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Abstract

Comparison of échelle spectra to synthetic models has become a computational statistics challenge, with over
10,000 individual spectral lines affecting a typical cool star échelle spectrum. Telluric artifacts, imperfect line lists,
inexact continuum placement, and inflexible models frustrate the scientific promise of these information-rich data
sets. Here we debut an interpretable machine-learning framework blasé that addresses these and other challenges.
The semiempirical approach can be viewed as “transfer learning”—first pretraining models on noise-free
precomputed synthetic spectral models, then learning the corrections to line depths and widths from whole-
spectrum fitting to an observed spectrum. The auto-differentiable model employs back-propagation, the
fundamental algorithm empowering modern deep learning and neural networks. Here, however, the 40,000+
parameters symbolize physically interpretable line profile properties such as amplitude, width, location, and shape,
plus radial velocity and rotational broadening. This hybrid data-/model-driven framework allows joint modeling of
stellar and telluric lines simultaneously, a potentially transformative step forward for mitigating the deleterious
telluric contamination in the near-infrared. The blasé approach acts as both a deconvolution tool and semiempirical
model. The general-purpose scaffolding may be extensible to many scientific applications, including precision
radial velocities, Doppler imaging, chemical abundances for Galactic archeology, line veiling, magnetic fields, and
remote sensing. Its sparse-matrix architecture and GPU acceleration make blasé fast. The open-source PyTorch-
based code blase includes tutorials, Application Programming Interface documentation, and more. We show how
the tool fits into the existing Python spectroscopy ecosystem, demonstrate a range of astrophysical applications,
and discuss limitations and future extensions.

Unified Astronomy Thesaurus concepts: High resolution spectroscopy (2096); Stellar spectral lines (1630);
Astronomy data modeling (1859); GPU computing (1969); Calibration (2179); Radial velocity (1332); Maximum
likelihood estimation (1901); Deconvolution (1910); Stellar photospheres (1237); Atomic spectroscopy (2099);
Brown dwarfs (185); Earth atmosphere (437)

1. Introduction

1.1. Spectral Fitting Past and Present

Tens of thousands of individual spectral lines or more give
rise to a sea of undulations that imbue each stellar spectrum
with its characteristic appearance. The identification and
understanding of these lines have defined a large category of
astrophysics over the past century. The field grew from by-eye
catalogs of stellar templates (Cannon & Pickering 1901), to
quantifying the role of atomic ionization balance (Payne 1925),
to modern synthetic forward models including millions or
billions of lines (e.g., Husser et al. 2013; Marley et al. 2021;
van den Bekerom 2021). As technology has improved, our data
and models have become more voluminous, more precise, and
more complicated. The mere act of comparing models to
observed spectra can now resemble a computational statistics
challenge as much as a scientific one. Here we introduce a new
machine-learning-based framework, blasé, aimed at solving
computational, statistical, and scientific challenges associated
with data–model comparisons for modern astronomical
spectroscopy.

The metaphorical holy grail of astronomical spectroscopy
would be a function that takes in an observed stellar spectrum
and reports back the position, amplitude, width, and shape of
all of its spectral lines, automatically, accurately, and precisely.
The function would go further. It would report back the
systemic radial velocity (RV) and rotational broadening (v isin )
and fundamental stellar properties, including Teff, glog , and
[Fe/H]. Finally, the function would—in a feat of artificial
intelligence—provide what it believes to be the interpretable
generating function that produced these data in the first place,
so that we may gain insights on future examples of this or other
stars. Solving this problem is hard, for at least four reasons.
First, the spectral lines may overlap, and so the assignment of
one line may be partially degenerate with the assignment of
some other adjacent line. Second, extremely wide line wings
blend into the continuum, such that the placement of the
continuum level may become ill-defined. Third, the extent of
line blending and realized line shape depend strongly on the
spectral resolution of the spectrograph, the rotational broad-
ening of the star, and possibly the instrumental configuration at
the time of observation. Finally, telluric absorption lines
commingle with the astronomical spectral lines of interest,
censoring some spectral regions entirely, or partially con-
founding other lines with chance alignments.
Addressing these and other challenges forms the backbone

of spectral calibration, an increasingly valuable specialty as the
deficits in our models become intolerable with greater data

The Astrophysical Journal, 941:200 (20pp), 2022 December 20 https://doi.org/10.3847/1538-4357/aca0a2
© 2022. The Author(s). Published by the American Astronomical Society.

* Open-source code at https://github.com/gully/blase.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0000-0002-4020-3457
https://orcid.org/0000-0002-4020-3457
https://orcid.org/0000-0002-4020-3457
https://orcid.org/0000-0002-4404-0456
https://orcid.org/0000-0002-4404-0456
https://orcid.org/0000-0002-4404-0456
http://astrothesaurus.org/uat/2096
http://astrothesaurus.org/uat/1630
http://astrothesaurus.org/uat/1859
http://astrothesaurus.org/uat/1969
http://astrothesaurus.org/uat/2179
http://astrothesaurus.org/uat/1332
http://astrothesaurus.org/uat/1901
http://astrothesaurus.org/uat/1901
http://astrothesaurus.org/uat/1910
http://astrothesaurus.org/uat/1237
http://astrothesaurus.org/uat/2099
http://astrothesaurus.org/uat/185
http://astrothesaurus.org/uat/437
https://doi.org/10.3847/1538-4357/aca0a2
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/aca0a2&domain=pdf&date_stamp=2022-12-23
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/aca0a2&domain=pdf&date_stamp=2022-12-23
https://github.com/gully/blase
http://creativecommons.org/licenses/by/4.0/


quantity and quality. Luckily, many scientific applications in
astrophysics do not need the technically demanding noise-free
template, nor a catalog of all spectral lines. A few lines suffice.
For those applications, human inspection of isolated lines and
semiautomated equivalent width (EW) determination have
been—and will remain—adequate.

But many new and important questions in the fields of stars
and exoplanets aspire to reach the margins of what the entire
data set can inform. In particular, data from high-grasp échelle
spectrographs possess simultaneously high spectral resolving
power and high bandwidth, yielding tens of thousands or
possibly millions of independent spectral resolution elements
for each star, substar, or exoplanet. Scientific applications that
seek to gain signal by “stacking” spectral lines or cross-
correlating with templates can hypothetically gain huge boosts
in the accessible signal-to-noise ratio (S/N) compared to a
single line or a few lines. Most manual and semiautomated
methods cannot take advantage of the entire spectral band-
width, or rely on exact knowledge of the underlying templates,
and may fail to achieve the hypothetical promise of these high-
bandwidth spectrographs (Hood et al. 2020).

For example, exoplanet cross-correlation spectroscopy
(Snellen et al. 2010; Brogi et al. 2012; Birkby et al. 2013)
hinges on accurate molecular spectral templates to detect and
characterize the atmospheres of exoplanets. Imperfections in
these templates can mute the perceived signal strength of these
atmospheric features (Hoeijmakers et al. 2015).

In extreme-precision RV (EPRV) applications, cross-corre-
lation methods work (Dumusque 2018) but have many
limitations (Zhao et al. 2022). Among the many such
limitations, one pernicious noise floor stands out as enigmatic:
telluric mitigation. Many practitioners today simply mask these
telluric regions, yet microtellurics still inject variance into the
spectrum that cannot be easily accounted for with existing
methods. Instead, a robust accounting of telluric absorption at
the centimeter-per-second level may require joint modeling of
the star and Earth’s atmospheric absorption before convolution
with an instrumental kernel. This telluric joint modeling
capability does not yet exist at a precision that can meet these
strenuous demands.

In the case of Doppler imaging, an accurate underlying
spectral template is needed to detect longitudinally symmetric
structures (Vogt & Penrod 1983; Luger et al. 2021a) such as
polar spots (Roettenbacher et al. 2016) or zonal bands
(Crossfield et al. 2014; Apai et al. 2021). There exists a nearly
circular reasoning: we need to know the extent of line profile
perturbations to reveal the underlying spectral template, but we
need the underlying spectral template to estimate the line
profile perturbations. The approaches introduced here offer a
path forward on these long-standing friction points.

1.2. Automatic Differentiation Technology

Existing open-source frameworks have overcome some of
these challenges, or have been purpose-built for specialized
applications. These frameworks include ROBOSPECT (Waters
& Hollek 2013), specmatch (Petigura 2015), specmatch-
emp (Yee et al. 2017), wobble (Bedell et al. 2019),
starfish (Czekala et al. 2015), sick (Casey 2016), psoap
(Czekala et al. 2017), FAL (P. Cargile et al. 2022, in
preparation), CHIMERA (Line et al. 2015), the Cannon (Ho
et al. 2017), MOOG (Sneden et al. 2012), MOOGStokes
(Deen 2013), MINESweeper (Cargile et al. 2020), and

recently ExoJAX (Kawahara et al. 2022). The designs of
these frameworks necessarily have to make a choice in the
bias–variance trade-off: is the tool more data driven or more
model driven? The statistical trade-off can be viewed as a
concession in physical self-consistency for model flexibility:
more or fewer parameters; more accurate or more precise.
A key new enabling technology breaks these classical

trade-offs in data–model comparisons for astronomical
spectroscopy. Automatic differentiation (“autodiff” or “auto-
grad;” Gunes Baydin et al. 2015; Maclaurin 2016) and
its affiliated back-propagation algorithm (Kelley 1960;
Linnainmaa 1976; Rumelhart et al. 1986; Dreyfus 1990) have
revolutionized machine learning and neural network architec-
ture design and are increasingly applied in astrophysical data
analysis contexts, e.g., kernel phase coronography with
morphine (Pope et al. 2021; Wong et al. 2021) and ∂lux
(Desdoigts et al. 2022), stellar surface modeling with starry
(Luger et al. 2021b), and exoplanet orbit fitting with
exoplanet (Foreman-Mackey et al. 2021). Of the spectrosc-
opy frameworks mentioned above, the TensorFlow-based
(Abadi et al. 2016) wobble and the JAX-based (Bradbury
et al. 2018) ExoJAX employ autodiff technology. wobble
treats each pixel as a tunable control point, producing ∼105

parameters for a modern stellar spectrum. The ExoJAX
framework has only ∼100 tunable parameters that describe
the fundamental physical properties controlling a stratified
brown dwarf atmosphere. These two autodiff-aware frame-
works span the extreme ends of nonparametric and parametric
modeling for spectroscopy.
In this paper, we show that autodiff-aware semiempirical

models offer an appealing middle ground: informed by self-
consistent models but refined with data. This sweet spot in the
bias–variance trade-off can be thought of as a hybrid data-and-
model-driven approach. The algorithm presented here focuses
on modeling the spectra of stars and brown dwarfs. Existing
stellar models (e.g., Husser et al. 2013) and substellar models
(e.g., Marley et al. 2021) laboriously solve for a self-consistent
thermal structure in the atmosphere given the copious opacity
sources that themselves depend on temperature and pressure.
Here we build on that hard work by cloning preexisting
synthetic stellar or substellar models (Section 2) and optionally
by cloning models of Earth’s atmospheric “telluric” absorption
(Section 3). We introduce the interpretable forward-model
design and its PyTorch-based (Paszke et al. 2019) imple-
mentation, blase. In Section 5 we describe how to adapt both
stellar and telluric cloned models simultaneously, using a
transfer-learning step. We obtain semiempirical models by
comparing to real-world échelle data in Section 6. Finally, we
discuss perspectives on how to think of blasé (Section 7) and
chronicle many conceivable extensions for unlocking new
science (Section 8).

