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Abstract—Wearable medical technology has become increas-
ingly popular in recent years. One function of wearable health
devices is stress detection, which relies on sensor inputs to
determine a patient’s mental state. This continuous, real-time
monitoring can provide healthcare professionals with vital phys-
iological data and enhance the quality of patient care. Current
methods of stress detection lack: 1) robustness—wearable health
sensors contain high levels of measurement noise that degrades
performance and 2) adaptation—static architectures fail to adapt
to changing contexts in sensing conditions. We propose to address
these deficiencies with SELF-CARE, a generalized selective
sensor fusion method of stress detection that employs novel tech-
niques of context identification and ensemble machine learning.
SELF-CARE uses a learning-based classifier to process sensor
features and model the environmental variations in sensing condi-
tions known as the noise context. SELF-CARE uses noise context
to selectively fuse different sensor combinations across an ensem-
ble of models to perform robust stress classification. Our findings
suggest that for wrist-worn devices, sensors that measure motion
are most suitable to understand noise context, while for chest-
worn devices, the most suitable sensors are those that detect
muscle contraction. We demonstrate SELF-CARE’s state-of-the-
art performance on the WESAD data set. Using wrist-based
sensors, SELF-CARE achieves 86.34% and 94.12% accuracy for
the 3-class and 2-class stress classification problems, respectively.
For chest-based wearable sensors, SELF-CARE achieves 86.19%
(3-class) and 93.68% (2-class) classification accuracy. This work
demonstrates the benefits of utilizing selective, context-aware sen-
sor fusion in mobile health sensing that can be applied broadly
to Internet of Things applications.

Index Terms—Context-aware models, ensemble learning, stress
detection, wearable health sensor fusion.

I. INTRODUCTION

DVANCEMENT in technology and the prevalence of
Internet of Things (IoT) has led to the wide adoption
of wearable medical devices in recent years. Wearable medi-
cal devices have shaped the study and practice of healthcare
by allowing continuous, remote monitoring of vital physiolog-
ical signs. Wearable health devices can also be used for stress
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detection, which uses inputs from body-worn sensors to ana-
lyze a patient’s mental state. Stress detection is of growing
interest as recently the American Psychological Association
issued a warning about long-term physical and mental health
impacts due to stresses from the COVID-19 Pandemic, deem-
ing it a a national mental health crisis [1].

Medically, stress is a physiological state that can be trig-
gered by hormonal surges during moments of physical, cogni-
tive, or emotional challenges [2]. Stress detection falls under
the umbrella of affective computing—the area of computing
that allows machines to recognize and interpret human emo-
tions [3]. Affective computing using wearable devices is a
rapidly developing industry, the value of which is projected
to expand from $29 billion to $140 billion—an increase of
nearly five times—by 2025 [4].

A. Research Challenges

The increasing prevalence of wearable health technology—
and the data that can be gleaned from this technology—has
given rise to a body of academic literature focusing on
stress detection [5], [6], [7], [8], [9], [10], [11]. The rela-
tionship between this sensor data and stress states is not
governed by known physical equations. As a result, researchers
have used classical machine learning (ML) models [e.g., ran-
dom forests (RF) and decision trees (DTs)] or deep learning
(DL) models (e.g., convolutional neural networks (CNNs)
and long short-term memory) to perform stress classification
via supervised learning over labeled data sets with annotated
stress states [12], [13], [14], [15]. DL models have bene-
fits in their ability to incorporate temporal modeling from
the sensor data into the stress detection problem. Despite
this, in stress detection, classical ML models have been more
widely adopted compared to DL models due to the classi-
cal models’ lower complexity levels, important for wearable
on-device deployment [16]. However, both of these types of
learning-based methods lack robustness when using single
sensor modalities, since the coverage area of each sensing
modality is limited by the domain in which the sensors
operate [17].

Researchers commonly use sensor fusion across multimodal
physiological data to increase the performance of emotion
recognition from wearable devices [18]. Early fusion (also
known as feature-level fusion) focuses on combining data at
the raw-data level. Alternatively, late fusion (also known as
decision-level fusion) combines the final outputs of a system.
Current methods of sensor fusion that employ combinations of
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Fig. 1.

Context of noise from sensor measurements depends on the respective sensor locations on the human body. (a) Physiological signals from chest

sensors. A baseline segment where EMG affects ECG and RESP even with no motion, whereas ECG remains unaffected even during motion. This shows
that EMG is more suitable than ACC to understand the noise context from chest wearable devices. (b) Physiological signals from wrist sensors. A baseline
segment where BVP and EDA are affected due to motion. Hence, ACC is more suitable to understand the noise context in wrist wearable devices. Both sets
of data in (a) and (b) are taken from wrist and chest sensors on one subject from the WESAD data set [11].

early and late fusion still have limited efficacy due to the use
of static architectures that cannot adapt to changing sensing
conditions within the environment [19].

Another notable challenge in using data from these physio-
logical signals for affective computing is that the data may be
susceptible to substantial amounts of sensor noise due to phys-
ical motion or muscle contraction. Throughout the remainder
of this article, we define the noise context of wearable health
sensors as the group of external factors that can influence the
variation in measurements and noise levels of the sensors. This
context can be interpreted through intrasensor relationships in
the device as well as through sensing conditions surrounding
the device (e.g., the location of a wearable sensor on the body).
And fusing data from multiple sensors without understand-
ing the noise context may lead to performance degradation as
found in [11].

The main research challenges we address in this work
include: 1) how to effectively fuse multimodal sensor data
from wearable devices; 2) how to develop an adaptive archi-
tecture to account for variations in sensing conditions; and
3) how to model noise context in wearable sensors to improve
stress classification performance.

B. Motivation

In this section, we provide motivation and qualitative anal-
ysis regarding the challenges our approach addresses. Fig. 1
shows that the context of noise on sensors varies depend-
ing on the location of the wearable device. Fusing such
noisy measurements can subsequently degrade the classifica-
tion performance [16]. For example, Fig. 1(b) represents a
baseline segment of data from four wrist sensing modalities:
tri-axis accelerometer (ACC), blood volume pulse (BVP), elec-
trodermal activity (EDA), and skin temperature (TEMP). At
several times during the segment, significant motion causes
two of the sensors (BVP, EDA) to vary in their readings, which
could cause a model to classify this segment incorrectly as
stress. Therefore, it is important to understand the noise con-
text when making sensor fusion decisions. Moreover, it also
shows that motion sensors (ACC) have benefits for modeling
the noise context in wrist-worn devices.

On the other hand, Fig. 1(a) shows data from six sens-
ing modalities from the chest (ACC, electromyography: EMG,
electrocardiogram: ECG, EDA, TEMP, respiration: RESP) for
a baseline segment of the subject. While chest motion may
affect EMG and EDA, it does not affect ECG. However,
EMG may be affected even without any motion when the
subject makes muscle contractions without moving. This may
in turn affect ECG and RESP as shown in Fig. 1. Thus,
for chest wearable devices, motion is not the best modality
to understand the noise context for sensor fusion decisions.
Rather, EMG is more suitable for chest-worn devices which
is empirically validated later in Section V.

The aforementioned examples motivate us to develop a
context-aware sensor fusion technique that utilizes the noise
context of wearable devices to make sensor fusion decisions,
which will help us to maintain performance while avoiding
misclassification. Moreover, the developed method should be
generalizable to both chest and wrist wearable devices as
the noise context varies based on the location of wearable
devices. Prior work has shown that stress detection using wrist-
based wearable devices can be improved by modeling noise
context [20], however, the differences in using chest-based
wearable devices have yet to be examined.

