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Abstract—Wearable medical technology has become increas-
ingly popular in recent years. One function of wearable health
devices is stress detection, which relies on sensor inputs to
determine a patient’s mental state. This continuous, real-time
monitoring can provide healthcare professionals with vital phys-
iological data and enhance the quality of patient care. Current
methods of stress detection lack: 1) robustness—wearable health
sensors contain high levels of measurement noise that degrades
performance and 2) adaptation—static architectures fail to adapt
to changing contexts in sensing conditions. We propose to address
these deficiencies with SELF-CARE, a generalized selective
sensor fusion method of stress detection that employs novel tech-
niques of context identification and ensemble machine learning.
SELF-CARE uses a learning-based classifier to process sensor
features and model the environmental variations in sensing condi-
tions known as the noise context. SELF-CARE uses noise context
to selectively fuse different sensor combinations across an ensem-
ble of models to perform robust stress classification. Our findings
suggest that for wrist-worn devices, sensors that measure motion
are most suitable to understand noise context, while for chest-
worn devices, the most suitable sensors are those that detect
muscle contraction. We demonstrate SELF-CARE’s state-of-the-
art performance on the WESAD data set. Using wrist-based
sensors, SELF-CARE achieves 86.34% and 94.12% accuracy for
the 3-class and 2-class stress classification problems, respectively.
For chest-based wearable sensors, SELF-CARE achieves 86.19%
(3-class) and 93.68% (2-class) classification accuracy. This work
demonstrates the benefits of utilizing selective, context-aware sen-
sor fusion in mobile health sensing that can be applied broadly
to Internet of Things applications.

Index Terms—Context-aware models, ensemble learning, stress
detection, wearable health sensor fusion.

I. INTRODUCTION

A
DVANCEMENT in technology and the prevalence of

Internet of Things (IoT) has led to the wide adoption

of wearable medical devices in recent years. Wearable medi-

cal devices have shaped the study and practice of healthcare

by allowing continuous, remote monitoring of vital physiolog-

ical signs. Wearable health devices can also be used for stress
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detection, which uses inputs from body-worn sensors to ana-

lyze a patient’s mental state. Stress detection is of growing

interest as recently the American Psychological Association

issued a warning about long-term physical and mental health

impacts due to stresses from the COVID-19 Pandemic, deem-

ing it a a national mental health crisis [1].

Medically, stress is a physiological state that can be trig-

gered by hormonal surges during moments of physical, cogni-

tive, or emotional challenges [2]. Stress detection falls under

the umbrella of affective computing—the area of computing

that allows machines to recognize and interpret human emo-

tions [3]. Affective computing using wearable devices is a

rapidly developing industry, the value of which is projected

to expand from $29 billion to $140 billion—an increase of

nearly five times—by 2025 [4].

A. Research Challenges

The increasing prevalence of wearable health technology—

and the data that can be gleaned from this technology—has

given rise to a body of academic literature focusing on

stress detection [5], [6], [7], [8], [9], [10], [11]. The rela-

tionship between this sensor data and stress states is not

governed by known physical equations. As a result, researchers

have used classical machine learning (ML) models [e.g., ran-

dom forests (RF) and decision trees (DTs)] or deep learning

(DL) models (e.g., convolutional neural networks (CNNs)

and long short-term memory) to perform stress classification

via supervised learning over labeled data sets with annotated

stress states [12], [13], [14], [15]. DL models have bene-

fits in their ability to incorporate temporal modeling from

the sensor data into the stress detection problem. Despite

this, in stress detection, classical ML models have been more

widely adopted compared to DL models due to the classi-

cal models’ lower complexity levels, important for wearable

on-device deployment [16]. However, both of these types of

learning-based methods lack robustness when using single

sensor modalities, since the coverage area of each sensing

modality is limited by the domain in which the sensors

operate [17].

Researchers commonly use sensor fusion across multimodal

physiological data to increase the performance of emotion

recognition from wearable devices [18]. Early fusion (also

known as feature-level fusion) focuses on combining data at

the raw-data level. Alternatively, late fusion (also known as

decision-level fusion) combines the final outputs of a system.

Current methods of sensor fusion that employ combinations of
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Fig. 1. Context of noise from sensor measurements depends on the respective sensor locations on the human body. (a) Physiological signals from chest
sensors. A baseline segment where EMG affects ECG and RESP even with no motion, whereas ECG remains unaffected even during motion. This shows
that EMG is more suitable than ACC to understand the noise context from chest wearable devices. (b) Physiological signals from wrist sensors. A baseline
segment where BVP and EDA are affected due to motion. Hence, ACC is more suitable to understand the noise context in wrist wearable devices. Both sets
of data in (a) and (b) are taken from wrist and chest sensors on one subject from the WESAD data set [11].

early and late fusion still have limited efficacy due to the use

of static architectures that cannot adapt to changing sensing

conditions within the environment [19].

Another notable challenge in using data from these physio-

logical signals for affective computing is that the data may be

susceptible to substantial amounts of sensor noise due to phys-

ical motion or muscle contraction. Throughout the remainder

of this article, we define the noise context of wearable health

sensors as the group of external factors that can influence the

variation in measurements and noise levels of the sensors. This

context can be interpreted through intrasensor relationships in

the device as well as through sensing conditions surrounding

the device (e.g., the location of a wearable sensor on the body).

And fusing data from multiple sensors without understand-

ing the noise context may lead to performance degradation as

found in [11].

The main research challenges we address in this work

include: 1) how to effectively fuse multimodal sensor data

from wearable devices; 2) how to develop an adaptive archi-

tecture to account for variations in sensing conditions; and

3) how to model noise context in wearable sensors to improve

stress classification performance.