2. Methodology I: Cloning Stellar Spectra

Our first stage is to clone a precomputed synthetic spectrum.
Cloning means to mimic, emulate, or otherwise approximate
the appearance of a discretely sampled spectrum with some
function or combination of functions. The subject of the
cloning shall be a noise-free spectrum generated from physics-
based atmosphere models. The purpose of cloning may appear
superficial at first glance, but it serves as a necessary gateway
for our ultimate data–model comparison goals.
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2.1. Overall Architecture and Design Choices

We start with a high-resolution precomputed synthetic stellar
or substellar model spectrum, Sabs(λ), at its native-resolution
sampling and with its original absolute physical flux units. The
procedure that follows is largely agnostic to the exact details of
how this spectrum was made, or what physics or chemistry it
may represent. For the purposes of this paper, we will
showcase examples from two well-known families of pre-
computed synthetic astronomical spectra: PHOENIX (Husser
et al. 2013) for stellar spectra (Teff ä [2300, 10,000]K) and
Sonora (Marley et al. 2021) for substellar spectra (Teff ä [200,
2300]K). The algorithms in the framework may also work for
precomputed synthetic spectra of reflected-light exoplanets,
supernovae, galaxies, or even further afield, such as laboratory
physical chemistry, plasma physics, materials science, or
remote sensing.

We place mild demands on the precomputed spectra. They
should have sporadic regions of discernible continuum (or
pseudo-continuum) devoid of lines, and the continuum shape
should vary smoothly in wavelength. The spectral lines or
pseudo-lines should be resolved (and not subsampled). Many
precomputed synthetic stellar spectra will meet these criteria.
For those spectra that do not meet these criteria, the method
should still work with some additional fine-tuning of the
preprocessing steps that follow. M dwarfs in the red–optical,
solar-like stars in the blue visible, and brown dwarfs at virtually
any wavelength may fall into this category.

We truncate the red and blue limits of the precomputed
synthetic spectrum to match a high-bandwidth echelle spectro-
graph, extended with a buffer at the edges of size ±Δλbuffer.
The buffers are needed for two reasons: (1) to include the
influence of spectral lines whose centers lie just outside the
region of interest, but whose wings are broad enough to affect
the neighboring pixels; and (2) to account for astrophysical RV
shifts that may send line centers into and out of the region of
interest. We set the value of the buffers to account for plausible
RV and rotational broadening of real stars. A generous buffer
of v isin 500 km s 1< - and |RV|< 500 km s−1 yields a typical
buffer of about 30 Å.

The choice of limiting the bandwidth to a region of interest
around a single echelle spectrograph bandwidth stems from
computational constraints. In principle, there is no fundamental
limit to the bandwidth one could clone with the method
presented here, up to and including the entire precomputed
synthetic spectral model bandwidth. We adopt the exact native
wavelength sampling with no smoothing or interpolation,
yielding a wavelength vector λS with length NS equal to the
number of pixels within the extents of our region of interest
including the buffers.

At this stage, we have the choice of whether to work in linear
or log scale flux units. Adopting the log of the flux would
ensure that the cloned model possesses only positive flux
values, a desirable trait of any physical spectral model. We
have implemented both modes in blase, allowing users to
choose their preference. We only narrate the linear flux unit
description in the main text of this document for the sake of
clarity, and since most practitioners may tend to think of flux in
terms of linear flux units. The data–model comparison step will
always take place in linear flux units, so the only operational
difference is the behavior for deep and saturated lines.
Appendix A lists the equations adjusted to log flux units.

2.2. Initialization

We initialize the cloned model with a series of preprocessing
steps. We divide the entire spectrum by a blackbody B(λS) of
the same effective temperature Teff as the model template. The
resulting signal usually still has smooth wiggles around the
continuum. An optional continuum flattening step ensures that
subsequent spectral line-finding steps get applied uniformly.
This high-pass filtering step should be set to capture the
genuine spectral shape, without overfitting broad line wings
such as those in deep hydrogen and sodium lines. Any high-
pass filter will work; a Gaussian process (GP) approach would
be ideal (Czekala et al. 2015). Instead, we apply a simple and
familiar heuristic: fit a polynomial P(λS) to a few continuum
peaks and divide out the trend.
The result should be a flattened “continuum-normalized”

spectrum familiar to practitioners in high-resolution spectrosc-
opy, with the continuum level close to unity. It is this spectrum
that will serve as the centerpiece of subsequent training steps.
Therefore, we drop any subscript and simply refer to this
flattened spectrum as S:

, 1abs ( )=S S B P

where the division indicates element-wise division of these
arrays or “vectors” of flux values. For element-wise multi-
plication, we will adopt the e operator symbol to distinguish
that the multiplication occurs element-wise between two
“vectors” of spectral fluxes, as opposed to a dot product
(scalar output) or matrix multiplication (matrix output). This
style of vector multiplication and division is standard in
numerical array manipulations such as those in numpy, IDL,
matlab, etc.
A re-creation of the unvarnished input spectrum—if desired

—can be obtained by multiplying the continuum-flattened
signal by the “perturbed blackbody,” B(λS)eP(λS), that
symbolizes the blackbody modulated by continuum opacity or
broadband radiative transfer effects. This smooth spectrum may
be useful for applications that need to keep track of broadband
flux, such as low-resolution spectra, or regions with molecular
band heads. The “perturbed blackbody” continuum model
contains npoly+ 1 fixed but possibly tunable lookup para-
meters, plus the fixed input Teff. For most practitioners, these
terms serve as nuisance parameters and are perfunctorily
discarded.
Next, we identify the spectral lines. We apply the find_-

peaks local-maximum-finding algorithm implemented in
SciPy (Virtanen et al. 2020) on the negative of the spectrum,
in order to find the local minima. We select a “topographic
prominence threshold” Promä (0.005, 0.02), defined as the
vertical distance between the peak and the local baseline. The
baseline is defined with topographic heuristics that act as
effective pseudo-continuum detectors. This threshold dictates the
number of lines that will be modeled: a lower prominence finds
more, weaker lines, and a larger prominence finds fewer, deeper
lines. The prominence algorithm successfully finds lines that
reside on top of broad line wings, or unresolved band heads
provided that the individual lines exceed the prominence
threshold in their local region. The number of lines Nlines
depends on the bandwidth, the prominence, and the intrinsic
properties of the input spectrum, principally effective temper-
ature and metallicity.
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For this paper, we illustrate examples for two échelle
spectrographs with particularly large spectral grasp: the
Habitable-zone Planet Finder (HPF; Mahadevan et al. 2014)
on the Hobby–Eberly Telescope at McDonald Observatory in
Fort Davis, Texas, and the Immersion Grating Infrared
Spectrograph (IGRINS; Park et al. 2014) currently on the
Gemini South Telescope on Cerro Pachón in Chile. The
R= 55,000 HPF has a native bandwidth of 8079–12785 Å,
which we expand to 8049–12815 Å including the edge buffers.
IGRINS has two cameras for H and K band, with the combined
spectrum spanning 14267–25217 Å including the edge buffers
and the region in between the two cameras, all at a resolving
power of R= 45,000. The spectrograph acquisition, reduction,
and post-processing steps yield data D(λD), where λD is the
wavelength vector at the instrumental resolution and sampling
of each instrument, generally much coarser than the resolution
and sampling of the precomputed synthetic spectra. The data
wavelength vector may also contain gaps between échelle
orders, whereas the precomputed wavelength coordinates are
usually contiguous. HPF may have up to 2048× 28= 57,344
pixels, and IGRINS has typically about 75,000 pixels, after
common trimming of noisy edge pixels and unusable telluric
regions. Meanwhile, the HPF-truncated model spectra have
Ns= 335,849 native-resolution samples, comparable to the
IGRINS-truncated model spectra, Ns= 330,052.

Figure 1 shows how the number of detected lines Nlines
scales with effective temperature and prominence threshold
Prom for the PHOENIX grid, truncated to the bandwidths plus
buffers for HPF and IGRINS. We see between about 2000 and
20,000 lines depending on the Teff and Prom. HPF and IGRINS
have a comparable number of lines, and halving the
prominence increases the number of lines by about 20%–
30% in these ranges. The number of lines monotonically
increases toward cooler effective temperatures.

So far we have only one piece of information about the
spectral lines: their location. Next, we derive coarse properties
about each detected peak: its amplitude and width, again using
the prominence algorithms implemented in scipy (Virtanen
et al. 2020).

There does not exist a general-purpose, single-shot algorithm
for obtaining the line shape in the presence of overlapping
spectral lines: where do the wings of one line begin and the
wings of another adjacent line end? Therefore, we do not
attempt to determine anything about the line shape at this stage
and instead assume that the lines resemble a Voigt profile, with
a guess width about equally split between Lorentzian and
Gaussian.

2.3. The Blasé Stellar Clone Model

We have now arrived at the blasé clone model Sclone(λS) for
a flattened synthetic spectrum S: it is the cumulative product of
transmission through the sea of all overlapping spectral lines:

a1 , 2
j

N

j jclone
1

lines

( )= -
=

S V

where Vj is the Voigt profile V(λS− λc,j, σj, γj) with Gaussian
standard deviation σ, Lorentzian half-width γ, at line center
position λc, for the jth spectral line. The amplitude a is always
expected to be positive for absorption lines.

The Voigt profile V(λ, σj, γj) can be computed in exact
closed form using the Voigt–Hjerting function (Hjerting 1938)

as the real part of the complex Fadeeva function (e.g., Zaghloul
& Ali 2011). Evaluation of the Fadeeva function can be
computationally costly, so approximate forms may be desir-
able. Here we adopt the pseudo-Voigt approximation (Ida et al.
2000). Cloning is the stellar spectrum is step 1 out of 4 in
Figure 2.

2.4. Goodness-of-fit Metric and Gradients

The model evaluated with its coarse initial values would
have terrible performance: it would only vaguely resemble the
synthetic spectral model, with up to±50% undulations from
the inexact assignment of widths, line shapes, and amplitudes.
Instead, we tune the parameters of the model, starting from
these coarse initial values. This model has between Nlines× 1
and Nlines× 4 free parameters, depending on how many of the
four physical line properties you wish to tune. The threshold-

Figure 1. Scaling of prominence and density of spectral lines. Top: number of
lines vs. effective temperature for PHOENIX models truncated to IGRINS
(blue connected points) and HPF (red free-standing points) bandwidths, for
different prominence thresholds of 0.02, 0.01, and 0.005. Bottom: number of
lines per 100 Å wavelength bin for stellar (blue, upper envelope of steps) and
telluric (orange, lower envelope of steps), illustrated for a Teff = 4700 K,

glog 4.5= PHOENIX model and a T = 290 K, relative humidity of 40%
TelFit model.
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based line-finding algorithm performs very well at finding the
line center positions, so in practice we can fix the line center
wavelengths. Therefore, we default to fitting three parameters
per line, where the center wavelength is held fixed and the
amplitude, width, and line shape are allowed to vary. We
minimize a scalar “goodness-of-fit” metric, aka loss scalar ,
chosen as the mean squared error (MSE), which is proportional
to χ2, the sum of the squares of the residual vector
R≡S−Sclone, but has no notion of per-pixel noise since the
precomputed synthetic spectrum has no uncertainty:

 S S . 3
i

N

i iclone,
2

S

( ) · ( )å= - = R R

As seen in Figure 1, the number of lines can exceed 7000,
meaning that the clone model has over 21,000 free parameters.
Fitting more than about 300 parameters is difficult with
conventional optimizers, and so historically the practice of
finding the best settings for all 21,000 parameters would have
been considered hopeless, a fool’s errand. A new category of
“gradient-based” optimizers offers a breakthrough. Gradient-
based optimizers have virtually no restriction on the number of
parameters, scaling to functions of possibly millions or billions
of tuning parameters. Gradient-based optimizers get vastly
more information per likelihood evaluation: Nparams+ 1 pieces
of information—the scalar value of the loss evaluated for
some setting, and the derivative of the loss scalar with respect
to each of the parameters, the so-called Jacobian,

   , , ,
aj j j

⎛⎝ ⎞⎠
 =

s g
¶
¶

¶
¶

¶
¶

. The Jacobian indicates how the

MSE would decrease with a change in the parameter of
interest, or put simply, “which way and by how much” you
have to change each individual line property to get a better fit.

