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ABSTRACT
Multimodal data are now prevailing in scientific research. One of the central questions in multimodal
integrative analysis is to understand how two data modalities associate and interact with each other given
another modality or demographic variables. The problem can be formulated as studying the associations
among three sets of random variables, a question that has received relatively less attention in the literature.
In this article, we propose a novel generalized liquid association analysis method, which offers a new and
unique angle to this important class of problems of studying three-way associations. We extend the notion
of liquid association from theunivariate setting to the sparse,multivariate, andhigh-dimensional setting.We
establish a population dimension reduction model, transform the problem to sparse Tucker decomposition
of a three-way tensor, and develop a higher-order orthogonal iteration algorithm for parameter estimation.
We derive the nonasymptotic error bound and asymptotic consistency of the proposed estimator, while
allowing the variable dimensions to be larger than and diverge with the sample size. We demonstrate
the efficacy of the method through both simulations and a multimodal neuroimaging application for
Alzheimer’s disease research. Supplementary materials for this article are available online.
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1. Introduction

1.1. Motivation and Problem Formulation

Multimodal data are now prevailing in scientific research, where
different types of data are acquired for a common set of exper-
imental subjects. One example is multi-omics, where different
genetic information such as gene expressions, copy number
alternations, and methylation changes are jointly collected for
the same biological samples (Richardson, Tseng, and Sun 2016).
Another example is multimodal neuroimaging, where distinct
brain characteristics including brain structure, function, and
chemical constituents are simultaneouslymeasured for the same
study subjects (Uludag and Roebroeck 2014). Integrative analy-
sis of multimodal data aggregates such diverse and often com-
plementary information, and consolidates knowledge across
multiple data modalities.

In this article, we aim to address one of the questions of
central interest in multimodal integrative analysis, that is, to
understand how different data modalities associate and interact
with each other given other modalities or covariates. This prob-
lem is of a broad scientific interest; for instance, it is useful to
understand how gene expressions andmicroRNA levels interact
given the severity of ovarian cancer and other demographical
variables (Cai, Cai, and Zhang 2016), or how gene expressions
and comparative genomic hybridizationmeasures interact given
the progression of breast cancer and demographics (Mai and
Zhang 2019). Our motivation is a multimodal positron emis-
sion tomography (PET) study for Alzheimer’s disease (AD).
Amyloid-beta and tau are two hallmark proteins of AD, both of
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which can be measured in vivo by PET imaging using different
nuclear tracers. The two proteins are closely associated in terms
of spatial patterns of their accumulations, and such association
patterns are believed to be affected by the subject’s age (Braak
and Braak 1991). Nevertheless, their specific age-dependent
regional associations remain unclear. The data we study involve
81 elderly subjects, each receiving two PET scans that measure
the depositions of amyloid-beta and tau, respectively. Each PET
modality is represented by a vector of proteinmeasurements at a
set of brain regions of interest, with 60 regions for amyloid-beta,
and 26 for tau. Our goal is to find how and where in the brain
the associations of the two proteins are the most contrastive as
the subject’s age varies.

This problem can be formulated statistically as studying the
associations of two sets of random variables X ∈ R

p1 and
Y ∈ R

p2 conditional on the third set of random variables
Z ∈ R

p3 . In our motivation example, X denotes the amyloid-
beta PET imaging with p1 = 60, Y denotes the tau PET imaging
with p2 = 26, and Z denotes the subject’s age with p3 = 1.
Meanwhile, in plenty of multimodal applications,X,Y ,Z can all
be high-dimensional, and their dimensions can be even larger
than the sample size. For instance, in imaging genetics (Nathoo,
Kong, and Zhu 2017), X,Y can represent different imaging
modalities, whose dimensions can be in hundreds, and Z can
denote the genetic information, whose dimension can be in
tens of thousands or more. In high-dimensional data analysis,
it is common to postulate that the data information can be
sufficiently captured by some low-dimensional representations,
and most often, some linear combinations of the originally
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high-dimensional variables (Cook 2007). Adopting this view,
our question can be formulated as seeking linear combinations
of X and linear combinations of Y whose conditional associ-
ations given Z are the most contrastive. In other words, we
seek linear combinations of X and Y that change the most as
Z changes.

1.2. RelatedWork

There has been a rich statistical literature studying the associa-
tions between two sets of multivariate variables X and Y . A well
studied and commonly used family of methods are canonical
correlation analysis (CCA) and its variants (Witten, Tibshirani,
and Hastie 2009; Gao et al. 2015; Li and Gaynanova 2018; Shu,
Wang, and Zhu 2019;Mai andZhang 2019, among others). CCA
explores the symmetric relations betweenX andY , and looks for
pairs of linear combinations that are most correlated. This goal,
however, is different from ours, as the highly correlated linear
combinations of X and Y are not necessarily the ones that are
the most contrastive. For instance, a pair of linear combinations
of X and Y can be highly correlated, while this correlation
remains a constant as the value of Z varies, and as such they
are not the target of our problem.We later numerically compare
our method with CCA to further demonstrate their differences.
Another popular family of methods are sufficient dimension
reduction (SDR), which looks for linear combinations of X that
capture full regression information of Y given X; see Li (2018)
for a review of this topic. Later we show that our proposed
method is connected to several SDR methods, including prin-
cipal Hessian directions (Li 1992; Cook 1998), and partial and
groupwise sufficient dimension reduction (Chiaromonte, Cook,
and Li 2002; Li, Li, and Zhu 2010). However, the goals of the two
are utterly different. Whereas SDR studies asymmetric relations
of Y conditioning on X, we seek symmetric relations between X
and Y conditioning on the third set of variables Z, in that the
roles of X and Y are interchangeable, but not with the role of Z.

Compared to the setting of two sets of variables, there have
been much fewer statistical methods studying the associations
among three sets of multivariate variables in the form of X and
Y given Z. In his groundbreaking work, Li (2002) proposed a
novel three-way interaction metric, termed liquid association,
that measures the extent to which the association of a pair of
random variables depends on the value of a third variable. He
showed that this metric is particularly useful in discovering
co-expressed gene pairs that are regulated by another gene.
However, Li (2002) only considered the scenario where all three
variables X,Y ,Z are one-dimensional. Li et al. (2004) extended
the notion of liquid association to the scenario of a multivariate
X and a scalar Z, and sought two linear combinations γ �

1 X and
γ �
2 X such that corr(γ �

1 X, γ �
2 X|Z) varies the most with Z. Ho

et al. (2011) and Yu (2018) developed some modified versions
of liquid association, but still focused on the one-dimensional
X,Y ,Z scenario. Relatedly, Chen, Xie, and Li (2011) proposed
a bivariate conditional normal model to identify the variables
that regulate the co-expressions between two genes. That cor-
responds to the scenario with a scalar X, a scalar Y and a
multivariate Z. Abid et al. (2018) proposed contrastive principal
component analysis for a multivariate X and a binary scalar

Z, which sought linear combinations of X that have the largest
changes in the conditional variance given Z = 0 versus Z = 1.
Moreover, Lock et al. (2013); Li and Jung (2017) developed a
class of matrix and tensor factorization methods, which aimed
to decompose the multimodal data into the components that
capture joint variation shared across modalities, and the com-
ponents that characterizemodality-specific variation. Their goal
is again different from ours, as their methods did not target the
conditional distribution ofX,Y givenZ. Finally, Xia et al. (2019)
analyzed a similar dataset as our motivation example, but tack-
led a totally different problem. They studied hypothesis testing
of covariance between the twomultivariate PETmeasurements,
and worked on the residuals after regressing out the age effect,
which involves no conditioning of any third set of variables.

1.3. Proposal and Contributions

In this article, we study the three-way association among mul-
tivariate X,Y ,Z, and seek a set of linear combinations of X and
Y that has a varying association as Z varies. We generalize the
notion of liquid association of Li (2002) from the univariate case
to the multivariate case, and develop a population dimension
reduction framework for three-way association analysis. Our
extension is far from trivial though, resulting in a completely dif-
ferent estimation method and the associated asymptotic theory.
For the estimation, we transform the liquid association analysis
to the problem of sparse Tucker decomposition of a three-way
tensor, and introduce sparsity for the linear combinations to
improve the interpretability. We then develop a higher-order
orthogonal iteration algorithm for parameter estimation, and
establish its algorithmic convergence. For the theory, we estab-
lish a populationmodel that is essential for the study of statistical
properties. We derive the error bound and consistency, while
allowing the variable dimensions p1, p2, p3 to be larger than and
to diverge to infinity along with the sample size n. As a result,
our proposal makes some useful contributions from both the
scientific and statistical perspectives.