B. Motivation

In this section, we provide motivation and qualitative anal-

ysis regarding the challenges our approach addresses. Fig. 1

shows that the context of noise on sensors varies depend-

ing on the location of the wearable device. Fusing such

noisy measurements can subsequently degrade the classifica-

tion performance [16]. For example, Fig. 1(b) represents a

baseline segment of data from four wrist sensing modalities:

tri-axis accelerometer (ACC), blood volume pulse (BVP), elec-

trodermal activity (EDA), and skin temperature (TEMP). At

several times during the segment, significant motion causes

two of the sensors (BVP, EDA) to vary in their readings, which

could cause a model to classify this segment incorrectly as

stress. Therefore, it is important to understand the noise con-

text when making sensor fusion decisions. Moreover, it also

shows that motion sensors (ACC) have benefits for modeling

the noise context in wrist-worn devices.

On the other hand, Fig. 1(a) shows data from six sens-

ing modalities from the chest (ACC, electromyography: EMG,

electrocardiogram: ECG, EDA, TEMP, respiration: RESP) for

a baseline segment of the subject. While chest motion may

affect EMG and EDA, it does not affect ECG. However,

EMG may be affected even without any motion when the

subject makes muscle contractions without moving. This may

in turn affect ECG and RESP as shown in Fig. 1. Thus,

for chest wearable devices, motion is not the best modality

to understand the noise context for sensor fusion decisions.

Rather, EMG is more suitable for chest-worn devices which

is empirically validated later in Section V.

The aforementioned examples motivate us to develop a

context-aware sensor fusion technique that utilizes the noise

context of wearable devices to make sensor fusion decisions,

which will help us to maintain performance while avoiding

misclassification. Moreover, the developed method should be

generalizable to both chest and wrist wearable devices as

the noise context varies based on the location of wearable

devices. Prior work has shown that stress detection using wrist-

based wearable devices can be improved by modeling noise

context [20], however, the differences in using chest-based

wearable devices have yet to be examined.

C. Contributions

In this article, we propose SELF-CARE, a generalized stress

detection method that utilizes the noise context of wearable

devices to perform sensor fusion. We show that while motion-

based noise context understanding works best for wrist-based

wearable devices, muscle contraction works best for chest-

based wearable devices. Through experimental evaluation, we

demonstrate that EMG is better than ACC in understanding

the noise context of chest-based wearable devices.

The key contributions of this article are as follows.

1) We introduce a generalized selective sensor fusion

method, SELF-CARE, for stress detection from wear-

able health sensors. SELF-CARE implements a novel

context identification method that models noise con-

text based on the location of wearable devices (chest

or wrist), and utilizes the noise context to dynamically
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adjust the sensor fusion performed across an ensemble

of ML classifiers to improve classification performance.

2) We empirically demonstrate that noise context varies

based on the location of wearable devices through

experimentation across nine different wearable sensors.

Our findings suggest that while motion (ACC) is most

suitable to understand the noise context in wrist-worn

devices, muscle contraction (EMG) is more suitable to

determine noise context in chest-worn devices.

3) We propose a novel late fusion technique for classifica-

tion over an ensemble of learners using a Kalman filter

that incorporates temporal dynamics.

4) We perform an extensive performance evaluation of the

different combinations of sensors from chest and wrist

wearable devices for stress detection. This may serve

as the benchmark for the research community to under-

stand, evaluate, and compare the impact of sensor fusion

in stress detection.

5) We validate our methodology on the wearable stress and

affect detection (WESAD) data set, showing that SELF-

CARE is suitable for wrist-based and chest-based wear-

able devices and achieves state-of-the-art performance

for the 3-class and 2-class stress detection problems.

D. Paper Organization

The remainder of this article is structured as follows. In

Section II, we discuss related works in stress and emotion

detection and sensor fusion. In Section III, we describe the

stress classification problem formulation. In Section IV, we

introduce the methodology of our context-aware, selective sen-

sor fusion approach. In Section V, we show the results of our

approach on a publicly available stress classification data set.

In Section VI, we highlight future directions and limitations,

and in Section VII, we provide concluding remarks.

II. RELATED WORKS

As this article presents a context-aware sensor fusion tech-

nique for stress detection, we consider the related works from

stress detection and sensor fusion. Therefore, we categorize the

related works into two parts. In Section II-A, we present some

related works that consider stress and emotion detection using

various sensor modalities. We also discuss the availability of

the data set used in the corresponding works. In Section II-B,

we present and compare against the works that mainly focus

on sensor fusion techniques for stress detection.

A. Stress and Emotion Detection

A number of studies [5], [6], [7] focus on detecting stress

or emotion from physiological signals, such as electrocardio-

grams (ECGs), electromyograms (EMGs), BVP, respiration

(RESP), EDA, and skin TEMP. However, these data sets are

not publicly available. Among works with publicly available

data sets, Healey and Picard [8] detected stress while driving

a vehicle, while [9] and [10] perform a more complex analysis

on subjects’ general emotional states. However, these data sets

are limited in that they do not include data on both stress and

additional emotions simultaneously.