Geometrically, the 

 Jacobian resembles a compass

needle guiding the direction to the best fit. This compass
needle resides in, say, 21,000-dimensional space, instead of our
mere three dimensions of physical space. Conventional
gradient-free optimizers evaluate the Jacobian through approx-
imate finite differences, which result in numerical instabilities.
Those instabilities accrue and break down at around the 300-
dimension mark. Hence, non-gradient-based optimization can
be pictured as having only a coarse needle—assembled from
approximate finite differences—that begins to spin aimlessly
after too many dimensions.

We adopt “full-batch” gradient descent optimization, as
opposed to the more popular stochastic gradient descent (SGD;
Ruder 2016). In full-batch gradient descent, the entire data set
is evaluated in Equation (3), as opposed to only a portion of the
data set in the stochastic counterpart. Appendix C.3 discusses
the trade-offs and rationale for “full-batch.”
The optimizer updates the aj, σj, γj parameters by a small

fraction of the Jacobian—called the learning rate (LR)—toward
the direction that would improve the fit, for all parameters
simultaneously. The Jacobian is calculated behind the scenes
with automatic differentiation implemented as the so-called
back-propagation algorithm, or simply “backprop” (Gunes
Baydin et al. 2015). We choose the PyTorch framework that
computes these Jacobians efficiently for all of the mathematical
primitives in our blase implementation (Paszke et al. 2019).
It is this ability to automatically compute Jacobians that sets

PyTorch (and JAX and TensorFlow) apart. These frame-
works give exact Jacobians, instantaneously, for free (or
cheap). Without exact Jacobians, a conventional optimization
step only obtains one piece of information: how much the
overall loss changed. With exact Jacobians, we obtain
Nparams+ 1 pieces of information for each evaluation of the
forward model. The power of gradient descent becomes
transformative as the number of parameters grows into the
tens of thousands, as is the case for blasé.

2.5. GPU and Autodiff Specific Considerations

Forward modeling with tens of thousands of physics-
informed parameters may seem like such a significant paradigm
shift that it can feel too good to be true. In this section, we
introduce the nonnegligible architectural design trade-offs that
arise when adopting an autodiff framework—such as
PyTorch—for physics-based forward modeling.
First, we make a few tweaks to the implementation for

numerical purposes. We enforce that all Gaussian and
Lorentzian widths are positive by tuning the natural log of
the widths and then exponentiating them before inclusion in
Equation (2). Based on the minus sign in Equation (2), an
amplitude aj could hypothetically take on either positive values
(flux loss, absorption) or negative values (flux gain, emission).
For now, we focus on photospheric absorption lines—as
opposed to, say, chromospheric emission lines—and therefore
enforce all the amplitudes to be positive by tuning aln j and
then exponentiating in the same strategy as above. Emission
lines—if desired—could be included with a mere sign flip to

Figure 2. Visual flowchart of the blasé forward model. Step 0 (not shown) is to choose a precomputed synthetic stellar spectrum—and, optionally, a precomputed
synthetic telluric spectrum—with physical properties close to the target and observing conditions. Both the stellar and telluric spectra get cloned (Step 1). The stellar
model is warped to its extrinsic properties (Step 2), and then the stellar and telluric models get multiplied together (Step 3). Next, this joint model is convolved with an
instrumental kernel and resampled to the wavelength coordinates of the data spectrum (Step 4). It is this forward model that gets directly compared to the observed
spectrum (not shown).
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Equation (2). Lines that can manifest in either absorption or
emission could hypothetically relax the natural log preproces-
sing step for isolated lines. We narrate only the absorption
scenario moving forward.

The autodiff machinery has a convenient way to set which
parameters are held fixed and which are iteratively fine-tuned.
One simply disables the autodiff flag for the fixed parameters:
we set the requires_grad=True property for any
PyTorch tensor that we want to vary. This design allows us
to easily explore whether, say, allowing the λc parameter to
vary significantly improves the fit.

The computational bottleneck occurs at the evaluation of
Equation (2), which can be viewed as having an Nlines× NS
matrix F̄ assembled by stacking each Voigt absorption profile
Vj(λs) on top of each other:

a
a

a

1
1

1

. 4

s

s

N N s

1 1

2 2

lines lines

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

( )
( )

( )
( )



l
l

l

-
-

-

V
V

V

An element of this matrix, Fji, will have the flux value for a
given jth line at a given ith wavelength coordinate. Equation (2)
performs a type of matrix contraction, turning an Nlines× NS
matrix into a length NS row vector. The number of Floating
Point Operations (FLOPS) scales with the number of entries in
this matrix. Thus, we face a trade-off of wanting to make the
matrix large for accuracy and small for computational
expedience.

We can rewrite Equation (2) as a sum by taking the log of
both sides and dropping in this F̄ matrix:

FF 1ln ln ln , 5
j

N

jiclone
1

lines

· ¯ ( )å= =
=

S

where 1 is a 1× Nlines row vector of all ones. We reemphasize
that—in its current form—each spectral line has to be
painstakingly evaluated across the entire spectral bandwidth.
Efficient GPU algorithms exist for voluminous matrix
manipulations such as this one, so this voluminous computa-
tion will proceed as quickly as possible on modern machines.
In particular, the proprietary CUDA architecture for NVIDIA®

GPUs contains Tensor cores with specialized matrix math. The
chief bottleneck occurs when the storage of the F̄ matrix
exceeds the available RAM of a GPU or CPU: the computation
will fail with an “Out of Memory” exception. Modern NVIDIA
GPUs have 8–40 GB of RAM, which translates roughly to a
few thousand spectral lines across ∼300,000 pixels. It is
generally not possible to construct Equation (5) in its entirety in
one fell swoop, even on a GPU. A remedy is needed.

2.6. Sparsity

The Fln ¯ matrix is sparsely populated: most of the entries far
from the line center are vanishingly close to zero. Here we take
advantage of that mostly empty matrix using the mathematics
of sparse matrices (Saad 2003).

We retain a relatively small number of pixels Ncut adjacent to
the line center. Setting this wing cut produces a speedup by a
factor of N

N
S

cut
, which can exceed 100× for wide-bandwidth

spectra. The choice of Ncut is nuanced. It should be set large
enough that truncation effects are not seen for the broadest

lines. But even more, Ncut has to be future-proofed for Doppler
shifting. Extreme Doppler shifts could hypothetically send line
centers entirely outside the extents of Ncut if set too low. We
therefore typically set wing cuts comparable to the buffer size
2Δλbuffer, even though most weak lines only perceptibly affect
<1 Å. We coerce all wing cuts to be the same number of pixels,
typically 6000 pixels, ∼30–60 Å for PHOENIX, with the
middle pixel being at the line center position, and about 3000
pixels to the red and blue side of the line. We populate a new
approximate sparse matrix Fln ˆ with only these 6000 pixels per
line and assume zeros everywhere else.
The remapping of the sparse matrix can be pictured as

having shifted all lines to the center of this new matrix F̂,
visualized pictorially in Equation (6). The algorithmic
machinery keeps track of each (i, j, Fji) trio of coordinates
and flux values.

ð6Þ

Sparse-matrix methods generally support an operation
known as coalescing, which sums values with repeated indices.
Each pixel may get computed about ∼100 times in this sparse
implementation, which is about 70× faster than each pixel
getting computed Nlines∼ 7000 times in the dense approach.
Efficient algorithms for assembling and coalescing sparse
matrices exist in PyTorch. Some GPUs now support
additional hardware acceleration of sparse matrices, providing
even greater speedups.

2.7. Optimization and Training

We use the Adam optimizer (Kingma & Ba 2014) with a
typical learning rate LR ä (0.005, 0.1) and all the defaults for
PyTorch v1.11. We defined the number of training epochs
Nepoch= 100–10,000 depending on the application. The user
can optionally monitor a live view of the training progress with
Tensorboard (Abadi et al. 2016) to gain an intuition for the
training efficiency.
Figure 3 shows a portion of a PHOENIX spectrum cloned

with blase. The 1000 epochs of training took 56 s on an
NVIDIA® RTX2070 GPU with PyTorch v1.11, CUDA
v11.1, and Intel® CoreTM i7-9750H CPUs at 2.60 GHz, with
all tensors as FP64. The same computation on a 2020 M1
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MacBook Air took 1h25m with PyTorch v1.9, 90× slower
than the GPU counterpart.

We store the model parameters to disk and refer to the entire
collection of parameters as a pretrained model. More
specifically, this fine-tuned model represents an evaluable and
interpretable clone of the original static pixel-by-pixel flux
values.

3. Methodology II: Cloning Telluric Spectra

Ground-based near-IR échelle spectra possess thousands of
depressions attributable to molecular line absorption in Earth’s
atmosphere. These telluric lines hamper the unbiased inter-
pretation of échelle spectra, so some treatment plan is needed.
Often the regions of known, deep tellurics are simply
discarded. In other cases, the lines are modeled with first-
principles line-by-line radiative transfer (e.g., TelFit;
Clough et al. 2005; Gullikson et al. 2014) or through data-
driven means (e.g., wobble; Bedell et al. 2019). The most
demanding EPRV applications require a precision character-
ization of telluric lines that the astronomical community has not
yet been able to achieve and that may rival even the abilities of
Earth Science practitioners. A hybrid data/model-driven
approach was among the chief recommendations of the Telluric
Hack Week Workshop1 aimed at improving mitigation of the
atmosphere’s deleterious effects. The blasé framework
achieves a key milestone by introducing a hybrid approach to
tellurics.

3.1. The Blasé Telluric Clone Model

We start with a precomputed synthetic telluric model, T,
with associated wavelength coordinates λT. We employ a
TelFit model, though any precomputed synthetic telluric
model will work, such as MOLECFIT (Smette et al. 2015). The
TelFit model does not contain any continuum sources of
opacity, so we can skip the flattening procedure described in
Equation (1). We orchestrate the same initialization and line
finding as in the stellar models and obtain a coarse clone.

The number of pixels in the telluric model can be chosen at
the time of running TelFit. Here we choose a spectral
resolution R∼ 106, adequate for resolving narrow telluric lines,
and yielding about 2 million pixels across the entire HPF

bandwidth. This pixel sampling is about 6× finer than the
native PHOENIX pixel sampling. The number of telluric lines
depends on the atmospheric properties, in particular, the local
surface temperature T⊕ and relative humidity RH. For a surface
temperature of T= 290 K (62°F), relative humidity of 40%,
and typical conditions for McDonald Observatory, we
anticipate 3615 telluric lines across the entire HPF bandwidth,
distributed as shown in the bottom panel of Figure 1.
One guiding principle departs from the stellar case: telluric

lines do not require future-proofing for large RV shifts,
hypothetically allowing us to reduce the number of pixels
needed for a wing cut. Small RV shifts are possible owing to
bulk motions in Earth’s atmosphere, but those bulk motions
should be much smaller than the speeds of stars toward and
away from Earth. Hence, we can hypothetically tolerate a much
smaller wing cut for telluric lines. In practice, telluric lines can
be saturated, and accurately cloning the resulting broad telluric
wings still benefits from Ncut∼ 6000 pixels, comparable to the
stellar scenario.
We optimize the sparse telluric clone, achieving comparable

computational speed as the PHOENIX cloning task. We are left
with Tclone(λT), the tunable telluric clone model evaluated at its
original native coordinates. Figure 4 shows a before-and-after
view of the blasé cloning procedure for a TelFit model zoomed
in on a J-band region with dense telluric lines. We see that the
blasé fine-tuning appears nearly indistinguishable from the
native-resolution TelFit precomputed model.

