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ABSTRACT
Modern scientific studies often collect datasets in the form of tensors. These datasets call for innova-
tive statistical analysis methods. In particular, there is a pressing need for tensor clustering methods
to understand the heterogeneity in the data. We propose a tensor normal mixture model approach to
enableprobabilistic interpretation andcomputational tractability.Our statisticalmodel leverages the tensor
covariance structure to reduce the number of parameters for parsimonious modeling, and at the same
time explicitly exploits the correlations for better variable selection and clustering. We propose a doubly
enhanced expectation–maximization (DEEM) algorithm to perform clustering under this model. Both the
expectation-step and the maximization-step are carefully tailored for tensor data in order to maximize
statistical accuracy and minimize computational costs in high dimensions. Theoretical studies confirm that
DEEM achieves consistent clustering even when the dimension of each mode of the tensors grows at an
exponential rate of the sample size. Numerical studies demonstrate favorable performance of DEEM in
comparison to existing methods.
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1. Introduction

Tensor data are increasingly popular in modern scientific stud-
ies. Research in brain image analysis, personalized recommen-
dation andmulti-tissuemulti-omics studies often collect data in
the formofmatrices (i.e., 2-way tensors) or higher-order tensors
for each observation. The tensor structure brings challenges to
the statistical analysis. On one hand, tensor data are often nat-
urally high-dimensional. This leads to an excessive number of
parameters in statisticalmodeling.On the other hand, the tensor
structure contains information that cannot be easily exploited by
classical multivariate, that is, vector-based, methods. Motivated
by the prevalence of tensor data and the challenges to statistical
analysis, a large number of novel tensor-based methods have
been developed in recent years. There is a rapidly growing
literature on the analysis of tensor data, for example, on tensor
decomposition (Chi and Kolda 2012; Sun et al. 2016; Zhang
and Han 2019), regression (Zhou, Li, and Zhu 2013; Hoff 2015;
Wang and Zhu 2017; Li and Zhang 2017; Zhang and Li 2017;
Lock 2018; Raskutti, Yuan, and Chen 2019) and classification
(Lyu, Lock, and Eberly 2017; Pan, Mai, and Zhang 2019). These
methods, among many others, take advantage of the tensor
structure to drastically reduce the number of parameters, and
use tensor algebra to streamline estimation and advance theory.

We study the problem of model-based tensor clustering.
When datasets are heterogeneous, cluster analysis sheds light on
the heterogeneity by grouping observations into clusters such
that observations within each cluster are similar to each other,
but there is noticeable difference among clusters. For more
background, see Fraley and Raftery (2002) andMcLachlan, Lee,

CONTACT Xin Zhang xzhang8@fsu.edu Department of Statistics, Florida State University, 214 OSB, 117 N. Woodward Ave., P.O. Box 3064330, Tallahassee, FL
32306 .

Supplementary materials for this article are available online. Please go towww.tandfonline.com/r/JASA.

andRathnayake (2019) for overviews ofmodel-based clustering.
Various approaches have been proposed in recent years for clus-
tering on high-dimensional vector data (Ng, Jordan, and Weiss
2001; Law, Figueiredo, and Jain 2004; Arthur and Vassilvitskii
2007; Pan and Shen 2007; Wang and Zhu 2008; Guo et al. 2010;
Witten and Tibshirani 2010; Verzelen and Arias-Castro 2017;
Hao et al. 2018; Cai, Ma, and Zhang 2019). Although many of
these vector methods could be applied to tensor data by vector-
izing the tensors first, this brute-force approach is generally not
recommended, because the vectorization completely ignores the
tensor structure. As a result, vectorization could often lead to
loss of information, and thus efficiency and accuracy. It is much
more desirable to have clusteringmethods specially designed for
tensor data.

