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Distributed Information-Based Source Seeking

Tianpeng Zhang
and Na Li

Abstract—In this article, we design an information-based mul-
tirobot source seeking algorithm where a group of mobile sensors
localizes and moves close to a single source using only local range-
based measurements. In the algorithm, the mobile sensors perform
source identification/localization to estimate the source location;
meanwhile, they move to new locations to maximize the Fisher in-
formation about the source contained in the sensor measurements.
In doing so, they improve the source location estimate and move
closer to the source. Our algorithm is superior in convergence speed
compared with traditional field climbing algorithms, is flexible in
the measurement model and the choice of information metric, and is
robust to measurement model errors. Moreover, we provide a fully
distributed version of our algorithm, where each sensor decides its
own actions and only shares information with its neighbors through
a sparse communication network. We perform extensive simulation
experiments to test our algorithms on large-scale systems and
implement physical experiments on small ground vehicles with light
sensors, demonstrating success in seeking a light source.

Index Terms—Consensus control, decentralized control,
gradient methods, mobile robots, multi-robot systems, sensor
placement.

1. INTRODUCTION

ULTIAGENT source seeking is a robotics task that uses
M autonomous vehicles with sensors to locate a source of
interest whose position is unknown. The source of interest can
be a light source [1], a radio signal transmitter [2], or a chem-
ical leakage point [3]. The source seeking vehicles, or mobile
sensors, can measure the source’s influence on the environment
and use this information to locate the source.

A large body of source seeking research investigates field
climbing methods [4], [5], [6], [7], [8], [9]. Assuming the source
signal gets stronger as the sensor—source distance shortens, the
mobile sensors can “climb” the source signal field to physically
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approach the source. These methods do not require explicit
knowledge of the measurement model, making them easy to
implement for different applications. However, field climbing
methods are not necessarily the most effective source seeking
methods. First, they only exploit local information of the source
field, with the typical requirement that sensors must maintain a
tight formation to make a reasonable ascent direction estimate,
as is the case in [6] and [7]. Furthermore, the sensors cannot
move too fast as a group for the measurement value to increase
stably.

An alternative approach is to perform source identifica-
tion/localization using various estimation methods, such as ex-
tended Kalman filter (EKF) [10], [11], particle filter (PF) [12],
[13], and so on, to estimate the source location over time.
These methods enable the fusion of measurements from multiple
sensors to identify a global view of the measurement field. A
central theme in this line of work is to improve the estimation
through sensor movements. Many have proposed to move the
sensors to optimize specific information metrics, in particular,
variants of Fisher information (FIM) measures [2], [3], [11],
[12], [14], [15], [16], [17], which relate closely to the famous
Cramér—Rao lower bound (CRLB) [18], [19]. However, these
studies typically focus on deriving closed-form solutions of
optimal sensor placement for particular types of measurement
models [2], [12], [16]. Their results are usually not generalizable
or robust to modeling error, and closed-form solutions might not
exist for many general measurement models.

This article draws advantages from the abovementioned meth-
ods (field climbing and source localization) to develop multi-
robot source-seeking algorithms. In particular, we assume that
the measurement model is available and propose an algorithm
using range-based measurements. Each iteration of the algo-
rithm consists of following three steps.

1) Collect range-based measurements.

2) Perform source location estimation.

3) Move along the negative gradient direction of information-
based loss function L, defined as the trace of the inverse
of FIM.

In particular, Step 3) seeks to increase the information about
the source location in the measurement rather than looking for
stronger source signals as in field climbing. Therefore, we name
our method information-based source seeking.

Our contributions: We first introduce our information-based
method in the centralized setting (Section III), where we for-
mally define the loss function L and the three-step outline of our
method. We also provide theoretical justifications for the choice
of loss function L, as minimizing I improves the estimation and
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Fig. 1. Snapshot of seeking a light source in a dark room with three mobile
light sensors.

gets the sensors close to the source location. Then, we extend
our method to the distributed setting (Section IV), which makes
our method scalable in the number of sensors. We show how
distributed estimation and gradient calculation can be effectively
done using simple consensus schemes. In Section V, we conduct
extensive numerical experiments to study the performance of our
method in both centralized and distributed settings. The results
show that our method outperforms field climbing methods and
is flexible and robust in multiple aspects. Finally, we implement
our algorithm on small ground vehicles carrying light sensors
to seek a light source in a dark room (Section V-E), as shown in
Fig. 1. The hardware implementation further demonstrates the
effectiveness of our algorithm.

The advantages of our methods can be summarized as follows.

1) Compared with field climbing algorithms, numerical stud-
ies quantitatively demonstrate that our algorithm con-
verges much faster to the source and performs more
consistently over repeated trials. See Section V-A2. The
algorithm takes advantage of the sensing capacity of mul-
tisensors in the sense that the performance improves as the
number of sensors increases.

2) Our algorithm, especially its gradient-guided movement,
provides flexibility in handling various measurement mod-
els and picking different information metrics as loss func-
tions. Section V-A3 confirms at least three applicable
metrics.

3) The algorithm is more robust to modeling error than
the source localization with stationary sensors, see
Section V-A4.

4) Our distributed algorithm achieves comparable perfor-
mance as the centralized algorithm. See Section V-B.
Moreover, results show that the distributed algorithm is
more robust than the centralized implementation to the
error in initial guesses and communication delay. See
Sections V-C and V-D.

Compared with [20], besides including more technical details
for the performance of the methods, this article extends the
centralized algorithm in [20] to the distributed setting, where a
central controller is absent, and the sensors decide their actions
individually, as described in Section IV. Numerical results in
Sections V-B—V-D provide detailed comparisons between the
centralized and distributed algorithm. Moreover, the hardware
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implementation migrates from the centralized robotics plat-
form in the previous work to a distributed robotics platform in
this article, with the programming environment switching from
ROS 1 to ROS 2. Finally, although the algorithms are designed
following a rigorous theoretical framework of information and
optimization methods, the global theoretical convergence re-
mains an open question because of the nonlinearity and non-
convexity associated with the problem. The proof of global
convergence is, therefore, left for future work.

A. Related Work

Field Climbing Methods: Field climbing originates from
scientific studies of animal behavior in exploring nutrition or
chemical concentration fields [21], [22]. The studies inspire
source seeking methods that use field value measurements to
estimate the field gradient and apply formation control to climb
along the gradient [5], [6]. Gradient-free field climbing meth-
ods are also studied in the literature: Moore and Canudas-de
Wit[7] maintained the sensors in a circular formation and used
measured field values as directional weights to guide the overall
movement. Later works such as [8] and [9] extend the algorithms
above to the distributed setting by applying consensus in the
calculation of ascent direction. Single-agent field climbing is
also possible if a gradient ascent control law is combined with
proper zeroth-order gradient estimation algorithms, for example,
using the control framework in [23].

The main differences between field climbing and our algo-
rithm are as follows.

1) Field climbing maximizes the source field value directly,
whereas our algorithm exploits the FIM, an indicator of
both estimation accuracy and source—sensor distance

2) Field climbing does not assume a given measurement
function, but ours does

3) Field climbing algorithms often require a tight sensor
formation for a stable field ascent, which only exploits
local information, whereas our algorithm uses the sensors
to collect global information for source localization.

We will show in Section V that, unlike field climbing, the sen-
sors under our algorithm tend to spread out so that measurements
contain more diverse information about the source location.

Source Localization and Optimal Sensor Placement: If a
measurement model is available, the source location can be
estimated using methods, including EKF [10], [11], [24], [25],
PF [12], [13], and so on. It is even possible to reconstruct the
entire source field [3], [26]. Such estimation of source location
is also known as source localization. An important problem
in source localization is how to improve estimation via sensor
movements. This problem is often investigated under the optimal
sensor placement framework, in which sensors move to optimize
various information metrics, including covariance [27], [28],
mutual information [13], [29], and FIM measures [2], [3], [11],
[12], [14], [15], [16], [17], [24], [25], such as the determinant
of FIM, the largest eigenvalue of its inverse, and the trace of its
inverse (D-, E-, and A-optimality criterion, respectively).

Our method also employs FIM but is different from the above
works in four major ways, given as follows.
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1) Most of the previous works focus on deriving closed-form
solutions of optimal sensor placement for a particular type
of measurement model, for example, RSS [2], pollutant
diffusion [12], and gamma camera [16]. Our focus is not
on providing closed-form solutions. Instead, we provide a
gradient-based method applicable to a large class of range-
based measurement models. This method also provides
flexibility in choosing different information metrics as loss
functions.