4. Cloning Performance

We compute the residual R(λS) of the native-minus-cloned
PHOENIX model, illustrated in the bottom panel of Figure 3.
We see an rms residual of 1.2% pixel−1 at native resolution.
The telluric clone shows a comparable level of performance.
These residuals tend to pile up in local symmetrically balanced
clusters that get canceled out once convolved with coarser
instrumental line profiles, so their overall effect at instrumental
resolution is typically negligible: the clones are almost perfect.
We identify three main categories of cloning flaws that may not
be negligible depending on the science application.
The first—and expected—source of large residuals is simply

missing line opacity owing to our finite prominence threshold.
Lines with prominence less than Prom yield residual notches
with strengths comparable to Prom. Including smaller promi-
nence lines by lowering Prom produces smaller residuals, at the
trade-off of computing more lines and yielding higher
computational cost. But at some point, turning down Prom
yields diminishing returns, as other imperfections provide a
noise floor. We have experimentally determined this noise floor
to occur near Prom= 0.01.
Second, a conspicuous flaw occurs in the line cores of

relatively narrow lines. The cloned model tends to overestimate
the flux at the core and underestimate the flux along the slopes
of the lines. The residuals, therefore, exhibit a W-shape ringing
artifact. The scientific impact of this flaw will depend on the
precision demands of the application, but it may not be as bad
as it seems for many applications. Recall that the cloning
occurs at native spectral resolution, much greater than typical
instrumental resolution. The W-shape ringing residuals will tend
to cancel each other out once the clone model undergoes
convolution with an instrumental profile (Section 5.2). We
ascribe this flaw to the adoption of approximate pseudo-Voigt
profiles rather than exact Voigt profiles. High-precision

Figure 3. PHOENIX spectrum cloned with blasé. This Teff = 4700 K,
glog 4.5= solar-metallicity model has 9028 individual cloned spectral lines,

each with three tuned parameters. The pictured 50 Å chunk contains 121
spectral lines and represents about 1% of the entire spectral bandwidth that was
cloned. Some flaws can be seen near the cores of deep lines or wings of broad
lines.

1 https://speakerdeck.com/dwhgg/telluric-line-hack-week-wrap-up
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applications may wish to employ the exact Voigt profile, which
we estimate to cost about 27×more than this approxi-
mate form.

The overprediction of line cores in narrow lines is only partly
attributable to the pseudo-Voigt approximation. Even exact
Voigt profiles inadequately represent true atmospheric opa-
cities. Typical stellar and substellar atmosphere models
compute opacities for a stratified atmosphere consisting of
tens or hundreds of locally isothermal, isobaric atmospheric
layers. Each of those layers may exhibit a local per-line opacity
that matches a Voigt profile. But the cumulative product of
many slightly different Voigt profiles is not exactly equal to
any single Voigt profile. Hence, the blasé approach of asserting
lines as Voigt profiles can be best understood as a
phenomenological model—that lines tend to look Voigt-like,
even if they are non-Voigt in detail. In principle, blase could
be configured in a way to learn the requisite perturbations to the
Voigt profile in a systematic manner, pooling information
among lines. Such an approach is not yet implemented and may
be an enticing avenue for future research.

Finally, and most perniciously, a large category of residuals
appear near the wings of the deepest and broadest lines—such
as hydrogen lines and neutral alkali metal lines. The true lines
exhibit advanced line shapes, such as non-Lorentzian line
wings that are not captured with the overly simplistic Voigt line
profile, even an exact one. Figure 5 highlights super-Lorentzian
line wings around a line at 8691 Å. Nearby narrow lines
devolve into missing line wing opacity, the favored trade-off
when the continuum estimate’s poor performance outweighs
the pain of a narrow but tolerably small spike. This flaw can be
seen where a line initialized at 8692.5 Å and another pair of
lines at 8690.0 all melt into line wings.

Cloning telluric lines suffers from one additional problem.
Telluric lines can be extremely deep, exhibiting almost
vanishing transmission with saturated line cores common in
between the atmospheric windows that define the I, J, H, and K
bands. The blase method can cope with these saturated lines,
but often it treats nearby and blended saturated lines as one
single line. This glomming together of lines has little practical
effect since few astronomical practitioners can make use of
such profoundly saturated data.

5. Semiempirical Models with Transfer-learning
Techniques

The cloned model already represents a useful intermediate
product: the distillation of Ns= 335,849× 2 pixel flux values
and their wavelength coordinates into a more compact quartet
of properties for a list of <10,000 spectral lines, a
dimensionality reduction of 18× for the cost of 1.2% pixel−1

in accuracy. Hence, the process so far can be myopically
viewed as a physics-informed compression algorithm. But the
cloned model serves as a mere stepping stone in our principal
quest: the comparison of models to real data.

5.1. Augmenting the Stellar Clone with Radial Velocity and
Rotational Broadening

Real stars possess two key extrinsic properties. Rotational
broadening v isin and RV depend on the observer’s viewing
location. We follow Czekala et al. (2015) by emphasizing the
qualifier “extrinsic,” to distinguish from stellar intrinsic
properties, such as T g, log , and Fe Heff [ ]. Intrinsic properties
appear the same from any viewing location—at least for stars
with isotropic surfaces—while extrinsic properties do not. The
distinction is important because the extrinsic terms act as

Figure 4. Precomputed TelFit model cloned with blase. Before: the top panel shows a forward model evaluated with coarsely initialized line-by-line properties,
based on simple threshold-based peak finding and crude estimation of the shape of the line. After: the bottom panel shows the blase fine-tuned clone, with nearly
identical spectral structure.

Figure 5. Zoom-in of the region between the vertical gray bars in Figure 3. The
cloned model has seven spectral lines describing the 400 pixels in this
4 Å chunk. The native PHOENIX pixel sampling can be seen as the boxy steps
in both the native and cloned models.
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simple convolutions and translations to the cloned spectrum
and can be treated after the cloning procedure. Therefore, we
define an augmented model, which we designate the “extrinsic”
model, Sext:

vRV
c v isin

, 7Z Zext clone c⎛⎝ ⎞⎠ ⎛⎝ ⎞⎠( ) ( )l l l z= - *S S

where ζ is the convolution kernel for rigid-body rotation (e.g.,
Kawahara et al. 2022), v is the spectral axis represented as
relative velocity coordinates, and ∗ denotes the convolution
operator.

Most autodiff-aware convolve operators act in pixel
space, approximating kernels as numerically sampled func-
tions. There exists a special exponential spectral sample
spacing that allows the convolution operators to work out of
the box for rotational broadening. The design of blasé permits
the stellar and telluric models to be reevaluated at any
wavelength coordinate vector, provided that it adequately
samples the underlying lines. We therefore change the
sampling from the native stellar and telluric wavelength
coordinate grids, λS and λT, to this special exponentially
sampled wavelength grid, denoted with the subscript Z:

v v
c

exp , 8Z 0
0{ } ( )l l=

-

where v− v0 is the velocity vector going from zero to the
velocity associated with the largest wavelength, with linear-
spaced velocity samples. We choose a sampling in velocity
space of 0.5 km s−1, which corresponds to about 10× finer
than the instrumental resolving power of HPF and delivers a
minimum and maximum wavelength spacing of 0.013 and
0.024 Å pixel−1, respectively, for the HPF bandwidth.

Operationally, the RV shift gets applied to the line center
positions rather than scaling the entire wavelength grid point
coordinates, λZ. This choice yields a convenience: it cleanly
makes the RV autodiff-aware, meaning that an infinitesimal
change to the RV value can be sensed through back-
propagation by affecting only the line center positions.

The Sext spectrum is shown in Step 2 of Figure 2. There is
currently no equivalent post-processing of the telluric spectrum
T. As mentioned previously, we assume that the motions of
Earth’s atmosphere are much less than the desired stellar RV
precisions. However, demanding EPRV exoplanet searches
may need to consider minuscule systematic RV shifts and
broadening of the telluric templates, arising from the turbulent
and bulk motions of Earth’s atmosphere. A Text could
hypothetically be included in blasé to achieve these strenuous
precision demands.

5.2. Joint Stellar and Telluric Model

Figure 2 shows a visual guide to all the steps in blasé. We
have arrived at what may be the most intriguing and yet simple
of these steps: we simply multiply the rotationally broadened
and RV-shifted stellar model by the telluric transmission:

. 9Z Zjoint ext clone( ) ( ) ( )l l=M S T

It is only at this stage that we may apply the instrumental
broadening kernel. The instrumental resolving power, R, acts as a
convolution with a Gaussian line profile of width c

R2.355
s = . Real

astronomical instruments usually have wavelength-dependent
resolving power, which complicates the implementation for

high-grasp spectra. The extent to which this effect matters will
depend on the science application. For now, blase simply
assumes a fixed resolving power.
Notice that the order of steps 3 and 4 in Figure 2 cannot be

swapped. Mathematically speaking, element-wise multiplica-
tion and convolution do not commute. While the distinction
may seem negligible, it matters at the level of precisions sought
in EPRV applications (S. Mahadevan et al. 2022, private
communication). Water vapor lines in our own atmosphere can
“beat” with water vapor in the spectrum of, say, an M-dwarf
atmosphere. The systematic telluric miscancellation would
imbue a Moiré pattern of residuals that is most acute for
sources with sharp lines, namely low projected rotational
broadening v isin c

R2( )~ . The approach in blasé may therefore
unlock a level of telluric calibration that has evaded previous
efforts.
As noted, typical data-pixel sampling λD is much coarser

than the model pixel sampling λZ. We therefore resample the
model to the data spectrum in the following way. We evaluate
the joint model Mjoint at all of the super-resolution wavelength
coordinates and then compute the mean value of those pixels
within the bounds of each coarse data pixel. The resampling
procedure is autodiff-aware: the same clusters of high-
resolution coordinates map to the same data-pixel coordinates,
no matter what the RV is. The RV only dictates what flux
values are realized within those pixel bounds.
The final forward model for blasé is designated simply as M

without subscripts to emphasize that we have achieved the
desired goal of a plausible end-to-end physics-informed yet
highly flexible forward model for each datum in the 1D
observed spectrum:

g Rresample , 10D Zjoint( ) [ ( ) ( )] ( )l l= *M M

where g is the Gaussian instrumental convolution kernel and
the resample[] operation indicates the average of model
pixels that fall within each data pixel’s red and blue boundaries.

5.3. Regularization

Equation (10) has ∼21,000 tunable parameters from the star,
∼9000 tunable parameters from Earth’s atmosphere, plus v isin
and RV. That adds up to about 30,002 model parameters. The
resolving power may also be treated as tunable if it is not
known or varies slightly with, e.g., seeing, slit-or-fiber
illumination, or instrumental configuration: 30,003. The
pseudo-continuum polynomial term P can also be tuned to
refine the continuum placement initialized at the preprocessing
stage, yielding an additional 5–15 parameters, depending on
the choice of polynomial order.
It may appear desirable to simply optimize all of these

parameters in a laissez-faire manner, allowing them all to take
on whatever value the data dictate. Such a stratagem would
overfit the data, resulting in unphysically perverse line shapes
that do not reflect the air of reality we aspire to impose on our
synthetic spectral models. Lines would haphazardly fit noise
spikes and conspire together to warp spectral shapes in
unexpected ways. This overfit model may suit some rare
purposes. But most of the time, we prefer to strike a better
balance in the bias–variance trade-off.
We apply some amount of regularization, a restriction on the

allowed values the model parameters can take on. Fortunately,
we have a firm theoretical basis to justify this regularization.
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We believe that our precomputed synthetic spectral models are
quasi-statically correct: the predicted spectra resemble the
unobserved “True spectrum” with lines in the correct place, but
just with the wrong area under the curve. This statement may
stem from the fact that it is easier to predict the mere existence
of some energy transition of atoms and molecules than it is to
predict their transition rates, abundances, temperature and
pressure effects, and all the other line strength effects that flow
down to how much light a line ultimately absorbs in a stellar
atmosphere.