Schmidt et al. [11] created the WESAD data set, which

includes data on both stress and amusement states from chest-

and wrist-worn devices. Moreover, the authors compare the

classification performance of multiple common ML meth-

ods using chest-worn sensors, wrist-worn sensors, and their

combinations. They conclude that: 1) chest sensors perform

better, and wrist sensors become redundant and sometimes

even decrease performance; 2) fusing multiple sensor modal-

ities together can improve results; and 3) the accelerometer

can negatively impact classification performance. The third

finding supports our claims that modeling the context as a

learned abstraction of motion can be beneficial for wear-

able devices, and that sometimes fusing all available sensors

together reduces performance. Samyoun et al. [12] used the

WESAD data set to present a translation method using a

generative adversarial network (GAN) to generate chest sen-

sor features using the wrist sensors. However, the higher

computational complexity of GANs, along with the require-

ment of chest data during training, limits the application

for computing on a wrist-worn device. Rashid et al. [14]

proposed a hybrid CNN architecture that uses both manually

extracted and CNN features for classification, but only uses

one sensing modality. Lin et al. [21], Fouladgar et al. [22],

and Huynh et al. [13] explored the feasibility of DL models

for stress and emotion detection using the WESAD data set.

However, traditional ML models are currently favored over DL

approaches due to DL’s increased computational complexity

and lack of explainability [16], [18].

B. Sensor Fusion

Sensor fusion has many benefits when applied to both

physiological signals and stress recognition [18], [23]. By

combining raw-sensor data or features (early fusion), more

information can be extracted from sensor measurements than

would otherwise be available. Likewise, using an ensemble

method of multiple learners (late fusion) can increase robust-

ness to sensor/classifier errors. Performing late fusion on the

outputs of multiple classifiers can improve performance, as

each classifier can be specialized for its particular set of input

data [24]. Traditional late fusion approaches typically use a

voting method over the outputs of the classifiers to make a final

decision. Other works have also proposed a learned late fusion

method, such as the method discussed in [25]. The authors

propose an adaptive fusion method, detailing the benefits of

using event-related feature extraction techniques along with an

adaptive framework. However, their approach does not con-

sider the noise context of data for the sensor fusion decision

as we do in our approach. Additionally, we also show that the

noise context varies based on the location of wearable devices,

which has not been addressed in their work. Furthermore,

although their late fusion is adaptive, their method is static

in that it requires a set number of classifiers. Our model,

on the other hand, can dynamically adjust the number and

type of classifiers used based on the performance-computation

tradeoff.

Finally, sensor fusion presents additional benefits when fus-

ing time-series data with temporal correlations, like the data
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present in physiological sensors. Kalman filters are tools for

estimating unknown quantities by iteratively predicting and

updating the estimated state of interest [26], which in our case

is the predicted class. Some works propose using Kalman fil-

ters to solve classification problems [27], while other works do

not consider temporal aspects within their formulation. In this

work, we present a novel late fusion method using a Kalman

filter to take advantage of the temporal dynamics in the stress

classification problem.

III. PROBLEM FORMULATION

As discussed in Section II, fusing multiple heterogeneous

physiological signals has benefits for stress detection. The

main sources of these physiological signals are generally

either chest- or wrist-worn wearable devices. Between the two,

wrist-worn wearable devices are more prone to noise induced

by random movements of hands, and, as shown in Fig. 1,

movements create varying impacts on different physiological

signals. Fusing such noisy signals often deteriorates the clas-

sification performance [11]. On the other hand, chest-worn

wearable devices are less prone to random movements due to

their location, but signals may be affected or become noisy

for other reasons, such as muscle contraction. Therefore, it is

important to understand the context of the noise which varies

based on the location of the wearable devices. Understanding

the noise context can help to dynamically select the less

impacted signals to be fused, which will eventually improve

the classification performance. The problem formulation for

stress detection in a selective approach is provided as follows.

For each input segment of sensor data, the goal of a classifier

φ is to utilize the measurements from available sensors X, to

classify the segment Y

Y = φ(X) =
[

p1, p2, . . . pc

]

(1)

X = {Xi}i=1···s (2)

where s is the number of available sensors; Xi represents the

measurements from sensor i; and Y represents the classifier

output which is comprised of the probabilities p of the c

classes, (e.g., c = 1: baseline, c = 2: stress, and c = 3: amuse-

ment). φ can be implemented via traditional sensor fusion

techniques, an ML or DL model, or an ensemble of ML/DL

models.

Since X represents data from multiple heterogeneous sens-

ing modalities, sensor fusion can be used to fuse the data to

provide a better estimate of Y. In early fusion, the raw sensor

inputs are fused before being passed through the classifier as

follows:

Ŷ = φ(ψ(X1, X2, . . . , Xs)) (3)

where ψ represents the function for fusing the different inputs.

In contrast, late fusion, involves fusing the outputs of an

ensemble of sensor-specific classifiers as follows:

Ŷ1, Ŷ2, . . . , Ŷs = φ1(X1), φ2(X2), . . . , φs(Xs) (4)

Ŷ = φ

(

Ŷ1, Ŷ2, . . . , Ŷs

)

. (5)

The context of noise can vary dramatically based on the

wearable device location and may have a range of impacts

on different sensor modalities. This variance calls for the

use of an adaptive φ that selects the sensor modalities to be

fused based on the noise context—for example, movements

of hands in wrist-worn wearable devices or muscle contrac-

tions in chest-worn wearable devices. In this case, φ represents

an ensemble of classification models, and φ∗ represents the

selected best subset of models in the ensemble for a given

input X. The context of the noise (either learned and mod-

eled from the inputs or provided externally) is denoted as �.

We introduce the context identification problem formulation as

follows:

� = π(X) (6)

φ∗ = ρ(�) (7)

where π represents a gating model that performs context

identification, and ρ represents the mechanism for select-

ing φ∗ given the identified context �. The goal of π and

ρ is to select the optimal subset of branch models φ∗

for the inferred context � to maximize stress classification

performance for a given X. In our specific case, context is

defined as motion for wrist-worn wearable devices or as mus-

cle contraction for chest-worn wearable devices. The inputs to

π typically consist of measurements from the accelerometer

(wrist-worn) or EMG (chest-worn) based on the wearable

device location.

