100 78.9
eager 1,0 2.8 100 85.8 3.5 100 81.6 ' 79.6 5.7 77.5
(eager) (
(1,1) 2.8 100 85.9 3.6 100 81.9 78.5 5.8 77.9
(0, 0) 0.9 74.3 67.7 2.3 100 63.5 5.5 43.7 5.8 39.7
EnergyShield (0, 1) 0.7 22.9 60.6 2.3 97.1 63.1 5.5 100 444 5.7 100 40.8
(uniform) (1,0) 2.9 100 51.5 3.5 100 44.5 5.5 43.6 5.8 40.1
(1,1) 2.8 100 53.1 3.6 100 45.7 5.4 42.1 5.7 39.8
at time n can be defined as a function of the k previous values
o 9 < Omin (zf the effective throughput ¢ and queuing delays q as follows:
st fi(o) = 1"1" 0= Vtarget 0> 0 Leomm(n) = ®(Pn_k:n—1>9n—k:n—1)- For our experiments, we set
e JIESE Umax ~Utarget target k =5 and employ a moving average function to evaluate .
1, otherwise

£(CD) = max(1 — lcle”l,o)

£(9) = max(1 - |ﬂi}9|,o>
fa(dist) = maX(min(rHL“, 1),0)

in which 9min, Ymax, Vtarger are the minimum, maximum, and target
velocities, respectively. lcenzer is the lateral distance from the center
of the vehicle to the designated track. J is the angle between the
head of the vehicle and the track’s tangent. For our experiments,
we set Omin=35 km/hr, vsqrger =40 km/hr, v;0x=45 km/hr, rypgx =
20 m, lax = 10 m, and P= 100.

C.3 Performance Evaluations

We use the standard TensorRT library to compile our models on the
Nvidia Drive PX2 ADS platform as an optimized inference engine
and measure its execution latency. To evaluate the local execution
power, we measure the difference in average power drawn by the
Nvidia Drive PX2 when processing and idling.

C.4 Queuing Delays

We leverage the The M/M/1/k model for the queuing delays, Lgye,

= 4=p)(p)®

which entails g T+~ representing the probability that an

offloaded task will find c tasks stored in the server’s buffer of size
C upon arrival with p being the average server load. We assume
each task contributes an extra 1 ms delay, and thus, g, positions
directly translate to Lgye in ms. The default settings for queuing
delays entail C = 4000 and p = 0.97 unless otherwise was stated.

C.5 Edge Response Estimation

As offloading decisions are made based on estimates of the prior
edge response times, the estimated communication latency, Lcomm,

198

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Kinematic Bicycle Model
	2.3 Barrier Functions and Shielding
	2.4 A Controller Shield for the KBM

	3 Framework
	3.1 EnergyShield Motivation and Context
	3.2 EnergyShield Structure
	3.3 Semantics of an EnergyShield Offloading Decision

	4 EnergyShield: Provably Safe Offloading
	4.1 Main Formal Result
	4.2 KBM Controller Shield
	4.3 KBM Runtime Safety Monitor

	5 Experiments and Findings
	5.1 Experimental Setup
	5.2 EnergyShield Evaluations
	5.3 Wireless Channel Variations
	5.4 Generality

	Acknowledgments
	References
	A Proof of Lemma 1
	B Proof of Lemma 2
	C Additional Experimental Details
	C.1 Training Details
	C.2 Reward Function
	C.3 Performance Evaluations
	C.4 Queuing Delays
	C.5 Edge Response Estimation