The degree of regularization will control the extent of
overfitting or underfitting. The most extreme regularization—
the antithesis of the laissez-faire scenario—would yield a
model too rigid to respond to the data at all, yielding a model
entirely unchanged from the cloned PHOENIX and TelFit
models, the extreme end of underfitting. Hence, regularization
constitutes the only hyperparameters worthy of tuning in blasé.
The choice of how to set the regularization is problem specific.
We default to the following choice. We fix all line parameters
except for amplitude, which receives an L1 loss—namely, we
penalize the absolute value of departures from an amplitude’s
starting place:


a aln ln

, 11
j

N
j j

reg
1

lines ˆ ( )åº
-

L=

where the hat notation demarcates the amplitudes obtained
from cloning, i.e., the “initial, theory-inspired amplitude.” We
assign Λ∼ 5. The total, overall loss then becomes

   . 12tot MSE reg ( )= +

This weak degree of regularization has the effect of
permitting refinement of only the most conspicuous data–
model mismatches; the weakest lines do not bother to move
from their initial state because doing so would penalize the
regularization without enough reduction of the overall loss. The
extrinsic v isin and RV have no regularization, but in practice
they need to be initialized close to their plausible values.

6. Results: Comparison to Data

6.1. WASP 69 with HPF

The planet-host star WASP 69 makes a great benchmark
because it has a low v isin 2.2 0.4=  km s−1 (Casasayas-
Barris et al. 2017), making its lines sharp and easy to
perceive. The K5 dwarf has an effective temperature of about

4700 K, glog 4.535 0.023=  , and slightly supersolar
metallicity (Anderson et al. 2014).
Figure 6 shows a portion of an HPF spectrum of WASP 69

centered on a region devoid of telluric lines. This figure
highlights a baseline case with no line-by-line fitting, simply
conventional template matching: comparing HPF data of
WASP 69 to the closest PHOENIX template, convolved and
resampled to the HPF resolution and sampling. Conspicuous
residuals of±10% appear throughout the spectrum, with lines
in the correct place, but with the amplitudes systematically
biased. These line residuals arise from bona fide imperfections
in the PHOENIX spectrum, with a minor contribution from the
coarse sampling of the PHOENIX grid.
Figure 7 shows the same data spectrum compared to a pixel-

level model trained using the blasé technique described in
Section 5. The model fit appears much better, with typical
residuals approaching the photon noise of the data themselves.
The model is not perfect however, especially around line cores.
These residuals stem from a combination of causes. First, our
finite regularization restricts line amplitudes and widths from
straying too far from their values. This computational tug-of-
war makes line cores land just short of the values they
otherwise would have obtained in the absence of regularization.
Second, the spectral resolution kernel may get biased from the
domineering model mis-specification of broad lines, setting up
a slightly subpar performance for all the other lines.
The inferred, semiempirical high-resolution model for

WASP 69 is therefore the transfer-learned model Scloneˆ ,
unadorned with the extrinsic and instrumental properties.
This semiempirical model is shown in Figure 8. The

Figure 6. WASP 69 observed with HPF, compared to a Teff = 4700 K,
glog 4.5= solar-metallicity PHOENIX model warped to v isin 2.2= km s−1,

RV = −9.6 km s−1, and HPF resolving power.

Figure 7. Semiempirical model of WASP 69 transfer-learned with blase,
employing a regularization prior on the learned amplitudes.

Figure 8. The native-resolution semiempirical model transfer-learned from
WASP 69 HPF data. The revised model can be viewed as a super-resolution
deconvolution of the HPF spectrum.
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departures from the PHOENIX model appear dramatic at this
native resolution. The transfer-learned semiempirical tem-
plate exhibits both deeper and shallower lines than the native
PHOENIX model.

The low v isin of WASP 69 means that the line profile
broadening arises principally from the finite instrumental
resolution. The interplay of telluric lines and stellar lines
within an instrumental resolution element is exactly one of the
challenges blasé was designed to solve, as discussed in
Section 3. In Figure 9 we show a multipanel dissection of
the HPF spectrum in a wavelength region in which conspicuous
stellar and telluric lines coexist. The blase end-to-end model
exhibits excellent agreement with the data. The trustworthiness
of the line properties inferred in locations where stellar and
telluric lines exactly overlap remains an open research
question: a tiebreaker is needed to distinguish these over-
lapping line inferences. We discuss conceivable tiebreakers
later in the paper.

6.2. IGRINS Spectrum of a T6 Ultracool Dwarf

The T6 ultracool dwarf 2MASS J08173001−6155158 was
recently observed with IGRINS, revealing a rich spectroscopic
atlas of molecules in its Teff= 1060± 50 cloud-free atmos-
phere (Tannock et al. 2022). The sea of molecular lines is so
rich as to blur entirely the notion of isolated lines. Many lines
should instead be considered pseudo-lines. The boundaries of
lines for 2MASS J08173001−6155158 become even more
amorphous in the presence of its moderately high
v isin 22.5 0.5=  km s−1 rotational broadening (Tannock
et al. 2022). This T6 IGRINS spectrum therefore represents an
extreme test case, in which the underlying notions of blasé go
outside the comparatively safe assumptions in stellar spectra.
The application of blasé to 2MASS J08173001−6155158 can
be viewed as conducting a deconvolution step simultaneously
paired with line-by-line inference.
We initialize blase with the nearest Sonora template

with Teff= 1100 K, glog 5.0= , and solar metallicity

Figure 9. End-to-end training on a portion of the HPF spectrum of WASP 69. The top two panels show the cloning from Step 1 of the visual guide. The middle two
panels depict the before-and-after of the instrument-convolved and resampled joint model illustrated in Step 4 of the visual guide. The final two panels show the
underlying semiempirical models learned in the process.
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(Tannock et al. 2022). Figure 10 shows the clone of this native
spectrum near the peak of the H band. The cloning performance
appears adequate to capture most of the molecular pseudo-
lines, with a few notable shortcomings. The high S/N of this
IGRINS spectrum lays bare the departures from the broadened
Sonora−Bobcat model, albeit with surprisingly close agree-
ment given the challenge of substellar atmosphere modeling.
The line-by-line departures from Sonora exceed any minor
flaws from the cloning process, indicating genuine opacity
differences between the data and Sonora template. Our
technique automatically detects and reports the underlying
structure of data–model mismatches, a key milestone for the
assembly of refined opacity tables in this cool dwarf
temperature regime.

7. Discussion

7.1. How to Interpret Line-by-line Properties

Up to this point, we have presented the mechanics of blasé
and have shown that it applies to a wide range of applications
including stars, substars, and Earth’s atmosphere. The inter-
pretation of the approach and its line-by-line outputs may carry
different meaning to different practitioners. Here we caricature
some of these perspectives:

“Reverse-engineering the line lists.”—Equation (2) (and its
exponential twin Equation (A2)) could have been populated
with initial line-by-line properties from atomic and molecular
line lists, instead of the coarse detection-threshold approach we
presented in Section 2.2. Hence, our cloning procedure can be
viewed as reverse-engineering the quantum mechanical proper-
ties housed in line lists such as HITRAN (Gordon et al. 2022),
HITEMP (Rothman et al. 2010), EXOMOL (Tennyson &
Yurchenko 2012), VALD (Piskunov et al. 1995), or countless
other primary source documents. This interpretation is only
partly accurate. The line lists generally store the temperature
and pressure scaling terms that get included in 1D thermal
structure calculations with distinct Voigt coefficient terms
computed for each layer in the stellar or substellar or Earth
atmosphere. The cloned properties, therefore, represent the

flux-weighted average line property, having undergone an
integral through the radiative transfer in the atmosphere.
Our deliberate choice not to initialize from the atomic and

molecular lines means that we do not have to compute an
expensive multilayer atmosphere at each inference step. The
precomputed models have already taken care of that step, and
so our cloning procedure encodes all the quantum mechanics
and stellar atmosphere knowledge written down at the time of
the computing of PHOENIX, Sonora, or LBLRTM.
“Equivalent width machine.”—The area under the curve of

each jth blasé line represents its (neighbor-weighted) EW. That
means that blasé can automatically and quickly distill a
massive high-bandwidth spectrum into a catalog of line
positions and EWs. Even more, the catalog would have some
resilience to rotational broadening, line blending, and other
friction points that hamper such an industrial-scale approach
with existing tooling. Current applications of EWs rely on
either isolated lines or—for multiepoch applications—the
assumption of nonvariable neighboring lines. Blasé does not
have these limitations. The interpretations of these EWs may
have to be treated with care if intercompared with EWs
obtained conventionally. This approach may suit stellar
abundance applications, such as Galactic archeology and
chemically peculiar stars (e.g., HgMn stars; Chojnowski et al.
2020).
“Fancy deconvolution.”—The blasé approach can be

viewed as a fancy deconvolution procedure, in which the
convolution kernels get inferred alongside the imperfections of
the model template. This perspective may suit practitioners
who wish to obtain a robust rotational broadening estimate in
the presence of imperfect templates, and vice versa: robust
templates in the presence of imperfect rotational broadening.
“Fancy interpolator.”—A linear interpolator has to store the

slope, offsets, and start and end points of all the line segments
from pixel to pixel, merely to re-create a spectrum losslessly at
some arbitrary coordinate or coordinates. Blasé lossily re-
creates a spectrum, while having to store less information. In
this way, it is fair to think of blasé as an interpolator that
happens to have an intuitive interpretation.

Figure 10. Line-by-line dissection of the 2MASS J08173001−6155158 IGRINS spectrum. The top panel compares the native Sonora−Bobcat spectrum to the blasé
clone. We match the RV shift of the observed spectrum (thick black line) and convolve the initial and learned Sonora template to the large v isin . The bottom panel
shows the locations and extents of line mismatches at the native resolution of Sonora.
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“Surrogate modeling/simulation intelligence.”—Our slightly
off-label use of machine learning straddles a boundary of
machine learning and conventional physics-based models.
The rapidly evolving field of machine learning may therefore
classify the approach here using a few related terms. The
phrases “surrogate modeling,” “emulation,” “discrepancy
modeling,” “transfer learning,” “simulation intelligence,” and
“physics-informed machine learning“ could describe some
aspects of blasé, depending on the ultimate application by the
end-user. The surrogate modeling approach has been applied
with mixed success for M dwarfs (Passegger et al. 2020) and
brown dwarfs (Johnsen et al. 2020). The realized speedups in
quantum chemistry can approach 300,000× (Gilmer et al.
2017). The key idea is that information from expensive
physics-based simulations can be distilled by machine learning
and then applied cheaply to new examples. The performance of
these surrogates should improve when more scientific domain
knowledge is included at training time (Ansdell et al. 2018).

