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Abstract— We study the multi-agent Bayesian optimization
(BO) problem, where multiple agents maximize a black-box
function via iterative queries. We focus on Entropy Search
(ES), a sample-efficient BO algorithm that selects queries to
maximize the mutual information about the maximum of the
black-box function. One of the main challenges of ES is that
calculating the mutual information requires computationally-
costly approximation techniques. For multi-agent BO problems,
the computational cost of ES is exponential in the number
of agents. To address this challenge, we propose the Gaussian
Max-value Entropy Search, a multi-agent BO algorithm with
favorable sample and computational efficiency. The key to our
idea is to use a normal distribution to approximate the function
maximum and calculate its mutual information accordingly.
The resulting approximation allows queries to be cast as the
solution of a closed-form optimization problem which, in turn,
can be solved via a modified gradient ascent algorithm and
scaled to a large number of agents. We demonstrate the
effectiveness of Gaussian max-value Entropy Search through
numerical experiments on standard test functions and real-
robot experiments on the source seeking problem. Results show
that the proposed algorithm outperforms the multi-agent BO
baselines in the numerical experiments and can stably seek the
source with a limited number of noisy observations on real
robots.

I. INTRODUCTION

Bayesian optimization (BO) is a sample-efficient method
for maximizing expensive-to-evaluate black-box functions,
which frequently arise in robotic applications. By iteratively
evaluating the black-box function at the query points, BO
first builds a probabilistic model about the function and then
infers the location of the maximum accordingly. Scenarios
where BO is applicable include tuning the parameters of
controllers [1] and motion planners [2], [3], seeking the
location of source signal [4], [5], designing the morphology
structure of robots [6], and so on.

Query point selection is a fundamental challenge in BO.
The key is to carefully choose the query points to learn about
the objective function (exploration) while leveraging existing
knowledge to maximize it (exploitation). One approach of
BO is to select query points in each iterative step to maximize
the so-called acquisition function. The acquisition function
regulates the tension between exploring versus exploiting
and is updated at each iteration based on all the queries
and observations collected so far. One of the most notable
acquisition functions is the Gaussian process upper confi-
dence bound (GP-UCB) [7], [8] extended from the multi-
armed bandit problem. GP-UCB uses a weighted sum of
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the posterior mean (exploitation) and the posterior variance
(exploration) of the Gaussian process model to handle the
trade-off. Other popular acquisition functions include the
probability of improvement (PI) [9], expected improvement
(EI) [10], knowledge gradient (KG) [11], Entropy Search
(ES) [12], Thompson sampling (TS) [13], etc.

While most BO methods use a single agent for querying, it
is more desirable to have multiple agents querying the black-
box function simultaneously in many applications. With mul-
tiple agents, the querying is parallelized so that more infor-
mation can be obtained per iteration, and thus the objective
function can be learned and maximized faster. Existing multi-
agent BO studies have proposed two approaches to selecting
the batch of query points for the agents at each iterative
step: (1) sequential query calculation and (2) batch query
calculation. Sequential query calculation computes the query
of each agent within the batch one by one. A single-agent BO
algorithm usually determines the first agent’s query. Then,
other agents’ queries are added sequentially to provide more
exploration [14]–[16] or exploitation [17], [18]. In contrast,
batch query calculation computes the batch of queries si-
multaneously, for example, using Thompson sampling or
Entropy Search [19]–[21]. Apart from the distinctions in
the computational procedure, these two approaches also
address the collaboration among the agents differently. The
collaboration can be viewed as balancing the exploration-
exploitation trade-off within the same batch of query points.
While the sequential query calculation usually assigns ex-
plicit roles of exploration/exploitation to each agent, the
batch query calculation handles the collaboration implicitly
through its probabilistic model.

Among these multi-agent methods, the Entropy Search
(ES) has gained increasing attention because of its promising
low-regret performance [12], [22]–[25]. ES maximizes the
black-box function by maximizing the mutual information of
the estimated function maximum, which is shown to be more
sample-efficient than directly querying the function at the es-
timated function maximum [12]. Moreover, ES is especially
suitable for the multi-agent BO setting since the collaboration
among the agents can be encouraged by maximizing the
total mutual information about the function maximum in the
agents’ queries. In this way, ES can automatically adapt the
multi-agent collaboration under different objective functions
to obtain the most informative queries, which is more flexible
and efficient than the fixed role assignment scheme used in
the sequential query calculation methods.