Model-based clustering often assumes a finite mixture of
distributions for the data. In particular, the Gaussian mixture
model (GMM) plays an important role in high-dimensional
statistics due to its flexibility, interpretability and computational
convenience. Motivated by GMM, we consider a tensor normal
mixture model (TNMM). In comparison to the existing GMM
methods for vector data, TNMM exploits the tensor covariance
structure to drastically reduce the total number of parameters in
covariance modeling. Thanks to the simplicity of matrix/tensor
normal (TN) distributions, clustering and parameter estima-
tion is straightforward based on the expectation–maximization
(EM) algorithm (Dempster, Laird, and Rubin 1977) . Among
others, Viroli (2011), Anderlucci and Viroli (2015), Gao et al.
(2021), and Gallaugher and McNicholas (2018) are all exten-
sions of GMM from vector to matrix, but are not directly appli-
cable to higher-order tensors.Moreover, the focus of theseworks
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is computation and applications in the presence of additional
information, such as covariates, longitudinal correlation, heavy
tails and skewness in the data, but no theoretical results are
provided for high-dimensional data analysis. The GMMs can be
straightforwardly extended to higer-order tensors adopting the
standard EM algorithm. However, as we demonstrate in numer-
ical studies, the standard EM can be dramatically improved
by our doubly enhanced expectation–maximization (DEEM)
algorithm.

The DEEM algorithm is developed under TNMM to
efficiently incorporate tensor correlation structure and variable
selection for clustering and parameter estimation. Similar
to classical EM algorithms, DEEM iteratively carries out an
enhanced E-step and an enhanced M-step. In the enhanced E-
step, we impose sparsity directly on the optimal clustering rule
as a flexible alternative to popular low-rank assumptions on
tensor coefficients. The variable selection empowers DEEM to
high-dimensional tensor data analysis. In the enhancedM-step,
we employ a new estimator for the tensor correlation structure,
which facilitates both the computation and the theoretical
studies. These modifications to the standard EM algorithm
are very intuitive and practically motivated. More importantly,
we show that the clustering error of DEEM converges to the
optimal clustering error at the minimax optimal rate. DEEM is
also highly competitive in empirical studies.

To achieve variable selection and clustering simultaneously,
we impose the sparsity assumption on our model and then
incorporate a penalized estimator in DEEM. Although penal-
ized estimation is a common strategy in high-dimensional clus-
tering, there are many different approaches. For example ,Wang
and Zhu (2008) penalized cluster means; Guo et al. (2010),
Verzelen and Arias-Castro (2017) penalized cluster mean dif-
ferences; Pan and Shen (2007), Witten and Tibshirani (2010),
Law, Figueiredo, and Jain (2004) achieved variable selection
by assuming independence among variables; Hao et al. (2018)
impose sparsity on both cluster means and precision matrices;
Cai,Ma, andZhang (2019) imposed sparsity on the discriminant
vector. Our approach is similar to Cai, Ma, and Zhang (2019) in
that our sparsity assumption is directly imposed on the discrim-
inant tensor coefficients—essentially a reparameterization of the
means and covariance matrices to form sufficient statistics in
clustering. As a result of this parameterization, the correlations
among variables are utilized in variable selection, while the
parameter of interest has the same dimensionality as the cluster
mean difference.

Due to the nonconvex nature of cluster analysis, conditions
on the initial value are commonly imposed in theoretical stud-
ies. Finding theoretically guaranteed initial values for cluster
analysis is an important research area on its own, with many
interesting works under GMM (Kalai, Moitra, and Valiant 2010;
Moitra andValiant 2010; Hsu andKakade 2013; Hardt and Price
2015). To provide a firmer theoretical ground for the consistency
of DEEM, we further develop an initialization algorithm for
TNMM in general, which may be of independent interest. A
brief discussion on the initialization is provided in Section 4.2.
The detailed algorithm (Algorithm S.4) and related theoretical
studies are provided in Section G of Supplementary Materials.

Two related but considerably different problems are worth-
mentioning, but beyond the scope of this article. The first is

the low-rank approximation in K-means clustering (MacQueen
1967; Cohen et al. 2015). For example, Sun and Li (2018) used
tensor decomposition in the minimization of the total squared
Euclidean distance of each observation to its cluster centroid.
While the low-rank approximation is widely adopted in tensor
data analysis, our method is more directly targeted at the opti-
mal rule of clustering under the TNMM, and does not require
low-rank structure of the tensor coefficients. The second is the
clustering of features (variables) instead of, or, along with obser-
vations. Clustering variables into similar groups has applications
in a wide range of areas such as genetics, text mining and
imaging analysis, and also has attracted substantial interest in
theoretical studies. For example, Bing et al. (2020), Bunea et al.
(2020) studied feature clustering in high dimensions. Lee et al.
(2010), Tan and Witten (2014), and Chi, Allen, and Baraniuk
(2017) developed bi-clustering methods that simultaneously
group features and observations into clusters. Extensions of the
feature-sample bi-clustering for vector observations are known
as the co-clustering ormultiway clustering problems (Kolda and
Sun 2008; Jegelka, Sra, and Banerjee 2009;Wang and Zeng 2019;
Chi et al. 2020), where each mode of the tensor is clustered
into groups, resulting in a checkerbox structure. Our problem
is different from these works in that our sole goal is to cluster
the observations.