Scientifically, characterizing the associations between differ-
ent modalities given other modalities or covariates is of cru-
cial importance for multimodal integrative analysis. However,
there is almost no existing statistical solution available for this
type of problem, especially when the modalities involved are
high-dimensional. Our proposal offers a unique angle for this
important problem. As an illustration, for our multimodal PET
study, understanding the patterns between amyloid-beta and tau
with respect to age would offer insight about how pathological
proteins of Alzheimer’s disease interact in the aging brains.

Statistically, our proposal of generalized liquid association
analysis makes a useful addition to the toolbox of associa-
tion analysis of more than two sets of variables. Moreover, our
method involves sparse tensor decomposition, which is itself of
independent interest. Tensor data analysis is gaining increasing
attention in recent years (Kolda and Bader 2009; Zhou, Li, and
Zhu 2013; Sun et al. 2017; Bi, Qu, and Shen 2018; Tang, Bi,
and Qu 2019; Zhang and Han 2019; Hao, Zhang, and Cheng
2020, among others); see also Bi et al. (2021) for a review of
tensor analysis in statistics. Nevertheless, our proposal differs
in several ways. In particular, our sparse tensor decomposition
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algorithm is related to some recent singular value decomposi-
tion (SVD) type solutions for matrix denoising (Yang, Ma, and
Buja 2016) and tensor denoising (Zhang and Han 2019), in that
they share a similar iterative hard thresholding SVD scheme.
However, our algorithm is tailored to the tensor parameter esti-
mation with more flexible initialization and tuning. As a result,
our theoretical analysis differs considerably from the denoising
problems. Whereas both Yang, Ma, and Buja (2016) and Zhang
and Han (2019) achieved the minimax optimal estimation for
their denoising problems, we establish the dimension reduction
subspace recovery consistency, variable selection consistency,
and tensor parameter estimation consistency. Our rate of con-
vergencematches the optimal rate in previous works, and all the
consistency results are established in the ultrahigh dimensional
setting of s log(p) = o(n), where s = s1s2s3 and p = p1p2p3 are
the products of the number of nonzero entries and dimensions,
respectively, of X, Y and Z. Our theoretical development is
highly nontrivial, and may be of independent interest for future
research involving tensor parameter estimation in a statistical
model with iid data. In a sense, our work further broadens the
scope of higher-order sparse SVD and tensor analysis.

The rest of the article is organized as follows. Section 2
develops the concept of generalized liquid association, and the
corresponding population model of generalized liquid associ-
ation analysis. Section 3 introduces the estimation algorithm,
and Section 4 establishes the theoretical guarantees. Section 5
presents the simulations, and Section 6 revisits the multimodal
PET study. Section 7 concludes the paper with a discussion,
and the supplementary material collects all technical proofs and
additional results.

2. Generalized Liquid Association Analysis

We first generalize the concept of liquid association from the
univariate case to the multivariate case. The conceptual gener-
alization itself is straightforward. Nevertheless, it motivates us
to develop a dimension reduction model, along with an opti-
mization formulation, that connects to the problem of tensor
decomposition. We show that the solution to this optimization
problem is closely related to the low-dimensional representation
in the generalized liquid association analysis that we seek. Our
method, in a sense, provides a new dimension reduction frame-
work for three-way association analysis.

2.1. Generalized Liquid Association

We begin with a brief review of the concept of liquid association
(LA) proposed by Li (2002) for the univariate case. We then
extend this notion to the multivariate case.

Suppose X,Y ,Z are random variables with mean zero and
variance one. Define g(z) = E(XY|Z = z) : R �→ R. Li (2002)
defined the liquid association of X and Y given Z as,

LA(X,Y|Z) = E
{
dg(Z)

dZ

}
= E

{
d
dZ

E(XY|Z)

}
,

When Z follows a standard normal distribution, by Stein’s
Lemma (Stein 1981), we have,

LA(X,Y|Z) = E
{
g(Z)Z

} = E(XYZ).

Intuitively, LA(X,Y|Z) characterizes the change of the asso-
ciation of X and Y conditioning on Z through g(z), and the
normality condition connects this quantity with the simple
unconditional expectation E(XYZ). In practice, the univariate
Z is transformed to standard normal using the normal score
transformation, and the LA measure is estimated by the sample
mean E(XYZ). Li et al. (2004) considered an extension of LA to
a multivariate X ∈ R

p1 and a scalar Z, by looking for two linear
combinations, such that LA(γ �

1 X, γ �
2 X|Z) = γ �

1 E(XX�Z)γ 2
is maximized. It has a close-form solution that γ 1 = (v1 +
vp)/

√
2, γ 2 = (v1 − vp)/

√
2, where v1 and vp are the eigen-

vectors of the matrix E(XX�Z) ∈ R
p×p with the largest and

smallest eigenvalues.
We next extend the concept of liquid association to the

multivariate case, where X ∈ R
p1 , Y ∈ R

p2 , and Z ∈ R
p3 .

Without loss of generality, suppose each variable entry in X, Y ,
andZ are standardizedwithmean zero and variance one. Define

g(z) = E(XY�|Z = z) : Rp3 �→ R
p1×p2 .

We introduce the generalized liquid associationmeasure, which
is a three-way tensor.

Definition 1. The generalized liquid association (GLA) ofX and
Y with respect to Z is,

� = GLA(X,Y|Z) = E
{

d
dZ

g(Z)

}
∈ R

p1×p2×p3 .

When Z follows a multivariate normal distribution, by the
multivariate version of Stein’s Lemma (Liu 1994, Lemma 1), we
have the following property regarding �.

Proposition 1. If Z ∼ Normal(0,�Z), then � = E(X ◦ Y ◦
Z) ×3 �−1

Z , where ◦ denotes the outer product, and ×3 denotes
the mode-3 product between a tensor and a matrix.

This conceptual extension from univariate to multivariate
variables is straightforward. However, we recognize that all
X,Y and Z can be high-dimensional in that p1, p2, p3 > n,
and the dimension of � is p1p2p3, which can be ultrahigh-
dimensional. Besides, it involves the inversion of a potentially
high-dimensional covariance matrix �Z , which makes a direct
calculation or any operation on � difficult, if not completely
infeasible. Finally, the normality assumption can be restrictive,
and there may be no simple way to transform a multivariate
Z to follow an approximate normal distribution. Next, we
develop a dimension reduction model for �, which reduces the
dimensionality, avoids�−1

Z , and improves the interpretability of
the result. We also examine the normality assumption carefully,
and show that it is not absolutely necessary for our generalized
liquid association analysis.

2.2. Dimension ReductionModel for Three-Way
Association

Wenext propose a dimension reductionmodel for the three-way
association analysis. Our goal is to seek the linear combinations
of X and Y that change the most as Z or its linear combinations
change. Specifically, we first postulate that the matrix g(z) =
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E(XY�|Z = z) ∈ R
p1×p2 varies within a low-dimensional

subspace for all values of z, in that

g(z) = E(XY�|Z = z) = �1f z(z)�
�
2 ,

for some semi-orthogonal basis matrices �k ∈ R
pk×rk , k = 1, 2,

and some latent function f z : Rp3 �→ R
r1×r2 . This implies that

the linear combinations��
1 X and��

2 Y capture all the variations
in the first two modes of the generalized liquid association
tensor �. Next, we further assume that g(z) depends on Z only
through a few linear combinations ��

3 Z of Z, for some semi-
orthogonal basis matrix �3 ∈ R

p3×r3 . Putting these two dimen-
sion reduction structures together, we obtain our dimension
reduction model for the general three-way association analysis:

g(z) = E(XY�|Z = z) = �1f (��
3 z)��

2 , (1)

for some latent function f : Rr3 �→ R
r1×r2 . This model is to

serve as the basis for our subsequent generalized liquid associa-
tion analysis. Later, we further introduce sparsity to (�1,�2,�3)
to improve the interpretability of the linear combinations in
model (1).

