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Fragment-based drug design (FBDD) is one major drug discovery method employed in computer-aided drug
discovery. Due to its inherent limitations, this process experiences long processing times and limited success
rates. Here we present a new Fragment Databases from Screened Ligands Drug Design method (FDSL-DD) that
intelligently incorporates information about fragment characteristics into a fragment-based design approach to
the drug development process. The initial step of the FDSL-DD is the creation of a fragment database from a
library of docked, drug-like ligands for a specific target, which deviates from the traditional in silico FBDD
strategy, incorporating structure-based design screening techniques to combine the advantages of both ap-
proaches. Three different protein targets have been tested in this study to demonstrate the potential of the
created fragment library and FDSL-DD. Utilizing the FDSL-DD led to an increase in binding affinity for each
protein target. The most substantial increase was exhibited by the ligand designed for TIPE2, with a 3.6 kcalmol ™!
difference between the top ligand from the FDSL-DD and top ligand from the high throughput virtual screening
(HTVS). Using drug-like ligands in the initial HTVS allows for a greater search of chemical space, with higher

efficiency in fragments selection, less grid boxes, and potentially identifying more interactions.

1. Introduction

Computer-aided methods have been widely used in drug discovery
processes [1-6]. Fragment-based drug design (FBDD) utilizes small
molecules or fragments (molecular weight <300 gmol™), to design a
lead compound. Identified fragments can be grown, linked, or merged
into a more potent lead molecule [7-11]. However, fragment libraries
are very large, and the number of fragment combinations and their
orientations in the generation of novel ligands is combinatorically
explosive [12]. As aresult, FBDD remains a challenge, since the space for
identifying effective drug candidates is still very large, and finding
candidates that are both feasible (drug-like) and have high binding af-
finity to the target is a difficult task.

We report a new fragment-based method: creating a fragment
database from a large, already docked, ligand screening library for a
specific target, in which fragments are associated with information from
the parent ligand. We term the method Fragments from Ligands Drug
Design (FDSL-DD) as shown in Scheme 1. At a high level, a large number
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of “drug like” ligands are screened with computational docking software
to 1) obtain the predicted binding affinity between each of the ligands
and the protein targets and 2) where and how (i.e., what chemical bonds
at what atoms) the ligand binds with the protein. After these screening
and profiling steps, the ligands are computationally “fragmentized”
(virtually broken up into fragments) (Scheme 1). A database is then
created which includes, for each fragment, summary statistics for the
binding affinity of parent ligands and protein-ligand bond profiling data
from the screening step. We may then utilize the resulting fragment
database to design drug candidates in silico (Fig. 1).

To demonstrate the potential of the created fragment library and
FDSL-DD, three different protein targets have been chosen, each with
substantially different chemical and structural characteristics. The first,
tumor necrosis factor alpha induced protein 8-like 2 (TIPE2), is a
transport protein that can induce leukocyte polarization, sustaining
chronic inflammation and ultimately supporting tumorigenesis [13,14].
Inhibition of TIPE2 would provide a therapeutic option for solid tumor
cancers. The second, RelA, a protein that detects amino acid starvation
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Scheme 1. Schematic presentation of the Fragments from Ligands Drug Design method (FDSL-DD).
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Fig. 1. Database Creation FDSL-DD Flow Diagram. The input to the FDSL-DD is the output files of ligand screening from a modeling software, such as AutoDock Vina
or Schrodinger. The output files include the PDBQT representation of a ligand structure in its predicted docking conformations with the protein, along with predicted
binding affinities. The minimum binding affinity solution is selected. The ligand PDBQT (Protein Data Bank, Partial Charge (Q), & Atom Type (T)) and protein PDB
files are merged and then fed into PLIP (Protein-Ligand Interaction Profiler) which predicts ligand atom-amino acid bonds. The ligand PDBQT files are also converted
into a SMILES representation, which is then fed into a computational fragmentation tool, such as BRICS or RECAP. The fragments from each ligand are then collected.
The FDSL-DD then outputs a database or table of fragments (with SMILES representation) at different locations in the binding pocket determined by the amino acids
to which the fragments bind in a parent ligand. There may be more than one entry for a fragment if it is found to bind in different locations in different parent ligands.

