
HADAS: Hardware-Aware Dynamic Neural

Architecture Search for Edge Performance Scaling

Halima Bouzidi∗§, Mohanad Odema†§, Hamza Ouarnoughi∗, Mohammad Abdullah Al Faruque†, Smail Niar∗

∗LAMIH/UMR CNRS, UniversitÂe Polytechnique Hauts-de-France, Valenciennes, France
†Department of Electrical Engineering and Computer Science, University of California, Irvine, USA

∗{firstname.lastname}@uphf.fr †{modema, alfaruqu}@uci.edu

AbstractÐDynamic neural networks (DyNNs) have become
viable techniques to enable intelligence on resource-constrained
edge devices while maintaining computational efficiency. In many
cases, the implementation of DyNNs can be sub-optimal due to its
underlying backbone architecture being developed at the design
stage independent of both: (i) potential support for dynamic com-
puting, e.g. early exiting, and (ii) resource efficiency features of the
underlying hardware, e.g., dynamic voltage and frequency scaling
(DVFS). Addressing this, we present HADAS, a novel Hardware-
Aware Dynamic Neural Architecture Search framework that re-
alizes DyNN architectures whose backbone, early exiting features,
and DVFS settings have been jointly optimized to maximize
performance and resource efficiency. Our experiments using the
CIFAR-100 dataset and a diverse set of edge computing platforms
have shown that HADAS can elevate dynamic models’ energy
efficiency by up to 57% for the same level of accuracy scores. Our
code is available at https://github.com/HalimaBouzidi/HADAS

Index TermsÐdynamic neural networks, DVFS, neural archi-
tecture search, early exit, edge computing, joint optimization

I. INTRODUCTION

Neural Networks (NNs) have become integral machine learn-

ing techniques that enable intelligence for today’s edge com-

puting applications. Oftentimes, edge computing platforms are

deployed in-the-wild, making them susceptible to considerable

runtime variations related to the distribution of collected data,

i.e., difficulty of accurately processing an input, and the system

state, e.g., state of charge. Accordingly, the adoption of Dy-

namic Neural Networks (DyNNs) [1] has become increasingly

relevant, where contrary to conventional static models with

fixed computational graphs, DyNNs adapt their model structure

or parameters to suit the runtime context, offering resource

efficiency at the edge while maintaining the models’ utility.

One prominent DyNN technique is early exiting, where dy-

namic depth variation is applied on a sample-wise basis to avoid

redundant computations. Specifically, early-exiting facilitates

concluding the processing of the ªeasierº input samples at

earlier layers of a model for resource efficiency. This feature is

often realized through a multi-exit architecture that integrates

intermediate classifiers onto a shared backbone model [2]±[4].

Typically, the design workflow of multi-exit models initially

assumes that the backbone’s architecture has been optimally

designed to maximize performance on a target task. Evidently,

backbones in related works were either based on renowned

state-of-the-art NN architectures, e.g., ResNets in [2], or models

rendered through the design automation frameworks of Neural

§ Equal contribution
This work was partially supported by the National Science Foundation (NSF)
under award CCF-2140154.

Architecture Search (NAS) [5]. This means that backbones

were originally designed to serve as standalone static models.

Thus, a subject of debate is whether such design optimality of

these models would hold when auxiliary tasks are added ± as

in to serve as the backbone of a dynamic model.

Even more so, the design stage of NN architectures usually

entails treating the configurable hardware settings of the edge

platforms as fixed constraints [3], [4], overlooking supported

resource efficiency features such as dynamic voltage and fre-

quency scaling (DVFS). Unfavorably, this may lead to inferior

model designs as a result of disregarding the inter-dependencies

between the model and hardware design spaces. Although

recent works have attempted to remedy this deficiency for static

NNs through joint optimization approaches [6], addressing it

for DyNNs is still highly understudied. In summary, the current

state-of-the-art DyNN design workflow lacks in the following:

• The backbone model architectures were not originally

optimized for dynamic inference

• The hardware configuration settings are treated as fixed

constraints during the design process

• Modern NN design frameworks (e.g., NAS) do not char-

acterize the runtime aspects of dynamic input mappings

Fig. 1. Comparing the performance of (a0, a6) from AttentiveNAS and
HADAS’s model on CIFAR-100 and the Jetson TX2 Pascal GPU hardware