2.3. Generalized Liquid Association Analysis via Tensor
Decomposition

We propose to estimate the linear combination coefficient �k
in the dimension reduction model (1), or more accurately, the
subspace span(�k) spanned by the columns of �k, k = 1, 2, 3,
by solving the following optimization problem,

minimizeG1,G2,G3

∥∥� − � ×1 PG1 ×2 PG2 ×3 PG3

∥∥2
F , (2)

where � = E(X ◦ Y ◦ Z) ∈ R
p1×p2×p3 , Gk ∈ R

pk×rk

is a semi-orthogonal matrix, PGk = Gk(G�
k Gk)

−1G�
k is the

projection onto the subspace span(Gk), and ×k is the mode-k
product between a tensor and a matrix, k = 1, 2, 3. We first note
that the optimization in (2) is actually the well-known tensor
Tucker decomposition (Kolda and Bader 2009). Let (G′

1,G′
2,G′

3)
denote the populationminimizer of (2).We next carefully study
the connections among (G′

1,G′
2,G′

3), the linear combination
coefficient (�1,�2,�3) in model (1), and the GLA measure �

in Definition 1.
Toward that end, we introduce an intermediate optimization

problem,

minimizeG1,G2,G3

∥∥� − � ×1 PG1 ×2 PG2 ×3 PG3

∥∥2
F . (3)

Let (G′′
1 ,G′′

2 ,G′′
3) denote the population minimizer of (3). Then

(G′′
1 ,G′′

2 ,G′′
3) is also the solution to the maximization problem,

maximizeG1,G2,G3

∥∥� ×1 PG1 ×2 PG2 ×3 PG3

∥∥2
F .

In other words, solving (3) helps find the linear combinations
of X and Y whose generalized liquid association given some
linear combination of Z is maximized. In this sense, it achieves
our goal of finding the most contrastive associations of X and Y
given Z.

The next theorem characterizes the relations among
(G′′

1 ,G′′
2 ,G′′

3), (G′
1,G′

2,G′
3), and (�1,�2, �3). Basically, it says

minimizing (2) and (3) give the same estimates of �1 and �2 in
model (1), in that they span the same subspaces. Furthermore,
if Z is normally distributed, then the estimates of �3 under the
two minimizations differ by a rotation.

Theorem 1. Suppose model (1) holds. Then, (a) span(�k) =
span(G′′

k) = span(G′
k), for k = 1, 2; and (b) span(�3) =

span(G′′
3) = �−1

Z span(G′
3), if Z is normally distributed.

Theorem 1 justifies that we can achieve our goal of finding
the linear combinations ofX andY that are themost contrastive
given Z through the optimization problem (2), with two cru-
cial implications. First, (2) only involves the three-way tensor
�, but does not require the inversion of the potentially high-
dimensional matrix �−1

Z as in � in (3). Second, and perhaps
more importantly, we do not require the normality of Z. This
is because, regardless of the distribution of Z, the minimizer
(G′

1,G′
2) from (2) is the same as the minimizer (G′′

1 ,G′′
2) from

(3), and thus, they share the same interpretation. Only if we aim
to recover �3, then we need both �−1

Z and the normality of Z.
However, we argue that, in our generalized liquid association
analysis, our primary goal is to find the linear combinations ofX
and Y that change the most given Z. As such, we are more inter-
ested in the estimation of �1 and �2, whereas the estimation
of �3 provides additional dimension reduction, but is, relatively
speaking, of less interest. Our proposed dimension reduction
model (1) essentially serves as a bridge that connects the two
optimization problems (2) and (3), which in turn connects the
Tucker decomposition formulation in (2) with the generalized
liquid association measure � in Definition 1.

Finally, we remark that, our proposal is similar in spirit to
an SDR method, the principal Hessian directions (Li 1992). It
was also derived based on Stein’s Lemma, but was proven useful
for finding low-dimensional representations in graphics (Cook
1998), and for detecting interaction terms in regressions (Tang,
Fang, and Dong 2020), even without the normality.

3. Sparse Tensor Estimation

Tucker decomposition is usually solved by a tensor SVD type
algorithm, for example, a higher-order orthogonal iteration
(HOOI) algorithm, which was first proposed by De Lathauwer,
De Moor, and Vandewalle (2000), and later studied in statistical
models (e.g., Zhang and Xia 2018; Luo et al. 2020). Next, we
develop an iterative algorithm to solve (2).We further introduce
sparsity in this decomposition to improve the interpretability of
the result.

For n iid data observations {Xi,Y i,Zi, i = 1, . . . , n}, with-
out loss of generality, we assume the data is centered, so that∑n

i=1 Zi = 0. The centering of Xi and Y i is not required, but
for simplicity, we assume

∑n
i=1 Xi = ∑n

i=1 Y i = 0 as well.
Then the sample estimator of � is simply �̃ = n−1 ∑n

i=1 Xi ◦
Y i ◦Zi ∈ R

p1×p2×p3 . Following the dimension reduction model
(1) and the optimization problem (2), �̃ admits a Tucker tensor
decomposition structure, which can be solved by some version
of the higher-order singular value decomposition algorithm.
Specifically, we simplify the STAT-SVD algorithm recently pro-
posed by Zhang and Han (2019) for the tensor denoising prob-
lem, and tailor it to our generalized liquid association analysis
problem to estimate �k, k = 1, 2, 3. It consists of two major
components, SVD of amatrix, and hard thresholding to identify
important variables. We summarize the estimation procedure
in Algorithm 1, then discuss each step in detail. We further
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Algorithm 1 Generalized liquid association analysis via sparse
tensor decomposition.
Input: The centered data {Xi ∈ R

p1 ,Y i ∈ R
p2 ,Zi ∈

R
p3 , i = 1, . . . , n}, the Tucker ranks rk ≤ pk, and the sparsity

parameters (ηk, η̃k), k = 1, 2, 3.
Step 1, initialization: Compute the sample estimate �̃ =
n−1 ∑n

i=1 Xi ◦ Y i ◦ Zi. Obtain the initial active set Î(0)k , and
the initial basis matrices by,

Î(0)k =
{
j : ||(�̃k)[j,:]||∞ ≥ ηk

}
,

�̂
(0)
k = SVDrk

{
DÎ(0)k

�̃kDÎ(0)−k

}
∈ R

pk×rk , k = 1, 2, 3.

repeat
Step 2a: Update the active set: Î(t)k ={
j : ||(�̃k)[j,:]�̂

(t)
−k||22 ≥ η̃k

}
, k = 1, 2, 3.

Step 2b: Perform SVD: �̂
(t)
k = SVDrk

{
DÎ(t)k

�̃k�̂
(t)
−k

}
∈

R
pk×rk , k = 1, 2, 3.

until some stopping criterion is met.
Output: The estimated basis matrices �̂k, k = 1, 2, 3, and
�̂ = �̃ ×1 P�̂1

×2 P�̂2
×3 P�̂3

.

study the algorithmic convergence of the estimation procedure
in Section S2 of the supplementary material. It is also noted
that, in our formulation, we allow the number of variables pk,
k = 1, 2, 3, to be much larger than the sample size n.

We first introduce somenotation. For a vector a = (ai) ∈ R
p,

define the �2-norm as ||a||2 = (
∑p

i=1 a
2
i )

1/2, and the �∞-norm
as ||a||∞ = max1≤i≤p |ai|. For a matrix A = (aij) ∈ R

p×q,
define the Frobenius norm as ||A||F = (

∑p
i=1

∑q
j=1 a

2
ij)

1/2. For
an integer p, let [p] denote the set {1, . . . , p}. For the index sets
I ⊆ [p], J ⊆ [q], let A[I,J] denote the corresponding |I| × |J|
submatrix, while the whole index set [p] is simplified as “:”; for
example, A[[p],J] = A[:,J]. Let SVDr(A) ∈ R

p×r denote the left
r singular vectors of A, with r ≤ q. Let �̃k and �k denote the
mode-kmatricization of the tensors �̃ and�, k = 1, 2, 3. Define
�−1 = �2 ⊗ �3,�−2 = �3 ⊗ �1,�−3 = �1 ⊗ �2, where ⊗ is
the Kronecker product. Define the active sets of variables in the
generalized liquid association analysis as,

Ik = {
j : (�k)[j,:] �= 0, 1 ≤ j ≤ pk

} ⊆ [pk], k = 1, 2, 3. (4)

As an example, the jth variableXj inX corresponds to the jth row
of �1 ∈ R

p1×r1 , j = 1, . . . , p1. Therefore, variable selection in X
translates to the row-wise sparsity in �1, and correspondingly,
the row-wise sparsity in �1 ∈ R

p1×(p2p3). Define the diagonal
matrixDIk ∈ R

pk×pk that has one on the ith diagonal element if
i ∈ Ik and zero elsewhere. This matrix represents variable selec-
tion along each mode, and is used repeatedly in our estimation
algorithm. Define DI−1 = DI2 ⊗ DI3 , whereas I−1 denotes the
pair of subsets I2 and I3. Define DI−2 ,DI−3 , I−2, I−3 similarly.
Also define �̂−k, Î−k in a similar fashion.

