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A B S T R A C T   

Fragment-based drug design (FBDD) is one major drug discovery method employed in computer-aided drug 
discovery. Due to its inherent limitations, this process experiences long processing times and limited success 
rates. Here we present a new Fragment Databases from Screened Ligands Drug Design method (FDSL-DD) that 
intelligently incorporates information about fragment characteristics into a fragment-based design approach to 
the drug development process. The initial step of the FDSL-DD is the creation of a fragment database from a 
library of docked, drug-like ligands for a specific target, which deviates from the traditional in silico FBDD 
strategy, incorporating structure-based design screening techniques to combine the advantages of both ap
proaches. Three different protein targets have been tested in this study to demonstrate the potential of the 
created fragment library and FDSL-DD. Utilizing the FDSL-DD led to an increase in binding affinity for each 
protein target. The most substantial increase was exhibited by the ligand designed for TIPE2, with a 3.6 kcalmol-1 

difference between the top ligand from the FDSL-DD and top ligand from the high throughput virtual screening 
(HTVS). Using drug-like ligands in the initial HTVS allows for a greater search of chemical space, with higher 
efficiency in fragments selection, less grid boxes, and potentially identifying more interactions.   

1. Introduction 

Computer-aided methods have been widely used in drug discovery 
processes [1–6]. Fragment-based drug design (FBDD) utilizes small 
molecules or fragments (molecular weight <300 gmol-1), to design a 
lead compound. Identified fragments can be grown, linked, or merged 
into a more potent lead molecule [7–11]. However, fragment libraries 
are very large, and the number of fragment combinations and their 
orientations in the generation of novel ligands is combinatorically 
explosive [12]. As a result, FBDD remains a challenge, since the space for 
identifying effective drug candidates is still very large, and finding 
candidates that are both feasible (drug-like) and have high binding af
finity to the target is a difficult task. 

We report a new fragment-based method: creating a fragment 
database from a large, already docked, ligand screening library for a 
specific target, in which fragments are associated with information from 
the parent ligand. We term the method Fragments from Ligands Drug 
Design (FDSL-DD) as shown in Scheme 1. At a high level, a large number 

of “drug like” ligands are screened with computational docking software 
to 1) obtain the predicted binding affinity between each of the ligands 
and the protein targets and 2) where and how (i.e., what chemical bonds 
at what atoms) the ligand binds with the protein. After these screening 
and profiling steps, the ligands are computationally “fragmentized” 
(virtually broken up into fragments) (Scheme 1). A database is then 
created which includes, for each fragment, summary statistics for the 
binding affinity of parent ligands and protein-ligand bond profiling data 
from the screening step. We may then utilize the resulting fragment 
database to design drug candidates in silico (Fig. 1). 

To demonstrate the potential of the created fragment library and 
FDSL-DD, three different protein targets have been chosen, each with 
substantially different chemical and structural characteristics. The first, 
tumor necrosis factor alpha induced protein 8-like 2 (TIPE2), is a 
transport protein that can induce leukocyte polarization, sustaining 
chronic inflammation and ultimately supporting tumorigenesis [13,14]. 
Inhibition of TIPE2 would provide a therapeutic option for solid tumor 
cancers. The second, RelA, a protein that detects amino acid starvation 
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activating the stringent response in bacteria which leads to persister cell 
formation. Persister cells can withstand 1000 times the antibiotic con
centrations of their normal cell counterparts [15], so inhibit RelA and 
antibiotics can be used to eradicate the bacteria, and mostly importantly 
bacterial biofilms. The final protein utilized in this study, is the receptor 
binding domain (RBD) of the S1 subunit of the spike protein (S-protein) 
of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The 
S-protein RBD binds to human angiotensin-converting enzyme (ACE-2), 

facilitating viral entry [16]. It is noteworthy that our selection of the 
three proteins was not arbitrary; rather, we deliberately chose three 
ongoing projects in our lab. Over the years, both our research group and 
several others have failed in identifying potent inhibitors for these 
proteins, except for the S-protein, using conventional drug discovery 
methods. However, with the introduction of the innovative FDSL-DD 
approach, we have achieved promising and unprecedented results that 
were previously unattainable. 

Scheme 1. Schematic presentation of the Fragments from Ligands Drug Design method (FDSL-DD).  