A. Motivational Example

We take as baselines the respective most compact and

highest-performing image recognition models, a0 and a6, that

were provided through a state-of-the-art NAS framework, At-

tentiveNAS [5]. We compare their performance against one of

our models that was provided using HADAS framework. In this

case, we implement HADAS on top of AttentiveNAS to ensure

a fair comparison by having the models share the same base

structure and optimization algorithms. Classification accuracy

and energy consumption are leveraged as the performance

comparison metrics. Here, we use the CIFAR-100 image dataset

for models’ training and accuracy evaluations and the NVIDIA

Jetson TX2 platform for hardware benchmarking.

As shown in Figure 1, we designate three stages of op-

timizations that can be applied to maximize performance

2023 Design, Automation & Test in Europe Conference (DATE 2023) – Best Paper Award Candidate	

 978-3-9819263-7-8/DATE23/© 2023 EDAA 

	

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 19,2023 at 04:26:44 UTC from IEEE Xplore.  Restrictions apply. 



efficiency: Static ± optimizing the backbone model design;

Dyn ± integrating dynamic early-exiting features; and Dyn w/

HW ± integrating early-exiting features and applying DVFS

features. With regards to accuracy (left barplot), HADAS’s

model outperforms a0 and is on-par with a6 after applying the

static and Dyn optimizations. More interestingly, though, the

energy efficiency of HADAS’s model is enhanced considerably

with every applied optimization compared to the other models

(right barplot). After the first stage of Static optimization, a0

is reasonably deemed the most energy-efficient model given its

compactness (22% more energy-efficient than ours). However,

when Dyn optimizations are applied, our model’s efficiency

improves drastically to reach the same level of energy efficiency

as a0. Even more so, our model becomes 19% more energy-

efficient than a0 once Dyn w/ HW optimizations are in place.

Analysis Summary and Conclusions: Through its aware-

ness of the dynamic and DVFS parameter spaces, HADAS

can balance the accuracy-efficiency trade-offs more than the

conventional NN design approaches. Specifically, HADAS’s

joint optimization approach of the backbone model, early

exiting features, and the hardware settings leads to DyNN

model designs that are highly prone to benefit from the static,

dynamic, and hardware deployment aspects altogether.

B. Novel Contributions

Our scientific contributions and novelties are as follows:

1) We present HADAS, a novel hardware-aware NAS

framework that jointly optimizes the design of multi-exit

DyNNs and DVFS settings for efficient edge operation.

2) As shown in Figure 2, HADAS is built to leverage

the existing infrastructure of pretrained supernets pro-

vided through state-of-the-art NAS frameworks, and is

also compatible with existing runtime controllers for an

effective end-to-end design workflow.

3) We formulate the design space exploration problem for

multi-exit architectures as a bi-level optimization problem

solved through two nested evolutionary genetic engines.

The outer engine identifies optimal backbone designs.

Whereas the inner engine co-optimizes the exits’ inte-

gration and the DVFS settings.

4) On the CIFAR-100 dataset and a diverse set of hard-

ware devices/settings, our experiments demonstrated that

HADAS models can realize energy efficiency gains by

up to ∼57% over models designed through conventional

methods while preserving the desired level of accuracy.

II. RELATED WORKS

Early exiting and NAS: Early-exiting has been widely

adopted to realize DyNNs on the edge given their ªsimple-yet-

effectiveº characteristic. The direct approach to realize Multi-

exit networks has been to branch intermediate classifiers from

the earlier stages of a backbone model, and retraining the model

to maximize the performance of all classifiers [2], [4], [7], [8].