IV. METHODOLOGY

In this section, we detail our method, SELF-CARE, depicted

in Fig. 2. Our method performs stress classification given input

sensor measurements from a specified time segment using

four main blocks: 1) preprocessing; 2) context identification;

3) branch classifiers; and 4) late fusion. SELF-CARE takes

the form of a multibranched architecture in which different

“branches” represent stress detection classifiers using different

combinations of sensors. Context identification selects which

branches to execute, while late fusion is used to fuse the stress

classification predictions if multiple branches are selected. The

following sections provide further details on the proposed

method.

A. Preprocessing Step

SELF-CARE can take in data from varying numbers of het-

erogeneous or homogeneous physiological sensors as inputs.

Preprocessing is a common step when dealing with raw, unfil-

tered sensor data. By applying various filters (e.g., band-pass

filters or lowpass filters) to the input data, random noises

are reduced, and important features are more easily extracted.

The preprocessing performed over each sensing modality is

detailed in Section V.

B. Context Identification

1) Feature Extraction: The purpose of the context iden-

tification block is to predict which branch classifier(s) will

perform the best given an input set of sensor features that are

used to model the context of the system. Contextual modeling

can help illuminate the performance of various sensors in
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Fig. 2. Proposed SELF-CARE Architecture. In this depiction different types
of chest/wrist-worn sensors are used, the gating model selects the branches
given the context, an RF/AdaBoost classifier is used for the branch models,
and a Kalman filter is used for the late fusion over the selected branches.

terms of their levels of noise under different situations and

the locations of the wearable device on the human body. For

wrist wearable devices, we use motion to model the context.

Therefore, for wrist devices, we first extract only ACC fea-

tures as they are directly related to the relative motion of the

test subject. For chest wearable devices, on the other hand,

the context is best modeled by muscle contraction, which is

captured by EMG signal. We then extract EMG features for

chest-worn devices for contextual modeling. Next, these fea-

tures are processed by the gating model to select the best

performing branch. The feature extraction of the other modal-

ities takes place after the gating model has selected which

branch(es) will be used for classification.

2) Gating Model (π ): The gating model trains a classi-

fier that uses the ACC/EMG features as inputs to select one

of the available branch classifiers according to wrist/chest-

worn devices. For wrist-worn device, we shortlist these three

branches: WB1 = {BVP, EDA, TEMP}; WB2 = {ACC, BVP,

EDA}; and WB3 = {BVP, EDA} using RF classifier for both

3-class and 2-class classification. Similarly, for chest-worn

devices, we shortlist five branches for 3-class and 2-class clas-

sification using AdaBoost classifiers. For 3-class classification,

the shortlisted branches are: CB1 = {ECG, RESP, EMG, EDA,

TEMP}; CB12 = {ECG, EMG, EDA, TEMP}; CB14 = {RESP,

EMG, EDA, TEMP}; CB24 = {ECG, EMG, EDA}; and

CB27 = {EMG, EDA, TEMP}. For 2-class classification, the

shortlisted branches are: CB5 = {ACC, ECG, RESP, EDA};

CB7 = {ACC, ECG, EMG, EDA}; CB9 = {ACC, ECG,

EDA, TEMP}; CB13 = {ECG, RESP, EDA, TEMP}; and

CB20 = {ACC, ECG, EDA}. The process for choosing these

branches is discussed further in Section V-B. We employ a DT

classifier for our gating model because it is lightweight and

adds minimum overhead to our architecture.

3) Performance-Computation Tradeoff (δ): An important

feature of SELF-CARE is its ability to balance constraints

between performance and computation. We introduce the term

δ that aids the gating decision in considering this tradeoff. The

gating model outputs prediction probabilities for the available

branches with b̄ representing the maximum probability branch.

δ has a range between 0 and 1, representing the range in which

nonmaximum branches are selected by allowing branches with

probabilities greater than b̄ − δ to be also selected. Lower δ

values indicate tighter computation constraints, with δ = 0

indicating that only the highest probability branch from the

gating classifier is selected, while higher δ values allow more

branches to be selected, with δ = 1 indicating that all possible

branches are selected.

4) Early Fusion (ψ): Once the branches are selected after

applying δ on the gating model decision, the features for

those branches will be extracted and concatenated together

to be passed to the corresponding classifiers. For example,

while using wrist modalities, if WB1 and WB3 are the selected

branches by the gating model for either 3-class or 2-class clas-

sification, the features from BVP, EDA, and TEMP signals are

concatenated together using early fusion for WB1, while fea-

tures from BVP and EDA are fused for branch WB3. Similarly,

for 3-class classification using chest modalities, the features

from ECG, RESP, EMG, EDA, and TEMP are fused together

if the gating model selects the CB1 branch.

C. Branch Classifiers

Next, the corresponding branch classifier(s) are used to clas-

sify the segment. For our approach, we use an RF classifier

for all three branches of wrist modalities for 3-class and

2-class classification. For chest modalities, we use the

AdaBoost classifier for all five branches for 3-class and 2-

class classification. The details of the classifier training and

selection are provided below in Section V-B. Currently, SELF-

CARE operates using either only wrist sensors or only chest

sensors, however, our method is capable of integrating both

sets of branches with modifications to the context identifica-

tion module. Each selected branch produces a classification

prediction to serve as input for the late fusion method.

D. Late Fusion Method

The late fusion method is tasked with fusing the

class predictions from the various selected branches,

{Ŷ1, Ŷ2, . . . , Ŷs}, with the goal of producing higher accuracy

predictions than any one individual branch by itself. Here, we

present our Kalman filter-based method for classification over

an ensemble of classifiers.