One of the main challenges of ES, especially for multi-
agent BO problems, is computational efficiency. Computing
the entropy of the function maximum is generally intractable
and requires sophisticated approximation techniques. Exist-
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ing methods, including Monte-Carlo sampling [22], expec-
tation propagation [12], [20], [25], random feature sampling
[20], [23], [24], and Gambel sampling [23], have exponential
computational cost in the number of agents [20], [25].
Although [20] proposes a gradient-based multi-agent ES
algorithm to reduce the exponential cost to polynomial cost,
the computation is still heavy since the gradient calculation
involves a large number of matrix inversions. The required
number of inversions is proportional to the dataset size.

Our Contributions. We proposed the Gaussian Max-value
Entropy Search (GMES), a computationally efficient multi-
agent Entropy Search algorithm with a novel entropy approx-
imation scheme and practical implementations for the multi-
agent setting. Specifically, we use the normal distribution to
approximate the distribution of the function maximum and
calculate its entropy. We use the mutual information for this
approximate distribution as our acquisition function, which
has a closed-form expression. Unlike existing multi-agent
Entropy Search algorithms, we do not need costly sampling
when calculating the acquisition function. We further use
gradient ascent to compute the query points and add log-
barrier safety constraints to make the proposed algorithm
scalable to a large number of agents and applicable to real-
world applications. Together, our algorithm has favorable
computational efficiency compared to existing methods.

We then test the algorithms on both numerical and real-
robot experiments. Experiment results show that the pro-
posed algorithm outperforms the baseline multi-agent BO
algorithms with different numbers of agents in numerical
tests. The real-robot experiments demonstrate that our al-
gorithm can successfully seek a light source with a small
number of queries. These source seeking experiments also
showcase the substantial advantage of using multiple agents
over a single agent. Compared to single-agent seeking, four
agents improved the source-seeking time by 59.9% and the
source-seeking iterations by 67.6% on average.

II. PRELIMINARIES

A. Problem Formulation

We consider a multi-agent BO problem that consists of
a team of m agents, a compact domain X ⊂ Rd, and an
unknown function

f : X → R.

We assume f is continuous on X , so its maximum exists
in this domain. The goal is to maximize f only through the
queries of function values. We assume each agent can query
f at any point x ∈ X and observe a noisy function value

y = f(x) + ϵ, ϵ ∼ N (0, σ2
0),

where σ2
0 is the variance of observation noise ϵ.

The agents query f through a sequence of iterations t =
1, 2, ..., T . For all agents i ∈ {1, 2, ...,m}, we use lower-case
letters xi

t for the query point of agent i at time t and yi
t for

agent i’s observation at time t. We use capital letters Xt ≡
{x1

t ,x
2
t , . . . ,x

m
t } and Yt ≡ {y1

t ,y
2
t , . . . ,y

m
t } to denote the

collections of agents’ query points and evaluations at time
t. We denote Xm = X × X × . . .X︸ ︷︷ ︸

m

∈ Rmd as the domain

of batch queries. We define Xt ≡ {X1, X2, . . . , Xt} and
Yt ≡ {Y1, Y2, . . . , Yt} as all the queries and observations up
to time t. Let Dt = Xt−1∪Yt−1 be the observed data before
time t. We assume the agents know and only know Dt when
deciding the query points Xt.

B. Gaussian Process

We briefly introduce the Gaussian process (GP), our
probabilistic model of the objective function. A GP model
is built upon the observed data Dt and a positive-definite
kernel function k(x,x′) that models our prior belief about
the coupling between f(x) and f(x′) [26]. Given Dt and
k, the GP model for function f can be fully described
by its mean value function µt(x) and covariance function
Σt(x,x

′), which are calculated by

µt(x) = kt(x)
⊤ (

Kt + σ2
0I

)−1
yt,

Σt (x,x
′) = k (x,x′)− kt(x)

⊤ (
Kt + σ2

0I
)−1

kt (x
′)

(1)

where kt(x) = [k (x′,x)]
⊤
x′∈Xt−1

and yt = [y]
⊤
y∈Yt−1

are
m·(t−1) dimensional vectors, and Kt = [k (x,x′)]x,x′∈Xt−1

is a m · (t − 1) × m · (t − 1) positive definite matrix.
I is the identity matrix with the same shape as Kt. We
denote the resulting GP model as GP (µt,Σt | Dt). We also
define σ2

t (x) = Σt(x,x) as the variance function, and let
σt(x) =

√
σ2
t (x). The value µt(x) can be understood as

the GP model’s predicted value of f(x) given the observed
data Dt and σ2

t (x) is the uncertainty in that prediction in
the form of variance. A more comprehensive discussion of
topics related to GP can be found in [26].