We start the algorithm by computing the sample estimate
�̃, then perform the initial selection of important variables
and initial SVD in Step 1 of Algorithm 1. From (4), we see
the selection of important variables can be achieved based on

||(�̃k)[j,:]|| for some appropriate norm || · ||. In the initialization
step, we employ the �∞-norm, and achieve the selection by hard
thresholding under the sparsity parameter ηk. The two diagonal
matrices DÎ(0)k

, DÎ(0)−k
operate as the subset selection operator

within the SVD operator. Depending on the sparsity parameter
ηk, we may keep all the variables in the active set, that is, Îk =
[pk].

Next, we iterate the algorithm by repeatedly selecting impor-
tant variables and performing SVD in Step 2 of Algorithm 1.We
continue to do the selection by hard thresholding, but we use a
different norm, that is, the �2-norm rather than the �∞-norm,
and a different sparsity parameter η̃k. This change of the norm
is practically useful because of the following consideration. In
the initialization step, the column dimension of �̃k is

∏
k′ �=k pk′

and is often very large, and thus, the �∞-norm is more effective
in screening out the zero rows in �̃k. During the iterations, the
active variable set Ik is selected based on �̃k�−k, which has
a much smaller column dimension

∏
k′ �=k rk′ . As such, the �2-

norm is preferred to being able to pick up potentially weaker
signals and to refine the selection from the initialization. More-
over, a different thresholding parameter η̃k during the iterations
gives more flexibility.

We alternate Steps 2a and 2b until some termination criterion
is met. That is, we terminate the algorithm if the consecutive
estimates are close enough, in that the difference between the
squared �2-norm of the singular values of the two iterations is
smaller than 10−6, or if the algorithm reaches the maximum
number of iterations, say, 100. In our numerical experiments,
we find that the algorithm converges fast, usually within 10–
20 iterations. We output the estimated basis matrices �̂k, k =
1, 2, 3, alongwith the updated estimate �̂ = �̃×1P�̂1

×2P�̂2
×3

P
�̂3

that follows a Tucker decomposition.
Our algorithm is related to the STAT-SVD algorithm of

Zhang and Han (2019), in that we both use hard threshold-
ing SVD iteratively. However, Zhang and Han (2019) targeted
a tensor denoising problem involving identically distributed
normal errors, and used a double thresholding scheme with a
theoretical thresholding value. Their algorithm, after obtaining
the variance of the errors, became tuning-free in terms of the
thresholding parameter. By contrast, we aim to obtain a low-
rank tensor estimator in the context of generalized liquid asso-
ciation analysis. The sample estimator does not have iid entries,
and we use a single thresholding scheme with two data-driven
tuning parameters. This leads to a more flexible tuning, and
consequently an utterly different approach for the asymptotic
analysis.

The thresholding values ηk and η̃k are treated as tuning
parameters, and we propose a prediction-based approach for
tuning. That is, we first randomly split the data into a training
set and a testing set, and obtain the sample estimates �̃

train and
�̃

test separately. We then apply Algorithm 1 to �̃
train to obtain

�̂
train
k (η), k = 1, 2, 3, under a given set of tuning parameters η =

(η1, η2, η3, η̃1, η̃2, η̃3).We choose η tominimize the discrepancy,

L(η) =
∥∥∥�̃

test − �̃
test ×1 P

�̂
train
1 (η)

×2 P
�̂
train
2 (η)

×3 P
�̂
train
3 (η)

∥∥∥
F
.

(5)
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Meanwhile, the ranks (r1, r2, r3) take some pre-specified values.
In practice, rk is often taken as 1 or 2 for exploratory analysis
and data visualization. This is similar in spirt as canonical
correlation analysis. Actually, rank selection is still an open and
active topic in CCA and tensor problems, and we leave a full
treatment of rank selection as future research.

4. Theoretical Properties

We establish the theoretical guarantees for the estimated Tucker
tensor �̂ = �̃ ×1 P�̂1

×2 P�̂2
×3 P�̂3

, the estimated subspace
basis matrices �̂k, and the estimated active sets Î(t)k , k = 1, 2, 3,
from Algorithm 1. In our theoretical analysis, we allow both
the tensor dimension p = ∏3

k=1 pk and the sparsity level s =∏3
k=1 sk to diverge with the sample size n, while we fix the

tensor rank r = ∏3
k=1 rk. We begin with two mild regularity

conditions.

(A1) Suppose |Xj1Yj2 | ≤ M, for some constant M > 0, j1 =
1, . . . , p1, j2 = 1, . . . , p2, and suppose Zj3 is sub-Gaussian
with the parameter σ 2 > 0, j3 = 1, . . . , p3.

(A2) Suppose λ ≥ max{C1
√
s log p/n,C2}, for some constants

C1,C2 > 0, where λ ≡ min{λ1, λ2, λ3}, and λk is the
smallest nonzero singular value of �k, k = 1, 2, 3.

Assumption 4 requires X and Y to be bounded, and Z to be
sub-Gaussian, which are necessary to establish the concentra-
tion of each element in �̃ to its population counterpart. The sub-
Gaussian assumption is weaker than the normality assumption,
and is widely used in high-dimensional nonasymptotic analysis
(see, e.g., Wainwright 2019). Besides, it assumes each individual
Zk to be sub-Gaussian, which is weaker than assuming the joint
distributionZ is sub-Gaussian. The constantσ 2 does not require
all Zj3 to have the same variance. If Zj3 is sub-Gaussian with the
parameter σ 2

j3 , j3 = 1, . . . , p3, then we can set σ 2 = maxj3 σ 2
j3 .

Assumption 4 ensures that there is a reasonable gap between the
zero and nonzero eigenvalues in �k, under which the consis-
tency for the estimator �̂k is ensured. This type of assumption on
the eigenvalues is frequently used in high-dimensional singular
value decomposition (Yu,Wang, and Samworth 2015; Yang,Ma,
and Buja 2016; Zhang and Han 2019).

Next, we derive the nonasymptotic error bound and vari-
able selection property of our estimators. Let �̂, �̂k, and Îk,
k = 1, 2, 3, denote the estimators and the corresponding active
sets returned from Algorithm 1 after tmax iterations, under the
theoretical thresholding values ηk = √

α log p/n, and η̃k =
αs−k log p/n, where α = 513(M + σ)4, and M, σ are as
defined in Assumption 4. Moreover, since the basis matrix �̂k is
identifiable only up to an orthogonal rotation, we characterize
its bound in terms of the projection matrix P

�̂k
.

Theorem 2 (Nonasymptotic properties). Suppose Assump-
tions 4, 4, and model (1) hold. Then, with probability at

least 1 − Cmax
[
p−γ , p−

{√
n(γ+1)/(2 log p)−1

}]
, (a) ||�̂ −

�||F ≤ (c1 + c22−tmax)
√
s log p/n; (b) ||P

�̂k
− P�k ||F ≤

(c3 + c42−tmax)
√
s log p/n, k = 1, 2, and ||P

�̂3
− PG′

3
||F ≤

(c3 + c42−tmax)
√
s log p/n; and (c) Îk ⊆ Ik, k = 1, 2, 3, where

γ ,C, c1, c2, c3, c4 are some positive constants.