The rest of the article is organized as follows. In Section 2,
we formally introduce the model and discuss the importance of
modeling the correlation structure. In Section 3, we propose the
DEEM algorithm. Theoretical results are presented in Section 4.
Section 5 contains numerical studies on simulated and real data.
Additional numerical studies, proofs and other technical details
are relegated to supplementary materials.

2. TheModel

2.1. Notation and Preliminaries

A multi-dimensional array A ∈ R
p1×···×pM is called an M-

way tensor. We denote J = (j1, . . . , jM) as the index of one
element in the tensor. The vectorization ofA is a vector, vec(A),
of length (

∏M
m=1 pm). The mode-k matricization of a tensor

is a matrix of dimension (pk × ∏
m�=k pm), denoted by A(k),

where the (j1, . . . , jM)th element of A is the (jk, l)-th element
of A(k) with l = 1 + ∑M

m=1,m�=k{(jm − 1)
∏m−1

t=1,t �=k pt}. A
tensor C ∈ R

d1×···×dM can be multiplied with a dm × pm
matrix Gm on the m-th mode, denoted as C ×m Gm ∈
R
d1×···×dm−1×pm×dm+1×···×dM . If A = C ×1 G1 × · · · ×M GM ,

we equivalently write the Tucker decomposition of A as A =
�C;G1, . . . ,GM�. A useful fact is that vec(�C;G1, . . . ,GM�) =
(GM ⊗ · · · ⊗ G1)vec(C) ≡ (

⊗m=1
m=M Gm)vec(C), where ⊗

represents the Kronecker product. The inner product of two
tensors A,B of matching dimensions is defined as 〈A,B〉 =∑

J aJ bJ . For more background on tensor algebra, see Kolda
and Bader (2009).

The TN distribution is an extension of matrix multivariate
normal distribution (Gupta and Nagar 1999; Hoff 2011). For a
random tensor X ∈ R

p1×···×pM , if X = μ + �Z;�1/2
1 , . . . ,�1/2

M �
for μ ∈ R

p1×···×pM ,�m ∈ R
pm×pm , and ZJ ∼N(0, 1) inde-

pendently, we say that X follows the TN distribution. We often
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use the shorthand notation X ∼ TN(μ;�1, . . . ,�M). Because
vec(X) = vec(�Z;�1, . . . ,�M)� = (

⊗m=1
m=M �m)vec(Z), we

have that X ∼ TN(μ;�1, . . . ,�M) if vec(X) ∼ N(vec(μ),⊗m=1
m=M �m). The parameters �1, . . . ,�M are only identifiable

up to M rescaling constants. For example, for any set of
positive constants g1, . . . , gM such that

∏M
m=1 gm = 1, we

have
⊗m=1

m=M(gm�m) = ⊗m=1
m=M �m. It is then easy to verify

that TN(μ; g1�1, . . . , gM�M) is the same distribution as
TN(μ;�1, . . . ,�M).

We next briefly review the Gaussian mixture model (GMM,
Banfield and Raftery 1993). The GMM with shared covariance
assumes that observations Ui ∈ R

p, i = 1, . . . , n, are indepen-
dent and identically distributed (iid) with the mixture normal
distribution

∑K
k=1 π∗

k N(φ∗
k ,�

∗), where K is a positive integer,
π∗
k ∈ (0, 1) is the prior probability for the kth cluster, φ∗

k ∈ R
p

is the cluster mean within the kth cluster, and the symmet-
ric positive-definite matrix �∗ ∈ R

p×p is the within-cluster
covariance. We note that the within-cluster covariance could be
different across clusters. But we choose to present GMM with
constant within-cluster covariance, because it is more closely
related to our study. The latent cluster representation of the
GMM is often used to connect it with discriminant analysis,
optimal clustering rules, and the EM algorithm. Specifically, the
GMM can be written equivalently as

Pr(Yi = k) = π∗
k , Ui|(Yi = k) ∼ N(φ∗

k ,�
∗), (1)

where the latent variables Yi ∈ {1, . . . ,K}. We use the super-
script ∗ to denote the true value of a parameter in population.