C. Contributions

In this article, we propose SELF-CARE, a generalized stress
detection method that utilizes the noise context of wearable
devices to perform sensor fusion. We show that while motion-
based noise context understanding works best for wrist-based
wearable devices, muscle contraction works best for chest-
based wearable devices. Through experimental evaluation, we
demonstrate that EMG is better than ACC in understanding
the noise context of chest-based wearable devices.

The key contributions of this article are as follows.

1) We introduce a generalized selective sensor fusion
method, SELF-CARE, for stress detection from wear-
able health sensors. SELF-CARE implements a novel
context identification method that models noise con-
text based on the location of wearable devices (chest
or wrist), and utilizes the noise context to dynamically
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adjust the sensor fusion performed across an ensemble
of ML classifiers to improve classification performance.

2) We empirically demonstrate that noise context varies
based on the location of wearable devices through
experimentation across nine different wearable sensors.
Our findings suggest that while motion (ACC) is most
suitable to understand the noise context in wrist-worn
devices, muscle contraction (EMG) is more suitable to
determine noise context in chest-worn devices.

3) We propose a novel late fusion technique for classifica-
tion over an ensemble of learners using a Kalman filter
that incorporates temporal dynamics.

4) We perform an extensive performance evaluation of the
different combinations of sensors from chest and wrist
wearable devices for stress detection. This may serve
as the benchmark for the research community to under-
stand, evaluate, and compare the impact of sensor fusion
in stress detection.

5) We validate our methodology on the wearable stress and
affect detection (WESAD) data set, showing that SELF-
CARE is suitable for wrist-based and chest-based wear-
able devices and achieves state-of-the-art performance
for the 3-class and 2-class stress detection problems.

D. Paper Organization

The remainder of this article is structured as follows. In
Section II, we discuss related works in stress and emotion
detection and sensor fusion. In Section III, we describe the
stress classification problem formulation. In Section IV, we
introduce the methodology of our context-aware, selective sen-
sor fusion approach. In Section V, we show the results of our
approach on a publicly available stress classification data set.
In Section VI, we highlight future directions and limitations,
and in Section VII, we provide concluding remarks.

II. RELATED WORKS

As this article presents a context-aware sensor fusion tech-
nique for stress detection, we consider the related works from
stress detection and sensor fusion. Therefore, we categorize the
related works into two parts. In Section II-A, we present some
related works that consider stress and emotion detection using
various sensor modalities. We also discuss the availability of
the data set used in the corresponding works. In Section 1I-B,
we present and compare against the works that mainly focus
on sensor fusion techniques for stress detection.

A. Stress and Emotion Detection

A number of studies [5], [6], [7] focus on detecting stress
or emotion from physiological signals, such as electrocardio-
grams (ECGs), electromyograms (EMGs), BVP, respiration
(RESP), EDA, and skin TEMP. However, these data sets are
not publicly available. Among works with publicly available
data sets, Healey and Picard [8] detected stress while driving
a vehicle, while [9] and [10] perform a more complex analysis
on subjects’ general emotional states. However, these data sets
are limited in that they do not include data on both stress and
additional emotions simultaneously.
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Schmidt et al. [11] created the WESAD data set, which
includes data on both stress and amusement states from chest-
and wrist-worn devices. Moreover, the authors compare the
classification performance of multiple common ML meth-
ods using chest-worn sensors, wrist-worn sensors, and their
combinations. They conclude that: 1) chest sensors perform
better, and wrist sensors become redundant and sometimes
even decrease performance; 2) fusing multiple sensor modal-
ities together can improve results; and 3) the accelerometer
can negatively impact classification performance. The third
finding supports our claims that modeling the context as a
learned abstraction of motion can be beneficial for wear-
able devices, and that sometimes fusing all available sensors
together reduces performance. Samyoun et al. [12] used the
WESAD data set to present a translation method using a
generative adversarial network (GAN) to generate chest sen-
sor features using the wrist sensors. However, the higher
computational complexity of GANs, along with the require-
ment of chest data during training, limits the application
for computing on a wrist-worn device. Rashid et al. [14]
proposed a hybrid CNN architecture that uses both manually
extracted and CNN features for classification, but only uses
one sensing modality. Lin et al. [21], Fouladgar et al. [22],
and Huynh et al. [13] explored the feasibility of DL models
for stress and emotion detection using the WESAD data set.
However, traditional ML models are currently favored over DL
approaches due to DL’s increased computational complexity
and lack of explainability [16], [18].

B. Sensor Fusion

Sensor fusion has many benefits when applied to both
physiological signals and stress recognition [18], [23]. By
combining raw-sensor data or features (early fusion), more
information can be extracted from sensor measurements than
would otherwise be available. Likewise, using an ensemble
method of multiple learners (late fusion) can increase robust-
ness to sensor/classifier errors. Performing late fusion on the
outputs of multiple classifiers can improve performance, as
each classifier can be specialized for its particular set of input
data [24]. Traditional late fusion approaches typically use a
voting method over the outputs of the classifiers to make a final
decision. Other works have also proposed a learned late fusion
method, such as the method discussed in [25]. The authors
propose an adaptive fusion method, detailing the benefits of
using event-related feature extraction techniques along with an
adaptive framework. However, their approach does not con-
sider the noise context of data for the sensor fusion decision
as we do in our approach. Additionally, we also show that the
noise context varies based on the location of wearable devices,
which has not been addressed in their work. Furthermore,
although their late fusion is adaptive, their method is static
in that it requires a set number of classifiers. Our model,
on the other hand, can dynamically adjust the number and
type of classifiers used based on the performance-computation
tradeoff.

Finally, sensor fusion presents additional benefits when fus-
ing time-series data with temporal correlations, like the data
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present in physiological sensors. Kalman filters are tools for
estimating unknown quantities by iteratively predicting and
updating the estimated state of interest [26], which in our case
is the predicted class. Some works propose using Kalman fil-
ters to solve classification problems [27], while other works do
not consider temporal aspects within their formulation. In this
work, we present a novel late fusion method using a Kalman
filter to take advantage of the temporal dynamics in the stress
classification problem.

III. PROBLEM FORMULATION

As discussed in Section II, fusing multiple heterogeneous
physiological signals has benefits for stress detection. The
main sources of these physiological signals are generally
either chest- or wrist-worn wearable devices. Between the two,
wrist-worn wearable devices are more prone to noise induced
by random movements of hands, and, as shown in Fig. 1,
movements create varying impacts on different physiological
signals. Fusing such noisy signals often deteriorates the clas-
sification performance [11]. On the other hand, chest-worn
wearable devices are less prone to random movements due to
their location, but signals may be affected or become noisy
for other reasons, such as muscle contraction. Therefore, it is
important to understand the context of the noise which varies
based on the location of the wearable devices. Understanding
the noise context can help to dynamically select the less
impacted signals to be fused, which will eventually improve
the classification performance. The problem formulation for
stress detection in a selective approach is provided as follows.

For each input segment of sensor data, the goal of a classifier
¢ is to utilize the measurements from available sensors X, to
classify the segment Y

Y =¢X) = [p1,p2, .. pc] (D
X = {Xi}iz1.s (2)

where s is the number of available sensors; X; represents the
measurements from sensor i; and Y represents the classifier
output which is comprised of the probabilities p of the ¢
classes, (e.g., ¢ = 1: baseline, ¢ = 2: stress, and ¢ = 3: amuse-
ment). ¢ can be implemented via traditional sensor fusion
techniques, an ML or DL model, or an ensemble of ML/DL
models.