activating the stringent response in bacteria which leads to persister cell
formation. Persister cells can withstand 1000 times the antibiotic con-
centrations of their normal cell counterparts [15], so inhibit RelA and
antibiotics can be used to eradicate the bacteria, and mostly importantly
bacterial biofilms. The final protein utilized in this study, is the receptor
binding domain (RBD) of the S1 subunit of the spike protein (S-protein)
of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The
S-protein RBD binds to human angiotensin-converting enzyme (ACE-2),

facilitating viral entry [16]. It is noteworthy that our selection of the
three proteins was not arbitrary; rather, we deliberately chose three
ongoing projects in our lab. Over the years, both our research group and
several others have failed in identifying potent inhibitors for these
proteins, except for the S-protein, using conventional drug discovery
methods. However, with the introduction of the innovative FDSL-DD
approach, we have achieved promising and unprecedented results that
were previously unattainable.

Table 1

Most frequently occurring fragments in the top 10 % of highest binding ligands for TIPE2, RelA and the S-protein.
Fragment SMILES Protein Fragment Domain Mean Mode Median Count
[5*IN1CCC2(CC1)C(=0)N([10*])C(=0)N2[10*] TIPE2 T2F1 A44 —7.72 —7.90 -7.70 81
[10*IN1C(=0)[N]C([13*])([13*])C1=0 RelA RAF11 N187, K195, Y319 —8.33 —8.00 —8.30 584
[5*IN1CCc2nnc([14*])n2CC1 Sprotein SPF21 F497, Y505 —7.22 —7.00 -7.10 328
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Fig. 2. Most frequently occurring fragments for each protein.
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Fig. 3. Structures of top 3 ligands from the HTVS method (top) and top 3 ligands from FDSL-DD (bottom).

Table 2

Comparison of top binding ligands from high throughput virtual screening
(HTVS) and top binding ligand from FDSL-DD for each protein target. Included
are binding affinities from high throughput method and from the FDSL-DD and
computed ADME properties.

Table 3

Comparison of druglikeness. The Lipinski filter; MW < 500, MLogP <4.15. The
Ghose filter; 160< MW < 480, —0.4 < WLogP <5.6, 40 < MR < 130, 20 < atoms
<70. The Veber filter; TPSA <140. And the Egan filter; WLogP <5.88 and TPSA
<131.6. The Muegge filter; 200 < MW < 600, —2 < XLogP <5, TPSA <150.

Method TIPE2 RelA S-Protein Method TIPE2 RelA S-Protein
HTVS  FDSL- HTVS  FDSL- HTVS  FDSL- HTvS  FDSL-DD  HTvS  FDSL-DD  HTvS  FDSL-DD
DD DD DD -
Ligand Name T2C1 T2C2 RAC3 RAC4 SPC5 SPC6

Ligand Name T2C1 T2C2 RAC3 RAC4 SPC5 SPC6 Lipinski Yes No Yes Yes Yes No
Binding Affinity -9.8 -13.4 -10.2 -12.4 -9.1 -12.0 Ghose No No No No No No

(kcalmol 1) Veber Yes No Yes Yes Yes Yes
Molecular 48459  673.76  453.37 590.63  426.57  647.69 Egan Yes No No Yes Yes No

Weight Muegge Yes No Yes No Yes No

(gmol ™)
Solubility —4.94 —4.63 —5.68 —5.84 —4.72 —5.63

(ESOL) mean binding affinity of —7.72 kcalmol'}, and possible connections at
Partition 291 28 2.78 297 3.59 2.08 the 1, 3, and 8 position. For RelA, benzene is the most frequently

Coefficient . . s 1 . T

(MlogP) occurring fragment, with a count of 584 in ligands with a mean binding
TPSA 82.61 150.84 93.85 125.12 44.37 136.97 afﬁnity of —8.33 kcalmol’l. For the S—protein, 3,5—dimethyl—1H—pyr—
Log K, (cm/s) —6.74  —9.55 -5.88  -7.31 -6.25  -7.96 azole, or SPF21, with possible connection at positions 1 and 4, was the
GI Absorption High  Low Low High High  High most frequent fragment, occurring 328 times.
BBB permeant No No No No Yes No

2. Results

Fragment databases were created for each protein. Table 1 shows the
most frequently occurring fragments in the top 10 % of highest binding
ligands for each protein. For TIPE2, 1,3,8-triazaspiro [4.5] decane-2,4-
dione, or fragment T2F1 (Fig. 2), appears 81 times from ligands with a