Fig. 1. Database Creation FDSL-DD Flow Diagram. The input to the FDSL-DD is the output files of ligand screening from a modeling software, such as AutoDock Vina 
or Schrodinger. The output files include the PDBQT representation of a ligand structure in its predicted docking conformations with the protein, along with predicted 
binding affinities. The minimum binding affinity solution is selected. The ligand PDBQT (Protein Data Bank, Partial Charge (Q), & Atom Type (T)) and protein PDB 
files are merged and then fed into PLIP (Protein-Ligand Interaction Profiler) which predicts ligand atom-amino acid bonds. The ligand PDBQT files are also converted 
into a SMILES representation, which is then fed into a computational fragmentation tool, such as BRICS or RECAP. The fragments from each ligand are then collected. 
The FDSL-DD then outputs a database or table of fragments (with SMILES representation) at different locations in the binding pocket determined by the amino acids 
to which the fragments bind in a parent ligand. There may be more than one entry for a fragment if it is found to bind in different locations in different parent ligands. 

Table 1 
Most frequently occurring fragments in the top 10 % of highest binding ligands for TIPE2, RelA and the S-protein.  

Fragment SMILES Protein Fragment Domain Mean Mode Median Count 

[5*]N1CCC2(CC1)C(=O)N([10*])C(=O)N2[10*] TIPE2 T2F1 A44 − 7.72 − 7.90 − 7.70 81 
[10*]N1C(=O)[N]C([13*])([13*])C1=O RelA RAF11 N187, K195, Y319 − 8.33 − 8.00 − 8.30 584 
[5*]N1CCc2nnc([14*])n2CC1 Sprotein SPF21 F497, Y505 − 7.22 − 7.00 − 7.10 328  
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2. Results 

Fragment databases were created for each protein. Table 1 shows the 
most frequently occurring fragments in the top 10 % of highest binding 
ligands for each protein. For TIPE2, 1,3,8-triazaspiro [4.5] decane-2,4- 
dione, or fragment T2F1 (Fig. 2), appears 81 times from ligands with a 

mean binding affinity of − 7.72 kcalmol-1, and possible connections at 
the 1, 3, and 8 position. For RelA, benzene is the most frequently 
occurring fragment, with a count of 584 in ligands with a mean binding 
affinity of − 8.33 kcalmol-1. For the S-protein, 3,5-dimethyl-1H-pyr
azole, or SPF21, with possible connection at positions 1 and 4, was the 
most frequent fragment, occurring 328 times. 

From these generated fragment libraries superior binding ligands 
were constructed for each protein, with the highest binding pictured in 
Fig. 3. For comparison, Table 2 shows the highest binding ligands from 
the HTVS of the Enamine library with each protein against the highest 
binding ligand produced from the FDSL-DD. Select predicted ADME 
properties that are utilized in the training environment have also been 
noted. An increase in binding affinity is seen for each constructed ligand. 
The most substantial increase was exhibited by the ligand designed for 

Fig. 2. Most frequently occurring fragments for each protein.  

Fig. 3. Structures of top 3 ligands from the HTVS method (top) and top 3 ligands from FDSL-DD (bottom).  

Table 2 
Comparison of top binding ligands from high throughput virtual screening 
(HTVS) and top binding ligand from FDSL-DD for each protein target. Included 
are binding affinities from high throughput method and from the FDSL-DD and 
computed ADME properties.  

Method TIPE2 RelA S-Protein 

HTVS FDSL- 
DD 

HTVS FDSL- 
DD 

HTVS FDSL- 
DD 

Ligand Name T2C1 T2C2 RAC3 RAC4 SPC5 SPC6 
Binding Affinity 

(kcalmol− 1) 
− 9.8 − 13.4 − 10.2 − 12.4 − 9.1 − 12.0 

Molecular 
Weight 
(gmol− 1) 

484.59 673.76 453.37 590.63 426.57 647.69 

Solubility 
(ESOL) 

− 4.94 − 4.63 − 5.68 − 5.84 − 4.72 − 5.63 

Partition 
Coefficient 
(MlogP) 

2.91 2.8 2.78 2.97 3.59 2.08 

TPSA 82.61 150.84 93.85 125.12 44.37 136.97 
Log Kp (cm/s) − 6.74 − 9.55 − 5.88 − 7.31 − 6.25 − 7.96 
GI Absorption High Low Low High High High 
BBB permeant No No No No Yes No  

Table 3 
Comparison of druglikeness. The Lipinski filter; MW ≤ 500, MLogP ≤4.15. The 
Ghose filter; 160≤ MW ≤ 480, − 0.4 ≤ WLogP ≤5.6, 40 ≤ MR ≤ 130, 20 ≤ atoms 
≤70. The Veber filter; TPSA ≤140. And the Egan filter; WLogP ≤5.88 and TPSA 
≤131.6. The Muegge filter; 200 ≤ MW ≤ 600, − 2 ≤ XLogP ≤5, TPSA ≤150.  