2) Many previous works are about finding the optimal angu-
lar placement of the sensors at a fixed distance to the source
or in a restricted area [2], [11], [14], [17]. In contrast,
we allow the sensors to move freely and eventually reach
the source.

3) Some studies relax the restrictions on the sensor move-
ment [15], [16]. However, these methods produce a spiral-
ing sensor movement that is inefficient for source seeking
purposes. Our method does not produce such movement.

4) Theline of work by the authors in [24] and [25] also allows
the sensors to move freely, but the control framework
is very different from our work. The proposed ergodic
control, which involves improving a control objective
in integral form, is conceptually much more complex
than our method—a gradient-based control. Ultimately,
the ergodic control is designed for a very general set of
mobile sensor applications, while our work is catered for
the source seeking problem.

Bayesian Inference and Optimization: The recent advances in
Bayesian learning have inspired many source seeking studies to
adopt the Bayesian methods [30], [31], [32]. These studies view
the environment as a field characterized by an (unknown) density
function related to measurement and use a Gaussian process
or other likelihood models as a surrogate to guide the sensor
movements for new measurement collections. The computation
(for running the posterior update and Bayesian optimization) and
memory (for storing historical measurements as in nonparamet-
ric Bayesian methods) demands of these methods are usually
much higher than those of our method. Overall, Bayesian-based
methods and our method are designed from different principles.
A detailed comparison is left for future work.

Finally, it is worth mentioning that our work is significantly
inspired by [11], which studies the optimal sensor placement
problem on a surveillance boundary. We leverage the ideas
in [11] to introduce the FIM in our objective. However, we
change the objective from maximizing the determinant of FIM to
minimizing the trace of its inverse. We also generalize the mea-
surement model to fit into our experiments and other real-world
measurement settings. To handle such more general measure-
ment models, we let the sensors only compute the gradient of
the loss function rather than solving for its optimum at each time
step.

II. PROBLEM STATEMENT

Consider the problem of using a team of mobile sensors to
find a source whose position is unknown. The source can be any
object of interest, such as a lamp in a dark room. Mobile sensors
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are robotic vehicles that can measure the influence of the source
on the environment, such as small ground vehicles carrying light
SEnsors.

Specifically, we use ¢ € R to denote the source position, and
use p1,p2,...,pm € R¥ to denote the sensor positions, where
m is the number of sensors and £ is the spatial dimension. The
measurement y; made by the ith sensor is modeled by

yi = hi(pi, @) +vs (1)

where h; : R¥ x R¥ — R is a known continuously differen-
tiable function and »; is the measurement noise. The value
of h; depends on the position of sensor 7 but not on other
sensors, and different sensors may have different h;. We let
Y = [y1,¥2,-..,Ym] denote the vector of all measurement
values, let v = [v1,14,...,vm]" be the noise vector, and use
p=Ip{,pe,...,p),]" todenote the joint location of all mobile
SEnsors.

We let H : R™* x R¥ — R™ be the mapping that describes
the joint measurement made by all the sensors, i.e.,

hi(p1,q)
H(p,q) = : : 2

We define the global measurement model as

y=H(p,q) +v. (3)

This model relates all measurements to the source location and
all sensor locations.

The source seeking objective is to have at least one of the
sensors get within ey distance to the source. In other words, we
want to achieve

||p§ _QH S €0, Eh € {1123"'!m} (4)

where €p is some small positive number.

III. INFORMATION-BASED SOURCE SEEKING

This section presents the key components of our information-
based source seeking, including the three-step algorithmic flow
and the loss function design. We assume that a central server
gathers all sensor locations p and measurements y and decides on
new locations for all the sensors. We will remove this assumption
in Section I'V, where we introduce the distributed setting.

A. Algorithm

Our information-based source seeking consists of three con-
secutive steps in one iteration: measurement, source location
estimation, and sensor movement. The algorithm is illustrated
in Fig. 2 and detailed in Algorithm 1.

1) Measurement (Lines 2 and 3): The mobile sensors report
their locations {p; }J2, and latest measurements {y; };", to the
central server, forming the location vector p and the measure-
ment vector y.

2) Source Location Estimation (Line 4): Using the informa-
tion available (i.e., p and y), the location estimation algorithm
E generates the estimated source location g.
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Move Sensors

Pi = Pis1 —‘

Three consecutive steps in information-based source seeking.

Estimate source

|—> Measure p; and y; —>» et

Fig. 2.

Algorithm 1: Information-Based Source Seeking.
Input: Small constant ey > 0, the location estimator
E : (y,p) — g, motion planner M P : (p;(0), p;:(1)
oo Bi(T)) > (s(D), .. ., ue(T)).
1: repeat
2: Get sensor locations p; from all mobile sensors ¢,
3: Get measurement y; from all mobile sensors z,
forming y = [y1,v2,-..,%m] -
Estimate the location of the source by g + E(y, p).
Set the initial waypoints p(0) < p.
fort =1toT do
P(t +1) < B(t) — a:M:VpLpe),q-
end for
Extract waypoints (5;(t))7_ from (p(t))L, for
mobile sensor 7, and generate the control inputs
(wi(1),...,, wi(T)) & MP(5(0), ..., 5(T)).
10: Each mobile sensor 7 executes control input u;(1).
11: until min;—; 5 {|lp; — 4[|} < €

bl I B

The EKF is employed as the estimation algorithm in our
implementations. We define z := [¢",v"]" as the source state,
where v is the velocity of the source. We do not assume any
prior knowledge about the motion of the source, except that it
evolves according to the second-order dynamics defined by

=l

= f(z) = [q ! U] - ®)

Equation (5) models the source moving at some unknown but
constant velocity v. The applicability of this motion model is
backed by extensive practical evidence in GPS problems [33],
[34] and moving target tracking [35]. In general, it is sensible
to make a minimal assumption as above on the motion model
in source localization. While the actual dynamics of the source
might deviate from the model in (5)—for example, in the exper-
iments shown in Fig. 4—the localization performance typically
remains satisfactory. Analogous to (5), another prevalent as-
sumption is to define the state z := g so that the transition model
is 2T = f(z) := z (see the third paragraph of [24, Sec. IV-B]),
but we observe that the estimation from this model often fails to
converge to the true source location. In comparison, estimation
with the model in (5) converges to the source location much
more consistently.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 6, DECEMBER. 2023

At each time step, the EKF takes in the sensor measurements
and sensor locations and returns an estimate Z of the true source
state z. See [36, Def. 3.1] for details about the EKF update.

3) Sensor Movement (Lines 5—10):: The sensors move along
the gradient descent directions of the following loss function:

L(p,q) =T [(VeH(P.9)- VaHP.0)) '] ©

We will explain the motivation of this loss function later in
Section ITI-B, by relating it to the FIM matrix and the CRLB [18],
[19]. Sensor movement includes two parts: waypoint planning
and waypoint tracking.

a) Waypoint planning: In Lines 5-8, with the source location
estimate ¢ obtained in Line 4, we generate a set of waypoints
p(0),...,Dp(T) by applying gradient descent on L with respect
to p, with ¢ = ¢ fixed. In Line 7, o > 0 is the step size and
M;  01is a directional regularization matrix.

b) Waypoint tfracking: In Lines 9 and 10, after the joint
waypoints p(0),...,P(T") have been calculated by the gradi-
ent descent on L, we extract the waypoints p;(0),...,p:(T)
for each mobile sensor ¢, and use the motion planner MP to
calculate a sequence of control inputs u;(1),...,u;(I") and
apply the control at the first instance w;(1) to the corresponding
mobile sensor.!

Remark 1: Note the algorithm aims to minimize L(p,q)
rather than L(p, q) (p being the decision variable), which raises
the question of whether improving the former leads to a decrease
in the value of the latter. Intuitively, it is expected that if ¢ and
q are sufficiently close to each other, i.e., the estimation error is
small, then changing p to reduce the value of L(p, ¢) will make
L(p, g) decrease. These two algorithm components rely on each
other to function as a whole.

B. Information-Based Loss Function for Sensor Movement

One naive approach to determining sensor movement after
Step 2) could be heading directly toward the estimated location.
However, we observed that such movement often makes sensors
cluster tightly, which reduces the diversity in measurements and
is undesirable. As we later show in Figs. 3(c) and 4(c), the
resulting estimation and seeking are unstable.