With an effective input-to-exit mapping policy, Multi-exit mod-

els enjoy computational efficiency as simpler input samples can

be classified at the earlier classifiers (exits) while maintaining

the model’s representational power through retaining the full

classifier for the harder samples. In the aforementioned works,

Fig. 2. Overview of our Hardware-Aware Dynamic Neural Architecture Search
(HADAS) framework. Lightly-shaded green blocks are the novel contributions.

the multi-exit networks have been manually designed based on

heuristic choices of positions, structure, and count conditioned

on their respective backbone architecture [9]. Recent works [3],

[10] have investigated the applicability of NAS techniques to

automate the design of multi-exit networks, where the backbone

and exits’ design spaces can be jointly explored to reach

superior DyNN architectures. However, [3] instituted a small

search space of one exit branch at a fixed position which is not

scalable. Whereas despite the effectiveness of the approach in

[10], its application was specific to convolutional NNs.

Dynamic hardware reconfiguration: Dynamically scaling

NNs results in different computational and energy footprints

that require adapting the hardware configuration accordingly. In

[11], [12], the hardware has been co-designed with the multi-

exit networks using FPGAs, showcasing how further energy

efficiency gains can be achieved through having specialized

hardware for exits. Nevertheless, the considerable switching

overheads of hardware configurations in FPGAs are not typ-

ically acceptable for runtime applications. A viable alternative

came in the form of hardware reconfiguration through sup-

ported DVFS features, where the operational frequency can

be scaled after exiting to preserve energy resources [13], [14].

Table I illustrates the difference between HADAS and existing

multi-exit network design approaches and how it improves

upon them through its joint optimization approach while being

compatible with existing state-of-the-art NAS frameworks.

TABLE I
COMPARISON BETWEEN RELATED-WORKS AND OURS

Work Early-Exiting NAS DVFS Compatibility

BranchyNet [2] x

CDLN [4] x

S2dnas [10] x x

Dynamic-OFA [6] x x

EExNAS [3] x x

Edgebert [13] x x

Predictive Exit [14] x x

HADAS x x x x

III. PROBLEM FORMULATION

As the combined design space size for the DyNNs and

hardware configurations can be enormous, we characterize

three separate subspaces to manage the joint optimization of

their parameters as follows: (i) The backbones (B); which

are models originally designed in a monolithic fashion for

static inference with no adaptive behavior, (ii) The exits (X );

which are the dynamic components to be integrated onto a

backbone, and (iii) The DVFS settings (F); constituting the

space of operational frequencies for the underlying hardware

components. For the DyNNs, our reasons for designating B
and X as separate subspaces are twofold: (a) To maintain

the generality of the approach by having the X subspace

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 19,2023 at 04:26:44 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3. HADAS co-optimization framework.

indifferent to the ªtypeº of candidate backbones in B, and (b)

To leverage the existing infrastructure of pretrained supernets

from established NAS frameworks (as in [5], [15]) so as to

provide high-caliber backbone models for the B subspace.

In order to rank candidate dynamic architectural designs, we

denote S and D as generic performance objectives under static

and dynamic deployments, respectively. Mainly, S represents

the backbone evaluations when designated as a fixed standalone

model (e.g., baseline energy), whereas D is for the evaluations

of its dynamic variant after integrating the exits (e.g., average

energy when effective mapping of inputs to exits). Hence, this

implies a bi-level optimization problem with the B as the outer-

level subspace and (X , F) as the inner-level ones:

b∗ = argmax
b∈B

ψ[S(b),D(x∗, f∗ | b)] (1)

s.t. x∗, f∗ = argmax
x∈X ,f∈F

D(x, f | b) (2)

where the global optimization objective to identify the ideal

parameter combination (b∗, x∗, f∗) that maximizes a global

function ψ combining the performance objectives of S and

D. In practice, the underlying optimization objectives are con-

flicting by nature ± e.g., the larger computationally expensive

models enjoy higher accuracy scores and vice versa. Thus, the

problem can be approached as a multi-objective optimization

where we seek a Pareto optimal set of solutions For instance,

in equation (2), a solution (x∗, f∗) is said to be Pareto optimal

if for all the objective functions d ∈ D:

dk(x
∗, f∗) ≥dk(x, f)∀k, (x, f)

and ∃j : dj(x
∗, f∗) > dj(x, f)∀(x, f) ̸= (x∗, f∗)

IV. HADAS FRAMEWORK

We adopt nested genetic algorithms [16] to solve the opti-

mization problem as illustrated in Figure 3 as follows:

A. Outer Optimization Engine (OOE)

The OOE considers two primary tasks: (i) Searching through

B to identify the best backbone candidates, and (ii) Ranking

DyNNs according to their aggregate S and D evaluations.