Since X represents data from multiple heterogeneous sens-
ing modalities, sensor fusion can be used to fuse the data to
provide a better estimate of Y. In early fusion, the raw sensor
inputs are fused before being passed through the classifier as
follows:

Y=oWXi, Xa, ..., X)) 3)

where i represents the function for fusing the different inputs.
In contrast, late fusion, involves fusing the outputs of an
ensemble of sensor-specific classifiers as follows:

Y1, Yo, .. Yy =1 (X)), p(X2), .., 05Xy (D)
?:qﬁ(?l,?z,...,?S). (@)

The context of noise can vary dramatically based on the
wearable device location and may have a range of impacts
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on different sensor modalities. This variance calls for the
use of an adaptive ¢ that selects the sensor modalities to be
fused based on the noise context—for example, movements
of hands in wrist-worn wearable devices or muscle contrac-
tions in chest-worn wearable devices. In this case, ¢ represents
an ensemble of classification models, and ¢* represents the
selected best subset of models in the ensemble for a given
input X. The context of the noise (either learned and mod-
eled from the inputs or provided externally) is denoted as €2.
We introduce the context identification problem formulation as
follows:

Q =n(X) (6)
P* = p() )

where m represents a gating model that performs context
identification, and p represents the mechanism for select-
ing ¢* given the identified context €. The goal of 7 and
p is to select the optimal subset of branch models ¢*
for the inferred context 2 to maximize stress classification
performance for a given X. In our specific case, context is
defined as motion for wrist-worn wearable devices or as mus-
cle contraction for chest-worn wearable devices. The inputs to
7 typically consist of measurements from the accelerometer
(wrist-worn) or EMG (chest-worn) based on the wearable
device location.

IV. METHODOLOGY

In this section, we detail our method, SELF-CARE, depicted
in Fig. 2. Our method performs stress classification given input
sensor measurements from a specified time segment using
four main blocks: 1) preprocessing; 2) context identification;
3) branch classifiers; and 4) late fusion. SELF-CARE takes
the form of a multibranched architecture in which different
“branches” represent stress detection classifiers using different
combinations of sensors. Context identification selects which
branches to execute, while late fusion is used to fuse the stress
classification predictions if multiple branches are selected. The
following sections provide further details on the proposed
method.

A. Preprocessing Step

SELF-CARE can take in data from varying numbers of het-
erogeneous or homogeneous physiological sensors as inputs.
Preprocessing is a common step when dealing with raw, unfil-
tered sensor data. By applying various filters (e.g., band-pass
filters or lowpass filters) to the input data, random noises
are reduced, and important features are more easily extracted.
The preprocessing performed over each sensing modality is
detailed in Section V.

B. Context Identification

1) Feature Extraction: The purpose of the context iden-
tification block is to predict which branch classifier(s) will
perform the best given an input set of sensor features that are
used to model the context of the system. Contextual modeling
can help illuminate the performance of various sensors in
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Fig. 2. Proposed SELF-CARE Architecture. In this depiction different types
of chest/wrist-worn sensors are used, the gating model selects the branches
given the context, an RF/AdaBoost classifier is used for the branch models,
and a Kalman filter is used for the late fusion over the selected branches.

terms of their levels of noise under different situations and
the locations of the wearable device on the human body. For
wrist wearable devices, we use motion to model the context.
Therefore, for wrist devices, we first extract only ACC fea-
tures as they are directly related to the relative motion of the
test subject. For chest wearable devices, on the other hand,
the context is best modeled by muscle contraction, which is
captured by EMG signal. We then extract EMG features for
chest-worn devices for contextual modeling. Next, these fea-
tures are processed by the gating model to select the best
performing branch. The feature extraction of the other modal-
ities takes place after the gating model has selected which
branch(es) will be used for classification.

2) Gating Model (m): The gating model trains a classi-
fier that uses the ACC/EMG features as inputs to select one
of the available branch classifiers according to wrist/chest-
worn devices. For wrist-worn device, we shortlist these three
branches: WBy = {BVP, EDA, TEMP}; WB, = {ACC, BVP,
EDA}; and WB3 = {BVP, EDA} using RF classifier for both
3-class and 2-class classification. Similarly, for chest-worn
devices, we shortlist five branches for 3-class and 2-class clas-
sification using AdaBoost classifiers. For 3-class classification,
the shortlisted branches are: CB; = {ECG, RESP, EMG, EDA,
TEMP}; CB1; = {ECG, EMG, EDA, TEMP}; CB14 = {RESP,
EMG, EDA, TEMP}; CByy = {ECG, EMG, EDA}; and
CBy7; = {EMG, EDA, TEMP}. For 2-class classification, the
shortlisted branches are: CB; = {ACC, ECG, RESP, EDA};
CB; = {ACC, ECG, EMG, EDA}; CBy = {ACC, ECG,
EDA, TEMP}; CB13 = {ECG, RESP, EDA, TEMP}; and
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CByy = {ACC, ECG, EDA}. The process for choosing these
branches is discussed further in Section V-B. We employ a DT
classifier for our gating model because it is lightweight and
adds minimum overhead to our architecture.

3) Performance-Computation Tradeoff (5): An important
feature of SELF-CARE is its ability to balance constraints
between performance and computation. We introduce the term
§ that aids the gating decision in considering this tradeoff. The
gating model outputs prediction probabilities for the available
branches with b representing the maximum probability branch.
8 has a range between 0 and 1, representing the range in which
nonmaximum branches are selected by allowing branches with
probabilities greater than b — § to be also selected. Lower 8
values indicate tighter computation constraints, with § = 0
indicating that only the highest probability branch from the
gating classifier is selected, while higher § values allow more
branches to be selected, with § = 1 indicating that all possible
branches are selected.

4) Early Fusion (¥): Once the branches are selected after
applying § on the gating model decision, the features for
those branches will be extracted and concatenated together
to be passed to the corresponding classifiers. For example,
while using wrist modalities, if WB; and WBj3 are the selected
branches by the gating model for either 3-class or 2-class clas-
sification, the features from BVP, EDA, and TEMP signals are
concatenated together using early fusion for WBj, while fea-
tures from BVP and EDA are fused for branch WB;3. Similarly,
for 3-class classification using chest modalities, the features
from ECG, RESP, EMG, EDA, and TEMP are fused together
if the gating model selects the CB; branch.

C. Branch Classifiers

Next, the corresponding branch classifier(s) are used to clas-
sify the segment. For our approach, we use an RF classifier
for all three branches of wrist modalities for 3-class and
2-class classification. For chest modalities, we use the
AdaBoost classifier for all five branches for 3-class and 2-
class classification. The details of the classifier training and
selection are provided below in Section V-B. Currently, SELF-
CARE operates using either only wrist sensors or only chest
sensors, however, our method is capable of integrating both
sets of branches with modifications to the context identifica-
tion module. Each selected branch produces a classification
prediction to serve as input for the late fusion method.

D. Late Fusion Method

The late fusion method is tasked with fusing the
clAass . predictiAons from the various selected branches,
{Y1,Y2,...,Ys}, with the goal of producing higher accuracy
predictions than any one individual branch by itself. Here, we
present our Kalman filter-based method for classification over
an ensemble of classifiers.

Kalman filters are powerful and commonly used tools for
sensor fusion and the broader field of estimation. They are
designed to estimate the unknown state of a system along
with the state’s uncertainty by performing a series of recur-
sive predictions and measurement updates. In the context of
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our problem, we consider a Kalman filter approach toward the
multiclass classification problem like in [27], and we addition-
ally model the temporal dynamics in the stress classification
problem for each sample at time k. The general form of
the discretized linear dynamics of a system with state x and
measurements z is given as follows:

x(k) = Fx(k — 1) + v(k) (8)
z(k) = Hx(k) + w(k) 9

where F is the state transition matrix; v is the process noise
vector, which is modeled as zero-mean, normally distributed
random variable with covariance, Q; H is the measurement
matrix relating the state to the measurements; and w is the
measurement noise vector, which also is zero-mean with a
normal distribution and covariance R.