Kalman filters are powerful and commonly used tools for

sensor fusion and the broader field of estimation. They are

designed to estimate the unknown state of a system along

with the state’s uncertainty by performing a series of recur-

sive predictions and measurement updates. In the context of
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our problem, we consider a Kalman filter approach toward the

multiclass classification problem like in [27], and we addition-

ally model the temporal dynamics in the stress classification

problem for each sample at time k. The general form of

the discretized linear dynamics of a system with state x and

measurements z is given as follows:

x(k) = Fx(k − 1) + v(k) (8)

z(k) = Hx(k) + w(k) (9)

where F is the state transition matrix; v is the process noise

vector, which is modeled as zero-mean, normally distributed

random variable with covariance, Q; H is the measurement

matrix relating the state to the measurements; and w is the

measurement noise vector, which also is zero-mean with a

normal distribution and covariance R.

During the prediction step of the Kalman filter, the state

estimate and its estimation error covariance matrix P(k), are

propagated forward through the dynamics model with the

added process noise. This step enforces the temporal depen-

dency that the stress class probabilities at the current time step

have on the future time step. The prediction equations are

x(k|k − 1) = F x(k − 1|k − 1) (10)

P(k|k − 1) = F P(k − 1|k − 1) F� + Q(k − 1) (11)

where the notation (k +1|k) indicates the next time step given

the current time step. Next, during the update step, measure-

ments are processed and updated estimates of the states and

their covariance are corrected according to the measurements.

The measurement update equations are as follows:

x(k|k) = x(k|k − 1) − K(k)[H(x(k|k − 1) − z(k)] (12)

P(k|k) = P(k|k − 1) − K(k)HP(k|k − 1) (13)

K(k) = P(k|k − 1)H�
[

HP(k|k − 1)H� + R(k)
]−1

(14)

with K representing the Kalman gain. The prediction and

update step are iterated to produce an estimate of the state, x,

and its associated estimation error covariance P, representing

the uncertainty involved with the state estimate.

For our case, we abstract the multiclass classification

problem as follows. The unknown state our filter is attempting

to estimate is the probability of each class during each seg-

ment. Thus, x is a c dimensional vector of estimated class

probabilities. Additionally, the predictions from each sepa-

rate classifier are the measurements z, which are processed

sequentially per time step. This allows for s∗ measurement

updates per iteration where s∗ is adaptively selected per sample

by the gating model. We additionally provide some measure-

ment thresholding during the filter updates that are detailed

in Section V-B7. Finally, we arrive at our late fusion output

using the Kalman filter-based method

Ŷkf = arg max
c

x (15)

where x is the state vector from the Kalman filter. To

validate our Kalman-filter-based method, we benchmark its

performance against commonly used voting mechanisms for

late fusion: hard-voting and soft-voting [24]. The method of

hard-voting assigns the final class based on the class most

Fig. 3. SELF-CARE training and implementation procedure. We follow the
steps sequentially as numbered in the figure. To train the gating model, we
first generate the gating labels from step 5 and then use extracted features
from step 2 to train it.

commonly voted by each classifier, whereas soft-voting selects

the class with the highest average value across all the classi-

fiers. Our results comparing different late fusion approaches

are presented in Figs. 4–7 of Section V.

V. EXPERIMENTAL ANALYSIS

This section presents the experimental findings of SELF-

CARE on a wearable health device stress detection data set.

First, we describe the data set used for evaluation. Second, we

explain the training and implementation of our models. Third,

we describe our evaluation metrics and analyze experimental

results.

A. Data Set

SELF-CARE is validated on the publicly available WESAD

data set [11]. This data set was selected because it contains

data from both wrist- and chest-worn wearable devices, which

makes it an ideal data set for understanding the noise con-

text devices worn on different parts of the body. The data

set contains data for a total of 15 subjects, from both chest-

(RespiBAN) and wrist- (Empatica E4) worn sensors. The chest

sensors used in RespiBAN are ACC, ECG, RESP, EMG, EDA,

and TEMP. The wrist sensors from the Empatica E4 are ACC

BVP, EDA, and TEMP. The data set has three types of classes

related to emotional states: 1) baseline (neutral); 2) amuse-

ment; and 3) stress. For the 2-class problem, baseline and

amusement are grouped together in the nonstress class.

B. SELF-CARE Training and Implementation

This section describes the training and implementation

details for the SELF-CARE architecture, shown in Fig. 3.

1) Preprocessing Step: The preprocessing step involves

raw data processing to filter out typical noises.

Wrist Modalities: The ACC data is passed through a finite

impulse response (FIR) filter with a length of 64 with a cut-off

frequency of 0.4 Hz. Following the work in [14], the raw BVP

signal is filtered by a Butterworth band-pass filter of order

3 with cutoff frequencies (f1 = 0.7 Hz and f2 = 3.7 Hz),

which takes into account the heart rate at rest (≈40 BPM)

or high heart rate due to exercise scenarios or tachycardia

(≈220 BPM) [28]. The raw EDA signals are filtered using a

Butterworth lowpass filter of order 6 with cut-off frequency

of 1 Hz. Finally, we use a Savitzky–Golay filter (window

size = 11 and order = 3) to smooth the raw TEMP signals.

Chest Modalities: Because the chest data is collected at

a very high sampling rate (700 Hz), the signals are first
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smoothed using a Savitzky–Golay filter. The ACC data is

smoothed using a window size of 31 with an order of 5.