C. Posterior Max-value and Entropy Search

From the function space viewpoint, GPs can be regarded as
distributions over functions [26]. Denote the random function
sampled from posterior GP distribution conditioned on the
observed data Dt by f̂t | Dt ∼ GP (µt,Σt | Dt). The
corresponding maximal value of f̂t is thus a random variable,
which we denote as

ymax | Dt ∼ max
x∈X

f̂t(x) | Dt (2)

We name ymax | Dt as the posterior max-value. The
key of Entropy Search (ES) is to select query points that
maximally reduce the uncertainty in ymax, and specifically,
the uncertainty is quantified by the differential entropy of
ymax, defined by

H(ymax | Dt) = −
∫

p(ymax | Dt) log(p(y
max | Dt)) .

The uncertainty about ymax decreases after gaining infor-
mation from the new queries and observations {Xt, Yt}. The
reduction in uncertainty, or mutual information, is defined by
the entropy reduction after conditioning on more information,

I(ymax; {Xt, Yt} | Dt) (3)
=H(ymax | Dt)−H(ymax | Dt ∪ {Xt, Yt}) (4)
=H(Xt, Yt | Dt)−H(Xt, Yt | Dt,y

max) (5)

where I(ymax; {Xt, Yt} | Dt) denotes the mutual informa-
tion between ymax and new data {Xt, Yt} to be added.
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Equation (4) follows from the definition of mutual infor-
mation and Equation (5) is from the symmetric property of
mutual information [27]. In summary, ES uses the mutual
information above as the acquisition function to quantify the
uncertainty reduction about ymax. The agents query Xt that
maximizes (3) to get the most information about ymax.

The key challenge in ES is how to calculate the mutual in-
formation in (3) since it usually does not have a closed form.
Equations (4) and (5) represent two different approaches,
and both have difficulties. The difficulty in (4) is that the
differential entropy H(ymax | Dt ∪{Xt, Yt}) is conditioned
on Yt which is not known before querying the function at Xt

[12], [22]. One solution proposed by [28] is to sample a batch
of realizations {Ŷ1,t, Ŷ2,t, ...} from the posterior distribution
Yt | Dt and compute H(ymax | Dt∪{Xt, Yt}) by averaging
over Ht = {H(ymax | Dt ∪ {Xt, Yt = Ŷi,t}) : i = 1, 2, ...}.
However, the corresponding computational cost is high since
for each Ŷi,t we need to calculate H(ymax | Dt ∪{Xt, Yt =
Ŷi,t}) once, and the calculation must be done using an
iterative algorithm. Therefore, the total computation for (4)
is substantial.

To avoid conditioning on Yt, recent studies have consid-
ered computing the mutual information with equation (5)
[20], [23]–[25]. However, this approach still requires sophis-
ticated computation because the term H(Xt, Yt | Dt,y

max)
is non-trivial due to the conditioning on ymax.

The multi-agent nature of our problem brings further
computation challenges to ES. Computing the mutual infor-
mation through either Eq. (4) or Eq. (5) typically requires
averaging over a sufficient number of samples from the m-
dimensional posterior distribution Yt | Dt. Therefore, the
number of samples needed for a good approximation of the
mutual information is exponential in the number of agents
m. Furthermore, optimizing the non-trivial entropy over Xt

on the m × d−dimensional space introduces even more
difficulties [25]. Brute-force methods, such as grid or random
search, also induce exponential optimization cost (in m).

In this paper, we follow the approach of (4) to calculate
the acquisition function. We aim to reduce the computation
cost and leverage the information-theoretic collaboration
scheme to develop an efficient multi-agent Entropy Search
algorithm that is practical for real robotic applications. We
use the normal distribution to approximate the distribution
of ymax and use the mutual information associated with the
approximated distribution as our acquisition function. We
show that our acquisition function has an explicit expression;
its computation is thus free from the expensive sampling
over the m-dimensional distribution Yt | Dt in previous
approaches like [28]. With the closed-form acquisition func-
tion, we develop a centralized multi-agent Entropy Search
algorithm where multiple agents collaborate on a BO task.
Gradient ascent is applied to mitigate the heavy optimization
computation over Xt in the multi-agent setting.