2.2. The TNMM

Consider independent tensor-variate observations Xi ∈
R
p1×···×pM , i = 1, . . . , n. The observations are heterogeneous

in that they are drawn from K clusters, but the cluster labels
are unavailable to us. To recover these labels, we assume that
Xi follows a mixture of TN distributions (see Section 2.1) such
that,

Xi ∼
K∑

k=1
π∗
k TN(μ∗

k ;�
∗
1, . . . ,�

∗
M), i = 1, . . . , n, (2)

where μ∗
k ∈ R

p1×···×pM is the mean of the kth cluster, �∗
m ∈

R
pm×pm is the common within-class covariance along mode m,

and 0 < π∗
k < 1 is the prior probability for Xi to be in the

kth cluster such that
∑K

k=1 π∗
k = 1. Throughout the rest of

this article, we use σ ∗
m,ij to denote the (i, j)th entry in �∗

m. To
ensure the identifiability of the covariance matrices, we assume
that σ ∗

m,11 = 1 for m > 1, and σ ∗
1,11 is the variance of Xi,1···1

within clusters, where Xi,1···1 is the (1, . . . , 1)th element in the
tensor Xi. We will explicitly specify the scale of �∗

1 shortly. We
refer to the model (2) as the TNMM.

Parallel to the latent variable representation in GMM, Equa-
tion (1), we introduce the latent cluster membership Yi ∈
{1, . . . ,K} and rewrite Equation (2) as

Pr(Yi = k) = π∗
k , Xi|(Yi = k) ∼ TN(μ∗

k ;�
∗
1, . . . ,�

∗
M). (3)

Intuitively, the TNMM assumes that Xi follows a TN distri-
bution with mean μ∗

k within the kth cluster. The parameter

μ∗
k represents the centroid of the kth cluster, while the covari-

ance matrices�∗
1, . . . ,�∗

M determine the dependence structure
among the features. Also, with the latent variable Yi, it is easy to
specify the scale of �∗

1. Since σ ∗
m,11 = 1 for all m > 1, we must

have that σ ∗
1,11 = var(Xi,1···1|Yi = k) for all i, k.

To better understand the TNMM,we consider its implication
on vec(Xi). By vectorizing the data, the model is equivalent to

Pr(Yi = k) = π∗
k , vec(Xi)|(Yi = k) ∼ N(vec(μ∗

k),
1⊗

m=M
�∗

m),

(4)
which resembles the GMM in Equation (1). A major dis-
tinction arises from our parsimonious parameterization of
the covariance. It is easy to see that, if we ignore the tensor
structure and impose GMM on vec(Xi), the covariance has
O(
∏M

i=1 p2m) parameters. However, the covariance in Equation
(4) is determined by O(

∑M
m=1 p2m) parameters, because of the

separable Kronecker product structure in the tensor covariance.
The reduction in the number of parameters is drastic even
for moderately high dimensions, and improves estimation
efficiency, especially when the sample size is small.

Note that the vectorization is only for demonstration pur-
pose. In our estimation algorithm to be introduced, we never
vectorize the observations; instead, we preserve the tensor form
and use tensor operators for efficient implementation. When
it comes to methodology developments and computation, the
tensor form also greatly reduces the storage and computation
costs in the DEEM algorithm. See Section 3.5 for details.

Many existing methods for tensor data analysis employ
the TN assumption in seek of parsimony and simplicity in
likelihood-based procedure (Hoff 2011; Fosdick and Hoff
2014; Li and Zhang 2017; Pan, Mai, and Zhang 2019). Such
an assumption has demonstrated success in regression and
classification problems, which motivates the application of
TNMM to unsupervised tensor learning. On the other hand,
although it is known in low dimensions that modeling
the dependence benefits clustering, many high-dimensional
clustering methods ignore the correlation structure in data
when performing variable selection and dimension reduction.
It makes intuitive sense that modeling the correlation continues
to improve clustering accuracy in high dimensions, but careful
investigation further reveals that correlations heavily impact
the variable selection as well. We explain this point in the next
section.