During the prediction step of the Kalman filter, the state
estimate and its estimation error covariance matrix P(k), are
propagated forward through the dynamics model with the
added process noise. This step enforces the temporal depen-
dency that the stress class probabilities at the current time step
have on the future time step. The prediction equations are

x(klk — 1) = Fx(k — 1|k — 1) (10)
Pklk— 1) =FPk—1k— DF' +QG*k—1) (11)

where the notation (k+ 1|k) indicates the next time step given
the current time step. Next, during the update step, measure-
ments are processed and updated estimates of the states and
their covariance are corrected according to the measurements.
The measurement update equations are as follows:

x(klk) = x(klk — 1) — K()[Hx(k|k — 1) —z(k)]  (12)
P(klk) = P(klk — 1) — K(k)HP(k|k — 1) (13)

K(k) = P(klk — DHT [HP(k|k ~DH + R(k)]_l (14)

with K representing the Kalman gain. The prediction and
update step are iterated to produce an estimate of the state, x,
and its associated estimation error covariance P, representing
the uncertainty involved with the state estimate.

For our case, we abstract the multiclass classification
problem as follows. The unknown state our filter is attempting
to estimate is the probability of each class during each seg-
ment. Thus, x is a ¢ dimensional vector of estimated class
probabilities. Additionally, the predictions from each sepa-
rate classifier are the measurements z, which are processed
sequentially per time step. This allows for s* measurement
updates per iteration where s* is adaptively selected per sample
by the gating model. We additionally provide some measure-
ment thresholding during the filter updates that are detailed
in Section V-B7. Finally, we arrive at our late fusion output
using the Kalman filter-based method

]A(kf = arg max x (15)
c

where x is the state vector from the Kalman filter. To

validate our Kalman-filter-based method, we benchmark its

performance against commonly used voting mechanisms for

late fusion: hard-voting and soft-voting [24]. The method of

hard-voting assigns the final class based on the class most
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Fig. 3. SELF-CARE training and implementation procedure. We follow the

steps sequentially as numbered in the figure. To train the gating model, we
first generate the gating labels from step 5 and then use extracted features
from step 2 to train it.

commonly voted by each classifier, whereas soft-voting selects
the class with the highest average value across all the classi-
fiers. Our results comparing different late fusion approaches
are presented in Figs. 4-7 of Section V.

V. EXPERIMENTAL ANALYSIS

This section presents the experimental findings of SELF-
CARE on a wearable health device stress detection data set.
First, we describe the data set used for evaluation. Second, we
explain the training and implementation of our models. Third,
we describe our evaluation metrics and analyze experimental
results.

A. Data Set

SELF-CARE is validated on the publicly available WESAD
data set [11]. This data set was selected because it contains
data from both wrist- and chest-worn wearable devices, which
makes it an ideal data set for understanding the noise con-
text devices worn on different parts of the body. The data
set contains data for a total of 15 subjects, from both chest-
(RespiBAN) and wrist- (Empatica E4) worn sensors. The chest
sensors used in RespiBAN are ACC, ECG, RESP, EMG, EDA,
and TEMP. The wrist sensors from the Empatica E4 are ACC
BVP, EDA, and TEMP. The data set has three types of classes
related to emotional states: 1) baseline (neutral); 2) amuse-
ment; and 3) stress. For the 2-class problem, baseline and
amusement are grouped together in the nonstress class.

B. SELF-CARE Training and Implementation

This section describes the training and implementation
details for the SELF-CARE architecture, shown in Fig. 3.

1) Preprocessing Step: The preprocessing step involves
raw data processing to filter out typical noises.

Wrist Modalities: The ACC data is passed through a finite
impulse response (FIR) filter with a length of 64 with a cut-off
frequency of 0.4 Hz. Following the work in [14], the raw BVP
signal is filtered by a Butterworth band-pass filter of order
3 with cutoff frequencies (fi = 0.7 Hz and f, = 3.7 Hz),
which takes into account the heart rate at rest (<40 BPM)
or high heart rate due to exercise scenarios or tachycardia
(=220 BPM) [28]. The raw EDA signals are filtered using a
Butterworth lowpass filter of order 6 with cut-off frequency
of 1 Hz. Finally, we use a Savitzky—Golay filter (window
size = 11 and order = 3) to smooth the raw TEMP signals.

Chest Modalities: Because the chest data is collected at
a very high sampling rate (700 Hz), the signals are first
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smoothed using a Savitzky—Golay filter. The ACC data is
smoothed using a window size of 31 with an order of 5.
The other signals (ECG, EMG, EDA, RESP, and TEMP) are
smoothed using a window size of 11 and an order of 3.
Similar to wrist BVP, the ECG signal is further filtered by a
Butterworth band-pass filter of order 3 with cutoff frequencies
(fi = 0.7 Hz and f, = 3.7 Hz) that takes into account the heart
rate at rest (=40 BPM) or high heart rate due to exercise sce-
narios or tachycardia (220 BPM) [28]. The EDA signals are
filtered using a Butterworth lowpass filter of order 2 with a
cutoff frequency of 5 Hz. To extract some of the peak fea-
tures (number of peaks and peak amplitude), the EMG signal
is passed through a Butterworth lowpass filter of order 3 and
a cutoff frequency of 0.5 Hz. We extract other EMG features
from the smoothed EMG signal. The RESP signal is filtered by
a Butterworth bandpass filter of order 3 with cutoff frequencies
f1 = 0.1 Hz and 5 = 0.35 Hz.

The filtered signals from both the wrist and chest are seg-
mented by a window of 60 s of data with a sliding length of 5 s
following [12]. This process produces a total of 6458 segments
for each signal across all subjects of the WESAD data set.

2) Feature Extraction: We extract the same wrist and chest
sensor features as used in [11], some of which include
mean/standard deviations, correlations, slope, and dynamic
ranges, peak and power frequencies, and absolute integrals.
We note that this feature extraction is only performed across
the sensors that are selected to run by the gate for a given
input sample. Table I contains the list of extracted features.
We refer readers to [11] for further details of extracted features
per sensor.

3) Train Branch Classifiers: To train the individual branch
classifiers within SELF-CARE, we train using different com-
binations of input sensor data.

For Wrist Modalities, we use five different early
fusion combinations of wrist sensors as input branches:
WB; = {BVP, EDA, TEMP}; WB, = {ACC, BVP, EDA};
WB3; = {BVP, EDA}; WBs = {ACC, BVP}; and
WBs = {ACC, EDA} as shown in Tables II and III. For
chest modalities, we tried forty-two different combinations of
chest sensors as input branches as shown in Tables IV and V.

We evaluate each branch on five different ML classifiers:
1) DT; 2) RF; 3) AdaBoost (AB); 4) linear discriminant anal-
ysis (LDA); and 5) K-nearest neighbor (KNN). We selected
these classifiers to ensure a fair comparison with the original
WESAD work [11]. Following the work in [11], we use the
same configurations for the classifiers. We use DT as the base
estimator for the RF and AB ensemble classifiers, and use 100
base estimators for both RF and AB. In order to measure the
splitting quality of the decision nodes, we used information
gain and set the minimum number of samples to split a node
to 20. For KNN, the K value is set to 9. All classifiers are
trained using leave-one-subject-out (LOSO) validation.