Wemake a few remarks. First, statements (a) and (b) establish
the nonasymptotic error bound for the Tucker tensor estimator
�̂, as well as the subspace spanned by the basis matrix �̂k, k =
1, 2, 3. Note that �̂1, �̂2 directly targetG′

1,G′
2 from optimization

(2), which, by Theorem 1(a), are the same as �1,�2 in our
dimension reduction model (1), as well as G′′

1 ,G′′
2 from the

generalized liquid association measure �, in the sense that they
span the same subspaces. Meanwhile, �̂3 targets the population
minimizerG′

3 from (2), which, by Theorem 1(b), differs from�3
in model (1) and G′′

3 from � by a rotation, when Z is normally
distributed. However, as we have discussed after Theorem 1, our
primary interest is to recover�1,�2, rather than�3. As such, we
donot require the normality assumption for Theorem2. Second,
the error bounds in statements (a) and (b) are functions of the
maximum number of iterations tmax, and they decrease when
tmax increases. As such, our estimators are to have improved
accuracy with more iterations. Third, statement (c) shows that
ourmethod avoids selecting inactive variables with a high prob-
ability. This result is similar to that in Zhang and Han (2019),
and can be viewed as a weaker version of variable selection
consistency when compared to Theorem 3 below. Fourth, we
treat tmax as a constant in this section, regardless of the tensor
dimension or sample size. This is because the algorithm con-
verges fast, often within 10–20 iterations. On the other hand,
we can easily extend the results by allowing tmax to diverge.
For instance, parallel to Zhang and Han (2019), we can let tmax
diverge at the rate of o(p). Finally, when the sample size n is
sufficiently large, that is, when n � log p, the statements in
Theorem 2 hold with probability at least 1 − Cp−γ . Besides,
the constants c1, . . . , c4 depend on the constants M and σ in
Assumption 4, and their explicit forms are given in Section S5.3
of the supplementary material.

We also briefly comment that, in real applications, themodal-
ities may be low-dimensional or have no sparsity. Accordingly,
we can modify Algorithm 1 to a nonsparse version, by setting
ηk = 0 in Step 1, and η̃k = 0 in Step 2, for k = 1, 2, 3. We give
the corresponding nonasymptotic error bounds in Section S3 of
the supplementary material.

Next, we establish the asymptotic consistency of the tensor
parameter estimation, subspace estimation and variable selec-
tion as n, p, s diverge to infinity. We allow s log p = o(n), that
is, each tensor dimension pk can diverge faster than the sample
size n.

Corollary 1 (Asymptotic consistency). Suppose the conditions in
Theorem 2 hold, and s log p = o(n). Then, as n, p, s → ∞, with
probability tending to one, (a) ||�̂ − �||F → 0; (b) ||P

�̂k
−

P�k ||F → 0, k = 1, 2, and ||P
�̂3

− PG′
3
||F → 0; and (c) Îk ⊆ Ik,

k = 1, 2, 3.

While Theorem 2(c) shows that our method can exclude
the inactive variables from the selection, we show in the next
theorem that our method can exactly recover the active vari-
ables, with a high probability. We need an additional regularity
condition.
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(A3) Suppose δmin ≥ C3
√
s log p/n, for some sufficiently

large constant C3, where δmin ≡ min
k∈{1,2,3},i∈Ik

||(�k)[i,:]||2
denotes the minimal signal strength.

Theorem 3 (Variable selection consistency). Suppose Assump-
tions 4 to 4, and model (1) hold. Then, with probability at least

1−C′ max
[
p−γ , p−

{√
n(γ+1)/(2 log p)−1

}]
, we have, Îk = Ik, for

k = 1, 2, 3, where γ ,C′ are some positive constants.

Assumption 4 ensures the signal of the active variables is of a
reasonable strength when n, p, s diverge, which in turn leads to
the variable selection consistency in Theorem 3. Note that δmin
is also the minimal Frobenius norm of the nonzero slices in �,
that is, the slices of � corresponding to those variables i ∈ Ik,
k = 1, 2, 3. We feel this assumption is reasonable. Actually, if
we allow s, p to diverge with n at the rate of s log p = o(n), and
suppose the nonzero entries of � are bounded away from zero,
then this assumption is satisfied.

5. Simulation Studies

5.1. Simulation Setup

We carry out the simulations to investigate the empirical per-
formance of the proposed generalized liquid association anal-
ysis (GLAA) method. We consider three scenarios. In the first
scenario, we fix the dimension of Z at p3 = 1, and increase the
dimensions of X and Y as p1 = p2 = {100, 200, 300, 400, 500}.
In the second scenario, we fix p1 = p2 = 100, and increase
p3 = {20, 40, 60, 80, 100}. In both cases, we fix the sample size at
n = 500. In the third scenario, we fix p1 = 100, p2 = 25, p3 = 1,
and increase the sample size n = {60, 80, 100, 120, 160}. We
generate the data in the following way. For i = 1, . . . , n, we
first generate Zi from a normal distribution with mean zero and
covariance Ip3 . We then generate (Xi,Y i) jointly from a normal
distribution with mean zero and covariance,

cov(X,Y|Z = Zi) =
(

�X �1f (��
3 Zi)�

�
2

�2f�(��
3 Zi)�

�
1 �Y

)
.

To ensure the positive-definiteness of this covariance matrix,
we set �1 = �

1/2
X (O�

1 , 0)� and �2 = �
1/2
Y (O�

2 , 0)�, where
O1 = O2 ∈ R

5×2 with the first column being (1, 1, 1, 1, 1)/
√
5,

and the second column being (0, 0, 0,−1, 1)/
√
2. As a result, in

this example, for X and Y , the ranks are r1 = r2 = 2, and the
sparsity levels are s1 = s2 = 5. The marginal covariance matrix
�X is set as a block diagonal matrix, �X = bdiag(�X,1,�X,2),
where �X,1 ∈ R

s1×s1 corresponds to the active variables in X
and takes the form of an AR structure such that its (i, j)th entry
equals σij = 0.3|i−j|, i, j = 1, . . . , s1, and�X,2 ∈ R

(p1−s1)×(p1−s1)

is the identity matrix. The marginal covariance matrix �Y is
constructed in a similar fashion. The matrix f (��

3 Zi) is set
as diag{f1(��

3 Zi), f2(��
3 Zi)}, where f1(a) = 0.95sign(a) and

f2(a) = 0.85sign(a). In the Appendix, we consider additional
simulations using f (a; ρ, ξ) = ρ{2/(1 + e−2ξa) − 1}, with
different parameters 0 < ρ ≤ 1 and ξ > 0 that control
the magnitude and speed of changes in cov(X,Y|Z). For the
first and the third scenarios, p3 = 1 and thus, �3 = 1. For
the second scenario, where p3 varies from 20 to 100, we set

�3 = (1, 1, 1, 1, 1, 0, . . . , 0), with s3 = 5 and r3 = 1. When
applying the proposed method, we adopt the theoretical forms
for the tuning parameters, that is, ηk = √

ζ log p/n, and η̃k =
ζ s−k log p/n, and tune ζ following the approach in (5).

There is no existing method designed to directly address our
targeting problem. For the purpose of comparison, we consider
three relevant solutions. The first solution we consider is a
naive and marginal extension of the univariate liquid associ-
ation (ULA) method from Li (2002). That is, we construct a
tensor estimator �̃, each entry of which is the sample univariate
LA for the triplet (Xj1 ,Yj2 ,Zj3) as defined in Li (2002), j1 =
1, . . . , p1, j2 = 1, . . . , p2, j3 = 1, . . . , p3. We then perform the
usual SVD to each mode-kmatricization of �̃, denoted by �̃(k),
under the given rank to obtain the estimates of basis matrices;
that is, SVDrk

{
�̃(k)

}
, k = 1, 2, 3. The second and third solutions

we consider are two different versions of canonical correlation
analysis, the penalizedmatrix decomposition (PMD)method of
Witten, Tibshirani, and Hastie (2009), and the sparse canonical
correlation analysis (SCCA) method of Mai and Zhang (2019).
We have chosen these two versions due to their computational
simplicity and superior empirical performance. We note that
CCA is not designed to incorporate the third set of variables Z.
We thus, simply take the first r1 and r2 directions of X and Y
from CCA as the estimated basis matrices corresponding to �1
and �2. We evaluate the performance of each method in terms
of the variable selection accuracy and the subspace estimation
accuracy.