1) B Subspace: Modern NAS frameworks employ a Once-

For-All (OFA) approach which entails first training a large over-

parameterized supernet on a target task, prior to applying a

search algorithm to identify the optimal subnet designs within.

The enabling factor of OFA approaches is that all of the super-

net’s parameters are shared by its subnets, effectively rendering

the training and search procedures as disjoint processes, which

dramatically reduces the overall overheads within the NAS

framework [5], [15]. From here, HADAS is built to leverage the

pretrained supernets of existing NAS frameworks to construct

the B subspace of backbones, where the search space can be

encoded into discrete variables usable by the search algorithm,

and each viable subnet (backbone) can be denoted as b ∈ B.

2) B Evolutionary Search: With B defined, the dynamic

architecture search initiates in the OOE through an evolutionary

search algorithm (e.g., NSGA-II) that can navigate through

B to sample promising backbone models. In particular, the

evolutionary algorithm is set to run for a predefined number

of generations G, generating with every generation, g, a popu-

lation of backbones, Pg
B

, from which the encoded pretrained

subnets can be sampled. Afterwards, ∀b ∈ P
g
B

, a fitness

evaluation under static conditions is performed as:

S(b) = Fit(Accb, Lb, Eb) (3)

where S(b) is a vector of the static performance evaluations

with regards to the accuracy (Accb), latency (Lb), and energy

(Eb), respectively. Estimates for Lb and Eb are obtained based

on hardware measurements ± as through a HW-in-the-loop

setup (adopted here), lookup tables, or prediction models. At

this stage, we remark that hardware evaluations are based on

default HW settings, leaving the DVFS optimizations for the

IOE. Based on the S scores, every b ∈ P
g
B

is ranked using

the NSGA-II non-dominated sorting algorithm. If a number of

backbones shared the same rank, their diversity scores are used

for re-ranking. This early selection procedure enables pruning

the population to reach a smaller subset Pg′

B
⊂ Pg

B
, where

every b′ ∈ P
g′

B
is mapped to an IOE (detailed later) to obtain

the overall dynamic architecture evaluations D(x∗, f∗ | b′).
Once an IOE concludes its procedures, a Pareto optimal

set of exits placement and DVFS settings is returned to

the OOE for every b′ ∈ P
g′

B
. These Pareto sets are then

collectively aggregated for a second selection algorithm that

ranks backbones based on their combined S and D scores,

leading to another population subset Pg′′

B
⊂ Pg′

B
. Lastly, Pg′′

B

undergoes mutation and crossover operations to construct a

new population Pg+1

B
for generation g+1. This outer loop cycle

repeats until generation G at which the Pareto optimal set (b∗,

x∗, f∗) is returned as the final solution.

B. Inner Optimization Engine (IOE)

The IOE is invoked for every b′ ∈ Pg′

B
. Its primary respon-

sibility is to search through the defined X and F subspaces to

identify optimal pairings (x∗, f∗ | b′) as follows:

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 19,2023 at 04:26:44 UTC from IEEE Xplore.  Restrictions apply. 



1) X subspace: To define the exits’ search space, we

characterize the total number of exits and their positions as

search parameters. In practice, present-day backbone structures

(as those from AttentiveNAS) constitute M sequential com-

puting neural blocks (i.e., an aggregation of interrelated layers)

between which effective placement of the exits can be realized.

We illustrate this in Figure 4 through how the X subspace

is conditioned on a b ∈ B. Specifically, we define a vector

of indicators [I1, I2, ..., IM−1] where Ii ∈ {0, 1} to indicate

whether exit branch at position i is sampled for the correspond-

ing instance. Regarding the composition of exit branches, we fix

a simple structure across all potential exits positions for three

reasons: (i) Re-usability as such a straightforward structure

can act as a base module compatible with numerous backbone

model architectures and classes, (ii) The smaller search space

size of the exits leads to smaller search overheads ± especially

relevant when considering the additional subspaces as well,

and (iii) Minimizing the training costs of the exits. For our

experiments, the exit structure constituted a single sequential

computing block of a convolutional, batch normalization and

activation layers, which are followed by a final classifier layer.