4) Select Branch Classifiers: We select the branches with
the least amount of training loss to be used. The training loss
is calculated from the classification confidence of the trained
classifiers on the training samples using the categorical cross-
entropy, CE = — ) y;log ;, where y is the one hot encoded
true label of a sample, y is the corresponding classification
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TABLE I
LiST OF EXTRACTED FEATURES

\ Feature Symbol \ Feature Names

ACC Features
Mean and STD of each
axis and summed over all axes
Absolute integral for each/all axes

HACC,i» OACC,i
i€ {z,y,2,3D}
‘<[ACC.7L [, i € {z,y,2,3D}

cak .
fhce. i €{zy. 2}

ECG/BVP Features
Mean and STD of HR
Mean and STD of HRV
Number and percentage of HRV
intervals differing more than 50 ms
Root mean square of the HRV
Energy in ultra-low, low, high,
ultra-high frequency band of the HRV

Peak frequency of each axis

HHR, OHR
MHRV> OHRV

NN50, pNN50

TMSHRV
T

fHRV
v € ULF,LF,HF,UHF

fﬁ,};VHF Ratio of LF and HF component
Z{ > of the frequency components
z€ULF,LF,HF,UHF in ULF-HF
reng Relative power of freq. components

LFEvorm, HFnorm Normalised LF and HF component

EMG Features
Mean and STD of EMG

HEDA, OEDA

rangegpA Dynamic range of EMG
[ eyl Absolute integral
TEMG Median of EMG
P o Pia 10?7 and 90" percentile
,uéMG, feMmG, fgej\a[% Mean, median, and peak frequency
PSD(fEnmG) Energy in seven bands
’ﬁi}‘g Number of peaks
/'L%;ijca o %’Xfa Mean and STD of peak amplitude
%’X}JG, %ﬁfa >~ and norm. ) of peak amplitude

EDA Features
Mean and STD of EDA
Min and max value of EDA
Slope and dynamic range of EDA
Mean and STD of SCL/SCR

MEDA> OEDA
MINEpA, MATEDA
dEDA, TANGEEDA
MSCLs OSCLs OSCR

Corrscr,t Correlation between SCL and time
# SCR Number of SCR segments
S Ztsc R >~ of SCR magnitudes and duration
SCR Area under SCR segments
RESP Features
Uz Ox Mean and STD of inhalation (I)
zel, B exhalation (E) duration

1/E Inhalation/exhalation ratio
V0linsp, TANGERESP Volume and range of RESP
ratergsp, ZRESP Respiration rate and duration
TEMP Features
Mean and STD of TEMP
MINTEMP, MATTEMP Min and max of TEMP
OTEMP, TANgETEM P Slope and dynamic range of TEMP

Standard Deviation (STD), Skin Conductance Response (SCR), Skin Con-
ductance Level (SCL), Heart Rate (HR), Heart Rate Variability (HRV)

HTEMP>s OTEMP

output for that sample, and n, is the number of classes. CE is
then calculated for all the training samples across all rounds
of LOSO validation.

Next, out of the 25 (5 branches x 5 classifiers per branch)
possible branch classifiers for wrist modalities, RF classifiers
for input branches WB{, WB;, and WB3 are selected as the
branch classifiers for both 3-class and 2-class classification.
Similarly, for chest modalities, out of 210 (42 branches x 5
classifiers per branch) possible branches, AB classifiers for
input branches CB1, CB12, CB14, CBy4, and CB»7 are selected
for 3-class classification. And for 2-class classification, we
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TABLE II
EARLY FUSION PERFORMANCE OF WRIST MODALITIES IN WESAD DATA SET FOR 3-CLASS (BASELINE VERSUS STRESS VERSUS AMUSEMENT)

Modality Used DT RF AB LDA KNN

y Mac. FI [ Acc. Mac. F1 [ Acc. Mac. FI [ Acc. Mac. FI1 [ Acc. Mac. F1 [ Acc.

W B1={BVP, EDA, TEMP} 56.23 62.32 62.73 76.62 63.78 75.78 52.62 61.79 58.3 69.04
W B>={ACC, BVP, EDA } 58.46 48.27 62.88 77.71 62.39 76.63 60.23 69.63 58.9 68.55
W B3={BVP, EDA } 55.14 59.02 61.02 73.96 60.67 72.54 56.55 69.8 65.73 53.44

W B4={ACC, BVP} 51.54 60.66 56.86 71.38 57.83 71.96 58.67 68.36 55.51 67.05

W B5={ACC, EDA} 47.98 54.5 52.97 70.15 56.47 71.31 57.71 68.6 58.75 64.87

TABLE III

EARLY FUSION PERFORMANCE OF WRIST MODALITIES IN WESAD DATA SET FOR 2-CLASS (STRESS VERSUS NONSTRESS)

Modality Used DT RF AB LDA KNN
Mac. F1 [ Acc. Mac. F1 | Acc. Mac. F1 [ Acc. Mac. F1 [ Acc. Mac. F1 | Acc.
W B1={BVP, EDA, TEMP} 74.1 84.27 84.66 89.01 85.29 88.96 71.46 77.32 83.74 86.56
W B2={ACC, BVP, EDA} 69.44 77.06 85.08 88.76 85.44 88.45 85.66 87.92 80.25 83.62
W B3={BVP, EDA } 80.8 84.48 86.37 89.33 86.13 89.26 83.77 86.55 79.7 83.66
W B4={ACC, BVP} 74.97 79.94 76.43 82.45 79.77 84.21 82.37 85.07 76.49 80.13
W B5={ACC, EDA} 65.65 76.1 72.77 82.42 75.39 83.52 78.66 84.19 73.72 77.55

select AB classifiers for input branches CBs5, CB7, CBy, CB13,
and CBjy for use within our SELF-CARE methodology. These
classifier selections are informed by the extensive experi-
ments we performed across the classifiers variations, which
we benchmark in Tables I1I-V.

5) Generate Gating Labels: The objective of the gating
model is to predict one or a subset of branch classifiers from
the classifiers listed in Section V-B4 to be used in our SELF-
CARE methodology. For each of the training samples, we
generate gating labels representing the branch that has the
least amount of training loss. These gating labels will be used
to train the gating model. For each round of LOSO valida-
tion, gating labels are generated based only on the training
data, and no test data is used to ensure the validity of our
approach.

6) Train Gating Model: The gating model interprets the
context of a sample by modeling the movement (for wrist-
worn devices) or muscle contraction (for chest-worn devices)
that occurred during that segment. Therefore, we use the ACC
(wrist) or EMG (chest) features as input data to train the
gating model with the labels generated from the previous
Section V-B5. We use a DT classifier as the gating model
where the minimum number of samples to split a node is set
to 20. The DT classifier is very lightweight and helps to min-
imize the overhead of SELF-CARE. Once the gating model is
trained, the test subject data is used to test our architecture as
shown in Fig. 2. For wrist-worn devices, the gating model out-
puts the probability of using the three final branch classifiers
based on the test subject’s ACC features. Similarly, for chest-
worn devices, EMG features are used by the gating model to
determine the probability of using the five final branch classi-
fiers as mentioned in Section V-B4. One, two, or all of the final
classifiers may be selected for final classification depending on
the value of §, as discussed earlier in Section IV-B3. For our
3-class (2-class) classification using wrist-worn devices, we
set § = 0.40 (6 = 0.10). And for the chest-worn devices,
we set § = 0.20 for 3-class and § = 0.15 for 2-class classi-
fication. The model extracts additional features based on the
required input of the selected branch classifiers, and applies a

late fusion method to the classification output of the selected
branches to generate the final result.