Creating a good condition for estimation through sensor
movements is crucial for successful source seeking. Therefore,
instead of following the haphazard approach above, our algo-
rithm takes the gradient steps in Step 3). The idea is to let
the sensors maximize some information metrics related to the
source location. Specifically, we consider the FIM about the
source location defined as follows: let y and p be the joint
measurement and joint position of all the sensors, and H be
the corresponding global measurement function, as in (3). We
treat y as a random vector, with joint probability density f(y; q)
parameterized by the true source location g. The FIM about g
is considered to measure the amount of information about the

I'This is inspired by the framework of receding horizon control/model predic-
tive control [37] that works well when the tracking trajectory is time-varying.
For more information about motion planning, refer to Appendix A.
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(b) (c)

General behaviors of seeking a stationary source. The black arrows indicate the starting locations of the sensors. The sensors in (b) do not make

any estimations, since field climbing only uses measured signal strength to guide sensor movements. (a) Information-based seekingl. (b) Field climbing [7].

(c) Following straight lines to the estimated location.
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Fig. 4. General behaviors of seeking a moving source. The black arrows indicate the starting locations of the sensors. (a) Information-based seeking1. (b) Field

climbing [7]. (c) Following straight lines to the estimated location.

unknown ¢ contained in measurement y. It is defined as

FIMy (g) := Cov[V,log f(y;q)lql- (7

FIM is closely connected with estimation quality, as it is a
lower bound on the covariance of unbiased estimators. This
result is formally known as the CRLB.

Theorem 1 (CRLB [18], [19]): For any unbiased estimator ¢
of g, the following matrix inequality holds:

El(G—q)(G—q)'] = FIM . (8)

As a special case, if we assume y follows multivariate Normal
distribution described by

y=H(q,p) +v,v ~N(0,R) )
then the FIM takes the form of
FIMy (q) =4V,H(q,p)R 'V H(g,p)".  (10)

Under the further assumption that i is independent identically
distributed (i.i.d.). Normal(R o I), there is

FIM o Vo H(p, q) - VoH (P, q) " an
Motivated by the form of FIM in (11), we use
L(p.a) =T [(VoH(p.9) - VHP,0)) '] (12)

as the loss function. Note that by minimizing (12), the CRLB
is driven closer to the zero matrix. Furthermore, if H satisfies
Assumption 1 below, then minimizing L also results in ap-
proaching the source as stated in Propositions 1 and 2 afterward.

Assumption 1: We make the following assumptions on the
measurement functions h;.

1) Isotropic Measurement: The measurement values depend
only on source—sensor distance, i.e.,

hi(pi, @) = gi(|lpi — all) = gi(rs) (13)
for some function g; : (0,+400) =+ R, where r;:=
llps — qll-

2) Monotonicity: The absolute value of the derivative of each
function, |g;(r)|, is monotonically decreasing in r. Here,
g;(r) is the derivative of g; with respect to r.

3) Nondegeneracy: Let 7; denote the unit direction vector
from the source to the 7th mobile sensor, i.e., 7; = (p; —
9)/llps — ql|. We assume "7 #:#] = 0.

Proposition 1 (Reaching the source I): Under Assumption 1,

we have

2
max|gj (r:)|

<

L) (14)

which means that if L(p, ¢) decreases, then max; |g}(r;)| tends

to increase and consequently min; r; tends to decrease.
Proposition 2 (Reaching the source II): Assume |g;(r;)| is

strictly monotone in r; in Assumption 1. Then, if the sequence of

sensor locations {p(¢) : t = 1,2, 3, ...} converges and satisfies

Iim L(p(t = inf L
fm Lp(t),q) =  inf L(p,q)
then there must be
Bim min |[pi(t) — ¢l = 0.

Please see Appendix B for the proof of Propositions 1 and 2.
In Proposition 2, we assume that the p(¢) sequence converges
for technical convenience, but it is also reasonable to assume
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the sensors will reach a stationary formation when they have
minimized L. Also, the infimum of L is taken over the set
{p : pi # q¥i} because the FIM could be undefined if p; = g
for some .

Remark 2: Assumption 1.3 is a regularity condition that
ensures L is well defined, which is essential for analyzing the
relationship between L and the source-sensor distance. We
enforce this assumption in the implementations by adding a
positive definition matrix I, with § > 0 being a small constant,
to the estimated FIM when calculating L and its gradient. This
technique proves to eliminate most of the pathological numerical
behaviors while maintaining the soundness of source-seeking
performance.

Remark 3: Despite the properties demonstrated in Proposi-
tions 1 and 2, showing the full convergence of Algorithm 1
remains an open theoretical question. We leave this question
to future work, but a heuristic justification for the convergence
behavior is that climbing the information field and getting more
accurate estimations of the source location complement each
other (see Remark 1), so the L value decreases over time.
Therefore, the sensors get close to the source by the propositions
above.

IV. DISTRIBUTED INFORMATION-BASED SOURCE SEEKING

In this section, we present our distributed source seeking
algorithm. We no longer assume there is a central controller.
Instead, the mobile sensors decide on their actions individually.
Meanwhile, the sensors can communicate through a network
to exchange information about measurements, sensor positions,
and estimations. We model the communication network by a
directed graph, denoted by G = (N, £), where N is the set of
nodes(sensors) and £ is the set of edges. If an edge (i, j) € £,
then sensor j can directly receive information from sensor
i. Let N = {i|(i,5) € EY U{j} = {J,ir,1,- - -yim, } be the
in-coming neighborhood of j, including j itself. Here, m;
denotes the number of its incoming neighbors except itself. For
each (i, j) € &, there is a consensus weight w;; > 0 satisfying
ZseN‘- wj; = 1 for all j (see [38, Assumptions 2.1-2.3] for
conditions on the consensus weights).

We assume the information available to sensor j includes
those from its measurements and direct communication. In
particular, mobile sensor j knows the following information.

1) The measurement functions in its neighborhood, or equiv-

alently the local joint measurement function H;

hj(q,p;)
hi, (q,pi,)

hsmj. (Q:Psmj)

2) The joint position and joint measurement of its neighbor-
hood (in bold font).

H_f (Qapj:pil':"':pimj) = (]-5)

T T
T . T T T . T T
P = I:p_; ’pil"""pimj:l 1 ¥i = I:yj R yimj:|
(16)
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Algorithm 2: Distributed Information-Based Source Seek-
ing (for sensor j).

Input: Consensus weights {w;z }key; » consensus-based
location estimator E/, motion planner M P, termination
threshold eg. X

1: Initialize 2 := [§;, 5], Fj.

2: repeat

3:  Take measurements and communicate with neighbors
to obtain pj, y;, {2k, Fr }ken;, -

4: Estimate the source location using consensus-based
Kalman Filter as shown in (20),

g+« E (yj'.! Pj, {fk,wjk}ke\f,-) .

Lh

Record F; in the previous step F; < F;
6: Compute the new partial FIM

F.f — vqh.}' (pj' 3 qh)vth (pj ] é)T
7: Estimate the global FIM

FE;‘C— Zwikﬁ'k +FJ—F;_
keN;
8: Set the initial waypoint 5;(0) + p;.
9: Calculate waypoints p;(1),...,p;(T) by gradient
descent
Aji = Vah;(p;(t), )
dt = — QVPAj,t F'J'_2Aj,t

with M; > 0 being regularization matrices.
10:  Generate the control actions

(us (1), s, u5(T)) = MP(§;(0), ..., 5(T))-
11: Execute control action u;(1).
12: until ||p; — 4|| < €

We assume the local joint measurement model for j is

yj = Hj(q,pj) +v; an

where v; = [v},vj,,...,v; ] is a random vector following
multivariate normal distribution A"(0, R;).

We assume the sensors act cooperatively, that is, their objec-
tive is still to have some members in the team to reach the source,
as defined in (4).

A. Distributed Algorithm

In the distributed algorithm, each sensor j maintains an es-
timate for the source location and velocity, denoted by Z; :=
[ ,9]". The sensor also maintains an estimate for the global
FIM, denoted by F';, Our source seeking algorithm requires
sensor j to repeat three consecutive steps: information gathering,
source location estimation, and movement. Algorithm 2 contains

the detailed operations.
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1) Information Gathering (Line 3): Sensor j takes measure-
ments and communicates with its neighbors to obtain the sensor
positions p; and measurements y ;. Sensors also communicate
their source location estimates z; and their FIM estimates F'J-,
as required in the subsequent steps.