For variable selection, we record the true positive rate (TPR)
and false positive rate (FPR) for each mode. Recall from (4), the
active set of variables is Ik, which is also the index set of nonzero
rows in �k. Let Îk denote the estimated active set corresponding
to �̂k, then TPR-k = |Ik∩ Îk|/sk and FPR-k = |Ick∩ Îk|/(pk−sk),
k = 1, 2, 3. For GLAA, PMD and SCCA, we estimate the active
set as Îk = {

i : there exist nonzero elements in the ith row of
�̂k

}
. ForULA, it does not perform any variable selection. For the

purpose of comparison, we simply calculate the �2-normof each
row for the kth matricization �̃(k), arrange the row indices in a
descending order by the �2-norms, then select the first sk rows
for each mode, k = 1, 2, 3. Of course, the information about
sk is generally unknown in practice, and this solution utilizes
such knowledge. Even so, as we show later, ULA is still far less
effective compared to the proposed GLAA method.

For subspace estimation, we compute the average dis-
tance between the true and the estimated subspaces, D =∑k̃

k=1 D(�k, �̂k)/k̃, where D(�k, �̂k) = ∥∥P�k − P
�̂k

∥∥
F/

√
2rk.

Note that, since Z is normal with an identity matrix in this
example, �̂3 is estimating span(�3) = span(G′

3) = span(G′′
3).

For PMD and SCCA, this distance measure is averaged over
the first two modes X, Y , so k̃ = 2. For GLAA and ULA, it
is averaged over the first two modes in the first and the third
scenarios, then k̃ = 2, and it is averaged over all three modes of
X, Y , and Z in the second scenario, so k̃ = 3. By definition, this
distance measure is between 0 and 1, where 0 indicates a perfect
recovery.

5.2. Simulation Results

Tables 1–3 summarize the simulation results over 100 replica-
tions for the three scenarios.
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Table 1. Simulation results for Scenario 1 where p1 = p2 varies.

p1, p2 Method TPR-1 FPR-1 TPR-2 FPR-2 D

100 GLAA 1.000 (0.000) 0.000 (0.000) 1.000 (0.000) 0.000 (0.000) 0.095 (0.002)
ULA 0.998 (0.002) 0.000 (0.000) 0.996 (0.003) 0.000 (0.000) 0.776 (0.002)
PMD 0.804 (0.028) 0.735 (0.029) 0.802 (0.029) 0.731 (0.028) 0.971 (0.002)
SCCA 0.584 (0.030) 0.626 (0.027) 0.634 (0.030) 0.629 (0.027) 0.989 (0.001)

200 GLAA 1.000 (0.000) 0.000 (0.000) 1.000 (0.000) 0.000 (0.000) 0.100 (0.003)
ULA 0.928 (0.010) 0.002 (0.000) 0.944 (0.009) 0.001 (0.000) 0.873 (0.002)
PMD 0.766 (0.033) 0.731 (0.029) 0.762 (0.033) 0.727 (0.029) 0.989 (0.001)
SCCA 0.596 (0.031) 0.611 (0.027) 0.626 (0.035) 0.611 (0.027) 0.993 (0.001)

300 GLAA 1.000 (0.000) 0.000 (0.000) 1.000 (0.000) 0.000 (0.000) 0.100 (0.003)
ULA 0.808 (0.016) 0.003 (0.000) 0.806 (0.016) 0.003 (0.000) 0.945 (0.003)
PMD 0.718 (0.032) 0.693 (0.030) 0.730 (0.034) 0.696 (0.029) 0.992 (0.001)
SCCA 0.670 (0.028) 0.651 (0.019) 0.624 (0.028) 0.651 (0.018) 0.997 (0.000)

400 GLAA 0.932 (0.024) 0.008 (0.004) 0.930 (0.025) 0.008 (0.004) 0.186 (0.025)
ULA 0.652 (0.018) 0.004 (0.000) 0.678 (0.019) 0.004 (0.000) 0.980 (0.002)
PMD 0.798 (0.029) 0.766 (0.026) 0.800 (0.029) 0.762 (0.026) 0.994 (0.001)
SCCA 0.594 (0.022) 0.601 (0.010) 0.590 (0.024) 0.602 (0.010) 0.997 (0.000)

500 GLAA 0.848 (0.032) 0.041 (0.010) 0.848 (0.033) 0.040 (0.009) 0.304 (0.037)
ULA 0.526 (0.021) 0.005 (0.000) 0.526 (0.020) 0.005 (0.000) 0.989 (0.001)
PMD 0.788 (0.031) 0.727 (0.027) 0.794 (0.030) 0.729 (0.028) 0.995 (0.001)
SCCA 0.532 (0.024) 0.518 (0.008) 0.532 (0.024) 0.516 (0.008) 0.997 (0.000)

The reported are the average TPR and FPR for the variable selection accuracy, and D for the subspace estimation accuracy, with the standard errors in the parenthesis. The
results are over 100 replications.

Table 1 reports the accuracy of variable selection and sub-
space estimation for Scenario 1 when the dimension p1 = p2 of
X andY increases. It is clearly seen that GLAA dominates all the
competing solutions. For ULA, even with the oracle knowledge
of the true sparsity level, the naive variable selection of ULA still
performs worse, since it only utilizes the marginal information
of each mode. Besides, the estimated subspace is distant away
from the true subspace. Moreover, as p1, p2 increase, the perfor-
mance of ULA degrades fast, while GLAA remains competitive.
For PMD and SCCA, both suffer large false positive rates in
selection, while the estimated subspaces are almost orthogonal
to the true subspace with D being almost one. This is because,
by design, neither method takes into account the conditioning
variable Z when studying the association between X and Y .

Table 2 reports the results for Scenario 2 when the dimension
p3 ofZ increases. In this case, our goal is to estimate�1,�2 accu-
rately, meanwhile select the variables in X and Y accurately. It
is seen that GLAA outperforms all other methods considerably.
Besides, it shows a competitive performance of GLAA evenwith
a relatively large dimension ofZ. This complements our real data
example where the dimension of Z is one.

Table 3 reports the results for Scenario 3when the sample size
n increases. Here we examine n that is comparable to the sample
size in our multimodal PET example. It is seen that GLAA
performs the best, even under a relatively small n. Moreover, the
performances of all methods improve as n increases. However,
ULA suffers a poor subspace estimation, while both PMD and
SCCA continue to suffer both high false positive rates and poor
subspace estimation accuracy, even for a relatively large n.

6. Multimodal PET Analysis

6.1. Study andData Description

We revisit the multimodal PET study introduced in Section 1.1.
It is part of the ongoingBerkeleyAgingCohort Study that targets

Alzheimer’s disease (AD) as well as normal aging. AD is an
irreversible neurodegenerative disorder and the leading form of
dementia. It is characterized by progressive impairment of cog-
nitive capabilities, then loss of bodily functions, and ultimately
death. AD currently affects more than 10% of adults aged 65 or
older, and the prevalence is continuously growing. It has now
become an international imperative to understand, diagnose,
and treat this disorder (Alzheimer’s Association 2020).

The data consist of n = 81 elderly subjects, with the average
age 77.5 years, and the standard deviation 6.2 years. For each
subject, three types of neuroimages were acquired, including a
PittsburghCompoundB (PiB) PET scan thatmeasures amyloid-
beta protein, an AV-1451 PET scan that measures tau protein,
and a 1.5T structuralMRI scan for coregistration.MRI and PET
images have all been preprocessed, and PET images were both
coregistered to each participant’s MRI image. Moreover, a mask
representing voxels likely to accumulate cortical amyloid and
tau pathology was created (Lockhart et al. 2017). Then a set
of MNI-space regions of interest were created, and the amount
of amyloid-beta and tau deposition was summarized for each
region. This results in p1 = 60 regions for amyloid-beta PET,
and p2 = 26 regions for tau-PET. We note that brain region
parcellation is particularly useful to facilitate the interpretation,
and has been frequently employed in brain imaging analysis
(Fornito, Zalesky, and Breakspear 2013; Kang et al. 2016).