From these generated fragment libraries superior binding ligands
were constructed for each protein, with the highest binding pictured in
Fig. 3. For comparison, Table 2 shows the highest binding ligands from
the HTVS of the Enamine library with each protein against the highest
binding ligand produced from the FDSL-DD. Select predicted ADME
properties that are utilized in the training environment have also been
noted. An increase in binding affinity is seen for each constructed ligand.
The most substantial increase was exhibited by the ligand designed for
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Fig. 4. 3D and 2D representation of interactions of screened ligands vs FDSL-DD ligands. a. TIPE2-T2C1. B. RelA-RAC3. C. S-protein-SPC5. D. TIPE2-T2C2. E. RelA-
RACA4. F. S-protein-SPC6.
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TIPE2, with a 3.6 kcalmol ™ difference between the top ligand from the
FDSL-DD and top ligand from the HTVS. Solubility and partition coef-
ficient remained within the same range of the HTVS ligands. The mo-
lecular weight saw a significant increase for T2C2 and SPC6. And while
approved drugs have been increasing in molecular weight and surpass-
ing the 500 gmol ! maximum guideline in recent years [8] bringing this
value down with future adjustments could also contribute to improving
solubility. The FDSL-DD synthesized ligand, RAC4, is the best overall in
terms of druglikeness (Table 3), meeting the constraints of three widely
accepted guidelines; Linpinski, Veber and Egan. Imposing stricter pen-
alties into the selection method will promote better candidates, such as
RAC4, that not only exhibit satisfactory binding affinities but desirable
ADME and pharmacokinetic properties.

Examination of the interactions (Fig. 4) of T2C1 versus T2C2 reveals
both compounds interact with the amino acid residues of the binding
pocket in the same way; alkyl-alkyl, t-alkyl, n-sigma and van der Waals
interactions. The difference between these two compounds is size. T2C2
is nearly 200 gmol™! larger than T2C1 with an additional 8 A in length.
As such the significant increase in binding affinity is seemingly an
increased surface area.

Between RAC3 and RAC4 there is a 2.4 kcalmol ! increase in affinity
for the FDSL-DD constructed ligand. This stronger binding potential is
exhibited in the addition of hydrogen bonding and n-n stacking for
RAC4. The remainder of the interactions between RelA and RAC4 are
similar to the interactions between RelA and RAC3; we see van der
Waals, carbon-hydrogen, n-cation, alkyl, and =-alkyl interactions
contributing to the binding affinity for both RAC4 and RAC3.

The potential inhibitors for the Spike protein, SPC5 and SPC6, both
exhibit van der Waals, hydrogen bonding, n-n stacking and r-alkyl in-
teractions. The built ligand, SPC6, also includes carbon-hydrogen bond
interactions and is significantly larger in size, contributing to the in-
crease in binding affinity.

3. Materials and methods
3.1. Preparation of receptor and ligands

The crystal structures of the protein files; TIPE2 (PDB ID: 3F4M),
RelA (PDB ID: 5IQR), and S-protein (PDB ID: 6M0J); were retrieved from
the RCSB Protein Data Bank. The structures were cleaned; removing all
waters, co-crystalized proteins, and co-crystalized atoms; and prepared
in AutoDockTools-1.5.6 [17] with the addition of polar hydrogens and
calculation of Gasteiger charges. Ligands from an Enamine Ltd.
“drug-like” library consisting of around 250,000 molecules were
retrieved and optimized using OpenBabel [18] through the generation of

Journal of Molecular Graphics and Modelling 127 (2024) 108669

3D structures, addition of charges and minimization using the MMFF94
force field.

3.2. Grid box and molecular docking

Grid boxes were generated for each protein in accordance with their
binding site. The grid box for RelA was centered at x = 297.894, y =
163.593, and z = 219.301 with dimensions of 25.000 A. For the S-
protein the box of dimensions 22.000 A x 42.000 A x 22.000 A were
centered at x = —27.878, y = 25.205, and z = 5.514. Due to large
binding cavity of TIPE2, 4 grid boxes were generated. These grid boxes
span the pocket entrance, occluding the cavity). All grid box quadrants
are of 12.000 A dimensions with quadrant 1 centered at x = 60.677, y =
5.646, and z = 17.000. Quadrant 2 is centered at x = 62.636, y = 11.365,
and z = 19.959. Quadrant 3 is centered at x = 68.067, y = 10.738, and z
= 18.594. And quadrant 4 is centered at x = 67.024, y = 5.362, and z =
17.113. All ligands were docked with each protein using their respective
grid boxes. High throughput molecular docking calculations of mass
libraries were performed using AutoDock Vina 1.1.2 [19,20]. on the
University of Drexel’s high-performance computer cluster, Picotte.
Docking with TIPE2 generated 4 times the output, as every ligand was
docked in each quadrant grid box.