2) Source Location Estimation (Line 4): The gathered infor-
mation is used to form an updated source location estimate g;
through consensus-based estimation algorithms, elaborated in
Section I'V-B. For ease of exposition, we assume the source
location estimator to be the consensus EKF (20), although
other estimators could also be adapted to the distributed setting
following a similar procedure.

3) Sensor Movement (Lines 6—11):: Sensor j calculates the
partial gradient of the loss function L (6) through distributed
information gradient update (Lines 6-9), elaborated in Sec-
tion IV-C. Then, it calls a motion planner MP to compute the
corresponding control actions for the gradient steps and executes
the first action (Lines 10 and 11).

The key differences between the distributed Algorithms 2 and
1 are as follows.

1) Algorithm 1 runs on the central controller. The distributed

algorithm runs on individual sensors.

2) Comparing Step 1), the Algorithm 1 knows the mea-
surements and positions of all sensors. The distributed
algorithm only knows those from the neighborhood. As
a result, the Algorithm 2 modifies Steps 2) and 3) to
accommodate the distributed setting.

Remark 4: Showing the full convergence of Algorithm 2 also

remains an open question. We leave it to future work.

Next, we elaborate on how agents perform distributed source
location estimation and distributed information gradient update
in Algorithm 2.

B. Distributed Source Location Estimation

In Step 2), each sensor must locally form a source location
estimate based on the information available to it, and one simple
way is to run local EKF based on its local information. For each
sensor j, the local EKF maintains two running variables, z; and
P;, where

is sensor j’s estimate of the position—velocity vector of the
source, and P; is a matrix quantifying the uncertainty in the
estimate. These two variables are updated according to

zj < f(25) + K;(y; — Hj(45,P;5))

P; « A;PA] +Q; — K;(C;PC) + Rj)K]  (18)
where (); and R; are predefined constant positive matrices, f
is given in (5), and Hj; is given in (15). @}; and R; represent
our prior belief of the covariances of process and measurement
noises; therefore, they are usually the same among all j. The
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quantities A;, Cj, and K; are defined by

; - [VeH, (. p;
Aj = sz(zj);cj = VZHJ(Q}): l q JE)qJ p.?)]

The local EKF may be one of the simplest estimation algo-
rithms based on sensors’ local information from neighboring
sensors. However, its estimation is not great in our source
seeking experiments, as we later show in Section V-B. One of
the main reasons is that the communication network is typically
sparse, and each sensor is connected to only a few neighbors.
Therefore, the measurements available to each sensor are few,
and the resulting estimation is poor.

The consensus EKF, an extension to the Kalman consensus
filter II algorithm [39], addresses the limitations of local EKF
by introducing a consensus procedure among the estimates. The
estimation Z; is updated with the following formula:

2}' — Z '!‘.Ujifg

S'EN_—;

+[f(25) + K;(y; — Hj(%5,p5)) — %]
with w;; > 0, Zz‘e\fj w;; = 1. The update of P; remains the
same as the local EKF. The update in (20) can be viewed as
adding a consensus term ) _ w;;Z; to the difference between local
EKF update and current Z;. Meanwhile, the local EKF can be
viewed as a special case of (20) with w;; = 1 and w;; = 0 for
i # j. We highlight here the advantages of the consensus EKF
over the local EKF as follows.

1) Since the neighbors’ estimates use the measurements from
possibly outside A, sensor j is indirectly exposed to
the data outside of its immediate neighborhood through
consensus.

2) With properly chosen consensus weights as specified
in [38, Assumptions 2.1-2.3], the sensors can reach con-
sensus on estimates much quicker than the rate of change
in local EKF update. Effectively, the limiting estimate
at consensus is an estimator that uses the measurement
from all the sensors in the network. It serves as a target
location for the sensor to coordinate their movement, and
we observe much better convergence to the source using
the consensus EKF.

Our consensus EKF algorithm is an extension of the Kalman-
consensus filter II algorithm[39, Sec. IV, eq. (20)] to the non-
linear measurement setting. Some related studies also employ
consensus in extended Kalman-like filters [40], [41], [42], but
they take consensus over both the mean estimate and covari-
ance estimate, while our algorithm only takes consensus over
the mean estimate to lower the communication load, which
improves the responsiveness of source seeking in our real-time
environment. This scheme is also backed by the theoretical result
in [39, Th. 2] that performing consensus on the mean estimate
but not on the covariance estimate can still lead to convergence
in estimation. It is also worth pointing out that although our
consensus EKF shares similarities with the existing literature,

(20)
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our consensus-based distributed gradient update (described later
in Section IV-C) is a novel contribution.

C. Distributed Information Gradient Update

Similar to the centralized setting, our distributed algorithm
requires the sensors to move to new locations along the negative
gradient of the FIM-based loss function L (6). However, since L
depends on the global measurement function H and all agents’
positions p, the challenge is for individual sensors to compute
the correct partial gradients in a distributed fashion. Specifically,
the partial gradient of L can be shown to be

Vp, L(P,q) = —2V,, A; FIM 4, (21)

where A; = Vg h;(pj,q). Note that both A; and V;, A; can
be computed using the local information of sensor j already.
Therefore, the remaining problem is to estimate the value of
FIM that depends on global information H and p. We note that

FIM o< Y Vgh;(g,p;)Vahi(g,p;)" (22)

i=1
meaning that the FIM is proportional to the equally weighted
sum of the rank-one matrices

Fj = thj (Qa pJ)VQhJ (Q:p.? )T

which we name as partial FIM. Note that each F; is again
computable using the local information of sensor j. Therefore,
the sensors can recover the global FIM through consensus.
Specifically, let each sensor maintain a running estimate 13':,;
of the global FIM, and update 13'3- according to the following
formula:

F‘;— = Z T.Ujgpg +Fj — FJ'_' (23)

E'G)\rj

Here, {wj;}ic ~; are consensus weights, and F; denotes the

partial FIM value from the previous time step. To ensure 13':,;
converges to an equally weighted sum of F}’s, the consensus
weights can be predefined to form a static doubly stochastic
consensus matrix. Alternatively, the update in (23) can be im-
plemented to follow the parallel two-pass algorithm [38].

Finally, sensor j calculates an estimated gradient descent
direction by substituting the FIM in (21) with 13'3-, as shown
in Line 9 of Algorithm 2.

(©

Time evolution of the source—sensor distance. (a) Information-based seeking1. (b) Climbing estimated gradient [6]. (c) Circular formation field climbing [7].

V. EXPERIMENTS

A. Advantage of Information-Based Source Seeking

This section compares Algorithm 1 with field climbing
methods via numerical experiments, showing the advantage of
information-based source seeking. All experiments are imple-
mented in a centralized way. The algorithm performance under
actual robot dynamics is studied in simulations in Section V-A1.
In the subsequent studies, we remove the robot dynamics in
simulations to efficiently conduct repetitive trials and assume the
sensors follow the gradient steps exactly. We study the influence
of the number of sensors in Section V-A2, the difference of
various information metrics in Section V-A3, and the robustness
to modeling error in Section V-A4.

1) Gazebo Numerical Experiments: The following numer-
ical experiments are carried out using the Gazebo simulation
toolbox [43], with virtual mobile sensors simulating the same
dynamics as the actual robots. We generate simulated measure-
ment values of the sensors by

vi=1/r] + v (24)

with v; drawn independently from A(0,0.01). The measure-
ment function h;(p;, q) = 1/||ps — q||2 = 1/r2 is given to the
EKF for estimation.

Stationary source: In the first set of simulations, we use three
mobile sensors to seek a stationary source. The source is fixed at
position (6.0, 6.0), while the mobile sensors are initially placed
at (1.0, 2.0), (2.0, 2.0), and (3.0, 2.0). The initial guess of source
location given to the EKF is (3.0, 4.0). The terminal condition
threshold ey = 0.5. We compare the convergence to a stationary
source among three algorithms:

a) our algorithm;

b) the field climbing algorithm introduced by [7] that only

maximizes measured signal strength;

c) following straight lines to the estimated location.

The algorithm in (c) is included to show the importance of
exploiting FIM in obtaining accurate estimation. The results are
displayed in Fig. 3.