2.3. Optimal Clustering Rule and Variable Selection

Many methods in the literature ignore the correlations among
features when performing clustering in high dimensions. Some
of them are developed based on the K-means clustering,
and hence make no attempt to model the correlations (see,
e.g.,Witten and Tibshirani 2010; Cao et al. 2013; Sun and
Li 2018; others assume that the features are independent
within each cluster and thus eliminate the need to model the
correlations (see, e.g., Pan and Shen 2007; Guo et al. 2010).
For simplicity, we refer to methods that ignore the correlation
structure among features as independence methods. We
demonstrate the impacts of correlations on variable selection by
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comparing the target clustering rule of independence methods
to the optimal clustering rule under the TNMM (2).

Consider X with conditional probability density function fk
within the kth cluster. The optimal classification rule defined on
the population level is

Ŷopt = φBayes(X) = argmax
k

π∗
k fk(X), (5)

where π∗
k is the marginal probability for X to belong to the kth

cluster. Although the above rule in Equation (5) is commonly
known as the Bayes rule for classification, it continues to be
optimal for clustering.

First of all, we define the clustering error of a population
(nonstochastic) classifier φ as min� Pr(φ(X) �= �(Y)), where
we optimize over all possible permutations of the K labels � :
{1, . . . ,K} 
→ {1, . . . ,K}. A major difference between classi-
fication and clustering problems is that the K labels are well-
defined in classification but are artificially created in clustering.
As a result of this completely latent and nonidentifiable cluster
labels, any clustering rule φ(X) : Rp1×···×pM 
→ {1, . . . ,K} is
equivalent to the permuted �{φ(X)}.

It is well-known that the Bayes rule φBayes(X) minimizes
classification error. Because φBayes(X) produces a prediction
that is solely based on X regardless of whether we observe Y
or not, it also minimizes the clustering error. The rule defined
in Equation (5) is thus optimal and is the target of our analysis.
In estimation, the additional permutation operator needs to be
carefully accounted for, making the clustering analysis much
more challenging than classification.

Recall that XJ is the J th element of X, where J =
(j1, . . . , jM). For ease of presentation, we consider the special
case of K = 2 and diag(�∗

m) = 1 for all m throughout the rest
of this section. Under the TNMM (2), the optimal rule (5) is
equivalent to assigning X to Cluster 2 if and only if

log (π∗
2 /π∗

1 ) + 〈X − μ∗
1 + μ∗

2
2

,B∗〉 > 0, (6)

whereB∗ = �μ∗
2 −μ∗

1; (�∗
1)

−1, . . . , (�∗
M)−1�. Consequently, an

element XJ is not important for clustering if and only if b∗
J =

0. To achieve optimal clustering, we only need the variables in
D = {J : b∗

J �= 0}.
However, if we treat the variables as independent within

each cluster, for example, as in many existing high-dimensional
clustering methods, it is equivalent to assuming that �∗

m are all
identity matrices under the TNMM. Then Equation (5) leads to
the following “independence rule:”

Ŷ indep = argmin
k

{−2 logπ∗
k +

∑
J

(XJ − μ∗
kJ )2}. (7)

That is, Ŷ indep = 2 if and only if log (π∗
2 /π∗

1 )+〈X− μ∗
1+μ∗

2
2 ,μ∗

2−
μ∗
1〉 > 0. Hence, the variable selection of the independence

methods essentially targets at the setA = {J : μ∗
1J �= μ∗

2J }.
It can be seen that the optimal rule in Equation (6) is usually

different from the independence rule, because B∗ �= μ∗
2 − μ∗

1
in general. Consequently, the independence methods cannot
achieve the optimal error rate when the covariancematrices�∗

m
are not diagonal. Moreover, the difference between A and D
implies that the correlation structure also impacts the variable

selection results. Since B∗ is a product between μ∗
2 − μ∗

1 and
(�∗

m)−1,m = 1, . . . ,M, elements with constant means across
clusters (i.e., elements in Ac) could still improve clustering
accuracy if they are correlated withXA. In contrast, elements in
A are not necessarily relevant for clustering, because their cor-
responding b∗

J could be zero. In SectionA of the supplementary
materials, we construct examples to illustrate this phenomenon.
A similar discussion is available in Mai, Zou, and Yuan (2012)
for discriminant analysis on vector data. But, to the best of our
knowledge, we are the first to discuss this point for clustering on
tensor data.