7) Kalman Filter Tuning: The Kalman filter-based method
is the only late fusion method in our implementation that
requires tuning. As described in Section IV-D, Kalman fil-
ters require an initial state (xg), state covariance (Pgy), and
process noise and measurement noise vectors, v and w, respec-
tively. For the 3-class (2-class) classification using wrist-worn
devices, we initialize xo = [0.8,0.1,0.1]7 (xo = [0.8,0.2]").
Similarly, for the 3-class and 2-class classification using
chest-worn devices, xp is initialized to [0.93,0.21,0.01]7
[1.0, O.SS]T. For 3-class (2-class) classification, we initial-
ize Pp = 0.01 - I3,3 (Pg = 0.01 - In,») for both wrist-worn
and chest-worn devices. The state transition matrix F and
measurement matrix H are identity matrices for the respec-
tive problems. The Q for both problems is modeled as a
discrete-time white process noise with variance set at 5Se-4.
The measurement noise is modeled as a function of each mea-
surement to allow the filter to adjust the confidence of the
measurements according to each reported class probability:
R = ((1-2)-2.133)* (R = ((1—2)/2-I512)?). Finally, a tunable
threshold technique was used to process the measurements
which involved: 1) an € parameter to select measurements
which had a maximum predicted probability above the thresh-
old and 2) a y factor to scale the measurements to account
for the imbalanced class distribution in the data set. This
thresholding process allows the filter to weigh each measure-
ment it receives with a different degree of noise while also
attempting to resolve issues that arise from imbalanced data
sets. For the 3-class (2-class) classification using wrist-worn
devices, we set € = 0.4 (¢ = 0.7) and y = [0.278, 1, 117
(y = [0.667, 1.117). For the 3-class (2-class) classification
using chest-worn devices, we set ¢ = 0.5 (¢ = 0.5) and
y =[1.35,1.5,1.6]T (y =[0.915,0.995]7).

C. Evaluation Metrics

As stated previously, the WESAD data set is highly imbal-
anced in terms of the number of segments per class. For this
reason, we rely on both the F1 score and the accuracy to
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TABLE IV
EARLY FUSION PERFORMANCE OF CHEST MODALITIES IN WESAD DATA SET FOR 3-CLASS (BASELINE VERSUS STRESS VERSUS AMUSEMENT)

Modality Used DT RF AB LDA KNN
M. F1 | Acc. M. F1 | Acc. M. F1 | Acc. M. F1 | Acc. M. F1 | Acc.
CB1={ECG,RESP,EMG,EDA,TEMP} 54.26 62.07 58.68 71.39 65.63 76.53 30.14 38.2 53.87 65.1
C' B>={ACC,ECG,RESP.EMG,TEMP} 4941 57.01 53.55 69.1 60.18 71.88 55.71 72.0 43.15 51.5
C B3={ACC,RESP.EMG,TEMP} 45.8 55.14 53.46 68.58 57.11 69.14 54.93 66.07 44.79 55.49
C B4={ACC,ECG,RESPEMG } 48.29 55.55 50.37 63.36 54.52 65.55 51.8 62.8 43.04 51.56
C B5={ACC,ECG,RESP,EDA } 4433 53.75 52.32 69.15 55.02 73.09 44.05 54.93 43.73 52.43
C Bs={ACC,ECG,EMG,TEMP} 48.96 56.55 53.98 69.58 58.98 70.88 55.31 71.41 42.33 49.93
C B7={ACC,ECG,EMG,EDA } 51.22 61.09 57.0 72.64 59.54 73.35 45.79 56.21 46.82 56.17
C Bg={ACC,RESP,EDA,TEMP} 42.79 51.74 54.6 71.06 52.34 67.32 22.66 24.62 4091 48.78
C' B9={ACC,ECG,EDA,TEMP} 41.94 51.1 54.75 72.57 57.36 75.99 38.59 48.37 45.53 54.2
C B10={ECG,RESP,EMG,TEMP} 47.17 52.8 58.11 70.71 61.8 71.92 54.51 68.6 51.17 59.94
C B11={ECG,RESP,EMG,EDA } 51.14 59.24 57.7 68.9 60.47 70.68 50.34 60.93 51.54 62.99
C B12={ECG,EMG,EDA,TEMP} 53.95 61.41 57.95 71.12 62.09 74.51 31.52 39.52 53.31 63.83
C B13={ECG,RESP,EDA,TEMP} 51.75 60.09 55.02 72.85 57.73 73.45 31.98 38.97 57.14 70.26
C B14={RESP,EMG,EDA,TEMP} 48.93 54.44 60.87 71.41 63.68 74.16 31.59 37.16 51.69 64.38
CB15={ACC,EDA,TEMP} 41.23 49.34 53.69 69.18 52.91 68.95 24.18 25.84 42.29 50.57
CB16={ACC,EMG,EDA } 48.81 58.07 54.59 69.32 54.7 69.25 35.84 45.83 44.99 54.87
C B17={ACC,RESP,EDA } 43.23 51.69 51.5 67.36 4991 66.85 35.15 45.74 39.96 49.74
C B13={ACC,ECG,RESP} 40.4 50.19 48.55 61.61 50.11 65.04 51.39 61.91 39.85 48.3
C B19={ACC,RESP.EMG } 45.19 52.93 48.03 61.65 50.84 62.98 43.41 54.94 42.54 54.79
C B20={ACC,ECG,EDA } 44.66 53.48 53.36 69.41 53.78 72.28 43.15 53.74 42.98 50.43
CB21={ECG,RESPEMG} 4325 | 49.07 || 51.13 | 5851 || 52.17 | 59.63 || 54.68 | 6537 || 4782 | 57.02
CB22={ECG,EDA,TEMP} 526 | 62.66 || 55.06 | 72.59 || 57.63 | 729 3323 | 3941 || 56.58 | 68.1
CB23={ECG,RESP,EDA} 49.02 | 5573 || 5174 | 65.97 || 5034 | 65.1 4624 | 5924 || 52.38 | 64.95
CB24={ECG,EMG,EDA} 5258 | 60.19 || 57.89 | 68.58 || 61.69 | 71.25 || 49.41 | 59.77 || 50.23 | 60.75
C B25={RESP,EMG,EDA } 42.09 49.83 56.13 64.04 61.46 69.09 39.07 49.63 48.25 61.33
C B26={RESP,EDA, TEMP} 4595 | 5485 || 36.76 | 741 5456 | 71.05 || 2248 | 2351 || 5027 | 64.98
C B27={EMG,EDA,TEMP} 4994 | 5545 || 61.32 | 7151 || 64.72 | 74.36 || 3273 | 4029 || 51.23 | 62.91
C'B2s={ACC,RESP} 42.27 51.12 48.39 60.41 45.06 58.18 43.3 56.92 40.93 52.46
C B29={ACC,EMG} 44.36 52.12 47.96 61.39 50.41 63.09 42.04 53.55 42.18 534
CB30={ACC,ECG} 39.41 48.76 49.48 63.37 48.79 62.9 51.14 61.68 37.45 45.01
CB31={ACC,EDA } 42.26 49.04 51.56 67.42 47.84 65.89 32.8 42.47 40.46 50.72
C'B32={ACC,TEMP} 39.86 48.43 49.58 62.29 46.81 59.66 52.05 63.16 42.78 52.02
C'B33={ECG,RESP} 42.24 47.3 44.13 54.5 45.72 55.92 52.31 66.59 45.34 56.68
CB34={ECG,EMG} 40.99 46.91 51.12 57.73 50.89 58.93 54.25 64.96 48.46 55.93
C'B35={ECG,EDA} 51.3 57.86 50.4 64.85 50.02 64.46 44.76 57.57 50.21 61.31
C'B3s={ECG,TEMP} 41.34 48.0 48.82 63.43 51.94 63.68 53.47 69.58 50.07 59.97
C'B37={EDA,TEMP} 47.52 56.72 55.39 72.88 53.17 69.89 23.22 24.12 47.97 59.91
C'B3s={RESP,EDA } 39.88 47.63 50.19 60.34 45.98 54.46 30.8 42.41 48.9 64.12
C'B39={RESP,.EMG} 42.73 50.93 47.94 57.68 47.65 57.34 44.9 57.34 45.69 56.73
C'B4o={RESP,TEMP} 41.78 53.36 51.85 69.44 4991 59.96 56.65 71.94 48.43 62.27
CB41={EMG,EDA } 429 51.26 55.5 63.64 60.54 68.68 36.4 459 49.92 60.11
C B42={EMG,TEMP} 40.63 45.37 62.12 71.95 63.16 70.91 58.63 67.99 50.41 59.67
measure the classification performance. To ensure a fair com- 1) Performance  Evaluation of Wrist Modalities:

parison with other works, we use the macro F1 score. The
metrics used for evaluation