III. GAUSSIAN MAX-VALUE ENTROPY SEARCH

A. Gaussian Approximation of Posterior Max-Value
Although the value f̂t(x) follows normal distribution for

each x ∈ X , the maximal value ymax = maxx∈X f̂t(x) is
not Gaussian in general. Therefore, the differential entropies

of ymax usually do not have a closed form. To overcome
this difficulty, we use the distribution of a Gaussian ran-
dom variable ỹmax to approximate the posterior distribution
ymax | Dt so that the resulting mutual information associated
with ỹmax has a closed-form expression.

We formally define ỹmax as follows. Denote the location
with the maximal upper confidence bound(UCB) value at
time t as

xucb
t ≡ argmaxx∈X (µt(x) + βtσt(x))

where βt is a hyper-parameter indicating the confidence
interval length. The UCB, µt(x) + βtσt(x), follows the
definition in GP-UCB [8]. Define the estimated posterior
max-value ỹmax | Dt as

ỹmax | Dt ∼ N (µt(x
ucb
t ), σ2

t (x
ucb
t ))

ỹmax | Dt ∪ {Xt, Yt} ∼ N (µt+1(x
ucb
t ), σ2

t+1(x
ucb
t ))

(6)

Here, µt(x
ucb
t ), σ2

t (x
ucb
t ) and µt+1(x

ucb
t ) and σ2

t+1(x
ucb
t ) are

the t and t + 1 step posterior mean and variance functions
at xucb. µt(x

ucb
t ), σ2

t (x
ucb
t ) are computed before we get

the observation Yt at Xt, and µt+1(x
ucb
t ), σ2

t+1(x
ucb
t ) are

computed after we get the observation Yt at Xt. This way,
we can compare the entropy before and after observing Yt

to calculate the mutual information.

We approximate the mutual information in (3) with
I(ỹmax; {Xt, Yt} | Dt), which is given by

I(ỹmax; {Xt, Yt} | Dt) (7)
=H(ỹmax | Dt)−H(ỹmax | Dt ∪ {Xt, Yt}) (8)

=
1

2
log(2πσ2

t (x
ucb
t ))− 1

2
log(2πσ2

t+1(x
ucb
t )) (9)

We propose to use Eq. (9) as the surrogate of the
mutual information in (3). Since σ2

t is independent of
{Xt, Yt}, the first term in (9) is independent of Xt and
can be omitted, thus to maximize (9) in Xt is to mini-
mize 1

2 log(2πσ
2
t+1(x

ucb
t )), or equivalently, σ2

t+1(x
ucb
t ). The

explicit expression of σ2
t+1(x

ucb
t ) is given by the following

proposition.

Proposition 1 (Predicted change of GP posterior variance).
The posterior variances at any point x at times t and t + 1
are related by

σ2
t+1(x) = σ2

t (x)− γ(Xt,x) (10)

where

γ(Xt,x) ≡ Σt (x, Xt) (Σt(Xt, Xt) + σ2
0Im)−1Σt (Xt,x)

(11)
Here, Im is the m-dimensional identity matrix, Σt(x, Xt)
stands for the row vector

Σt(x, Xt) ≡ [Σt(x,x
1
t ),Σt(x,x

2
t ), . . . ,Σt(x,x

m
t )],

while Σt(x, Xt) = Σt(Xt,x)
⊤, and Σt(Xt, Xt) =

[Σt(x,x
′)]x,x′∈Xt is a m×m matrix.

Proof: Denote Ik as the k-dimensional identity matrix for
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any positive integer k, then we have

σ̂2
t+1(x) = k(x,x)−

Lt(x)

[
Kt + σ2

0Imt kt(Xt)
kt(Xt)

⊤ k(Xt, Xt) + σ2
0Im

]−1

Lt(x)
⊤

(using matrix inversion lemma)

=k(x,x)− kt(x)
⊤(Kt + σ2

0Imt)
−1kt(x)

−Mt(x)S
−1
t Mt(x)

⊤

=σ2
t (x)− Σt (x, Xt) (Σ

−1
t (Xt, Xt) + σ2

0Im)Σt (Xt,x)

where Lt(x) = [kt(x) k(x, Xt)], Mt(x) = k(x, Xt) −
kt(x)

⊤(Kt + σ2
0Imt)

−1kt(Xt), St = k(Xt, Xt) + σ2
0Im −

kt(Xt)
⊤(Kt + σ2

0Imt)
−1kt(Xt). ■

Proposition 1 implies that to maximize the surrogate
mutual information (9) in Xt is to maximize γ(Xt,x

ucb
t ).