The other signals (ECG, EMG, EDA, RESP, and TEMP) are

smoothed using a window size of 11 and an order of 3.

Similar to wrist BVP, the ECG signal is further filtered by a

Butterworth band-pass filter of order 3 with cutoff frequencies

(f1 = 0.7 Hz and f2 = 3.7 Hz) that takes into account the heart

rate at rest (≈40 BPM) or high heart rate due to exercise sce-

narios or tachycardia (≈220 BPM) [28]. The EDA signals are

filtered using a Butterworth lowpass filter of order 2 with a

cutoff frequency of 5 Hz. To extract some of the peak fea-

tures (number of peaks and peak amplitude), the EMG signal

is passed through a Butterworth lowpass filter of order 3 and

a cutoff frequency of 0.5 Hz. We extract other EMG features

from the smoothed EMG signal. The RESP signal is filtered by

a Butterworth bandpass filter of order 3 with cutoff frequencies

f1 = 0.1 Hz and f2 = 0.35 Hz.

The filtered signals from both the wrist and chest are seg-

mented by a window of 60 s of data with a sliding length of 5 s

following [12]. This process produces a total of 6458 segments

for each signal across all subjects of the WESAD data set.

2) Feature Extraction: We extract the same wrist and chest

sensor features as used in [11], some of which include

mean/standard deviations, correlations, slope, and dynamic

ranges, peak and power frequencies, and absolute integrals.

We note that this feature extraction is only performed across

the sensors that are selected to run by the gate for a given

input sample. Table I contains the list of extracted features.

We refer readers to [11] for further details of extracted features

per sensor.

3) Train Branch Classifiers: To train the individual branch

classifiers within SELF-CARE, we train using different com-

binations of input sensor data.

For Wrist Modalities, we use five different early

fusion combinations of wrist sensors as input branches:

WB1 = {BVP, EDA, TEMP}; WB2 = {ACC, BVP, EDA};

WB3 = {BVP, EDA}; WB4 = {ACC, BVP}; and

WB5 = {ACC, EDA} as shown in Tables II and III. For

chest modalities, we tried forty-two different combinations of

chest sensors as input branches as shown in Tables IV and V.

We evaluate each branch on five different ML classifiers:

1) DT; 2) RF; 3) AdaBoost (AB); 4) linear discriminant anal-

ysis (LDA); and 5) K-nearest neighbor (KNN). We selected

these classifiers to ensure a fair comparison with the original

WESAD work [11]. Following the work in [11], we use the

same configurations for the classifiers. We use DT as the base

estimator for the RF and AB ensemble classifiers, and use 100

base estimators for both RF and AB. In order to measure the

splitting quality of the decision nodes, we used information

gain and set the minimum number of samples to split a node

to 20. For KNN, the K value is set to 9. All classifiers are

trained using leave-one-subject-out (LOSO) validation.

4) Select Branch Classifiers: We select the branches with

the least amount of training loss to be used. The training loss

is calculated from the classification confidence of the trained

classifiers on the training samples using the categorical cross-

entropy, CE = −
∑nc

i yi log ŷi, where y is the one hot encoded

true label of a sample, ŷ is the corresponding classification

TABLE I
LIST OF EXTRACTED FEATURES

output for that sample, and nc is the number of classes. CE is

then calculated for all the training samples across all rounds

of LOSO validation.

Next, out of the 25 (5 branches × 5 classifiers per branch)

possible branch classifiers for wrist modalities, RF classifiers

for input branches WB1, WB2, and WB3 are selected as the

branch classifiers for both 3-class and 2-class classification.

Similarly, for chest modalities, out of 210 (42 branches × 5

classifiers per branch) possible branches, AB classifiers for

input branches CB1, CB12, CB14, CB24, and CB27 are selected

for 3-class classification. And for 2-class classification, we
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TABLE II
EARLY FUSION PERFORMANCE OF WRIST MODALITIES IN WESAD DATA SET FOR 3-CLASS (BASELINE VERSUS STRESS VERSUS AMUSEMENT)

TABLE III
EARLY FUSION PERFORMANCE OF WRIST MODALITIES IN WESAD DATA SET FOR 2-CLASS (STRESS VERSUS NONSTRESS)

select AB classifiers for input branches CB5, CB7, CB9, CB13,

and CB20 for use within our SELF-CARE methodology. These

classifier selections are informed by the extensive experi-

ments we performed across the classifiers variations, which

we benchmark in Tables II–V.

5) Generate Gating Labels: The objective of the gating

model is to predict one or a subset of branch classifiers from

the classifiers listed in Section V-B4 to be used in our SELF-

CARE methodology. For each of the training samples, we

generate gating labels representing the branch that has the

least amount of training loss. These gating labels will be used

to train the gating model. For each round of LOSO valida-

tion, gating labels are generated based only on the training

data, and no test data is used to ensure the validity of our

approach.