6.2. Analyses and Results

One of the primary goals of this study is to identify brain
regions where the association of amyloid-beta and tau changes
themost as age varies, and to further understand this association
change. This would offer useful insight about how these two
AD pathological proteins interact in the aging brains, which in
turnmay enable more accurate prediction of individual subjects
demonstrating in vivo neuropathology, and allow better design
and subject recruitment of clinical trials to potentially slow the
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Table 2. Simulation results for Scenario 2 where p3 varies.

p3 Method TPR-1 FPR-1 TPR-2 FPR-2 D

20 GLAA 1.000 (0.000) 0.000 (0.000) 1.000 (0.000) 0.000 (0.000) 0.132 (0.004)
ULA 0.642 (0.019) 0.019 (0.001) 0.638 (0.019) 0.019 ( 0.001) 0.872 (0.003)
PMD 0.774 (0.031) 0.733 (0.029) 0.776 (0.031) 0.732 (0.029) 0.978 (0.002)
SCCA 0.518 (0.034) 0.534 (0.029) 0.536 (0.032) 0.532 (0.030) 0.989 (0.001)

40 GLAA 1.000 (0.000) 0.000 (0.000) 1.000 (0.000) 0.000 (0.000) 0.131 (0.004)
ULA 0.488 (0.020) 0.027 (0.001) 0.498 (0.020) 0.026 (0.001) 0.888 (0.002)
PMD 0.774 (0.031) 0.695 (0.030) 0.772 (0.032) 0.695 (0.029) 0.973 (0.002)
SCCA 0.590 (0.034) 0.596 (0.031) 0.624 (0.033) 0.589 (0.031) 0.987 (0.001)

60 GLAA 1.000 (0.000) 0.000 (0.000) 1.000 (0.000) 0.000 (0.000) 0.136 (0.004)
ULA 0.384 (0.020) 0.032 (0.001) 0.404 (0.020) 0.031 (0.001) 0.898 (0.002)
PMD 0.748 (0.030) 0.694 (0.030) 0.754 (0.033) 0.701 (0.030) 0.973 (0.002)
SCCA 0.564 (0.031) 0.537 (0.029) 0.572 (0.031) 0.541 (0.029) 0.985 (0.002)

80 GLAA 0.998 (0.002) 0.000 (0.000) 0.998 (0.002) 0.000 (0.000) 0.145 (0.005)
ULA 0.378 (0.021) 0.033 (0.001) 0.368 (0.019) 0.033 (0.001) 0.903 (0.001)
PMD 0.706 (0.033) 0.689 (0.031) 0.760 (0.032) 0.688 (0.031) 0.975 (0.002)
SCCA 0.624 (0.031) 0.613 (0.027) 0.592 (0.033) 0.609 (0.027) 0.987 (0.002)

100 GLAA 0.996 (0.003) 0.005 (0.005) 0.996 (0.003) 0.005 (0.005) 0.158 (0.010)
ULA 0.332 (0.020) 0.035 (0.001) 0.360 (0.018) 0.034 (0.001) 0.905 (0.001)
PMD 0.712 (0.034) 0.633 (0.033) 0.662 (0.038) 0.633 (0.033) 0.974 (0.002)
SCCA 0.560 (0.033) 0.565 (0.030) 0.586 (0.032) 0.567 (0.030) 0.989 (0.001)

Note: The rest is the same as Table 1.

Table 3. Simulation results for Scenario 3 where n varies.

n Method TPR-1 FPR-1 TPR-2 FPR-2 D

60 GLAA 0.606 (0.025) 0.048 (0.008) 0.664 (0.027) 0.154 (0.021) 0.743 (0.015)
ULA 0.410 (0.022) 0.031 (0.001) 0.362 (0.018) 0.160 (0.004) 0.920 (0.004)
PMD 0.498 (0.040) 0.486 (0.036) 0.552 (0.039) 0.466 (0.036) 0.957 (0.004)
SCCA 0.604 (0.023) 0.590 (0.012) 0.688 (0.023) 0.643 (0.017) 0.968 (0.002)

80 GLAA 0.638 (0.027) 0.018 (0.002) 0.738 (0.025) 0.137 (0.027) 0.662 (0.021)
ULA 0.550 (0.021) 0.024 (0.001) 0.412 (0.018) 0.147 (0.005) 0.895 (0.004)
PMD 0.494 (0.038) 0.441 (0.034) 0.502 (0.038) 0.429 (0.034) 0.953 (0.004)
SCCA 0.672 (0.026) 0.665 (0.016) 0.716 (0.025) 0.718 (0.019) 0.966 (0.003)

100 GLAA 0.820 (0.022) 0.013 (0.004) 0.848 (0.020) 0.060 (0.016) 0.483 (0.024)
ULA 0.686 (0.019) 0.017 (0.001) 0.534 (0.021) 0.117 (0.005) 0.870 (0.004)
PMD 0.510 (0.035) 0.476 (0.032) 0.560 (0.036) 0.442 (0.033) 0.947 (0.004)
SCCA 0.702 (0.027) 0.677 (0.021) 0.732 (0.025) 0.714 (0.024) 0.961 (0.003)

120 GLAA 0.896 (0.018) 0.004 (0.001) 0.914 (0.018) 0.010 (0.003) 0.350 (0.021)
ULA 0.802 (0.017) 0.010 (0.001) 0.622 (0.018) 0.094 (0.004) 0.850 (0.003)
PMD 0.576 (0.035) 0.564 (0.032) 0.662 (0.035) 0.530 (0.032) 0.941 (0.004)
SCCA 0.640 (0.030) 0.657 (0.024) 0.708 (0.028) 0.705 (0.022) 0.970 (0.003)

160 GLAA 0.990 (0.004) 0.001 (0.000) 0.984 (0.005) 0.002 (0.001) 0.209 (0.012)
ULA 0.920 (0.011) 0.004 (0.001) 0.732 (0.016) 0.067 (0.004) 0.812 (0.003)
PMD 0.610 (0.037) 0.570 (0.034) 0.652 (0.038) 0.544 (0.035) 0.944 (0.004)
SCCA 0.626 (0.031) 0.651 (0.024) 0.698 (0.029) 0.691 (0.024) 0.969 (0.003)

Note: The rest is the same as Table 1.

spread of AD. For instance, clinical trials that aim at testing
anti-amyloid-beta or anti-tau agents would need to know not
only that participants have amyloid-beta and tau in the brain,
but also how the relative levels of each pathological protein are
spatially associated with each other given their ages.We cast this
problem in the framework of liquid association analysis. LetX ∈
R
60, Y ∈ R

26 denote the amyloid-beta accumulation and tau
accumulation in various brain regions, respectively, and Z ∈ R

denote the subject’s age. We first log-transform each variable in
X and Y , and standardize X, Y and Zmarginally. We then apply
the proposed generalized liquid association analysis (GLAA)
method to this data. We choose the thresholding parameters
η1 and η2 for the initialization step, so that about half of the
variables in X and in Y are kept for subsequent iterations.
We then tune the thresholding parameters η̃1 and η̃2 used in
iterative sparse SVD by cross-validation over a grid of candidate

values. We choose the ranks r1, r2, that is, the numbers of linear
combinations for X and Y , to be one, which is most common in
canonical correlation analysis.

After obtaining the two estimated linear combinations �̂
�
1 X

and �̂
�
2 Y , we plot them as the value of Z changes. We divide

the interval of Z into six equal-sized intervals with overlaps,
then draw the scatterplot of �̂

�
2 Y versus �̂

�
1 X within each

interval. We also add a fitted linear regression line in each
panel to reflect the correlation between �̂

�
1 X and �̂

�
2 Y . Figure 1

shows the trellis plots, where the stripe at the top of each panel
represents the range of Z it covers. It is interesting to see from
the GLAA estimation, the correlation between ��

1 X and ��
2 Y

changes from negative to positive gradually, as the age variable
Z increases. This may be due to different deposition patterns
of amyloid-beta and tau. In particular, amyloid-beta plaques
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Figure 1. Trellis plots of the estimated linear combinations �̂
�
2 Y versus �̂

�
1 X as Z varies. Each panel represents an interval of Z, with a linear line added. The methods

include: generalized liquid association analysis (GLAA), univariate liquid association (ULA), penalizedmatrix decomposition (PMD), and sparse canonical correlation analysis
(SCCA).