Note that Eq. (11) does not involve the observation Yt, which
is promising since it avoids the costly sampling over the m-
dimensional distribution Yt | Dt to estimate Yt as in previous
entropy search methods [12], [24]. Unlike other sequential
query generation algorithms(for example, GP batch upper
confidential bound [17], we do not need to calculate GP
regression (1) m times in each BO iteration.

The resulting multi-agent algorithm, which uses γ(·,xucb
t )

as the acquisition function to calculate batch queries Xt,
is listed in Algorithm 1. There is a central coordinator
with which all agents communicate. The central coordinator
receives the observations from multiple agents, updates the
GP model, calculates the queries by maximizing the mutual
information according to Eq. (9), and publishes the queries
back to the agents. Note that Algorithm 1 can be reduced to
a single-agent algorithm without further changes.

Remark 1. It is worth discussing how our algorithm ad-
dresses the exploration-exploitation trade-off. In multi-agent
BO, this trade-off can be balanced on two dimensions: time
and batch. In our algorithm, the batch-dimension trade-off is
balanced through the design of γ while the time-dimension
trade-off is guided by xucb

t .
The time-dimension trade-off is that given the observations

in the past, the next query points should balance between
visiting the empirically good locations (exploitation) and
covering under-explored locations (exploration). This trade-
off is already studied intensively in single-agent BO. One of
the most notable methods is to use UCB as the acquisition
function, like the one in our definition of xucb

t . These
algorithms typically favor locations with high values in the
sum of the exploitation term µt and the exploration term σt.

The batch-dimension trade-off arises only in the multi-
agent setting. It means the query points at the same iter-
ation should remain close to some empirically high-value
locations and be sufficiently diverse. This trade-off can
be seen through the tension between the exploitation term
Σt(x, Xt) (and its transpose) and the exploration term
(Σt(Xt, Xt) + σ2

0Im)−1 in γ(Xt,x
ucb
t ). Without loss of

generality, let us only consider the magnitudes of these terms.
With γ(Xt,x

ucb
t ) as the acquisition function, Xt should

be selected so that Σt(Xt,x
ucb
t ) is large, thus the query

points Xt should be highly correlated with xucb
t , which

typically implies x1
t ,x

2
t , . . . ,x

m
t are spatially close to xucb

t .

Algorithm 1: Multi-Agent Gaussian Max-value En-
tropy Search(GMES)
Initialization: Agent number m, Maximal iterations

T , Observation noise σ2
0 , Confidence

interval width βt, A central
coordinator with Data set D0 = ∅,
Initial queries X0, Gaussian process
prior model GP (µ0,Σ0): µ0 is the
zero function, Σ0 is the white kernel
with noise level σ2

0 .
Output: Inferred maximum, argmaxx∈X µT (x),

from GP (µT ,ΣT | DT ).
1 for t = 1, 2, . . . , T do
2 # Each agent gets its observation

at the query point
3 for Agent i = 1, 2, . . . ,m do
4 Observe yi

t−1 = f(xi
t−1) + ϵ, ϵ ∼ N (0, σ2

0)

5 # All agents return the
observation to the central
coordinator

6 Dt = Dt−1 ∪ {Xt−1, Yt−1}, where
Yt−1 = {y1

t−1,y
2
t−1, . . . ,y

m
t−1}

7 # Central coordinator calculates
queries

8 xucb
t ← argmaxx∈X µt(x) + βtσt(x)

9 Xt = {x1
t ,x

2
t , . . . ,x

m
t } ←

argmaxX∈Xm γ(X,xucb
t )

10 # Central coordinator publishes
queries to agents

11 Publish queries xi
t to agent i for i ∈ {1, . . . ,m}

Meanwhile, Xt should also be chosen such that Σt(Xt, Xt)
is close to the zero matrix, meaning the correlation between
the points in Xt themselves are small, which typically im-
plies x1

t ,x
2
t , . . . ,x

m
t maintain some spatial separation among

themselves. The two components of γ thus balance the
tendency of the query points to stay close to xucb

t and to
maintain spatial separation among themselves, respectively.

B. Practical Implementation of Algorithm 1

A few details of Algorithm 1 need to be modified for
efficient computation and safety considerations in the real
world. We briefly discuss the changes below. The full version
of the resulting algorithm can be found in Appendix B of
our online report [29].