2) Exits Training: Once a b′ is mapped to the IOE, every

x ∈ X needs to be trained for a fair evaluation of the exit

candidates. In this scheme, the weight parameters of b′ are kept

frozen independent of the exits’ training procedure, where the

rationale here is to avoid negatively influencing the performance

of b′ with regards to its static accuracy score (i.e., the backbone

accuracy) ± which can occur when the weights are optimized

for more than one objective [2]. Combining this notion with the

compact structure of the exits, the exits’ training overheads can

be kept to a minimum within the IOE, all while leveraging the

representational power of b′ across its various stages to attain

the desired resource efficiency gains.

For the training loss function itself, we adopt a hybrid

loss function (Ltotal) combining the Negative log-likelihood

(LNLL) and knowledge distillation (LKD) loss components to

simultaneously train every x ∈ X as follows:

L =
1

N

N∑

n=1

[
1

M -1

M−1∑

m=1

(LNLL(yn, ŷm,n) + LKD(ŷm,n, ŷM,n)]

(4)

where N is the total number of training samples and M − 1
is the total possible number of exits. For the LNLL term, it

aggregates the losses from every exit at m when comparing

its predicted outputs, ŷm,n, against the ground truth labels, yn,

for every sample n. Whereas the LKD term aggregates the

losses from comparing the error between every ŷm,n and that

of the final model classifier, ŷM,n. Due to space limitations, we

illustrate how these loss components are defined in Figure 4,

and refer interested readers to [7] for more details.

3) F subspace: The hardware search space entails the DVFS

configurations for enhancing the DyNN’s resource efficiency

from the HW’s perspective. Given how different computational

workloads utilize the underlying hardware components differ-

ently, DyNN design candidates can attain maximal resource

efficiency at different DVFS settings. In practice, edge devices

constitute heterogeneous computing units that support DVFS

features. Thus, depending on the underlying hardware, the

Fig. 4. The combined B and X search spaces

operational frequencies of CPU, GPU, and External Memory

Controllers (EMC) can be used to construct F .

4) (X , F) Evolutionary Search: Similar to the OOE, an IOE

also operates an evolutionary NSGA-II algorithm to navigate

the combined search spaces of X and F . With each generation,

a population PX ,F is generated from the combined subspaces’

encoding and provided for the dynamic fitness evaluation:

D(x, f | b′) =
1

∑M -1

i=1
Ii

M -1∑

i=1

Ii · [scorei] (5)

s.t. scorei = Ni ∗
Exi,f

Eb

∗
Lxi,f

Lb

∗ (dissimi)
γ (6)

where equation (5) reflects the mean dynamic performance

score of a sampled dynamic model (x, f | b′) through averaging

scores for every sampled exit (recall Ii ∈ {0, 1}). An exit’s

score is given by scorei in equation 6, which constitutes: Ni,

the fraction of samples that can be correctly classified at exit i;
Exi,f

Eb
, as the normalized dynamic energy at exit xi and DVFS

settings f relative to the backbone energy consumption;
Lxi,f

Lb

is similarly the normalized dynamic latency term. (dissimi)
γ

is a regularization term with a trade-off parameter γ measuring

the dissimilarity of exit xi and its preceding ones as:

dissimi = 1−max (N0:i−1) (7)

where xi’s score is regularized in proportion to the fraction

of samples that can be already classified by its preceding

exits. The rationale behind this metric is to: (i) avoid sampling

exits of similar performance characterizations, and (ii) realize

a compact decision space for the DyNN when deployed.

Based on the D scores, every (x, f | b′) ∈ PX ,F is also

ranked using the NSGA-II non-dominated sorting algorithm so

as to realize subset P ′
X ,F ⊂ PX ,F that would then undergo

mutation and crossover for the following generation. This loop

cycle continues until the final generation where a 2-D Pareto

optimal set (x∗, f∗ | b′) is returned to resume the OOE.