Accuracy = (TP + TN)/(TP + FP + TN + FN)  (16)

P =TP/(TP + FP), R =TP/(TP+FN) (17)
1 & Pi.R;

Macro Fi = — 2w —— 18

1 ,,Z Pi+R; 4

where TP, TN, FP, and FN represent True Positives, True
Negatives, False Positives, and False Negatives, respectively;
and P and R represent Precision and Recall, respectively. The
classes are indexed by i, and n, is the number of output classes.

D. Experimental Results

This section presents the performance of SELF-CARE for
stress detection in 3-class and 2-class classification using wrist
and chest modalities.

Tables I and III show the performance analysis of dif-
ferent classifiers for various input branches for the 3-class
and 2-class problems, with each branch representing different
combinations of input sensors. The RF classifier for branches
WB1, WB;, and WB3 show better or competitive performance
compared to the other classifiers for both 3-class and 2-class.
The RF classifiers also achieved minimum training loss
for these input branches during training, leading to our
selection of these three branches with the RF classifier for
our approach.

As shown in Fig. 4, for 3-class classification, the
SELF-CARE method outperforms other related works
[11], [13], [14], the branch classifiers, and the traditional late
fusion methods in terms of both accuracy and macro F1 score
achieving a performance of 86.34% and 71.97%, respectively.
Compared to [12], SELF-CARE achieves better accuracy—
though [12] achieves a better macro F1 score, as this work
uses both wrist and chest sensors for stress classification.
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TABLE V
EARLY FUSION PERFORMANCE OF CHEST MODALITIES IN WESAD DATA SET FOR 2-CLASS (STRESS VERSUS NONSTRESS)

Modality Used DT RF AB LDA KNN

M. F1 | Acc. M. F1 | Acc. M. F1 | Acc. M. F1 | Acc. M. F1 | Acc.

C B1={ECG,RESP,EMG,EDA,TEMP} 73.17 75.85 82.02 83.24 81.45 84.14 46.32 48.77 74.68 78.81
C' B>={ACC,ECG,RESP.EMG,TEMP} 67.25 73.11 80.12 83.86 77.07 82.75 77.53 79.98 63.81 69.48
C B3={ACC,RESP,EMG,TEMP } 68.85 76.61 78.15 83.44 73.16 81.56 74.03 77.17 61.97 70.88
C B4={ACC,ECG,RESPEMG } 66.93 72.16 70.57 78.06 72.98 80.57 75.66 79.83 64.12 69.86
CB5={ACC,ECG,RESP,EDA } 70.39 75.81 82.41 84.21 83.21 85.64 68.46 75.02 74.6 71.75
C Bs={ACC,ECG,EMG,TEMP} 66.06 72.22 80.13 83.88 75.77 82.36 77.13 79.64 62.97 68.0
CB7={ACC,ECG,EMG,EDA } 72.45 77.72 83.49 85.64 82.29 85.72 69.6 75.2 72.05 75.86
C Bg={ACC,RESP,EDA,TEMP} 68.71 73.26 81.03 84.16 72.19 79.34 29.71 32.23 66.42 74.28
C B9={ACC,ECG,EDA,TEMP} 65.13 70.79 84.47 86.12 82.15 85.2 59.5 61.72 75.02 78.4
C B10={ECG,RESP,EMG,TEMP} 52.55 54.77 76.87 80.08 76.02 80.39 76.89 79.17 68.32 73.94
C B;11={ECG,RESP,EMG,EDA } 74.89 77.51 81.23 82.93 82.25 84.79 70.15 75.69 73.76 77.89
C B12={ECG,EMG,EDA,TEMP} 72.35 75.25 82.05 83.39 79.64 82.7 47.71 50.14 73.03 77.14
C B13={ECG,RESP,EDA,TEMP} 73.62 75.58 79.2 80.24 83.31 84.78 49.66 51.9 79.22 82.04
C B14={RESP,EMG,EDA,TEMP} 70.82 73.11 81.8 84.15 77.41 81.44 47.13 50.71 67.67 76.19
C B15={ACC,EDA,TEMP} 66.82 72.0 80.51 83.08 71.5 79.53 32.61 35.96 66.95 73.5
CB16={ACC,EMG,EDA } 69.7 76.11 78.93 83.67 74.92 82.07 54.66 61.85 64.89 71.65
C B17={ACC,RESP,EDA } 66.46 73.42 77.17 81.81 70.91 79.16 53.28 62.59 63.82 71.44
CB13={ACC,ECG,RESP} 62.03 69.17 72.22 78.51 75.78 81.16 74.68 79.53 65.87 69.49
C B19={ACC,RESP.EMG } 63.76 71.48 66.44 77.19 64.21 75.5 63.29 71.03 60.84 70.04
C B20={ACC,ECG,EDA } 69.46 74.81 84.11 85.62 84.0 86.37 66.96 73.53 73.19 76.18
C B21={ECG,RESP,EMG } 61.32 65.25 68.82 73.78 67.5 74.26 75.91 80.2 65.96 72.18

C B22={ECG,EDA,TEMP} 73.09 75.06 78.33 79.4 81.01 82.4 52.84 55.01 77.92 80.7

C B23={ECG,RESP,EDA } 70.15 72.45 78.83 80.05 79.93 81.62 67.9 74.41 76.45 79.31
C B24={ECG,EMG,EDA} 74.75 77.26 80.69 82.39 82.03 84.58 69.03 74.81 71.75 75.88
C B25={RESP,EMG,EDA } 60.6 65.44 74.27 78.99 73.3 79.62 54.6 62.95 67.22 76.13
C'B26={RESP,EDA,TEMP} 69.55 71.23 77.57 78.93 77.44 79.83 35.86 39.07 70.25 75.78

C B27={EMG,EDA,TEMP} 70.92 73.2 80.65 83.39 77.88 82.14 50.88 54.17 66.11 73.9
C'B2s={ACC,RESP} 64.32 70.8 68.92 77.16 66.29 75.53 62.96 75.13 65.24 72.01