First, notice that the straight-line algorithm fails to converge
to the source, as shown in Fig. 3(c). We suspect the reason is
sensors cluster together quickly as they move to the (same)
estimated location and cannot provide sufficiently rich, di-
verse measurements for a reasonable estimation. Consequently,
the estimate gradually deviates from the source location, as
do the sensors. On the other hand, if taking a trajectory that
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Fig. 6. Time evolution of source location estimation error. In Fig. 6(b), the variance of the 50 sensor curve after ten steps is small but not zero. (a) Experiment
Setting. (b) Sensors move freely. (c) Sensors stay outside the boundary. (d) Stationary sensors.

improves the FIM, the sensors cover the space more thoroughly,
resulting in a stable decrease in the estimation error and the final
success of reaching the source, as shown in Fig. 3(a).

Comparing Fig. 3(a) and (b), note that sensors using our
algorithm first spread out to estimate the source location better
and then converge to the source, whereas sensors doing field
climbing maintain a tight formation while steadily approaching
the source. Since we use constant rather than diminishing step
sizes for Fig. 3(b), the virtual robots do not stop completely near
the source and perform a looping behavior. Although our algo-
rithm and the field climbing algorithm [7] are both successful
with a stationary source, our algorithm consistently converges
faster over repetitive trials, as is shown later in Section V-A2.

Moving source: In this set of experiments, all parameters
are kept the same as the stationary case, except that now the
source moves in a circular motion with constant speed. See Fig.
4(a)—(c). Note that the straight-line algorithm again leads to a
sensor formation that causes the estimation to deviate from the
actual source location. Both our algorithm and the field climbing
algorithm [7] successfully get close to the source. However, the
field climbing method exhibits unnecessary irregular motion
when the sensors are near the source. We suspect that the
field climbing direction becomes very sensitive to the source
movement as the sensors get close to the source, which leads
to such motion. In comparison, sensors following our algorithm
trace much more stable paths.

2) Performance With Sensor Swarms: We now investigate
the influence of the number of mobile sensors on the algorithm
performance. We perform repetitive simulations to study the
convergence rate of source—sensor distances and the evolution of
the estimation error. We use a stationary source fixed at position
(6.0, 6.0) and randomize the initial sensor locations following
uniform distribution in a 3.0-by-3.0 rectangle, as shown in
Fig. 6(a).

The experiments in Fig. 5 study the convergence rate of the
sensors’ distances to the source. Our algorithm is compared with
two field-climbing methods [6], [7]. The performances of 3-, 10-,
20-, and 50-sensor teams are plotted. The solid curves are the
average values over 100 repetitive experiments. The color bands
indicate one standard deviation. The results show that our algo-
rithm converges much faster than the others. In addition, increas-
ing the number of sensors substantially reduces all algorithms’
variance while not affecting the convergence time. Because the
speed of sensors has an upper bound regardless of the number of
sensors, the overall convergence rate of source—sensor distance

-

Now s ow o

Fig. 7. Assuming the source location is known, the above are the gradi-
ent descent trajectories of the tested information metrics. (a) Tr(FIM~1).
(b) Amax (FIM™1). (¢) — log det(FIM). (d) Covariance.

is limited. Nevertheless, having more sensors provides more
measurements, which reduces the variance and results in more
consistent, stable trials. In particular, our algorithm benefits the
most from having more sensors since more measurements con-
tribute to better estimation, thus faster convergence with smaller
variance.

To further test the above conjecture that sensors moving
freely and in the direction of improving FIM bring richer mea-
surement and, therefore, enhance the estimation, we conduct the
following three experiments.

1) The sensors move freely, guided by our proposed algo-

rithm.

2) The sensors are restricted to staying outside a ra-
dius of 3.0 from the source, performing projected gra-
dient descent of our proposed loss function at the
boundary.

3) The sensors do not move but only perform location esti-
mation.

The results in Fig. 6 show that using more sensors and allow-
ing sensors to move freely can both lead to a faster decline in
the estimation error and a smaller variance.

3) Comparison of Different Information Metrics: Although
we specify the loss function as the A-optimality criterion in
our algorithm, one can, in principle, replace it with other alter-
natives. In the following experiments, we test our algorithm’s
performance with four different loss functions:
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Fig.8. Comparison of the algorithm performance using different information
metrics.
1) Tr(FIM1);

2) Amax(FIM);

3) —logdet(FIM);

4) Tr P where P is the posterior covariance of the EKF

defined by [27, eq. (15)], P=(V,HR'V,H" +
Py 1)~1, with P, being the current estimation covariance
and R being the measurement noise parameter of the
EKF.

All loss functions are tested with a stationary source and
three freely moving sensors for 100 repetitive trials. Each trial
is initialized randomly in the same way as in the previous
section. Fig. 7 shows the gradient descent trajectories for the
tested metrics. Fig. 8 shows that all the tested metrics except
— log det(FIM) yield relatively good performance when using
our algorithm, with Tr(FIM ') and A, (FIM ') achieving a
better balance in convergence and estimation than the covari-
ance metric Tr(P). These results confirm the generality of our
algorithms.

Remark 5 (Rationale for metrics): Assume that the FIM is
a k x k matrix. Since the FIM is always positive semidefinite,
it has nonnegative eigenvalues Aj, Az, . .., Ax. The goal of min-
imizing CRLB is to make the matrix FIM~! as close to the
zero matrix as possible, which means — 1 Tree e x should all be
as close to zero as possible. Therefore, Tr (FIM 1) =yF 1 -
and Amax(FIM™') = max;—;,__x 3 are both reasonable met-
rics to minimize. Similarly, the third metric — log det(F[M) =
Zi_ log (- -) also encourages an overall reduction of - values,
but it may not be as good as the previous two smce and its value
can be made arbitrarily low by setting one smgle is very close
to zero while all others remain large. The covariance metric is
essentially Tr((FIM + Py *)~'), which can be thought of as a
regularized version of the first metric.

Remark 6 (Geometric properties): Although the trajectories
in Fig. 7 may look very different, they share some impor-
tant common geometric properties that make sense intuitively.
Specifically, they all encourage a separation among the sensors at
some point and create an overall trend of approaching the source.
We need to look at the explicit form of FIM to understand these
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Fig. 9. Robustness. The solid lines correspond to the perfect measurement
model; the dotted lines are measurement models with errors. The color bands
show the standard deviation of errors across 100 repetitive trials. (a) Our
Algorithm. (b) Stationary sensors.

behaviors. In the proof in Appendix B, we show that

m
FIM = _ |g;(ra) [*7sf{

i=1
where m is the number of sensors, g; is the measurement function
for the 2’th sensor, r; is the distance between the i’th sensor
and the source, and +; is the unit vector pointing from the
source to the i’th sensor. Having FIM~! close to zero means
FIM itself is “very positive definite.” To achieve that either
1) |gi(r;)| are large or 2) 77, are * very linearly-independent,”
or both. Under the assumptlon that | g} (r;)| becomes larger as r;
decreases, item 1) contributes to the overall trend of approaching
the sensor, which seeks a stronger signal-to-noise ratio. Further,
item 2) encourages the unit vectors 7; to point toward different
directions, making the sensors separate from one another and
creating different line-of-sights.

The covariance is the one that stands out the most among the
metrics as it exhibits some follow-straight-line behavior at the
beginning and separates only when close to the source. This
phenomenon can be explained by the dominance battle between
Py'and VHR 'VH', as discussed in detail in Appendix D.

4) Robustness to Measurement Modeling Error: We next
investigate whether our algorithm can function despite the
error in the measurement model. We simulate source seek-

ing with ten mobile sensors and a stationary source, in

which the measurement is generated by y = 1/r2 + v, v v

N(0,0.01). We provide imperfect measurement models to the
EKF in the form of h(r) = 1/r® = 1/r2*A% with Ab tak-
ing values in 0,+£0.1,+0.5. We study the estimation error
in two settings: 1) the sensors move freely using our algo-
rithm; 2) the sensors are stationary. The results are shown in
Fig. 9.

The robustness of our algorithm is twofold: In Fig. 9(a), when
compared with using the perfect measurement model (Ab = 0),
our algorithm shows no significant degradation in estimation
when Ab is small, maintaining reasonable estimation quality
despite imperfect measurement models. Besides, when compar-
ing Fig. 9(a) and (b), our algorithm shows more robustness than
stationary sensors, whose estimations tend to divergence when
Ab is at the value of 0.5.