6) Train Gating Model: The gating model interprets the

context of a sample by modeling the movement (for wrist-

worn devices) or muscle contraction (for chest-worn devices)

that occurred during that segment. Therefore, we use the ACC

(wrist) or EMG (chest) features as input data to train the

gating model with the labels generated from the previous

Section V-B5. We use a DT classifier as the gating model

where the minimum number of samples to split a node is set

to 20. The DT classifier is very lightweight and helps to min-

imize the overhead of SELF-CARE. Once the gating model is

trained, the test subject data is used to test our architecture as

shown in Fig. 2. For wrist-worn devices, the gating model out-

puts the probability of using the three final branch classifiers

based on the test subject’s ACC features. Similarly, for chest-

worn devices, EMG features are used by the gating model to

determine the probability of using the five final branch classi-

fiers as mentioned in Section V-B4. One, two, or all of the final

classifiers may be selected for final classification depending on

the value of δ, as discussed earlier in Section IV-B3. For our

3-class (2-class) classification using wrist-worn devices, we

set δ = 0.40 (δ = 0.10). And for the chest-worn devices,

we set δ = 0.20 for 3-class and δ = 0.15 for 2-class classi-

fication. The model extracts additional features based on the

required input of the selected branch classifiers, and applies a

late fusion method to the classification output of the selected

branches to generate the final result.
7) Kalman Filter Tuning: The Kalman filter-based method

is the only late fusion method in our implementation that

requires tuning. As described in Section IV-D, Kalman fil-

ters require an initial state (x0), state covariance (P0), and

process noise and measurement noise vectors, v and w, respec-

tively. For the 3-class (2-class) classification using wrist-worn

devices, we initialize x0 = [0.8, 0.1, 0.1]� (x0 = [0.8, 0.2]�).

Similarly, for the 3-class and 2-class classification using

chest-worn devices, x0 is initialized to [0.93, 0.21, 0.01]�

[1.0, 0.55]�. For 3-class (2-class) classification, we initial-

ize P0 = 0.01 · I3x3 (P0 = 0.01 · I2x2) for both wrist-worn

and chest-worn devices. The state transition matrix F and

measurement matrix H are identity matrices for the respec-

tive problems. The Q for both problems is modeled as a

discrete-time white process noise with variance set at 5e-4.

The measurement noise is modeled as a function of each mea-

surement to allow the filter to adjust the confidence of the

measurements according to each reported class probability:

R = ((1−z)·2·I3x3)
2 (R = ((1−z)/2·I2x2)

2). Finally, a tunable

threshold technique was used to process the measurements

which involved: 1) an ε parameter to select measurements

which had a maximum predicted probability above the thresh-

old and 2) a γ factor to scale the measurements to account

for the imbalanced class distribution in the data set. This

thresholding process allows the filter to weigh each measure-

ment it receives with a different degree of noise while also

attempting to resolve issues that arise from imbalanced data

sets. For the 3-class (2-class) classification using wrist-worn

devices, we set ε = 0.4 (ε = 0.7) and γ = [0.278, 1, 1]�

(γ = [0.667, 1.1]�). For the 3-class (2-class) classification

using chest-worn devices, we set ε = 0.5 (ε = 0.5) and

γ = [1.35, 1.5, 1.6]� (γ = [0.915, 0.995]�).

C. Evaluation Metrics

As stated previously, the WESAD data set is highly imbal-

anced in terms of the number of segments per class. For this

reason, we rely on both the F1 score and the accuracy to
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TABLE IV
EARLY FUSION PERFORMANCE OF CHEST MODALITIES IN WESAD DATA SET FOR 3-CLASS (BASELINE VERSUS STRESS VERSUS AMUSEMENT)

measure the classification performance. To ensure a fair com-

parison with other works, we use the macro F1 score. The

metrics used for evaluation

Accuracy = (TP + TN)/(TP + FP + TN + FN) (16)

P = TP/(TP + FP), R = TP/(TP + FN) (17)

Macro F1 =
1

nc

nc
∑

i

2 ∗
Pi.Ri

Pi + Ri

(18)

where TP, TN, FP, and FN represent True Positives, True

Negatives, False Positives, and False Negatives, respectively;

and P and R represent Precision and Recall, respectively. The

classes are indexed by i, and nc is the number of output classes.

D. Experimental Results

This section presents the performance of SELF-CARE for

stress detection in 3-class and 2-class classification using wrist

and chest modalities.

1) Performance Evaluation of Wrist Modalities:

Tables II and III show the performance analysis of dif-

ferent classifiers for various input branches for the 3-class

and 2-class problems, with each branch representing different

combinations of input sensors. The RF classifier for branches

WB1, WB2, and WB3 show better or competitive performance

compared to the other classifiers for both 3-class and 2-class.

The RF classifiers also achieved minimum training loss

for these input branches during training, leading to our

selection of these three branches with the RF classifier for

our approach.

As shown in Fig. 4, for 3-class classification, the

SELF-CARE method outperforms other related works

[11], [13], [14], the branch classifiers, and the traditional late

fusion methods in terms of both accuracy and macro F1 score

achieving a performance of 86.34% and 71.97%, respectively.

Compared to [12], SELF-CARE achieves better accuracy—

though [12] achieves a better macro F1 score, as this work

uses both wrist and chest sensors for stress classification.
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TABLE V
EARLY FUSION PERFORMANCE OF CHEST MODALITIES IN WESAD DATA SET FOR 2-CLASS (STRESS VERSUS NONSTRESS)

For 2-class classification, the SELF-CARE method achieves

an accuracy of 94.12% and macro F1 score of 92.93%,

outperforming the related works [11], [12], [13], [14], the

branch classifiers, and the traditional late fusion methods in

terms of both accuracy and macro F1 score (as shown in

Fig. 5). For the three selected branch classifiers, we apply soft-

and hard-voting methods, showing performance improvements

compared to the individual branch classifiers for both 3-class

and 2-class classifications. SELF-CARE also uses Kalman

filter-based late fusion to further improve the performance for

3-class and 2-class classification compared to these traditional

late fusion methods.