“Narrowing the synthetic gap.”—Our approach to pretrain-
ing on synthetic spectra and comparing to data resembles the
technique of Passegger et al. (2020). There, a convolutional
neural network is pretrained on PHOENIX spectra and then
applied to CARMENES spectra of M dwarfs. Passegger et al.
(2020) designate the difference in appearance between the
synthetic spectra and observed spectra as the “synthetic gap,”
showing that this gap leads to inaccurate metallicity inferences.
Blasé shows a path toward shrinking the synthetic gap, with the
prospect of retraining convolutional neural networks with
semiempirical spectra produced via the method described here,
assuming that high-fidelity metallicity labels can be obtained
through co-natal binary studies.

“A good enough substrate.”—The imperfections in pre-
computed stellar and substellar models have hampered their use
in high-fidelity applications, where model flaws overwhelm the
S/N in the data. The adaptability of blasé can be viewed as
increasing the number of applications that could conceivably
benefit from the rich albeit imperfect information encoded in
these model grid spectra. In the next section, we illustrate how
these adaptable models can serve as a substrate for applications
in which the imperfections in precomputed models would have
otherwise precluded their use.

7.2. PyTorch and the Autodiff Ecosystem

One key limitation stems from the need for autodiff to
“know about” or sense each step of the end-to-end computa-
tion. Practically speaking, this requirement means that blase
had to be written in a single differentiable (i.e., autodiff-aware)
programming framework. This requirement is so strong as to
forbid the intermingling of frameworks and languages. The
choice of which machine-learning framework to adopt must
therefore be made up front, with some risk of vendor lock-in
once that choice has been set. We considered three such
differentiable frameworks: TensorFlow, JAX, and
PyTorch. We chose PyTorch because of its ease of use
and its ability to structure differentiable models in an object-
oriented style familiar within the Python community, with
robust optimization support. PyTorch had already been applied
to several astronomy projects by this time, including Exonet
(Ansdell et al. 2018), PySR (Cranmer 2020), and MPoL
(Czekala et al. 2021). Ultimately, the choice of PyTorch
made it easy to employ sparse matrices.

This vendor lock-in gives rise to a frustrating incompatibility
among exoplanet-relevant autodiff applications. For example,
no differentiable piece of code in blase can call an
exoplanet orbital RV, a starry surface map, an
astropy spectral coordinate transformation, a wobble
spectral residual model, or an ExoJAX Voigt profile. All of
those tools use either Theano, TensorFlow, Numpy, or
JAX, which are incompatible with PyTorch. We use SciPy,
but only for preprocessing, before the differentiable model has
been entered. Some heuristics exist for interchanging code
among the frameworks, but they pose some implementation
complexity and/or some performance hit.
It may appear attractive to coordinate the relatively small

autodiff-for-astrophysics community to adopt a single autodiff-
able machine-learning framework to facilitate compatibility. In
practice, such coordination may be ill-fated, since the rapid
pace of machine-learning development has not yet settled on a
single best way forward. Each framework offers some strengths
and demerits, and exploring those trade-offs will continue to
yield new experimental approaches. For example, JAX may
offer speedups attributable to Just In Time (JIT) compilation, at
the expense of a more rigid functional programming style.
Access to scalable GP implementations may be another
deciding factor (Aigrain & Foreman-Mackey 2022).

8. Unlocking New Science

The scaffolding of blase is designed in a way to promote
extensibility, so many scientific questions can be written down
in the flexible language presented in this paper. In some cases,
the flexibility, precision, speed, and ease of use may unlock
new approaches to long-standing astrophysical questions and
practical challenges. Here we enumerate some planned or
conceivable extensions. We break up the themes into two
categories: scientific extensions (this section) and technical
innovations (Appendix C).

8.1. Extreme-precision Radial Velocity

Already blase is equipped to fit every single line with its
own systemic RV, by tuning the line center position λc at each
training epoch. There exist both empirical evidence and some
theoretical motivation that RV jitter varies from line to line
(Dumusque 2018). Importantly, the extent of this line-by-line
RV jitter could be predicted in part by the depth of line
formation (Cretignier et al. 2021; Al Moulla et al. 2022). A
future EPRV version of blase could leverage this informa-
tion. As an example, the depth of formation for all (or a subset
of) lines could be obtained and associated with each spectral
line. A regularization scaling term could be introduced to allow
the line positions to vary, but only in proportion to their depth
of formation.

8.2. Line-by-line Fundamental Parameter Estimates

The conversion of spectral line strengths to spectral type
(Cannon & Pickering 1901)—and by extension line strengths
to Teff (Payne 1925)—has occupied a large chunk of stellar
spectroscopy in the past century. The measurement of
fundamental stellar properties remains one of the principal
applications of stellar spectroscopy. Blasé as it currently stands
does not output fundamental properties, and in fact it takes
them for granted: you must specify, e.g., the Teff, glog , [Fe/H],
and [α/Fe] of your PHOENIX template as Step 0 before that
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template gets cloned and warped to match data. Hence,
obtaining a Teff estimate from blasé is impossible, at least as
discussed so far.

The clearest way forward would be to calibrate the blasé-
derived line properties. Simply put, we seek a set of functions,
f, that relate the line properties to fundamental properties:

f a T g, , , log , Fe H .j j j j eff( ) ( [ ])s g 

There are Nlines such functions—one for each spectral line—
because each line has its own temperature, gravity, and
metallicity dependence. For visualization simplicity purposes,
we have assumed that the PHOENIX grid is merely three-
dimensional (Teff, glog , [Fe/H]), but the same logic applies to
4D and higher, and it works for sparse and irregularly sampled
grids too.

Fascinatingly, there are two related ways forward toward this
function. They both involve ensembles of spectra—such as a
spectral atlas, spectral sequence, or library—and they both
involve first obtaining the inverse function:

g f 13j j
1 ( )º -

g T g a, log , Fe H , , . 14j j j jeff( [ ]) ( ) ( )s g

A purely model-based approach would start by blasé-cloning
every single PHOENIX spectrum in the grid dimensions of
interest, over the wavelength range of interest. The resulting
product would be a line-by-line catalog of cloned spectral
properties for each 3D coordinate on this grid. We could then
assemble a heat map of how each jth line property changes
across this heat map, gj. In this way, we are reverse-
engineering, e.g., the temperature dependence of each spectral
line, as encoded by the PHOENIX atmosphere models. The
final step could involve finding the nearest neighbor of each jth
observed spectral line to each jth grid heat map point, that is,
finding a way to invert the function gj to get fj. The
information-weighted mean, median, or mode of these nearest
neighbors could then be reported as a revised “best-fit Teff,” for
instance.

A semiempirical approach could improve on this purely
model-based approach. We know that the PHOENIX line
depths, widths, and shapes are imperfect, and so this (Teff,

glog , [Fe/H]) heat map will have large flaws in the line-by-line
properties: the contours are systematically too bright or dark.
There are many conceivable ways to quantify these heat map
flaws. Blasé provides an expedient route. One can pull the heat
map toward the locus of points established by running blasé on
benchmark stars. The known Teff of such systems would anchor
the trend. We suspect that the directionality of the purely
model-based heat map must be correct, and simply the slope,
offset, and concavity of the trends may be wrong. With new
information from each benchmark, the heat map would get
lifted like a central tent pole propping up an undersup-
ported tent.

The construction and calibration of these ensembles of
spectra represent a tremendous amount of work beyond the
scope of this paper. But its creation could yield an extremely
precise, fast, interpretable, and reasonably accurate way to
measure the properties of stars based solely on their high-
bandwidth échelle spectra. The overall accuracy hinges on the
accuracy of the stellar benchmark labels. The mechanics of this
approach could be adapted to fit within existing pipelines such
as SAPP (Gent et al. 2022).

There exists a corollary from the method described here to
the approach of Czekala et al. (2015). There, a 3D heat map
was created for relating the eigenweights of a Principal
Component Analysis (PCA) basis to the stellar fundamental
properties, for spectrum emulation purposes. Here, the 3D heat
map is created on a line-by-line basis and is therefore
interpretable. The PCA eigenspectra were generally uninter-
pretable, at least not easily. Hence, in the limiting case of
obtaining a densely calibrated semiempirical heat map for all
spectral lines across all grid dimensions, we will have achieved
a spectral emulator that would obviate the need to clone spectra
in the first place. We would simply start with this powerful
line-by-line emulator as a forward model and go directly to the
extrinsic warping and data–model comparison.

8.3. Abundances

Stellar abundance work involves precisely measuring line
strengths (often reported as EWs) of different chemical
constituents evinced in a star or substar’s photosphere. Relating
those EWs to physics can be done in a few ways. Most easily,
trends and patterns in the EWs can be assembled, and metal-
rich and metal-poor clusters can be identified. There exists a
precision/accuracy trade-off in the measurement process,
usually stemming from the placement of the continuum, or
assumptions about line blending. Blasé offers an immediate
solution to these challenges since it starts from our best guess
for how nearby lines may be shaping the continuum. Blasé
appears to be a gateway to extremely fast and intervention-free
industrial-scale abundances, potentially useful for large surveys
like APOGEE (Majewski et al. 2017), Gaia-ESO (Gilmore
et al. 2012), RAVE (Steinmetz et al. 2006), and more.

8.4. Identifying Missing Lines

So far we have not addressed the inevitable prospect that
some spectral line or lines reside in the observed data spectrum
but are absent entirely from the precomputed model. This
“missing line” scenario arises from our incomplete and
evolving knowledge of quantum mechanics and molecular
chemistry. ROBOSPECT (Waters & Hollek 2013) and the
Cannon (Ho et al. 2017) have data-driven ways to identify
these lines. The Cannon can go further to indicate how these
previously unknown lines correlate with the stellar labels,
providing some physical understanding of their cause. Blasé as
it currently stands has no mechanism for identifying these lines.
Here we consider that there are Nmissing lines with two
scenarios: (I) the identification, line center location, and
possibly other ancillary information about the lines have
become newly available; or (II) the lines are truly anomalous
and unknown.
For the first scenario, Voigt profiles could be instantiated at

the newly established line center locations λc,m of the
previously unknown line. Hence, Equation (2) would become
a product of the new and old physics:

a a1 1 . 15
m

N

m m
j

N

j jclone
1 1

missing lines

( )( ) ( ) = - -
= =

S V V

Scenario (II)—truly unknown lines—would not have the
luxury of knowing where to initialize the line center location,
at least not based on precise theory. Hence, instead, an
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educated guess for λc,m could be made based on the data
centroid.

In either case, the initialization of Am, σm, and γm would be a
matter of taste, and they would therefore be difficult to
regularize, at least in the manner that we have described so far.
For these reasons, an even better strategy may be to treat the
data residuals not as lines but in some other basis. For example,
it could be possible to model the blasé residual spectrum with,
say, wobble, or with a GP. These questions remain an open
research area.

8.5. Doppler Imaging

The fixed v isin approximation breaks down for stars with
large-scale surface features. Doppler imaging attempts to infer
the surface map from the extent to which observed line profiles
depart from a pristine rotational broadening kernel. This
inference procedure suffers from a vast number of geometrical
degeneracies but still provides useful constraints on stellar
surfaces (Luger et al. 2021a). We emphasize a distinction
between (a) longitudinally symmetric surface features and (b)
longitudinally asymmetric surface features. Most RV practi-
tioners think about the latter, since longitudinally asymmetric
surface features imbue changing-in-time skewness to the line
profiles, causing RV perturbations easily detectable in RV time
series. These confound exoplanet searches.

Longitudinally symmetric surface features, on the other
hand, do not change as the star rotates on its axis. The existence
of these features manifests as static-in-time kurtosis of the
spectral line. For example, a hypothetical non-emitting (black)
polar starspot exhibits a deficit in flux at the line core, resulting
in less zero-velocity flux than its homogeneous counterpart. A
dark zonal band results in equal-sized bites out of the red and
blue sides of the line.