3.3. FDSL-DD

The Autodock VINA output file includes nine binding solutions, each
with a predicted protein-ligand binding affinity. The FDSL-DD selects
the lowest binding affinity solution, and it extracts the PDBQT file and
binding affinity value. The ligand PDBQT-format file is converted to a
PDB format and merged with the protein PDB file using VINA and UNIX
command line tools to transform, concatenate, and reorder the text in
the files. This provides the input for the Protein Ligand Interaction
Profiler (PLIP) [21]. PLIP performs a rule-based prediction of in-
teractions between ligand atoms and protein amino acids, including the
bond type and atom-residue pairs.

The PDBQT file of the ligand is also converted to a MOL format file,
or Molfile, which is a text file containing ‘information about the position
of a molecule [22]. The MolFile is then broken into fragments using
BRICS [23], an algorithm designed to break bonds in a chemically
realistic manner. The BRICS fragmentation methodology is an automatic
decomposition tool that employs a set of rules which avoids redundant
fragments, unwanted chemical motifs, and small terminal fragments.
This generates a diverse set of fragments based off a given ligand. Other
fragmentation methodologies can be used, including RECAP [24],
in-place of BRICS if desired. The fragmentation algorithm is

Combinations | Sum New Ligands New VINA ADME | Drug-Likeness
Fragments VINA | AA 142 3 C —C D)
> 143 4 O
O 2+3 5 -,
> 144 5 >, )
aab 1+2+3 6 C DA,
— 145 6 G
214 6 C Ham»

Fig. 5. Scheme used for generating fragments. The ranked fragment list is first created based on the Autodock VINA binding scores of their parent ligands and
fragment counts as determined using the FDSL-DD shown in Fig. 1. The search space is generated by using triangular numbers to generate all possible combinations of
ranked fragments up to a given threshold. The example shown above is to generate all possible ranks up to rank 4, which is based on the triangular number 6, which
includes all possible ways of summing to 3, 4, 5, and 6. These are then the ranks of fragments that are used in combination. Possible candidate ligands are then
generated from the prioritized rank list and evaluated using Autodock VINA, as well as for ADME and drug-likeness properties.
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Fig. 6. An example of a final generated ligand and the fragments fed into the BRICS algorithm to generate it.

implemented in Python 3.8 using the RDKit open source chemo-
informatics software package, http://www.rdkit.org. The fragments are
then associated with their “parent” ligands (the ligands that were frag-
mentized). Many fragments will have multiple parent ligands, i.e., they
will have appeared as the fragments of multiple ligands.

The location of the fragment in the binding pocket is then identified
for each parent ligand following the procedure implemented by Tang
et al., 2014 [25]. The ligand atoms constituting the fragment are iden-
tified by finding the maximum common substructure (MCS) between the
fragment and ligand using RDKit. The XML-formatted output of PLIP is
parsed to obtain the residues identified as binding to the ligand atoms
corresponding to the fragment. The fragment is then associated with
those residues. In many applications, groups of protein residues will be
defined as binding pocket subregions, e.g., subregions A, B, or C. If a
fragment’s constituent atoms bind to the residues in a subregion, then
the fragment is associated with that subregion. In some ligand contexts,
a fragment will bind to residues in multiple subregions.

As shown in Fig. 1, a table or database is then created with entries for
each distinct fragment-subregion combination. The fragment is stored in
a SMILES format [26], which is a string that includes the structural in-
formation required to reconstruct the ligand. The fragment will have
multiple entries if it is found binding to multiple binding pocket sub-
regions in different ligand contexts. For each fragment-subregion com-
bination, binding affinity statistics are also computed. Generally, the
database will include the mean binding affinity predicted by AutoDock
Vina for all parent ligands including that fragment-subregion combi-
nation. It may also, or instead, include the median or mode binding
affinity. Another statistic that may be calculated is the deviation be-
tween the mean parent ligand binding affinity for that
fragment-subregion combination and the overall mean binding affinity
for all ligands in the screening experiment. Finally, the database will also
include the number of parent ligands (“Count” in Fig. 1) in which the
fragment-subregion combination is found.