C B29={ACC,EMG} 61.76 69.37 66.36 76.85 64.19 75.86 60.91 69.19 60.51 68.4
CB30={ACC,ECG} 63.41 70.31 71.71 78.03 75.3 80.99 74.32 79.37 62.87 66.02
CB31={ACC,EDA } 65.63 73.35 77.51 81.63 69.97 78.57 50.03 59.14 64.28 70.83
C'B32={ACC,TEMP} 65.69 72.52 76.55 82.0 68.5 78.26 73.3 76.77 67.49 74.41
C'B33={ECG,RESP} 65.21 69.46 72.23 77.74 73.98 78.63 77.57 82.62 68.9 72.35
CB34={ECG,EMG} 59.41 64.16 68.24 73.16 66.69 74.49 75.07 79.67 65.89 71.05
C'B35={ECG,EDA} 73.98 75.83 79.27 80.54 79.02 80.46 66.44 73.23 74.62 77.1
C'B3s={ECG,TEMP} 60.01 62.86 74.62 77.53 76.0 79.02 77.6 79.43 69.8 72.64
C'B37={EDA,TEMP} 67.64 69.64 76.97 78.79 73.82 76.4 42.8 45.87 68.43 72.55
C'B3s={RESP,EDA } 56.46 59.02 74.86 71.79 66.92 71.09 48.47 59.08 71.71 78.38
C'B39={RESP,.EMG} 57.13 66.44 53.69 69.12 54.17 69.16 61.04 70.26 57.0 69.98
C'B4o={RESP,TEMP} 54.42 56.14 73.9 77.39 73.96 77.51 73.24 76.48 70.44 74.84
CB41={EMG,EDA } 61.9 67.19 76.18 80.4 72.54 79.26 51.34 59.27 66.06 74.2

C B42={EMG,TEMP} 56.15 60.49 77.06 81.6 72.14 78.9 73.38 76.76 62.5 71.6

For 2-class classification, the SELF-CARE method achieves
an accuracy of 94.12% and macro F1 score of 92.93%,
outperforming the related works [11], [12], [13], [14], the
branch classifiers, and the traditional late fusion methods in
terms of both accuracy and macro F1 score (as shown in
Fig. 5). For the three selected branch classifiers, we apply soft-
and hard-voting methods, showing performance improvements
compared to the individual branch classifiers for both 3-class
and 2-class classifications. SELF-CARE also uses Kalman
filter-based late fusion to further improve the performance for
3-class and 2-class classification compared to these traditional
late fusion methods.

2) Performance  Evaluation of Chest Modalities:
Tables IV and V show the performance analysis of dif-
ferent classifiers for various input branches for the 3-class
and 2-class problems, with each branch representing dif-
ferent combinations of input sensors. The AB classifier for
branches CBi, CB13, CB14, CBy4, and CBy7 shows better or
competitive performance compared to the other classifiers

3-class classification. Similarly, for 2-class classification, the
branches CBs, CB7, CBy, CBi3, and CByy showed better
performance that other classifiers. The AB classifiers also
achieved minimum training loss for these input branches
during training, which led to the selection of five branches
for the SELF-CARE framework. The soft- and hard-voting
methods applied to the five selected branch -classifiers
do not show performance improvements compared to the
individual branch classifiers for both 3-class and 2-class
classifications. However, incorporating Kalman filter-based
late fusion significantly improves the performance for 3-class
and 2-class classification compared to these traditional late
fusion methods.

As shown in Figs. 6 and 7, for both 3-class and 2-class
classification, the SELF-CARE method, using either muscle
contraction (EMG) or motion (ACC) for context understand-
ing, outperforms other related works [11], [12], [13], [14],
the branch classifiers, and the traditional late fusion methods
in terms of both accuracy and macro F1 score. This study
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Fig. 4.

Overall performance comparison of related works using LOSO validation on wrist data 3-class. Results show that SELF-CARE outperforms the

related works, branch classifiers, and other traditional late fusion methods in terms of macro F1 and accuracy except for the macro F1 score of [12] which
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Fig. 5.

Overall performance comparison of related works using LOSO validation on wrist data 2-Class. Results show that SELF-CARE outperforms the

related works, branch classifiers, and other traditional late fusion methods in terms of both macro F1 and accuracy.

also demonstrates that even with motion-based context under-
standing, SELF-CARE outperforms other works. However, the
model’s performance improves by 2%—-3% while using mus-
cle contraction for context understanding compared to motion.
This illustrates that the impact of movement on other sen-
sors depends on the location of wearable devices. Therefore,
movement is not always the best choice for contextual under-
standing as we observe the results while using chest modalities
for stress detection.

VI. LIMITATIONS AND FUTURE DIRECTIONS

One of the main goals of this article is to explore how the
context of noise varies depending on the location of wearable
devices. For this reason, we modeled the noise context of

sensor modalities from stand-alone devices, choosing not to
combine the wrist and chest sensor modalities. However,
future research could explore this issue further. Understanding
the relation between the noise context of multiple wearable
devices from physically different locations and fusing cross-
modal sensors based on that relation may produce interesting
scientific findings that can be leveraged for methods of affec-
tive computing. Modeling the noise context of wearable health
sensors can lead to further levels of human emotion under-
standing as information from the health sensors becomes
increasingly useful when interpreted on a contextual basis.
Further, SELF-CARE is limited by the manual design of
sensor fusion branch configurations. Though domain knowl-
edge is required to determine which sensor data to fuse
together, future works could explore using ML to make
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Fig. 6. Overall performance comparison of related works using LOSO validation on chest data 3-class. Results show that the proposed SELF-CARE method
(using either ACC or EMG to determine the noise context) outperforms other related works, branch classifiers, and traditional late fusion methods in terms
of macro F1 and accuracy. Moreover, SELF-CARE using EMG (for the noise context understanding) outperforms the one using ACC in both metrics. This
justifies the fact that EMG is more suitable than ACC to understand the noise context in chest wearable devices.
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Fig. 7. Overall performance comparison of related works using LOSO validation on chest data 2-class. Results show that the proposed SELF-CARE method
outperforms other related works, branch classifiers, and traditional late fusion methods in terms of macro F1 and accuracy. Also, SELF-CARE using EMG
outperforms the one using ACC in both metrics which further justifies the fact that EMG is more suitable than ACC to understand the noise context in chest

wearable devices.

these determinations instead. Additionally, the energy effi-
ciency of wearable health devices is an important constraint
that could be examined in future works. SELF-CARE imple-
ments a configurable parameter for balancing computation and
performance, but future works could examine the efficiency
tradeoffs between chest and wrist sensing modalities. This arti-
cle did not focus on DL models, but SELF-CARE’s modular
design allows for the implementation of any learning-based
classifier, including DL branches. Further, SELF-CARE could
be applied more broadly in the domain of affective comput-
ing to include additional tasks beyond stress detection and
emotion recognition. Moreover, it can also be applied to other

wearable healthcare applications like human activity recogni-
tion [29], [30], [31], myocardial infarction detection [32], [33],
[34] etc., that involves data from multiple wearable sensors.
Finally, SELF-CARE’s use of a specialized set of ensemble
classifiers has broad applicability to IoT sensing, including
the domains of sensor networks [35] and transportation [36].

VII. CONCLUSION

In this article, we propose SELF-CARE, a generalized selec-
tive sensor fusion method for stress detection that utilizes
the noise context in the chest- and wrist-worn devices to
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dynamically adjust the sensor fusion performed to maximize
classification performance. SELF-CARE determines the noise
context using muscle contractions (EMG) or motion (ACC)
of a subject, and performs an intelligent gating mechanism
to select which sensor fusion schema to use depending on
the location of the sensor. We also show that, while deter-
mining the noise context based on motion works best for
wrist-based wearable devices, it is not the best for chest-
based wearable devices. Through experimental evaluation, we
conclude that EMG is better than ACC in understanding
the noise context of chest-based wearable devices. To the
best of our knowledge, SELF-CARE achieves state-of-the-
art performance on the WESAD data set for both chest and
wrist-based sensors among methods that use LOSO validation.
Using wrist-based sensors our methodology achieves 86.34%
(3-class) and 94.12% (2-class) classification accuracy while
outperforming current state-of-the-art works. Similarly, for
chest-based wearable sensors, our methodology outperforms
existing models with 86.19% (3-class) and 93.68% (2-class)
classification accuracy.
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