C. Runtime Controller

When a DyNN design is chosen for the final deployment,

a runtime controller needs to be implemented to provide the

effective input-to-exit mapping policies needed for dynamic

inference. Concerning HADAS, its architectural optimizations

are applied at the design stage of DyNNs under ideal mapping

policies, that is, when every input is mapped to the first exit

module xi that can classify it correctly. This is evident through

how the score of each exit in eq. (6) is scaled based on Ni ± the

true fraction of correctly classified samples. Thus, models from

HADAS are compatible with any class of runtime controllers

existing in the literature (e.g., entropy-based [1], [2], [4]).

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 19,2023 at 04:26:44 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
DETAILS ON HADAS JOINT SEARCH SPACES IN OUR EXPERIMENTS

Decision variables Values Cardinality

Backbone Search Space (B)

Number of blocks (n block) 7 1

Input resolution (res) {192, 224, 256, 288} 4

Block depth (l) {1, 2, 3, 4, 5, 6, 7, 8} 8

Block width (w) [16, 1984] 16

Block kernel size (k) {3, 5} 2

Block expand ratio (er) {1, 4, 5, 6} 4

Exits Search Space (X )

Number of exits (nX) [1, (
∑nb

i=1 li)− 5] max(nX)

Exit positions (posX) [5,
∑nb

i=1 li)]
(

nx∑
nb
i=1

li)

)

DVFS Search Space (F )

GPU frequency (AGX Volta GPU) [0.1GHz, 1.4GHz] 14

CPU frequency (Carmel ARM v8.2 CPU) [0.1GHz, 2.3GHz] 29

GPU frequency (TX2 Pascal GPU) [0.1GHz, 1.4GHz] 13

CPU frequency (NVIDIA Denver CPU) [0.3GHz, 2.1GHz] 12

EMC frequency (AGX SOC) [0.2GHz, 2.1GHz] 9

EMC frequency (TX2 SOC) [0.2GHz, 1.8GHz] 11

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

We implement HADAS on top of the AttentiveNAS frame-

work [5]. To construct B, we reuse their search space which

contains more than 2.94 × 1011 neural networks generated

by scaling different dimensions as stated in Table II. Our

experiments are conducted on the CIFAR-100 dataset where

the pretrained supernet of AttentiveNAS has been fine-tuned

accordingly. Backbones and baselines are all sampled from the

same fine-tuned supernet. We dynamically generate the exits’

search space X according to the supported depth (l) of the

backbones in B. In our case, potential exit positions occur at

a layer-wise granularity starting from the fifth (5th) layer to

the backbones’ last layer (For AttentiveNAS [5], potential exit

positions are set after their ªMBConvº layers). We evaluate our

approach on 4 different hardware combinations from NVIDIA

Edge devices: a) AGX Volta GPU, b) Carmel ARM v8.2

CPU, c) TX2 Pascal GPU, and d) NVIDIA Denver CPU.

For each hardware setting, we leverage the supported DVFS

configuration settings to generate F as in Table II. Regarding

the optimization process, we fix a budget of 450 iterations for

the OOE and 3500 iterations for the IOE, where #iterations =

G × P . We use a cluster of 32 GPUs to train the exits for

every sampled backbone, taking up to ∼ 8-10 GPU hours for

each G. In our experiments, we used a HW-in-the-loop setup

for latency and energy measurements which pushed the overall

search time of HADAS to ∼2-3 GPU days. Nevertheless, based

on our analysis, HADAS’s search overhead can be reduced to 1

GPU day if a proxy model replaced the HW-in-the-loop setup.

B. Co-optimization Results

OOE Analysis: The top row of Figure 5 compares the static

performance results from the OOE of HADAS against those of

the top models from AttentiveNAS [5] (denoted as [a0-a6]). As

shown, our obtained Pareto fronts (PF) generally dominate the

baselines on the four hardware settings. Furthermore, HADAS

can identify comparable backbones to the baselines with just

a few evaluations. For instance, on the AGX Volta GPU, a6 is

dominated by another backbone from HADAS with an energy

reduction of ∼ 33% under the same accuracy level. Similarly,

a1 is dominated by another backbone from HADAS with an

accuracy improvement of 2.34% under the same energy gain.