Method TIPE2 RelA S-Protein 

HTvS FDSL-DD HTvS FDSL-DD HTvS FDSL-DD 

Ligand Name T2C1 T2C2 RAC3 RAC4 SPC5 SPC6 
Lipinski Yes No Yes Yes Yes No 
Ghose No No No No No No 
Veber Yes No Yes Yes Yes Yes 
Egan Yes No No Yes Yes No 
Muegge Yes No Yes No Yes No  
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Fig. 4. 3D and 2D representation of interactions of screened ligands vs FDSL-DD ligands. a. TIPE2-T2C1. B. RelA-RAC3. C. S-protein-SPC5. D. TIPE2-T2C2. E. RelA- 
RAC4. F. S-protein-SPC6. 

J. Wilson et al.                                                                                                                                                                                                                                  



Journal of Molecular Graphics and Modelling 127 (2024) 108669

5

TIPE2, with a 3.6 kcalmol-1 difference between the top ligand from the 
FDSL-DD and top ligand from the HTVS. Solubility and partition coef
ficient remained within the same range of the HTVS ligands. The mo
lecular weight saw a significant increase for T2C2 and SPC6. And while 
approved drugs have been increasing in molecular weight and surpass
ing the 500 gmol-1 maximum guideline in recent years [8] bringing this 
value down with future adjustments could also contribute to improving 
solubility. The FDSL-DD synthesized ligand, RAC4, is the best overall in 
terms of druglikeness (Table 3), meeting the constraints of three widely 
accepted guidelines; Linpinski, Veber and Egan. Imposing stricter pen
alties into the selection method will promote better candidates, such as 
RAC4, that not only exhibit satisfactory binding affinities but desirable 
ADME and pharmacokinetic properties. 

Examination of the interactions (Fig. 4) of T2C1 versus T2C2 reveals 
both compounds interact with the amino acid residues of the binding 
pocket in the same way; alkyl-alkyl, π-alkyl, π-sigma and van der Waals 
interactions. The difference between these two compounds is size. T2C2 
is nearly 200 gmol-1 larger than T2C1 with an additional 8 Å in length. 
As such the significant increase in binding affinity is seemingly an 
increased surface area. 

Between RAC3 and RAC4 there is a 2.4 kcalmol-1 increase in affinity 
for the FDSL-DD constructed ligand. This stronger binding potential is 
exhibited in the addition of hydrogen bonding and π-π stacking for 
RAC4. The remainder of the interactions between RelA and RAC4 are 
similar to the interactions between RelA and RAC3; we see van der 
Waals, carbon-hydrogen, π-cation, alkyl, and π-alkyl interactions 
contributing to the binding affinity for both RAC4 and RAC3. 

The potential inhibitors for the Spike protein, SPC5 and SPC6, both 
exhibit van der Waals, hydrogen bonding, π-π stacking and π-alkyl in
teractions. The built ligand, SPC6, also includes carbon-hydrogen bond 
interactions and is significantly larger in size, contributing to the in
crease in binding affinity. 

3. Materials and methods 

3.1. Preparation of receptor and ligands 

The crystal structures of the protein files; TIPE2 (PDB ID: 3F4M), 
RelA (PDB ID: 5IQR), and S-protein (PDB ID: 6M0J); were retrieved from 
the RCSB Protein Data Bank. The structures were cleaned; removing all 
waters, co-crystalized proteins, and co-crystalized atoms; and prepared 
in AutoDockTools-1.5.6 [17] with the addition of polar hydrogens and 
calculation of Gasteiger charges. Ligands from an Enamine Ltd. 
“drug-like” library consisting of around 250,000 molecules were 
retrieved and optimized using OpenBabel [18] through the generation of 

3D structures, addition of charges and minimization using the MMFF94 
force field. 