1) Calculating Queries by Gradient Ascent: One compu-
tational challenge of Algorithm 1 is to find the X ∈ Xm that
maximizes γ(X,xucb

t ). Brute-force methods such as grid or
random search are unsuitable for multi-agent implementa-
tions as the search space grows exponentially in the number
of agents m. We mitigate the expensive computation in
brute-force methods and approximate the maximization of
γ through gradient ascent. Given the analytical form of γ,
its gradients can be computed efficiently using standard auto-
differentiation software packages like PyTorch [30].
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We randomly initialize the batched queries for gradient
ascent. To ensure the convergence of the gradient updates,
an appropriate sequence of step sizes {δt | t = 1, 2, ..., T}
needs to be applied to the gradient. In practice, algorithms
such as Adam [31] would suffice to decide the step sizes.

Finally, to guarantee that the algorithm returns a Xt that is
inside the compact domain Xm, we project the query points
back to Xm after every gradient update. The projection
operator is defined by

ΓXm(X) = argmin
X̄∈Xm

∥X̄ −X∥2. (12)

And line 10 in Algorithm 1 can be replaced with multiple
iterations of the gradient ascent update described below.

Xt ← ΓXm

(
Xt + δt · ∇Xt

γ(Xt,x
ucb
t )

)
2) Ensuring Safety with Log-Barrier: Safety considera-

tions, like collision avoidance, are common in many real-
world multi-agent exploration tasks. Safety considerations
require query points in the same batch Xt to be separated by
at least the physical size of the robot. When this constraint
is enforced, we subtract a log-barrier term p(Xt) from the
acquisition function in (11). The log-barrier p(Xt) is defined
by

p(Xt) =
∑

i,j:1≤i<j≤m

[− 1

L
log(∥xi

t − xj
t∥ − rdiv)]

+ (13)

where [·]+ means projection to the positive half-space [0,∞).
The parameter rdiv specifies the minimal separation between
the robots. We initialize Xt to ensure ∥xi

t − xj
t∥ > rdiv for

all i ̸= j, so that p(Xt) is well-defined in all iterations of
the gradient updates.

IV. NUMERICAL EXPERIMENTS

We conduct numerical experiments with standard test
functions to show the advantage of our proposed algorithm
compared to recent multi-agent BO baselines. The open-
source implementation of the numerical experiments can
be found on https://github.com/mahaitongdae/
dbo.

A. Numerical Experiment Setup

We first conduct numerical experiments on several stan-
dard test functions. Figure 2 shows the optimization land-
scapes of the test functions for the numerical experiments.
The Ackley function has many local maxima, but only one
global maximum, and its value tends to be higher at points
closer to the origin. The Bird function has two global maxima
and two local maxima. The Rosenbrock function has a global
maximum surrounded by many saddle points. We use the
Matérn kernel as the kernel function k(·, ·) in (1) [26].
The log-barrier term is not applied to our algorithm in the
numerical experiments. The algorithm parameters are listed
in Table I.

The algorithms are evaluated under two performance met-
rics, instant regret Rt and cumulative regret R̄t, defined by

Rt = f∗ − max
τ∈{1,2,...,t}

max
xτ∈Xτ

f(xτ ), R̄t =
t∑

τ=0

Rτ (14)

TABLE I: Algorithm parameters for the numerical experiments

Notation Meaning Value
T Total iterations 150
σ0 Observation noise 0.1
N Gradient ascent iterations 50
βt Confidence interval width 3− 0.01 · t
ν Matérn kernel parameter 1.5
δt Step sizes for gradient update Adam [31]
p(·) Log-barrier term Not applied

where f∗ = maxx∈X f(x). Note that the instant regret Rt

only considers the best observation among all agents over all
iterations, which is a fair metric even for those algorithms
that explore aggressively (like the UCB-PE).

B. Experiment Results for multi-agent BO

We compare our algorithm with several baseline multi-
agent BO algorithms from recent literature, including GP-
UCB with pure exploitation (GP-UCB-PE) [15], Gaussian
process batch upper confidence bound (GP-BUCB) [17]
EI with Monte-Carlo sampling (EI-MCMC) [18], EI with
stochastic policies (EI-SP) [14], and Parallel Thompson
sampling (TS) [13], [15].

The initial query points are randomly selected using a fixed
random seed in each experiment. We run each algorithm
five times and report the instant and cumulative regrets for
5-agent experiments in Figure 1. Our proposed algorithm,
labeled ES, has the lowest instant regret on all test functions
with five agents. It also has the lowest cumulative regret
on the Ackley and Bird functions. EI-SP and UCB-PE
achieve better cumulative regret than our algorithm on the
Rosenbrock function, which shows that our algorithm might
take more iterations to reach its lowest instant regret than
these two baselines in this task. Table II shows the instant
regret at the final iteration for 10- and 30-agent experiments.
Our algorithm is still consistently better than the baseline
algorithms in instant regrets, being the second-best on the
Ackley and Rosenbrock tasks in the 30-agent experiment and
the best for all other tasks. Even for those tasks where ES is
the second-best, its regret is rather close to being the lowest
one. More experimental results, including further comparing
different numbers of agents up to 50, could be found in
Appendix D in the online report [29].