IOE Analysis: The results of the IOE are shown in the

bottom row of Figure 5. For a fair comparison, we fix the same

optimization budget when running the IOE for the baselines and

HADAS. The dynamic performance of the explored (b, x, f)
combinations and the obtained Pareto fronts are given for

both approaches, where the dynamic comparison metrics are

the energy efficiency gains when early exiting and DVFS are

supported, as well as the average of Ni values from equation

(6). Across the four hardware settings, HADAS seemingly

dominates the majority of the optimized baselines with an

average ratio of dominance 58.4% (detailed in the following

paragraph). This can be attributed to HADAS’s better under-

standing of the global search space, where it samples backbones

that are more poised to benefit from the IOE optimizations with

regard to early exiting and DVFS. This is also evident through

how HADAS can sample dynamic parameters for its models

that can realize substantial energy or accuracy gains near the

extremes of its Pareto frontier, which are not realizable by the

optimized baselines. For instance on the Caramel ARM v8.2

CPU, energy gains reach 63% for one of the extreme dynamic

models on the Pareto frontier of HADAS, compared to 52%

for the extreme dynamic variant from the optimized baselines,

under the same level of accuracy.

Hypervolume (HV) and Ratio of Dominance (RoD): we

expand further on the IOE analysis and leverage hypervolume

(HV) and ratio of dominance (RoD) as comparative evalua-

tion metrics. The former metric measures the volume of the

dominated portion of the objective space, whereas the latter

measures the percentage of solutions found by HADAS that

dominate the optimized baselines (and vice-versa). Figure 6

shows that HADAS consistently outperforms the optimized

baselines with regards to both metrics across the 4 hardware

platforms. Taking the Pascal GPU as an example, we find that

the HV coverage and RoD are 16% and 95% more for HADAS

over the optimized baselines, respectively.

TABLE III
DYNNS COMPARISON USING THE TX2 PASCAL GPU

Model
Baseline

Acc(%)

EEx

Acc(%)

Baseline

Ergy(mJ)

EEx

Ergy(mJ)

EEx DVFS

Ergy(mJ)

AttentiveNAS a0 86.33 89.95 173.78 119.83 116.14

AttentiveNAS a6 88.23 93.02 335.48 256.80 218.34

HADAS b1 87.34 93.16 212.44 119.84 93.78

HADAS b2 88.06 91.83 341.3 187.92 126.06

HADAS b3 86.54 88.31 205.48 130.20 86.84

HADAS b4 88.40 89.24 358.01 232.77 201.01

DyNNs comparison: In Table III, we compare the top

DyNNs obtained by HADAS with two AttentiveNAS models:

a0, the most energy-efficient baseline, and a6, the most accurate

baseline. Models are compared with regards to their static (i.e.,

baseline accuracy and energy) and their dynamic performances

(i.e., accuracy and energy with early exiting and DVFS). As

shown, the optimal models from HADAS outperform the base-

lines of AttentiveNAS in both static and dynamic evaluations.

For instance, b1 from HADAS is 57% and 19% more energy-

efficient than the a6 and a0, respectively, while enjoying similar

accuracy scores like the most accurate model a6.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 19,2023 at 04:26:44 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 5. The top row gives the results of the outer optimization on 4 hardware settings of (from left to right): a) AGX Volta GPU, b) Carmel ARM v8.2 CPU,
c) TX2 Pascal GPU, and d) NVIDIA Denver CPU. The bottom row shows the results of the inner optimization engine, with the same hardware settings. The
points in the top row depict the static performance of the explored backbone neural networks in (B) by the OOE, without early-exit or DVFS. The points in
the bottom row represent the performance of the explored combinations of backbones, early-exits, and DVFS in (B,X ,F) by the IOE.

15%
23%

16%

11%

73%
50%

95%
44%

Fig. 6. Comparing search efficacy for HADAS and the optimized baselines
with regards to: a) hypervolume (left) and b) ratio of dominance (right)

C. Dissimilarity Ablation Study

We perform an ablation study to investigate the impact

of the dissimilarity term (dissimγ) in equation (6) through

the performance of the explored models under each case.