3.2. Grid box and molecular docking 

Grid boxes were generated for each protein in accordance with their 
binding site. The grid box for RelA was centered at x = 297.894, y =
163.593, and z = 219.301 with dimensions of 25.000 Å. For the S- 
protein the box of dimensions 22.000 Å × 42.000 Å × 22.000 Å were 
centered at x = − 27.878, y = 25.205, and z = 5.514. Due to large 
binding cavity of TIPE2, 4 grid boxes were generated. These grid boxes 
span the pocket entrance, occluding the cavity). All grid box quadrants 
are of 12.000 Å dimensions with quadrant 1 centered at x = 60.677, y =
5.646, and z = 17.000. Quadrant 2 is centered at x = 62.636, y = 11.365, 
and z = 19.959. Quadrant 3 is centered at x = 68.067, y = 10.738, and z 
= 18.594. And quadrant 4 is centered at x = 67.024, y = 5.362, and z =
17.113. All ligands were docked with each protein using their respective 
grid boxes. High throughput molecular docking calculations of mass 
libraries were performed using AutoDock Vina 1.1.2 [19,20]. on the 
University of Drexel’s high-performance computer cluster, Picotte. 
Docking with TIPE2 generated 4 times the output, as every ligand was 
docked in each quadrant grid box. 

3.3. FDSL-DD 

The Autodock VINA output file includes nine binding solutions, each 
with a predicted protein-ligand binding affinity. The FDSL-DD selects 
the lowest binding affinity solution, and it extracts the PDBQT file and 
binding affinity value. The ligand PDBQT-format file is converted to a 
PDB format and merged with the protein PDB file using VINA and UNIX 
command line tools to transform, concatenate, and reorder the text in 
the files. This provides the input for the Protein Ligand Interaction 
Profiler (PLIP) [21]. PLIP performs a rule-based prediction of in
teractions between ligand atoms and protein amino acids, including the 
bond type and atom–residue pairs. 

The PDBQT file of the ligand is also converted to a MOL format file, 
or Molfile, which is a text file containing ‘information about the position 
of a molecule [22]. The MolFile is then broken into fragments using 
BRICS [23], an algorithm designed to break bonds in a chemically 
realistic manner. The BRICS fragmentation methodology is an automatic 
decomposition tool that employs a set of rules which avoids redundant 
fragments, unwanted chemical motifs, and small terminal fragments. 
This generates a diverse set of fragments based off a given ligand. Other 
fragmentation methodologies can be used, including RECAP [24], 
in-place of BRICS if desired. The fragmentation algorithm is 

Fig. 5. Scheme used for generating fragments. The ranked fragment list is first created based on the Autodock VINA binding scores of their parent ligands and 
fragment counts as determined using the FDSL-DD shown in Fig. 1. The search space is generated by using triangular numbers to generate all possible combinations of 
ranked fragments up to a given threshold. The example shown above is to generate all possible ranks up to rank 4, which is based on the triangular number 6, which 
includes all possible ways of summing to 3, 4, 5, and 6. These are then the ranks of fragments that are used in combination. Possible candidate ligands are then 
generated from the prioritized rank list and evaluated using Autodock VINA, as well as for ADME and drug-likeness properties. 
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implemented in Python 3.8 using the RDKit open source chemo
informatics software package, http://www.rdkit.org. The fragments are 
then associated with their “parent” ligands (the ligands that were frag
mentized). Many fragments will have multiple parent ligands, i.e., they 
will have appeared as the fragments of multiple ligands. 

The location of the fragment in the binding pocket is then identified 
for each parent ligand following the procedure implemented by Tang 
et al., 2014 [25]. The ligand atoms constituting the fragment are iden
tified by finding the maximum common substructure (MCS) between the 
fragment and ligand using RDKit. The XML-formatted output of PLIP is 
parsed to obtain the residues identified as binding to the ligand atoms 
corresponding to the fragment. The fragment is then associated with 
those residues. In many applications, groups of protein residues will be 
defined as binding pocket subregions, e.g., subregions A, B, or C. If a 
fragment’s constituent atoms bind to the residues in a subregion, then 
the fragment is associated with that subregion. In some ligand contexts, 
a fragment will bind to residues in multiple subregions. 

As shown in Fig. 1, a table or database is then created with entries for 
each distinct fragment-subregion combination. The fragment is stored in 
a SMILES format [26], which is a string that includes the structural in
formation required to reconstruct the ligand. The fragment will have 
multiple entries if it is found binding to multiple binding pocket sub
regions in different ligand contexts. For each fragment-subregion com
bination, binding affinity statistics are also computed. Generally, the 
database will include the mean binding affinity predicted by AutoDock 
Vina for all parent ligands including that fragment-subregion combi
nation. It may also, or instead, include the median or mode binding 
affinity. Another statistic that may be calculated is the deviation be
tween the mean parent ligand binding affinity for that 
fragment-subregion combination and the overall mean binding affinity 
for all ligands in the screening experiment. Finally, the database will also 
include the number of parent ligands (“Count” in Fig. 1) in which the 
fragment-subregion combination is found. 