2) Performance Evaluation of Chest Modalities:

Tables IV and V show the performance analysis of dif-

ferent classifiers for various input branches for the 3-class

and 2-class problems, with each branch representing dif-

ferent combinations of input sensors. The AB classifier for

branches CB1, CB12, CB14, CB24, and CB27 shows better or

competitive performance compared to the other classifiers

3-class classification. Similarly, for 2-class classification, the

branches CB5, CB7, CB9, CB13, and CB20 showed better

performance that other classifiers. The AB classifiers also

achieved minimum training loss for these input branches

during training, which led to the selection of five branches

for the SELF-CARE framework. The soft- and hard-voting

methods applied to the five selected branch classifiers

do not show performance improvements compared to the

individual branch classifiers for both 3-class and 2-class

classifications. However, incorporating Kalman filter-based

late fusion significantly improves the performance for 3-class

and 2-class classification compared to these traditional late

fusion methods.

As shown in Figs. 6 and 7, for both 3-class and 2-class

classification, the SELF-CARE method, using either muscle

contraction (EMG) or motion (ACC) for context understand-

ing, outperforms other related works [11], [12], [13], [14],

the branch classifiers, and the traditional late fusion methods

in terms of both accuracy and macro F1 score. This study
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Fig. 4. Overall performance comparison of related works using LOSO validation on wrist data 3-class. Results show that SELF-CARE outperforms the
related works, branch classifiers, and other traditional late fusion methods in terms of macro F1 and accuracy except for the macro F1 score of [12] which
uses both wrist and chest data.

Fig. 5. Overall performance comparison of related works using LOSO validation on wrist data 2-Class. Results show that SELF-CARE outperforms the
related works, branch classifiers, and other traditional late fusion methods in terms of both macro F1 and accuracy.

also demonstrates that even with motion-based context under-

standing, SELF-CARE outperforms other works. However, the

model’s performance improves by 2%–3% while using mus-

cle contraction for context understanding compared to motion.

This illustrates that the impact of movement on other sen-

sors depends on the location of wearable devices. Therefore,

movement is not always the best choice for contextual under-

standing as we observe the results while using chest modalities

for stress detection.

VI. LIMITATIONS AND FUTURE DIRECTIONS

One of the main goals of this article is to explore how the

context of noise varies depending on the location of wearable

devices. For this reason, we modeled the noise context of

sensor modalities from stand-alone devices, choosing not to

combine the wrist and chest sensor modalities. However,

future research could explore this issue further. Understanding

the relation between the noise context of multiple wearable

devices from physically different locations and fusing cross-

modal sensors based on that relation may produce interesting

scientific findings that can be leveraged for methods of affec-

tive computing. Modeling the noise context of wearable health

sensors can lead to further levels of human emotion under-

standing as information from the health sensors becomes

increasingly useful when interpreted on a contextual basis.

Further, SELF-CARE is limited by the manual design of

sensor fusion branch configurations. Though domain knowl-

edge is required to determine which sensor data to fuse

together, future works could explore using ML to make
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Fig. 6. Overall performance comparison of related works using LOSO validation on chest data 3-class. Results show that the proposed SELF-CARE method
(using either ACC or EMG to determine the noise context) outperforms other related works, branch classifiers, and traditional late fusion methods in terms
of macro F1 and accuracy. Moreover, SELF-CARE using EMG (for the noise context understanding) outperforms the one using ACC in both metrics. This
justifies the fact that EMG is more suitable than ACC to understand the noise context in chest wearable devices.

Fig. 7. Overall performance comparison of related works using LOSO validation on chest data 2-class. Results show that the proposed SELF-CARE method
outperforms other related works, branch classifiers, and traditional late fusion methods in terms of macro F1 and accuracy. Also, SELF-CARE using EMG
outperforms the one using ACC in both metrics which further justifies the fact that EMG is more suitable than ACC to understand the noise context in chest
wearable devices.

these determinations instead. Additionally, the energy effi-

ciency of wearable health devices is an important constraint

that could be examined in future works. SELF-CARE imple-

ments a configurable parameter for balancing computation and

performance, but future works could examine the efficiency

tradeoffs between chest and wrist sensing modalities. This arti-

cle did not focus on DL models, but SELF-CARE’s modular

design allows for the implementation of any learning-based

classifier, including DL branches. Further, SELF-CARE could

be applied more broadly in the domain of affective comput-

ing to include additional tasks beyond stress detection and

emotion recognition. Moreover, it can also be applied to other

wearable healthcare applications like human activity recogni-

tion [29], [30], [31], myocardial infarction detection [32], [33],

[34] etc., that involves data from multiple wearable sensors.

Finally, SELF-CARE’s use of a specialized set of ensemble

classifiers has broad applicability to IoT sensing, including

the domains of sensor networks [35] and transportation [36].

VII. CONCLUSION

In this article, we propose SELF-CARE, a generalized selec-

tive sensor fusion method for stress detection that utilizes

the noise context in the chest- and wrist-worn devices to
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dynamically adjust the sensor fusion performed to maximize

classification performance. SELF-CARE determines the noise

context using muscle contractions (EMG) or motion (ACC)

of a subject, and performs an intelligent gating mechanism

to select which sensor fusion schema to use depending on

the location of the sensor. We also show that, while deter-

mining the noise context based on motion works best for

wrist-based wearable devices, it is not the best for chest-

based wearable devices. Through experimental evaluation, we

conclude that EMG is better than ACC in understanding

the noise context of chest-based wearable devices. To the

best of our knowledge, SELF-CARE achieves state-of-the-

art performance on the WESAD data set for both chest and

wrist-based sensors among methods that use LOSO validation.

Using wrist-based sensors our methodology achieves 86.34%

(3-class) and 94.12% (2-class) classification accuracy while

outperforming current state-of-the-art works. Similarly, for

chest-based wearable sensors, our methodology outperforms

existing models with 86.19% (3-class) and 93.68% (2-class)

classification accuracy.
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