B. Effectiveness of Our Distributed Algorithm

In this section, we showcase the effectiveness of our
algorithm when extended to the distributed setting. In
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Fig. 10. Comparison of the time evolution of sensor-source distance and estimation error for different variations, with the additional case where four sensors are
used. The x-axes correspond to time steps. The “Median Src-Sen Dist™ in the y-axis label of the subfigures in the first row is defined as median; ||p; — g||, where
||pi — g|| is sensor 7’s distance to the source. The “Median Est. Error” in the second row is defined as median; ||§; — g||, where ||¢; — g|| is sensor i’s estimation
error. Blue curves: our distributed algorithm. Green curves: Variation I. Orange curves: Variation II. Red curves: our centralized algorithm. (a) Four sensors.

(b) Ten sensors. (c) 20 sensors. (d) 40 sensors.
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Fig. 11. Sample trajectories from the experiments in Fig. 10. The samples are taken randomly from 100 simulations. There are ten sensors in each figure. The
figures illustrate the general trend that the centralized algorithm tends to spread out more than the distributed variations in the initial steps. Also, Variation I spreads
out more than Variation II and our distributed algorithm. (a) Centralized. (b) Distributed. (c) Variation I. (d) Variation II.
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data in Fig. 10. The z-axes correspond to time steps. (a) Four sensors. (b) Ten sensors. (c) 20 sensors. (d) 40 sensors.
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Fig. 13. Success/perfect finish rates for the variations. (a) Success rate.
(b) Perfect finish rate.

Figs. 10-16, the z-axes are time steps, and the color bands
show the standard deviation across 100 repetitive experi-
ments. Specifically, our experiments compare the following
groups.

Distributed algorithm 2: Consensus is used in estima-
tion and gradient update. The sensors have a shared loss
function.

Variation I: Consensus is used in estimation but not
gradient update. The sensors have different local loss
functions.

Variation II: No consensus in either estimation or gra-
dient update. Each sensor gathers measurement in-
formation from its neighbors and use local EKF
for estimation. The sensors have different local loss
functions.

Centralized algorithm 1: The first three groups are im-
plemented as distributed algorithms. The fourth is Al-
gorithm 1 with a central controller, which serves as the
control group. Detailed descriptions for the two variants
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I and II are provided in Appendix C. All sensors use
the same measurement model as defined in (24). We
simplify the sensor communication network so that the
distributed algorithms use a static, undirected circulant
network with each mobile sensor connected with two
neighbors.

Although the neighbors of a sensor in physical locations could
change over time, the communication neighborhood is fixed and
does not vary in our experiments. The robots communicate via
a single-hop, static network, where each communicates only
with a fixed set of neighbors on the network.? Using a fixed
and sparsely connected communication network simulates the
effect of limited information in the distributed setting while al-

This feature is also implementable in our hardware experiments because
our lab space is small enough that all sensors are within the maximal range of
communication with one another.

lowing simpler, more interpretable results from the experiments.
However, fixed communication is indeed a limiting assumption.
Our algorithm can be revised to accommodate a more general,
potentially time-varying network, such as the ad hoc network
where the robots can only communicate with teammates within
a limited distance. Based on the previous studies on distributed
consensus and optimization over time-varying communication
graphs, e.g., [44], [45], and [46], we expect our algorithm
to achieve good performance as long as the network remains
connected for a sufficient fraction of the time. This is left as our
future work.

We repeat the experiments of seeking a static source. The
sensor locations are initialized in the same way as in Section V-A.
The source is still situated at (6, 6). We use the fixed location (3,
3) as the initial guess of the source location for the centralized
control group. As for the first three distributed groups, each
sensor uses an independent random location in [0, 3] x [0, 3] as
the initial guess.
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The main results are shown in Fig. 10, showing the time
evolution of median sensor-source distance and estimation error.
All variations converge to the source in around 100-125 steps.
Sections V-B2 and V-B3 further analyze the data from Fig. 10
to demonstrate the advantage of our distributed algorithm over
Variations I and II in terms of full-team convergence and suc-
cess/perfect finish rates.

1) Discussion on the Main Results: The curves in the first
row of Fig. 10 represent median; ||p; — ¢||, the median of
source—sensor distances within the team. The second row shows
the median estimation error median; ||g; — ¢||. All the estima-
tion error plots in Fig. 10 show the distributed variations have an
overall worse estimation than the centralized algorithm. Also,
note that when the number of sensors is small, as in Fig. 10(a),
the centralized algorithm has a clear advantage over the dis-
tributed variations in estimation and convergence to the source.
These results exemplify one of the weaknesses of the distributed
variations: each agent has access to much less measurement
information than the centralized algorithm.

However, as the number of sensors increases, we can observe
that distributed variations improve in both estimation and con-
vergence to the source. As the number of sensors exceeds 10,
Variation II and our distributed algorithm achieve comparable
convergence to the source as the centralized algorithm. The cen-
tralized algorithm still reaches the source the fastest, in around
100 steps, whereas Variation II and our distributed algorithm
take slightly longer than that. But interestingly, the distance to
the source for the centralized algorithm seems to decrease slower
than these two variations in the initial steps, and the reason is
likely that the centralized algorithm tends to spread out more
than the distributed variations due to the stronger coordination
in sensor movements, as shown in the illustrative example in
Fig. 11.

It is also interesting that Variation I seems to be consistently
worse than other distributed variations in convergence to the
source. Recall that Variation I performs consensus in estimation
but not in gradient update, giving it more information than
Variation II. We do observe from Fig. 10 that in the early
stages, its estimation error is comparable with our distributed
algorithm and is lower than Variation II. However, as illustrated
in Fig. 11, Variation I tends to spread out more than other
distributed variations, yet it does not coordinate the movement
among the agents, meaning it is slow to converge to the source.
These factors potentially explain why Variation I does not have
an advantage over Variation II in terms of the median; ||p; — ¢||
metric.

The main results suggest that with a large number of sensors,
even with the limited information for each sensor, as in Variation
II, the distributed variations can still perform well. The sheer
size of the distributed sensor team allows a high chance of some
sensors getting close to the source and obtaining good mea-
surement readings. Nevertheless, our distributed algorithm still
outperforms Variations I and II due to the additional consensus
in estimation and movement coordination.

Overall, our distributed algorithm converges to the source
at a comparable rate as the centralized implementation. It also
converges to the source slightly faster than Variations I/IT and
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exhibits more improvement when using more sensors. Further-
more, our algorithm maintains a clear advantage in estimation
accuracy over Variations I/II throughout the seeking process.

2) Convergence of the Entire Team: The advantage of our
distributed algorithm over Variations I and II is more promi-
nent in terms of the entire team’s convergence to the source.
Fig. 12 shows the performance of the variations in terms of
max; ||p; — g|| using the same data as in Fig. 10, where ||p; — q||
is the distance between sensor 7 and the source. The convergence
of max; ||p; — g|| to 0, thus, characterizes the entire team’s
convergence to the source, a condition stronger than the one
we proposed in (4). Fig. 12 shows the max; |[p; — g|| of our
distributed algorithm converges to the source almost as fast as the
centralized algorithm when the number of sensors exceeds 10;
meanwhile, as the number of sensors increases, the performance
of Variation I gets slightly worse, and Variation II gets signifi-
cantly worse. These results demonstrate that with consensus in
estimation and motion planning, our distributed algorithm can
ensure all sensors come to the source sufficiently fast. In contrast,
without sufficient coordination via consensus, as in Variations I
and II, some sensors could perform much worse than others.

3) Success and Perfect Finish Rates: Fig. 13 shows the per-
fect finish/success rates of different variations of our algorithm.
The figures are generated using the same data from Fig. 10.
A robot is deemed to have reached the source if its distance
from the source is below 0.2. A “success” is defined in (4),
corresponding to a trial where at least one sensor reaches the
source at the final step. A “perfect finish™ is a trial where all
sensors achieve that, which, such as the max; ||p; — g|| metric,
is a notion characterizing the entire team’s convergence. The
success and perfect finish rates are computed over 100 trials.
The results show that all variations have close to 100% success
rates, which demonstrates the effectiveness of our information-
based source-seeking framework. The perfect finish rates of our
distributed algorithm are very close to one over any number of
sensors. In contrast, the perfect finish rates for Variations I and
II drop significantly as the number of sensors increases. The
perfect finish rate results again demonstrate the crucial role of
consensus in estimation and motion planning in our distributed
algorithm: It allows the entire team to reach the source, achieving
a more challenging control goal than (4).