3.4. Computational ligand design 

A basic prioritized search for novel ligands based on the fragment 
library generated by the FDSL-DD is described as follows and in Fig. 5. 
As an initial step, fragments are sorted based on the inferred binding 
affinity of their parent ligand, as shown in Fig. 1. Additional sorting can 
be performed – for example, fragments binding to particular regions (as 
shown in Fig. 1) may be placed in different pools, and fragments may be 
drawn from them according to the scheme shown in Fig. 5 and described 
here. A set of novel ligands is generated based on a triangular number 
sequence. As shown in Fig. 5, all possible ways of summing the numbers 
m through n, where m is the first ranked fragment (generally m = 1) and 
n is the last ranked considered for combination within the ranked list of 
fragments are generated. For example, for m = 1 and n = 5, the com
binations are 1 + 2, 1 + 3, 1 + 4, and 2 + 3. That means that candidate 
ligands are the combination of fragments ranked 1 and 2, 1 and 3, 1 and 
4, and 2 and 3 respectively. Because most fragments are between 100 
and 300 g/mol, combinations are only added with up to 5 fragments to 
comply with Lipinski’s 500 g/mol rule. This significantly decreases 
computational burden, as only a subset of ligands that can be generated 
with 5 operands are evaluated. 

BRICS fragments are combined using BRICS rules using the BRICS. 
Build command in RDKit. This is possible because the MolFile or 
SMARTS representations of BRICS fragments will store information 
about the broken bonds in BRICS fragmentation in isotopes. The BRICS. 
Build package in RDKit can utilize the isotope information to attempt to 
recombine fragments in new combinations according to the information 
in the isotopes. If the resulting molecule can be parsed by RDKit, then it 
is successful potential molecule. If isotopes remain, indicating potential 
binding sites, then other fragments can be added on to the growing 
ligand. If a different computational fragmentation procedure is used, 
then different computational methods can be used to assemble frag
ments. For example, while not implemented for the results shown in the 
paper, the pipeline allows for RECAP fragments, if generated, to be 

Fig. 6. An example of a final generated ligand and the fragments fed into the BRICS algorithm to generate it.  
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combined through text processing of SMILES strings by replacing the (*) 
wildcard character used to indicate broken bonds (i.e. open binding 
sites). 

It is important to note that not every fragment fed into the BRICS 
recomposition algorithm is guaranteed to be included in the final 
molecule. Fig. 6 shows, for example, RAC4 and its parent fragments. As 
shown in Fig. 6, in the case of RAC4, the third fragment fed did not end 
up in the final ligand. Additionally, BRICS may repeat fragments to fill 
the valences of each incorporated fragment. In the case of RAC4, frag
ment 1 and 3 had more than one fragment end. Regardless of which 
fragment was used, at least one repeat of fragment 2 is necessary to fill in 
all valences since fragment 2 is the only fragment with only one exposed 
end. Although repeat fragments are not ideal from a diversity perspec
tive, in some cases, they enable molecules with better binding affinities 
to be generated, like in the case of RAC4. 

The resulting ligands are then evaluated on the basis of their binding 
affinity using Autodock VINA. Optionally, in silico absorption, distribu
tion, metabolism, and excretion (ADME) properties are also calculated 
using SwissADME, as well as other drug likeness properties such as the 
Lipinski’s rule of 5 parameters, using built-in RDKit features in the rdkit. 
Chem.Lipinski module [27]. The highest ranking ligands on the basis of 
binding affinities and ADME properties are also visualized in 
protein-ligand complexes with PyMOL [28] and ChimeraX-1.2.1 [29, 
30]. 

The source code for the methods described herein will be made 
available on request for research and educational purposes only and 
under a license that prohibits any commercial or third party use. 

4. Conclusions 

In our study, we have developed a new method, FDSL-DD, that 
combined AI and FDDD, to effectively reduce the amount of time spent 
in pre-clinical phases of the drug development process. In the new 
method, in silico docking studies were performed on a large database of 
molecules to create a library of molecular fragments for specific targets. 
These fragments are then combined to form new inhibitors with higher 
binding affinity. Creating a fragment database from a large, already 
docked, ligand screening library using artificial intelligence based on 
fragment characteristics will expand the prospects for discovering and 
designing new therapeutic options. Moreover, ligand screening supplies 
additional information that allows for more effective generation of 
candidate ligands. Although further improvements are needed to fine
tune the structures so the compounds can pass the Lipinski’s rule of five 
[9] and other rules for druggability [31], our approach to computa
tionally integrate knowledge from a prior ligand screening step proved 
to be an effective method for developing stronger inhibitors. 
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