C. Analysis of Query Distributions

The following experiments demonstrate our algorithm’s
advantage in adapting the exploration-exploitation trade-off
to different test functions. Figure 3 plots the query point
distributions of the proposed algorithm with gradient ascent
and two baselines, BUCB and UCB-PE, that assign fixed
exploration/exploitation roles to the agents. The data comes
from the 10-agent experiments on Ackley and Rosenbrock
tasks in the previous subsection. Our proposed algorithm, ES,
has shown the ability to adjust its exploration-exploitation
balance for different tasks. It exploits the global landscape of
Ackley by clustering its query points near the origin, where
the function values are generally higher. It also generates
a diverse query distribution on Rosenbrock, allowing its
inferred maximum(i.e., argmaxx∈X µt(x)) to approach the
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(a) Ackley (b) Bird (c) Rosenbrock

Fig. 1: Instant regret (upper row) and cumulative regret (lower row) with five agents. The solid lines are the average performance, and
the shaded regions are the 95 percent confidence interval across five runs. Our algorithm is colored red with label ES.
TABLE II: Mean and Variance of instant regret(×10−2) at the last iteration (150 iterations in total) for 10- and 30-agent experiments.

ES-10 (ours) EI-SP-10 GP-BUCB-10 GP-UCBPE-10 TS-10 EI-MCMC-10

Ackley 3.383
±0.503

52.26
±12.26

3.411
±0.800

4.619
±1.00

5.636
±2.243

19.36
±4.259

Bird 3.626
±1.409

33.205
±11.696

5.057
±2.178

2.671
±0.639

5.632
±1.955

3.954
±1.038

Rosenbrock 1.030
± 0.313

11.08
±3.153

21.12
±10.52

1.572
±0.264

41.56
±7.724

1.283
±0.551

ES-30 (ours) EI-SP-30 GP-BUCB-30 GP-UCBPE-30 TS-30 EI-MCMC-30

Ackley 3.279
± 2.604

3.570
±2.300

4.670
±2.805

3.411
±2.282

3.218
±2.089

12.047
±6.094

Bird 1.857
±1.433

2.026
±1.569

2.244
±1.990

2.026
±1.569

2.421
±2.365

2.149
±1.803

Rosenbrock 0.859
±1.121

2.370
±1.990

49.653
±24.728

1.540
±0.659

0.436
±0.847

1.447
±2.994

Fig. 2: Test Functions in the Numerical Experiments. From left to
right: Ackley, Bird, Rosenbrock.

true maximum as more observations are made. The final
instant regrets of ES are low on both tasks.

In contrast, the baseline algorithms do not adapt suffi-
ciently to the two tasks. UCB-PE always has sparse query
distributions, which allows it to explore the relatively flat
landscape of Rosenbrock and gives it decent performance
on this task; however, UCB-PE is not the best algorithm on
Ackley since it does not sufficiently exploit the prominent
peak at the origin. BUCB outperforms UCB-PE on Ackley
since it exploits well. However, BUCB has little diversity
in its queries on Rosenbrock, making its exploration in-
sufficient and its instant regret much higher than the other
two algorithms. The inferred maximum of BUCB also gets
stuck in a saddle point instead of converging to the true
maximum. This lack of diversity of BUCB’s query points
on Ronsenbrock could be due to BUCB’s iterative greedy
approach to deciding the batch of query points.

The inflexibility of BUCB and UCB-PE is ultimately

caused by their fixed exploration/exploitation role assignment
regardless of the test function. In comparison, our algorithm
selects query points that return the most informative queries
for different tasks by maximizing the acquisition function
γ(·,xucb

t ). Our algorithm can thus adapt its exploration-
exploitation balance to the test functions above and outper-
form BUCB and UCB-PE.