4) Discussion on Nonmonotonic Estimation Error: In
Fig. 10, we observe that the estimation errors do not decrease
monotonically. Indeed, classical results for Kalman filters show
that monotonic convergence can be achieved, but that applies
only to linear systems, where both the measurement and motion
models are linear. In contrast, the estimation of EKF on a
nonlinear measurement model, the estimation error of which
is generally not monotonic and could diverge given bad ini-
tialization. Although the criteria for the convergence of EKF is
discussed in detail in [36], we are unaware of any literature that
discusses the criterion for monotonicity of the estimation error
for EKF.

We also observe in Fig. 10 the somewhat counter-intuitive
behavior that source—sensor distances can decrease as the esti-
mation errors increase. Fig. 14 unveils the reason for this curious
phenomenon. It shows a common situation in the experiments,
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where the estimation from the EKF could move toward and
overshoot the true source location but then comes back to the
source as the sensors spread out and move closer to the source.
During the overshoot, the estimation error gets larger, but the
estimation still guides the sensors to move toward the direction
of the source. That is why we observe that the estimation error
increases while the sensor-source distance decreases during this
period. We also note that in Fig. 14(d) for Variation II, the
estimations of two sensors are in the direction of the source,
while the estimations for the other two are not in the direction
of the source. But because the two sensors with the “right
direction” come closer to the source, their measurements become
better/more informative, which is shared with the other two
sensors and “saves” them from divergence. This phenomenon
is common in experiments and explains why Variation II per-
forms well in terms of the median distance metric in Fig. 10
even though it uses no consensus in estimation and motion
planning.

C. Sensitivity fo the Initial Guess

Our distributed algorithm is not only as effective in source
seeking as the centralized implementation; it is also more robust
in multiple ways. For example, the distributed algorithm is much
less sensitive to the initial guesses of the source location. In
the following experiments, we compare the sensitivity of the
distributed and centralized implementation to initial guesses in
terms of convergence and estimation error. Five sensors are
used in all experiments. The locations of the sensors and the
source are initialized in the same way as in the previous experi-
ments. Random initial guesses §p are given to estimators in both
the distributed and centralized implementations. It is defined

by
D

éuqur?'

Ay
JAV)

i.i.d.

yArp 7 Unif([-1,1]). (25)

In other words, gp is a random location in a box with side length
D centered at g. Different estimators may have different gp, but
the level of deviation D is kept the same among estimators for
one experiment.

Fig. 15 shows the distributed algorithm exhibit clear advan-
tages over the centralized implementation in convergence and
estimation when deviation D increases. The distributed algo-
rithm prevails because using more estimators adds robustness.
Although the centralized implementation has more data for
estimation, it runs only one estimator. If the initial guess is poor,
the estimator may fail. In contrast, sensors of the distributed al-
gorithm form an ensemble of estimators. As long as the majority
of the initial guesses are decent, individual estimations should
improve after rounds of consensus.

D. Robustness to Communication Delay

Apart from being robust to errors in initial guesses, the dis-
tributed algorithm is more robust than the centralized implemen-
tation to communication delay. Note that communication delay
typically grows with the incoming information rate [47, M/M/1
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system, Sec. 4.1.2], which usually increases with the number of
incoming connections. Therefore, the delay increases with the
number of incoming connections. The consequence is that the
delay in centralized implementation increases with the number
of sensors used, whereas the delay in the distributed algorithm
can remain low as the network expands as long as the incoming
degree of each node stays unchanged.

The following numerical experiments show that the dis-
tributed algorithm is more robust to communication delay. We
assume each incoming connection to a node brings a 0.5 time
step delay in information passing. That is, if m sensors are used
in the centralized algorithm, the centralized controller receives
all information with a delay of | 3] time steps; if there are k
neighbors connected to sensor j in the distributed algorithm,
sensor j receives all information with a delay of [gj time steps.
The delay is modeled in this way since each sensor takes and
sends out measurements to the neighbors at a roughly constant
rate. Initialization is the same as in the previous experiments. In
particular, each sensor in the distributed algorithm is connected
to two neighbors regardless of the number of sensors.

Fig. 16 shows that when the delay is in effect, the advantage
of the centralized implementation over the distributed algorithm
dissipates as the number of sensors grows. In the centralized im-
plementation, the benefit of more sensor data does not offset the
negative effect of increasing delay, and the performance gradu-
ally degrades. On the other hand, distributed sensors benefit from
the increasing global information shared in the network while the
delay remains low. Therefore, the centralized implementation is
eventually overtaken by the distributed algorithm.

E. Lab Implementations

We implement our distributed algorithm on Turtlebot3 robotic
ground vehicles to seek a light source in a dark room. The light
source is an LED lamp. Light sensors are installed on Turtlebots
to measure the local light intensity. The robots communicate
through an ad hoc WiFi network, each being an individual
node. We only allow each robot to communicate with two other
predetermined robots throughout the experiment as a reasonable
approximation of a nonfully connected network. An indoor
motion capture system captures the positions of the robots and
the source.

The algorithm is implemented as a ROS 2 package in Python
language [48]. The package is installed on the onboard computer
of every robot. By running the package, every robot gathers its
position from the motion capture system, communicates infor-
mation required in estimation and waypoint planning, makes
estimations, and decides its control actions.

As a measurement model is needed to estimate the source lo-
cation, we fit a function for each robot describing the relationship
between their measurements and distances to the source before
deploying them in source seeking. The function is defined by

gi(ri) = ki(ri — Ol,z‘)_b‘ +Co, (26)

where y; and r; are the measured data from the ith mobile
sensor, and k; > 0, b; > 0, Cp 4, C1; are the associated model
parameters.
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In the implementation, a robot is deemed to have reached the
source if its distance from the source is below 0.5m. A sepa-
rate program that runs independently from the source seeking
algorithm monitors whether any robot has reached the source
using the motion capture data and notifies the robots if they
contact the source. The accompanying video shows that the
robots implementing our distributed algorithm converge to the
source consistently.

Remark 7: Our lab resources constrain the hardware im-
plementation; thus, the hardware experiments are less com-
prehensive than the numerical tests, an aspect of the experi-
ments that could be improved. Nevertheless, the hardware ex-
periments serve as a proof-of-concept showing the proposed
algorithms are implementable on physical systems with sat-
isfactory performance. We hope the combination of extensive
numerical tests and hardware experiments has demonstrated
how the algorithm works.

VI. CONCLUSION

This article proposes a method for multirobot source seeking
that utilizes the FIM associated with the estimated source loca-
tion to direct the robots’ movements. We show that improving
the trace of the inverse of FIM aids estimation while guiding
the robots to converge to the source. The method is extended
to the distributed setting where a central controller is absent,
and the robots make individual decisions while communicating
via a distributed network. We propose consensus schemes that
make distributed estimation and gradient update effective. The
algorithms are verified in numerical experiments and on physical
robotic systems.

Our work leads to a few future directions. One is to combine
our work with Bayesian optimization methods to learn the
measurement model while the robots seek the source. Progress in
this direction removes the requirement of a known measurement
model, making the method more flexible. It is also imperative
to develop the ability to navigate an environment with obstacles
during source seeking, especially when deploying our method
in complex environments, such as search-and-rescue missions.

APPENDIX A
MOTION PLANNING

The motion planner MP can be viewed as a device
that transforms the planned waypoints into low-level actua-
tion of a mobile sensor: by applying (u;(1),...,u;(T)) =
MP(p;(0),...,p:(T)) to sensor i, the sensor will follow the
trajectory of the waypoints p;(0), ..., p;(T"). The motion plan-
ner MP typically requires the knowledge of the sensors’ motion
dynamics to compute the control inputs, and any method that
can fulfill this task can be a motion planner in Algorithm 1.
In our implementation, the motion planner combines spline-
based motion generation described in [49] and the linear
quadratic regulator. Regarding the planning horizon 7" choice,
in the Gazebo simulations and hardware implementation, we set
T = 20 to ensure stability in sensor movement and robustness to
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disturbances. Meanwhile, in numerical studies where the robot
dynamics are not simulated, it suffices to set 7' = 1.