It is easier to infer longitudinally asymmetric features than
longitudinally symmetric ones, since we assume that we
occasionally catch a glimpse of the spot-free limbs and their
pristine line profiles. The latter requires exact knowledge of the
underlying spectral template. Isolated, deep, well-calibrated
spectral lines constitute the only practical scenario where exact
knowledge can plausibly be claimed. Isolated spectral lines
may be scarce or absent for M dwarfs and brown dwarfs where
lines blend ostensibly in an inseparable way, confounding
Doppler imaging.

Blasé offers a new approach to Doppler imaging that may
overcome these historical limitations by simultaneously fitting
both the imperfections in the underlying spectrum and its line
profile perturbations. This approach is analogous to the
linearized model in Luger et al. (2021a), but with the benefit
of also handling nonlinear properties of the spectrum such as
line widths, shapes, and locations, while also handling telluric
contamination. Hypothetically the Luger et al. (2021a)
approach could be partially absorbed into blase, or
vice versa, though such a merger may be complicated to
implement.

8.6. Starspots and Magnetic Fields

One current assumption of starspot spectral decomposition is
that the starspot spectrum itself resembles the stellar photo-
sphere of a cooler star. This assumption appears adequate for
detecting starspot spectra and measuring their physical proper-
ties (Gully-Santiago et al. 2017). But to second order, starspots

should exhibit some spectral peculiarities that make them
depart from a “normal” stellar photosphere. We may be
probing deeper into the photosphere, and so the lines may
experience higher pressure, with slightly different line widths
(O’Neal et al. 1996). Or maybe the finite convective velocity
shift can be directly seen as systematic shifts of the spectral
lines (as stated in Section 8.1).
Rather than applying a mixture model of fixed PHOENIX

templates, one could adopt a mixture model of precloned blasé
models. Then, the imperfections in the starspot spectrum can be
learned alongside the filling factor of the starspots.
Relatedly, magnetic field information could be incorporated

into blasé as line-by-line Landé g-factor “labels,” when
available. The use of these labels could take a few different
forms. The labels could simply serve as flags, to indicate that
regularization should be weakened to allow these magnetic
sensitive lines to wander farther from their naive nonmagnetic
expectations. Or the labels could be used to infer the extent of
Zeeman broadening or Zeeman splitting by parameterizing
these operations as convolutions. The best choice for how to
incorporate magnetic sensitivity into the flexibility of blasé
remains an open research question.

8.7. Circumstellar Disk and Accretion Veiling

Circumstellar disk veiling suppresses the strengths of all
spectral lines en masse, as the stellar photosphere gets
outshined by a hot disk and/or envelope.
The bulk properties of that disk/envelope could be

incorporated with a simple physical model: a blackbody of
temperature Tdisk and solid angle Ωdisk (Greene et al. 2018).
Revealing the spectral shape of the veiling would require
sufficiently high bandwidth spectra, such as Xshooter (Vernet
et al. 2011) or possibly IGRINS. The extent of veiling would
be fit alongside all the other stellar spectral lines. However, an
MCMC approach may outperform blasé in accuracy, since the
choice of picking an underlying spectral template is partially
degenerate with the derived veiling.
Accretion veiling can be treated analogously, but with some

more complications. Emission lines can be easily incorporated
as described in Section 2.5. These emission lines could be
initialized with a line list of hydrogen lines, forbidden lines,
and other conspicuous features. The shapes of those lines can
be affected by winds and other physical phenomena, yielding a
variety of physically interpretable line shapes (Erkal et al.
2022). Blasé could incorporate those line shapes as templates
shared among several lines originating from similar physical
environments, but scaled and shifted based on the details of
each line’s radiative transfer properties.

8.8. Sky Emission Lines and Wavelength Calibration

Night-sky emission lines—arising from OH, for example—
add emission-line spikes on top of the astronomical target
spectrum of interest. These lines get subtracted in most pipeline
packages, but in some cases a more careful treatment may be
desirable. In HPF, a sky reference fiber points toward blank
sky, needing some careful calibration before subtraction from
the target fiber (Gully-Santiago et al. 2022). Remote-sensing
applications may wish to measure such emission lines as the
primary science of interest. It would be straightforward for
blasé to handle emission lines, following the augmentation for
emission lines in Section 2.5. The main benefit over
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conventional sky subtraction methods may be the ability to
disentangle the underlying spectrum at super-resolution. A
predictive model for sky emission could be built up over time,
building data-driven corrections to theoretical models.

The well-known center wavelengths of these lines could be
used for additional wavelength calibration, as is already done in
IGRINS (Lee & Gullikson 2016). An imperfect instrumental
wavelength calibration could be diagnosed based on the
departure of the predicted versus realized wavelength center
positions, enabling a relatively fast and intervention-free
correction strategy. Hypothetically, a prescription for the
wavelength calibration could be built directly into blasé, with
the coefficients for a polynomial rerouting the realized
wavelength center locations from their known wavelength
centers.

9. Conclusions

We have introduced an interpretable machine-learning
approach to forward-modeling stellar, substellar, and telluric
spectroscopic data. The line-by-line approach relies on a key
enabling technology, automatic differentiation, that allows a
nearly unlimited number of spectral lines to be forward-
modeled simultaneously. We initialize these lines to match
precomputed synthetic stellar spectra, achieving excellent
performance, and lending some confidence that the approach
has a capacity to capture a tremendous amount of information
at once.

We demo the framework on two sources: the K5 exoplanet
host star WASP 69 using a precomputed PHOENIX model,
and the T6 ultracool dwarf 2MASS J08173001−6155158
using a precomputed Sonora−Bobcat model. We discuss how
blasé can be used to measure EWs for thousands of lines
automatically, understand line lists, measure rotation rates,
generate surrogate models, and construct semiempirical
models. This tool could readily have applications across stellar
and substellar astronomy, including for PRV work, stellar
compositions, Doppler imaging, and stellar activity.

We thank the anonymous referee for comments that
improved the paper. We thank Phill Cargile, Hajime Kawahara,
and Dan Jaffe for preprint comments.

This material is based on work supported by the National
Aeronautics and Space Administration under grant Nos.
80NSSC21K0650 for the NNH20ZDA001N-ADAP:D.2 pro-
gram and 80NSSC20K0257 for the XRP program issued
through the Science Mission Directorate.

We acknowledge the National Science Foundation, which
supported the work presented here under grant No. 1910969.

These results are based on observations obtained with the
Habitable-zone Planet Finder Spectrograph on the HET. The
HPF team was supported by NSF grants AST-1006676, AST-
1126413, AST-1310885, AST-1517592, AST-1310875, AST-
1910954, AST-1907622, AST-1909506, ATI 2009889, and
ATI-2009982 and the NASA Astrobiology Institute (NNA09-
DA76A) in the pursuit of precision radial velocities in the NIR.
The HPF team was also supported by the Heising-Simons
Foundation via grant 2017-0494.

The Hobby–Eberly Telescope (HET) is a joint project of the
University of Texas at Austin, the Pennsylvania State
University, Ludwig-Maximilians-Universität München, and
Georg-August-Universität Göttingen. The HET is named in

honor of its principal benefactors, William P. Hobby and
Robert E. Eberly.
M.G.S. thanks Ian Czekala, Phill Cargile, Rodrigo Luger,

Greg Herczeg, Will Best, Dan Foreman-Mackey, Megan
Bedell, Mark Marley, Erwan Pannier, Dirk C. M. van den
Bekerom, Dan Clemens, Dan Jaffe, Tom Greene, Adam Kraus,
David Hogg, Greg Zeimann, Ben Montet, Christina Hedges,
Brittany Miles, Arpita Roy, Ben Pope, and Kevin Gullikson for
conversations and resources that shaped his thinking on
spectral calibration and telluric mitigation.
Facility: HET (HPF).
Software: pandas (McKinney 2010), matplotlib (Hunter

2007), astropy (Astropy Collaboration et al. 2013, 2018),
exoplanet (Foreman-Mackey et al. 2021), numpy (Harris et al.
2020), scipy (Virtanen et al. 2020), ipython (Pérez &
Granger 2007), starfish (Czekala et al. 2015), seaborn
(Waskom 2021), pytorch (Paszke et al. 2019), muler (Gully-
Santiago et al. 2022).

Appendix A
Log Flux Scaling Mode

Here we illustrate how blasé gets altered when applying the
logarithmic flux preprocessing step. First, we compute the
natural log of the flux directly on the precomputed synthetic
spectrum in its absolute flux scaling and native pixel sampling:

ln ln ln . A1abs ( )= - -S S B P
We simply “rebrand” P as residing in logarithmic flux units,

and we disregard it since it is largely a nuisance parameter
anyway. We then treat the blasé clone model as a sum of
opacities, retaining the Voigt profile:

aln . A2
j

N

j jclone
1

lines

( )å= -
=

S V

Here the aj values have also been slightly rebranded from
their meaning in Equation (2). We still want to enforce only
absorption lines—and not spurious emission lines—so we use
the sample trick of sampling the aj values in log and then
exponentiating them to get guaranteed positive values. Note
that Equations (2) and (A2) carry modified meanings for the
Voigt profile. Specifically, Equation (2) can be viewed as the
Taylor series expansion for Equation (A2) in the limit of small
opacities:

e a1 . A3a
j jj j ( ) ( )» -- VV

Both equations are approximate. A real stellar atmosphere’s
line shape arises from a sum of disparate Voigt profiles
weighted along a nonuniform column of gas, whereas here we
have assumed that the column of gas is approximated as a
single uniform isothermal backlit layer. A sum of unlike-Voigt
profiles is not exactly equal to any single Voigt profile.
Theoreticians may resonate with this more “first principles”
representation, while data practitioners may find Equation (2)
more natural, so to some extent, the choice is a matter of taste.
Table A1 sumarizes the notation used throughout the paper for
reference.
The sparse matrix gets rebranded as filled with opacity

values, instead of log-fluxes, but operationally remains the
same. All subsequent steps operate on the summed and
exponentiated opacities, behaving identically to their linear
counterparts. For example, we exponentiate before computing
the residuals and data–model comparison, e eln ln clone= -R S S .
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Appendix B
Comparison to Existing Spectroscopy Frameworks

Several astronomical spectral frameworks share similar aims
to blasé. These existing frameworks will have enduring value
for the wide range of problems in the field of stellar
spectroscopy. Here we scrutinize the differences among some
of these approaches to clarify how this work fits in.

The specmatch synthetic template matching tool produces
noise-free nearest neighbor templates given an input spectrum
(Petigura 2015). Several practical barriers limit the accuracy of
using precomputed synthetic spectral models alone. First and

foremost, real stars are usually more complicated than our
simplified models of them. Real spectra often vary over more
dimensions than our models do. Conspicuous examples of
these hidden variables can be found in protostars: starspots,
accretion veiling, dust extinction, and magnetic Zeeman
splitting. Jointly modeling all of these phenomena alongside
the intrinsic stellar photosphere is challenging.
The empirical version, specmatch-emp (Yee et al. 2017),

matched spectra better than the synthetic templates, but it is still
too rigid for some applications and requires the assembly of
hundreds of standardized high-S/N templates, ideally with low
intrinsic rotational broadening. Such a large number of high-
quality templates with high resolving power and low v isin has
not yet been established in the near-infrared.
The wobble framework (Bedell et al. 2019) modernized the

construction of high-S/N templates to account for temporally
variable telluric lines. The tool requires dozens of high-S/N
spectra acquired at a range of barycentric Earth RVs. The final
telluric-free combined spectrum would still have to be
compared to models for absolute calibration or can be used
out of the box for precision relative RVs. The wobble
framework also pioneered the off-label application of automatic
differentiation frameworks—in this case TensorFlow—
toward their physically motivated use in stellar spectra. Blase
can be viewed as an evaluable and interpretable super-
resolution version of wobble, which accepts more bias in
the bias–variance trade-off.
The starfish framework (Czekala et al. 2015) provides a

robust likelihood function for data–model comparisons and
retires many of the problems in this domain. Starfish
pioneered the use of whole-spectrum fitting with resilience to
model imperfections by addressing the problem of what to do
when the underlying atomic and molecular data were wrong or
approximate or missing. It has been extended to inferring
starspot physical properties (Gully-Santiago et al. 2017),
measuring veiling in Class 0 protostars (Greene et al. 2018),
and quantifying imperfections in brown dwarf models (Zhang
et al. 2021). The Spectral Inference Crank (sick; Casey 2016)
shares similar aims to starfish and provides additional
useful grid search capabilities.
For very large bandwidths and very many spectral lines, the

problem of identifying and cataloging line imperfections
essentially becomes a bookkeeping and continuum assignment
problem. Blase and starfish provide different strategies
for orchestrating the line-mismatch identification procedure,
with each route having trade-offs depending on the application.