3.4. Computational ligand design

A basic prioritized search for novel ligands based on the fragment
library generated by the FDSL-DD is described as follows and in Fig. 5.
As an initial step, fragments are sorted based on the inferred binding
affinity of their parent ligand, as shown in Fig. 1. Additional sorting can
be performed - for example, fragments binding to particular regions (as
shown in Fig. 1) may be placed in different pools, and fragments may be
drawn from them according to the scheme shown in Fig. 5 and described
here. A set of novel ligands is generated based on a triangular number
sequence. As shown in Fig. 5, all possible ways of summing the numbers
m through n, where m is the first ranked fragment (generally m = 1) and
n is the last ranked considered for combination within the ranked list of
fragments are generated. For example, for m = 1 and n = 5, the com-
binations are 1 + 2,1 + 3,1 + 4, and 2 + 3. That means that candidate
ligands are the combination of fragments ranked 1 and 2, 1 and 3, 1 and
4, and 2 and 3 respectively. Because most fragments are between 100
and 300 g/mol, combinations are only added with up to 5 fragments to
comply with Lipinski’s 500 g/mol rule. This significantly decreases
computational burden, as only a subset of ligands that can be generated
with 5 operands are evaluated.

BRICS fragments are combined using BRICS rules using the BRICS.
Build command in RDKit. This is possible because the MolFile or
SMARTS representations of BRICS fragments will store information
about the broken bonds in BRICS fragmentation in isotopes. The BRICS.
Build package in RDKit can utilize the isotope information to attempt to
recombine fragments in new combinations according to the information
in the isotopes. If the resulting molecule can be parsed by RDKit, then it
is successful potential molecule. If isotopes remain, indicating potential
binding sites, then other fragments can be added on to the growing
ligand. If a different computational fragmentation procedure is used,
then different computational methods can be used to assemble frag-
ments. For example, while not implemented for the results shown in the
paper, the pipeline allows for RECAP fragments, if generated, to be
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combined through text processing of SMILES strings by replacing the (*)
wildcard character used to indicate broken bonds (i.e. open binding
sites).

It is important to note that not every fragment fed into the BRICS
recomposition algorithm is guaranteed to be included in the final
molecule. Fig. 6 shows, for example, RAC4 and its parent fragments. As
shown in Fig. 6, in the case of RAC4, the third fragment fed did not end
up in the final ligand. Additionally, BRICS may repeat fragments to fill
the valences of each incorporated fragment. In the case of RAC4, frag-
ment 1 and 3 had more than one fragment end. Regardless of which
fragment was used, at least one repeat of fragment 2 is necessary to fill in
all valences since fragment 2 is the only fragment with only one exposed
end. Although repeat fragments are not ideal from a diversity perspec-
tive, in some cases, they enable molecules with better binding affinities
to be generated, like in the case of RACA4.

The resulting ligands are then evaluated on the basis of their binding
affinity using Autodock VINA. Optionally, in silico absorption, distribu-
tion, metabolism, and excretion (ADME) properties are also calculated
using SwissADME, as well as other drug likeness properties such as the
Lipinski’s rule of 5 parameters, using built-in RDKit features in the rdkit.
Chem.Lipinski module [27]. The highest ranking ligands on the basis of
binding affinities and ADME properties are also visualized in
protein-ligand complexes with PyMOL [28] and ChimeraX-1.2.1 [29,
30].

The source code for the methods described herein will be made
available on request for research and educational purposes only and
under a license that prohibits any commercial or third party use.

4. Conclusions

In our study, we have developed a new method, FDSL-DD, that
combined Al and FDDD, to effectively reduce the amount of time spent
in pre-clinical phases of the drug development process. In the new
method, in silico docking studies were performed on a large database of
molecules to create a library of molecular fragments for specific targets.
These fragments are then combined to form new inhibitors with higher
binding affinity. Creating a fragment database from a large, already
docked, ligand screening library using artificial intelligence based on
fragment characteristics will expand the prospects for discovering and
designing new therapeutic options. Moreover, ligand screening supplies
additional information that allows for more effective generation of
candidate ligands. Although further improvements are needed to fine-
tune the structures so the compounds can pass the Lipinski’s rule of five
[9] and other rules for druggability [31], our approach to computa-
tionally integrate knowledge from a prior ligand screening step proved
to be an effective method for developing stronger inhibitors.
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