V. SOURCE SEEKING PHYSICAL EXPERIMENTS

We demonstrate the effectiveness of our algorithm on
real robots through experiments on the multi-agent source
seeking problem. The task is to let multiple robotic vehicles
with sensing abilities collaborate to locate a source of inter-
est. Examples of source seeking problems include pollutant
source localization [32], distributed sensor placement [33],
target tracking [34], and so on. Typically, the source location
is where the sensor reading is the strongest; therefore, the
problem is often viewed as equivalent to driving the robots
to maximize their sensor readings. Measuring the source
signal is usually inexpensive, but driving the robots to desired
locations could be energy- and time-consuming. Therefore,
locating the source with limited samples is desirable, and
BO algorithms are suitable for source seeking applications
due to their sample efficiency. The full version of our
experiment video can be found on https://youtu.be/
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Fig. 3: Query Distributions. The four columns on the left are the results of the Ackley task; the other four are the results of the Rosenbrock
task. Every row indicates all the queries up to the 10, 50, 100, and 150 iterations. In each figure: the background contour plot indicates the
true objective function value; the orange star marks the global maximum; the yellow square marks the inferred maximum (the maximum
location of the posterior mean function µt) at the corresponding iteration; green dots are queries generated the algorithms; the title indicates
the instant regret at the final iteration.

PK_emQ85sb0.

A. Experiment Setup

In the experiments, we use four ROBOTIS TurtleBot3
with onboard light sensors, as illustrated in Figure 4(d). The
goal is to find the location of the highest brightness on the
ground level in a dark room. We use a desktop computer
as the central coordinator to maintain the GP model and
calculate the queries. Figure 4 shows three different source
seeking experimental setups. The simplest task, SINGLE, has
only one LED lamp hung above the ground, corresponding
to the brightest location in the room. The other two tasks,
labeled SPARSE and DENSE, are with four lamps in the
room, where two of the lamps are brighter and the other two
dimmer. Each lamp is hung at a different height, and the
brighter lamp hanging closest to the ground, marked by red
boxes in Figures 4(b) and 4(c), corresponds to the brightest
location in the room. The only differences between the two
four-light experiments are the lamp spacing.

We use the basic look-ahead PID controller to drive the
Turtlebots to the query points our multi-agent BO algorithm
decides while avoiding collision between the robots. See
Appendix C of our online report [29] for details about our
robot controller. We include the log-barrier safety term in the
acquisition function to ensure the robots’ target positions do
not induce collisions. The experiments terminate when the
inferred maximum(the maximum location of the posterior
mean function µt) is within 0.1m of the actual brightest
location for three consecutive iterations.

B. Results

The accompanying video shows that the robots consis-
tently find the highest brightness location within a short

(a) SINGLE (b) SPARSE

(c) DENSE (d) Turtlebot

Fig. 4: Source-seeking experiment setups for different tasks. In each
of Figures 4(a)-4(c): the largest subfigure provides the side and top
views of the experiment, where the target lamp to seek is marked
by a red box; the upper right illustrates the relative location of the
robots (blue circles) and the lights (red, sun-shaped icons) projected
to the ground plane; the lower right shows the contour plot about the
current GP posterior mean, where red and blue colors indicate high
and low posterior mean values, respectively. Figure 4(d) illustrates
the light sensor setup on the robot.

time. The results suggest our algorithm can be applied to a
multi-agent team and efficiently maximize a general black-
box function in the real world. Figure 5 further shows the
performance difference of source seeking with four robots
compared to using only one robot. The multi-agent team
saves the source seeking time by 59.9% and the iterations
by 67.6% compared with the single agent. This impressive
advantage in efficiency over the single-agent approach shows
the multi-agent BO approach can significantly benefit time-
critical source seeking applications, such as search-and-
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Fig. 5: Comparisons between the single- and multi-agent ap-
proaches regarding the total seeking time (in seconds), the sum
of distance traveled, and total iterations. The x-axis labels indicate
the environment setups, as described in Figure 4.

rescue missions. More experimental results, like the robot
trajectories, could be found in Appendix D in the online
report [29].

VI. CONCLUSION

In this paper, we proposed the Gaussian max-value En-
tropy Search (GMES), a computationally efficient algo-
rithm for multi-agent Bayesian optimization. We use the
normal distribution to approximate the posterior function
max-value to design an acquisition function that balances
the exploration-exploitation trade-off and has a closed-form
expression that allows simple computation without complex
approximations and relaxations. We further improve the
algorithm by using gradient ascent for the query point opti-
mization and a log-barrier term to enforce safety constraints.
Experiment results show that the GMES outperforms other
multi-agent BO baselines in the numerical experiments and
effectively seeks light sources on real robots. Future works
include analyzing the performance of GMES theoretically
and using GMES with the distributed multi-agent settings
with local communications only.
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