Appendix C
Conceivable Technical Improvements

Blasé already performs very well under a wide range of
cloning and transfer-learning tasks. However, some precision
applications may demand even more strenuous performance
than what the current implementation can accommodate. Here
we describe some of these technical improvements, discuss
their design, and mention some science cases they may unlock.

C.1. Exact Instead of Pseudo-Voigt Profile

We currently employ the pseudo-Voigt profile for its low
computational cost. We have a prototype exact Voigt–Hjerting
implementation following Kawahara et al. (2022). We coarsely
estimate that moving to this exact Voigt implementation could

Table A1
Notation Used in This Paper

Symbol Meaning

Spectra

λS Native wavelength coordinates of the precomputed stellar spectrum
λT Native wavelength coordinates of the telluric spectrum
λD Native wavelength coordinates of the data spectrum
Sabs Flux values of the precomputed synthetic stellar spectral model λS

B Blackbody of temperature Teff to coarsely normalize Snative

P Smooth polynomial to refine continuum normalization
S Continuum-normalized augmentation of Sabs

T Transmission values of the precomputed synthetic telluric model
D The observed data spectrum flux values
ò The estimated uncertainties in the data spectrum
Sclone Evaluable and tunable cloned flux model of S
Tclone Evaluable and tunable cloned transmission model of T
Sext An augmentation of Sclone with v isin convolution and RV

translation
Mjoint The joint stellar and telluric model: Sext e Tclone(λS)
M Joint model convolved with instrumental kernel and resampled to

λD

R The residual spectrum between a pair of inputs, e.g., D − M
v The spectral coordinate axis λ expressed as a velocity difference

Line Properties

λc,j Line center position of the jth spectral line
aj Gaussian line profile amplitude of the jth spectral line
σj Gaussian line profile scale of the jth spectral line
γj Lorentzian line profile half-width of the jth spectral line
Vj The Voigt profile of the jth spectral line
F̄ The dense (Nlines × Nx) matrix of all line fluxes stacked vertically
F̂ The sparse (Nlines × Nsparse) matrix of all line fluxes stacked

vertically
ζ The rotational broadening convolution kernel
g The instrumental broadening convolution kernel, typically a

Gaussian

Scalars

Nlines Number of spectral lines
Nx Number of pixel coordinates in the precomputed spectrum λx

Nsparse Number of nonzero pixels computed in the sparse implementation
±Δλbuffer Buffer exceeding the red and blue limits of the data spectrum
Prom The prominence threshold of spectral lines to include in cloning
v isin Rotational broadening for stellar inclination i and equatorial velo-

city v
RV Radial velocity of the star
R Spectrograph resolving power λ/δλ
 The loss scalar, usually the sum of the squares of the residuals

Operators

resample x[ ( )]lF The resample operator, takes in a flux spectrum F evaluated at λx

coordinates and returns the mean flux within the pixel bound-
aries of coordinate λz

∗ The convolution operator
e Hadamard product, an element-wise product of two same-length

vectors
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decrease some residual regions by ∼30%, while increasing the
computational cost by more than 10× over the existing pseudo-
Voigt approximation. The exact Voigt–Hjerting implementa-
tion still outbids the higher cost of a direct numerical
convolution of a Gaussian and Lorentzian profile.

C.2. Addressing the Pseudo-continuum with Gaussian Process
Regression

We currently assume that the input spectra are adequately
normalized to the continuum. We have a few options to relax this
assumption. We could simply tune the P term that represents the
wavelength-dependent pre-factor to Equation (2). Tuning P
would correct for large-scale imperfections in the otherwise-
fixed continuum flattening procedure. This change would be
easy and effective, but it has some challenges with model
selection and flexibility: how to set the polynomial order to
avoid over- and underfitting. GPs offer many advantages for
continuum fitting (Czekala et al. 2015). In short, a GP likelihood
relaxes the assumption that the continuum has been perfectly
normalized, in favor of the more realistic statement “the
continuum has been coarsely normalized, with some character-
istic but as-yet-unknown correlation and scale length and
amplitude of the imperfections.” That statement translates to the
following modification to Equation (3):

 1
2

1
2

ln det , C11 { } ( )= +-R C R C

where we introduce the covariance matrix C, with its associated
kernel and collection of typically two to three parameters. We
anticipate that this GP likelihood would have the greatest
impact on stars with significant band heads and line blanketing:
spectra with a so-called “pseudo-continuum.” M dwarfs and
brown dwarfs fall into this challenging category.

The main demerit of moving to a GP likelihood is
computational cost. Fortunately, a few efficient autodiff-aware
implementations of GPs exist. The celerite algorithm
celerité (Foreman-Mackey et al. 2017) has an exact back-
propagation implementation (Foreman-Mackey 2018) that
scales linearly with the number of data points. The celerité
algorithm does not currently have a PyTorch implementation.
The GPyTorch framework (Gardner et al. 2018) has a large
category of approximate and exact GPs that could be
straightforwardly dropped into blase. Even still, these GPs
could increase the computation cost by of order 10×.

C.3. Minibatches and Stochastic Gradient Descent

Currently, each training epoch sees the entire data set, a
setup dubbed full-batch gradient descent. An alternative
scheme allows training with only a portion of the entire data
set at a time in minibatches. The massive data volumes in
modern neural network applications cannot fit into the GPU
memory, so minibatches are a necessity. Our meager 1 MB data
set can easily fit into the GPU memory, but our model can be
large if we have a large number of pixels or lines or both.
Hence, while minibatches may not be required owing to data
size limitations, they may be useful for particularly large
models. Minibatches also act as a form of regularization, the
principal source of stochasticity in the SGD algorithm, which
tends to have better convergence than full-batch gradient
descent (Ruder 2016).

We experimented with minibatches by assembling and
evaluating only a portion of the dense F̄ matrix at a time, in
minibatches. The choice to evaluate only a portion of lines at a
time would mean that the model is inaccurately evaluated at all
wavelength pixels. Instead, we choose to evaluate all lines, but
only on a random subset Nbatch of the total pixels Ns, so that the
model can eventually converge to exact at those points. All
lines are allowed to update at each glimpse of a minibatch, but
many lines with cores far from minibatch pixels will provide
only weak information about how the loss scalar changes for
their parameters.
Overall minibatches as implemented above performed worse

than the sparse implementation, with both lower accuracy and
slower computation time.

C.4. Broad Lines and Advanced Line Shapes

Some lines—such as those arising from hydrogen, sodium,
potassium, and others—have extremely broad line wings,
approaching larger than the ∼6000 pixels we allocate for the
sparse implementation. These special lines should be handled
separately from the weak lines, both from a computational
performance perspective and from an accuracy perspective.
Extremely broad lines will exhibit truncation effects if the

sparse window is small compared to the line wing size. The
truncation effects will look like top-hat functions severing the
asymptotic wings, imbuing artificial step function kinks in the
emulated spectrum. We can afford to increase the sparse
window on a few (say, Nbroad∼ 20) of the broadest spectral
lines. We then construct and evaluate the entire dense matrix
for those lines: ∼330,000× 20. The number of FLOPS in each
category scales as about 6,000,000 for the 20 broad and dense
lines versus about 36,000,000 for the sea of about 7000 narrow
and sparse lines, depending on the exact choices for wing cuts
and the number of lines.
One could introduce advanced line shapes for these ∼20

broad lines, perturbing the Voigt line wings with a smooth
wavelength-dependent correction term G:

C2˜ ( ) ( )l =V V G

e
b

1 1 , C3c j t j

j

, ,
j ⎜ ⎟⎛⎝ ⎞⎠( ) · ∣ ∣ ( )l l l

= + -
- -aG

where e is again the element-wise product (aka Hadamard
product),  is the sigmoid function, and we have introduced
three new tunable parameters for each of the j broad lines; λt is
the truncation wavelength, b is a scale parameter for how
slowly or how rapidly in wavelength space the transition from
non-Lorentzian proceeds, and α is a possibly negative stretch
parameter that controls whether the line wing is sub- or super-
Lorentzian.
This functional form has a few advantages. It is smooth. The

smoothness of the transition is controlled by a tunable
parameter, b. It can handle either sub- or super-Lorentzian
shapes. In the limit lima 0 G, the line shape becomes exactly
Lorentzian. The sigmoid is efficiently implemented in PyTorch.
Finally, it enforces that the perturbation only produces
absorption and not emission profiles.

C.5. Using Native Line Lists Rather Than Clones

For many practitioners, the choice to clone precomputed
synthetic models in the first place may seem roundabout: “Why
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not just use the line lists?” Adopting the line lists would have
many advantages: it would provide chemical and molecular
provenance tags. Metadata associated with the quality of the
atomic and molecular data could be used to assign physics-
informed regularization. Many other benefits would effortlessly
accrue from adopting the native line lists. The FAL project
(P. Cargile et al. 2022, in preparation) follows such a principled
prescription.

As already emphasized, there exist at least a few demerits of
adopting the line lists and therefore supporting the blasé
strategy. First, these line lists need to undergo expensive
multilevel radiative transfer calculations in order to obtain their
amplitudes, so adopting the line lists would mean a laborious
and computationally expensive pursuit simply to get close to
what has already been computed. Second, as the effective
temperature scales to ultracool dwarfs (Figure 1), the number of
lines skyrockets, tending toward the billions for T dwarfs. The
methane line list alone (Hargreaves et al. 2020) represents a
prohibitive data volume. The ExoJAX and Radis (Pannier &
Laux 2019; van den Bekerom 2021) libraries offer a break-
through solution to the voluminous line list problem. Even still,
blasé deals with the less pure but more practical “pseudo-line”
that gets closer to the astronomical observables anyway and
offers a middle ground between the extremes of interpretability
and performance.

C.6. Wavelength-dependent Limb Darkening

Currently, the extrinsic model step possesses up to four
parameters: the v isin and RV, and two optional parameters for
limb darkening. These four parameters may adequately
parameterize a star with a uniform stellar disk. Extremely high
S/N spectra of rapidly rotating stars may require additional
flexibility. The limb darkening is generally wavelength
dependent, and so a panchromatic spectrum may require a
different limb darkening from the blue end to the red end. The
limb darkening may instead depend on physical properties of
the spectral line formation, such as physical depth of formation,
and so the extent of limb darkening may jump haphazardly
from line to line to line, rather than as a predictably smooth
function across wavelength. Blase could be built to handle
such a seemingly pathological scenario by adding a vector of
limb-darkening parameters, one for each line. One would have
to regularize the fits with some typical limb darkening and a
heuristic penalty for departures from this mean.
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