Figure 2. Estimated loadings in �̂1 and �̂2. The number of nonzero loading entries estimated by GLAA, ULA, PMD, SCCA are 8, 60, 37, 9 for �̂1, and 9, 26, 16, 11 for �̂2.

are detectable in the brain many years before dementia onset,
while tau neurofibrillary tangles aggregate specifically in the
medial temporal lobes in normal aging. The spread of tau out
of medial temporal lobes and into the surrounding isocortex at
elder age coincides with cognitive impairment, and the process
is hypothesized to be potentiated or accelerated by the presence
of amyloid-beta (He et al. 2018; Vogel et al. 2020). The change
from a negative association in early years to a positive associa-
tion in later years between amyloid-beta and tau found by our
GLAA method may offer some support to this hypothesis. As
a comparison, no clear changing pattern is observed from the
other three estimation methods.

Next, we examinemore closely the brain regions identified by
GLAA that demonstrate dynamic association patterns. Figure 2
plots the loadings of the estimated �̂1 and �̂2, where the
indices of nonzero loadings correspond to the selected regions.

The number of nonzero loading entries estimated by GLAA,
ULA, PMD, SCCA are 8, 60, 37, 9 for �̂1, and 9, 26, 16, 11 for
�̂2, respectively. Note that, the ULA method does not do
variable selection, and for the real data, no information on
the true sparsity level is known, so its estimated loadings are
nonsparse. Moreover, the PMD method yields a large number
of nonzero estimates, making the interpretation difficult. The
SCCA method selects about the same number of nonzero
regions as GLAA, but the selected regions are less meaningful.

Table 4 reports the identified brain regions by GLAA for
amyloid-beta and tau, respectively, while Figure 3 visualizes
those regions on a template brain using BrainNet Viewer (Xia,
Wang, and He 2013). Many of these regions are known to be
closely related to AD, and the dynamic associations between
amyloid-beta and tau of those regions reveal interesting and
new insights. Particularly, for both amyloid-beta and tau, the
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Table 4. Identified brain regions for amyloid-beta and tau by GLAA.

Modality Identified regions

amyloid-beta Entorhinal R Entorhinal L Hippocampus R Hippocampus L Amygdala R
Orbitofrontal L Posterior Cingulate L Middle Frontal R

tau Entorhinal R Entorhinal L Hippocampus R Parahippocampal R Fusiform L
Middle Temporal R Middle Temporal L Insula L Rostral Anterior Cingulate R

Note: Regions in the left hemisphere are denoted by “L”, and regions in the right hemisphere are denoted by “R”

Figure 3. Identified brain regions for amyloid-beta and tau by GLAA.

identified regions include hippocampus and entorhinal cortex.
Hippocampus is a major component functionally involved in
response inhibition, episodic memory, and spatial cognition. It
is one of the first brain regions to suffer damage from AD (Jack
et al. 2011). Entorhinal cortex is a brain region that functions
as a hub in a widespread network for memory and navigation.
Entorhinal cortex and hippocampus together play an important
role in memories. Atrophy in entorhinal cortex has been con-
sistently reported in AD (Pini et al. 2016). Moreover, animal
models have suggested that neurofibrillary tangles of tau first
appear in entorhinal cortex, then spread to hippocampus (Cho
et al. 2016). For amyloid-beta, other identified regions include
amygdala, orbitofrontal cortex, posterior cingulate cortex and
areas of middle frontal cortices. Amygdala is responsible for
memory processing, decision-making and emotional responses.
Amygdala atrophy is found prominent in early AD (Poulin
et al. 2011). Orbitofrontal cortex is involved in decision-making,
while posterior cingulate cortex is one of themost metabolically
active brain regions, and is linked to emotion and memory.
Atrophy of both regions and middle frontal cortices have been
found associated with AD (Pini et al. 2016). For tau, other iden-
tified regions include parahippocampal gyrus, middle temporal
gyrus, fusiform, insula, and rostral anterior cingulate cortex.
Parahippocampal gyrus is central for memory encoding and
retrieval. Atrophy in parahippocampal gyrus has been identified
as an early biomarker of AD (Echavarri et al. 2011). Middle
temporal gyrus is connected with recognition of known faces
and accessing word meaning. Fusiform is linked with various
neural pathways related to recognition. Insula is involved in
consciousness and emotion. Rostral anterior cingulate cortex is
involved in attention allocation, decision-making and emotion.
There have been numerous evidences suggesting associations

between these regions and AD (Convit et al. 2000; Pini et al.
2016).

In summary, GLAA identifies interesting dynamic associ-
ation patterns among a number of important brain regions
between amyloid-beta and tau as age increases. Moreover,
GLAA provides a useful dimension reduction tool to help
visualize such patterns.

7. Discussion

In this article, we have proposed generalized liquid association
analysis, which offers a new angle to study three-way asso-
ciations among random variables, and is particularly useful
for multimodal integrative data analysis. We have illustrated
with a multimodal neuroimaging study of Alzheimer’s disease
in detail. Meanwhile, the proposal is potentially applicable to
other multimodal data problems, e.g., to understand gene co-
expressions given single nucleotide polymorphisms or under
varying physiological states (Chen, Xie, and Li 2011; Yu 2018),
or to understand interactions between gene expressions and
microRNA levels or comparative genomic hybridizations given
cancer states and demographics (Cai, Cai, and Zhang 2016; Mai
and Zhang 2019). Next, we discuss some potential extensions.

First, we begin with the situation when there is a univariate
and categorical Z, whereas the analysis so far has primarily
concentrated on the case when each variable in Z is continous.
In general, it remains an open question on how to define liquid
association for a categorical variable, since the function g(z)
is no longer differentiable for a categorical Z. For a binary
Z ∈ {0, 1}, we propose to replace the derivative of the con-
ditional mean function with the absolute change in the con-
ditional means across the two groups, that is, LA(X,Y|Z) =
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|E(XY|Z = 1) − E(XY|Z = 0)|, where the absolute value is used
because the class labels are interchangeable. This naturally fits
the original interpretation of LA. Similarly, for a categorical
or ordinal Z ∈ {1, . . . ,K}, we can use the weighted sum of
pairwise absolute mean difference between the pairs of groups.
Accordingly, the liquid association ofX andY given Z is defined
as a p1 × p2 matrix.

Next, for a multivariate mixed type Z, we first orga-
nize Z = (Z1,Z2)

� to separate the continuous variables,
Z1 = (Z1, . . . ,Zq)� ∈ R

q, from the categorical variables,
Z2 = (Zq+1, . . . ,Zp3)� ∈ R

p3−q. Directly imposing a low-
dimensional structure on entire Z would lead to difficulty in
interpretation. Alternatively, we propose a dimension reduction
approach, by recognizing the reduction on Z in model (1) is
indeed a sufficient dimension reduction model. Specifically,
when Z is continuous, by model (1), we have g(Z) = g(PSZ),
where S = span(�3). Therefore, g(Z)⊥⊥Z|PSZ. This leads to
a sufficient dimension reduction model of Z for the conditional
mean function g(Z) = E(XY�|Z), in the sense that all the
mean information of the regression of the matrix response
XY� given the predictor vector Z is fully captured by the
linear combinations ��

3 Z. As such, model (1) can be viewed
as a generalization of the notion of sufficient mean reduction
(Cook and Li 2002). Now for the mixed type Z = (Z�

1 ,Z�
2 )�,

we adopt the idea of partial dimension reduction (Chiaromonte,
Cook, and Li 2002), or groupwise dimension reduction (Li, Li,
and Zhu 2010), and estimate the subspace S ⊆ R

q such that
g(Z)⊥⊥Z|(PSZ1,Z2).

We have so far focused on studying the associations between
two sets of random variables conditioning on another set. It is
possible to generalize to the associations ofmore than two sets of
variables conditioning on another set. It involves a higher-order
tensor than an order-3 tensor. Nevertheless, both the estimation
algorithm and the theory can be extended to a general order
tensor in a relatively straightforward fashion. Moreover, from
the simulation results in Table 2, we observe that, the higher the
dimension ofZ, themore challenging the problem becomes.We
believe it is possible to employ an alternative modeling strategy
such as Chen, Xie, and Li (2011) when the dimension of Z is
ultrahigh. This is also true when the scientific interest is to select
important variables inZ, while our current interest concentrates
on the selection of variables in X and Y , but not in Z. We leave
the pursuit of these lines of research as our future work.

Supplementary Materials

The supplementary material contains additional simulations, new theoret-
ical results, and technical proofs.
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