APPENDIX B
PROOF OF PROPOSITIONS 1 AND 2

Recall that 7; is the directional unit vector pointing from ¢
(the source) to p; (sensor ¢’s position), i.e.,

. _ Pi—4g
=2t 2
lpi — qll

We first derive expressions for FIM and the loss function L.
Lemma 1: Suppose individual measurements are isotropic as
in Assumption 1. Then,

m
2 a w
FIM = |gi(rs)|* 77T
i=1

27

Moreover,
_ 1
Lpa) =T (M) = 3 5y >0

i=1

(28)

where A;(FIM) is the ith eigenvalue of FIM.
Proof: By noticing that r; = ||p; — ¢|| and using the chain
rule of calculus, one can show that

Vohi(pi,q) = —gi(ri) i

Denote A = V,H(p, ¢) and A; = V4hi(p;, g). Then, from the
definition of H in (2), we have

A= (41|43 A

and so
m m
2 .
FIM = AAT =" A AT =) |gi(r)|* 7] -
i=1 i=1
Then, (28) follows since
m
FIM 2 (min|gj(r:)|) Y 77 = 0
T
i=1

and the eigenvalues of FIM ™! are the reciprocals of those of
FIM. O

With the formulas of L and FIM, and by further imposing
the monotonicity property of h; in Assumption 1.2, we can
show that minimizing L leads to reaching the source as stated
in Proposition 1.

Proof of Proposition 1

First, we take the maximum over all the summation coeffi-
cients in FIM to get

FIM < maxc [gj(ri)|* D fir
T

Let Amin(P) denote the smallest eigenvalue of a positive
semidefinite matrix P. Then, by (28), we can see that

< L(p,q)

1 < k
Amil‘l(FlM) o Amil‘l(FIM)
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where we recall that k is the dimension of ¢ and also the size of
FIM. Consequently,

1
L(p, ) -

m
2 o
< max |95 (r)[” - Amin (Z Tirzr) :

i=1

mm (HM)

Since we assume Y .~ ; 7; #T = 0, there is Amin (ZE L T “T) >
0. Then, because Ampin (Zl L it ) < m, we have

1

m - max; Iga(n)l

L(p, q). (29)

So by Assumption 1, |g}(r;)| monotonically increases as r;
decreases, so we have min; r; tends to decrease as L(p,q)
decreases, which completes the proof. O

Proof of Proposition 2: Let P =[p{,pa,....0] =
lim¢_, o P(#) be the location vector where the sensors converge
to.

We prove the theorem by contradiction. Assume min;
||pi(t) — g|| does not converge to 0. Then, there must be constant
€ > 0 such that

7o =g —qll > € Vi. (30)
Together with the continuity of L(p, q) in p on {p : p; # q¥i},
the assumption leads to the conclusion that the infimum of L
in the theorem should be replaced with the minimum, and is
attainable at p.

We now construct a contradiction to the assumption in (30)
showing p cannot be the minimum of L. Consider the location

vector b = [b] , b4 ,...,b, ] defined as
b; := q—l—E-p“ 1 vi.
2 T
So that
€
|1b; — ql| =3

Note that b satisfies b; # ¢ for all i. We also note that

FIM(b, q)

S () (5 (2’
- ag |9: (74) | (ﬁsf—:q) (ﬁiv;q)T

"

v

FIM(p.q)

where

l9i(e/2)|
m g ()l
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Note that o > 1 since 7; > ¢/2 and |g}(r;)| is assumed strictly
monotone in r; in the theorem. Therefore,

100 = 2 5 Fam.g) (FlM(b o)

1 1 1,
S22 nIMEg) a0

< L(p, q)-

Therefore, the location vector b, which is closer to ¢ than p,
achieves a lower L value than p. We have reached a con-
tradiction, and (30) cannot hold. So 7; = 0 for some ¢ and
liﬂlt—rao min; ||pi (t) - Q|| =0. O

APPENDIX C
DISTRIBUTED ALGORITHM VARIANTS I AND 11

The two variations are formally defined as follows.

1) Sensor j in Variations I and II no longer share a loss
function with all sensors. Instead, it uses the following
local loss that may be different for other sensors:

Lj(pja Q)
= Tr [(VeH;(p:0) - VaHy(p10)") ] BD)

This local loss reflects the FIM about g contained in the
neighborhood measurements as opposed to the entirety of
SENnsor measurements.

2) Sensor j in Variation II performs the local Kalman filter
update defined in (18) using neighborhood information
p; and y;. No consensus is required.

3) Sensor j in Variations I and II skips lines 5—7 in Algorithm
2, and changes lines 8-9 to be

a) p;(0) < pj;

b) calculate joint-waypoints p;(1),...,p;(T)
P;(t+1) < Pj(t) — aeM:Vp Lj(pj = P;j(t), 45);
(32)
c) Extract sensor j's waypoints p;(1),...,p;(1") from

joint-waypoints p;(1),...,0;(T);

Note that no consensus is required to compute the gradient
of L;. The remaining parts of the algorithm are identical to our
algorithm and the variations. In particular, sensor j in Variation
I still performs consensus EKF update.

APPENDIX D
UNDERSTANDING THE GEOMETRIC PROPERTIES OF THE
TRAJECTORY OF THE COVARIANCE METRIC

Fig. 7(d) shows that the sensors under the covariance metric
approach the source in straight lines and then spread out a
little when close to the source. We can understand the initial
straight-line behavior by analyzing the direction of the gradi-
ent when sensors are far away from the source. Recall that
the covariance metric defined in Section V-A3 is Tr(P) =
Tr((VHR'VH' + Py')~'). We set R=1 in Fig. 7, so
the covariance metric is effectively Tr(P) = Tr(VHVH' +
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. (a) (b) (c)
@ ©

Fig. 17. Effect of Fy ! on the size of the “bump” of the gradient-descent
trajectory of the covariance loss function. The matrix R is fixed to be 1.07
for all figures above. (a) Py ' = 1001. (b) By ' = 1.0I. (¢) Py = 0.011.
(d) Pyl =107%I.(e) Py = 10761

Py 1)~1!). Through matrix calculus, we can show that the covari-
ance metric’s gradient is given by the following:
Gj:=Vp, Te(VHVH  +PyH)™)
= —2V, A;(VHVH" + Py1)24;

where A; := V,g;(||p; — q||),and A; and V,; A; canbe shown
to be

Aj = —gj(rj)f;
g;(r5) . -
A AT T
Vp,Aj = _S’;(TJ')TJ‘T;,‘ - JT_ tjt;
j

where 7; = pE=1 is the unit vector pointing from ¢ to p;, and
£ is the unit vector orthogonal to 7;.

Since we assume the individual measurement function
|g5(r;)| gets smaller as r; increases, Py ! dominates VHVH "
when r; are large(sensors are far away from the source). We note
that we set Py = I in Fig. 7(d). Therefore, when sensors are far
away from the source, the gradient for sensor j is approximately

Gj~ — 2ijAj(P0‘1)_2Aj

—2(Vp,; A5)A;

295 (1) g5 (r5)75.

Also, since the g; we consider are in the form of g;(r;) =
kj(rj — C1 ;)% + Cp ;, its first- and second-order derivatives
satisfies g;(r;) < 0 and g7 (r;) > 0. Therefore, the descent di-
rection —G/; is approximately aligned with the direction of —7;
when the sensors are far away from the source, causing the
straight-line behavior.

When sensors are close to the source, analyzing the gradient
direction is less trivial, but we do note that the covariance metric
is roughly equivalent to Tr(FIM~1) in this condition since the
VHVH' term dominates P, '. We argued in Remark 6 that
minimizing the Tr(FIM ') amounts to approaching the source
and creating separation between the sensors simultaneously,
which explains why the sensors spread out a little at the end.

Fig. 17 provides further numerical evidence showing the
dominance between Py' and VHVH " terms influence the
sensor movements. It shows that the following holds.
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When Fy Lis large, it dominates the covariance metric and
gives rise to straight-line behavior.

On the other hand, when Pj 1 becomes smaller,
the VHVH' term starts to dominate and the
“bump” in the trajectory becomes increasingly
larger.

When Py ! becomes extremely small, the trajectory shows
the behavior of encouraging separation among the sensors
from the very start, which matches the behavior of the
Tr(FIM™!) metric, which is unsurprising since FIM =
VHVH'.
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