Specifically, we run the IOE for one backbone twice, with

dissimγ not included and one when it is included. In Figure

7, we compare the results obtained with and without the

dissimilarity with different values of γ. As shown, the inclusion

of the dissimilarity term allows the optimization algorithm to

focus more on exploring dissimilar early exits with a high

contribution to the prediction accuracy. For instance, in the

right of Figure 7, we find that the inclusion of dissimilarity

improves RoD by 41%. Moreover, the extreme Pareto models

with dissimilarity are ∼ 43% and ∼ 52% more accurate and

energy efficient than those without dissimilarity.

VI. CONCLUSION

We have presented HADAS, a novel HW-aware NAS frame-

work that jointly optimizes the backbone, early exiting features,

and DVFS for DyNNs. Through HADAS, large agile models

can be realized with similar energy efficiency to that of compact

models. We have shown that HADAS DyNNs can achieve up

to 57% energy gains while retaining desired accuracy levels.

REFERENCES

[1] Y. Han et al., ªDynamic neural networks: A survey,º IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2021.

[2] S. Teerapittayanon et al., ªBranchynet: Fast inference via early exiting
from deep neural networks,º in ICPR’16, 2016, pp. 2464±2469.

Fig. 7. Inner optimization improvement by regularizing the exits scores with
the dissimilarity function (dissim)γ over two ranges of γ values

[3] M. Odema et al., ªEexnas: Early-exit neural architecture search solutions
for low-power wearable devices,º in 2021 IEEE/ACM International
Symposium on Low Power Electronics and Design (ISLPED), 2021.

[4] P. Panda, A. Sengupta, and K. Roy, ªConditional deep learning for energy-
efficient and enhanced pattern recognition,º in 2016 Design, Automation
& Test in Europe Conference & Exhibition (DATE), pp. 475±480.

[5] D. Wang et al., ªAttentivenas: Improving neural architecture search via
attentive sampling,º in CVPR’21, 2021, pp. 6418±6427.

[6] W. Lou et al., ªDynamic-ofa: Runtime dnn architecture switching for per-
formance scaling on heterogeneous embedded platforms,º in Conference
on Computer Vision and Pattern Recognition, 2021.

[7] M. Phuong et al., ªDistillation-based training for multi-exit architectures,º
in Proc. of the IEEE/CVF Intl. Conf. on Computer Vision (ICCV), 2019.

[8] G. Huang et al., ªMulti-scale dense networks for resource efficient image
classification,º arXiv preprint, 2017.

[9] S. Laskaridis et al., ªHAPI: Hardware-aware progressive inference,º in
2020 IEEE/ACM Intl. Conf. On Computer Aided Design (ICCAD), 2020.

[10] Z. Yuan and al., ªS2dnas: Transforming static cnn model for dynamic
inference via neural architecture search,º in ECCV’20, 2020.

[11] D. Paul, J. Singh, and J. Mathew, ªHardware-software co-design approach
for deep learning inference,º in 2019 7th International Conference on
Smart Computing & Communications (ICSCC). IEEE, 2019, pp. 1±5.

[12] M. Farhadi et al., ªA novel design of adaptive and hierarchical convo-
lutional neural networks using partial reconfiguration on fpga,º in 2019
IEEE High Performance Extreme Computing Conference (HPEC), 2019.

[13] T. Tambe and Al., ªEdgebert: Sentence-level energy optimizations for
latency-aware multi-task nlp inference,º in Micro-54, 2021, pp. 830±844.

[14] X. Li et al., ªPredictive exit: Prediction of fine-grained early exits for
computation-and energy-efficient inference,º arXiv preprint, 2022.

[15] H. Cai et al., ªOnce-for-all: Train one network and specialize it for
efficient deployment,º arXiv preprint, 2019.

[16] N. Fasfous et al., ªAnaCoNGA: analytical HW-CNN co-design using
nested genetic algorithms,º in 2022 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2022, pp. 238±243.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 19,2023 at 04:26:44 UTC from IEEE Xplore.  Restrictions apply. 