Similar to the independence rule, K-means methods may
also suffer from ignoring the correlations. Although (sparse)
K-means can be viewed as model-free clustering methods, their
target set for variable selection is similar toA. K-means cluster-
ing (see Equation (14.33) in Friedman, Hastie, and Tibshirani
2001) searches for argmin{Yi}ni=1,{μk}Kk=1

∑K
k=1 nk

∑
Yi=k

∑
J

(Xi,J − μkJ )2, where nk is the size of the k-th cluster. Hence, if
a feature has constant mean across clusters, it is not important
in the final clustering. We only need the set of variables with
different means, which resemblesA.

3. The DEEMAlgorithm

We develop a general estimation procedure for TNMM (2) with
K ≥ 2, where we assume that K is known. The clustering rule is
directly obtained by plugging in the estimates of model param-
eters to the (population) optimal rule (6). We first describe the
standard EM algorithm in Section 3.1. We further discuss the
limitations of the standard EM that render it unsuitable for high-
dimensional tensor clustering. Then we proceed to develop our
DEEM algorithm and discuss its characteristics.

3.1. The Standard EMAlgorithm

The EM algorithm (Dempster, Laird, and Rubin 1977) is widely
used in model-based clustering. Although we argue that the
standard EM is not suitable for high-dimensional tensor cluster-
ing, it is nevertheless an inspirition of our DEEM algorithm and
applicable in low-dimensional settings. We discuss the standard
EM algorithm in what follows.

Define θ = {πk,μk, k = 1, . . . ,K;�m,m = 1, . . . ,M}
as the model parameters in TNMM. Let f (y, x; θ) denote the
joint probability function of Y and X. If we could observe the
latent variables {Yi}ni=1, then the log-likelihood function for the
complete data is

ln(θ) =
n∑

i=1
log f (Yi,Xi; θ) =

n∑
i=1

{logπYi+log fYi(Xi; θ)}, (8)

where fYi(Xi; θ) is the conditional density function of Xi|Yi.
From the TN distribution, we have

fk(Xi; θ) = exp(− 1
2 〈�Xi − μk;�−1

1 , . . . ,�−1
M �,Xi − μk〉)

(2π)p/2|�1|q1/2 · · · |�M|qM/2 ,

(9)
where p = ∏M

m=1 pm and qm = p/pm.
Clearly, the latent variables {Yi}ni=1 are unobservable and thus

we cannot directly maximize the log-likelihood function (8) to
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obtain the estimator of θ . The EM algorithm tries to maximize
ln(θ) by iteratively performing the expectation-step (E-step) and
the maximization-step (M-step).

Consider the (t + 1)th iteration with the current value θ̃
(t).

In the E-step, we evaluate

Qn(θ |̃θ (t)
) = E

[
ln(θ)|{Xi}ni=1, θ̃

(t)]
=

n∑
i=1

K∑
k=1

ξ̃
(t)
ik {logπk + log fk(Xi; θ)}, (10)

where

ξ̃
(t)
ik = Pr(Yi = k|Xi, θ̃

(t)
) = π̃

(t)
k fk(Xi; θ̃

(t)
)∑K

j=1 π̃
(t)
j fj(Xi; θ̃

(t)
)
. (11)

In the M-step, we maximize Qn(θ |̃θ (t)
) over θ . The updates

for πk and μk can be easily computed with an explicit form.
However, the updates for �1, . . . ,�M are much more difficult
to obtain. With some calculation, we have the following lemma.

Lemma 1. The maximizers of Equation (10) must satisfy

�̃
(t+1)
m = (nqm)−1

n∑
i=1

K∑
k=1

ξ̃
(t+1)
ik {W̃(t+1)

ik }{W̃(t+1)
ik }T, (12)

where W̃(t+1)
ik is the mode-mmatricization of the product

�Xi − μ̃
(t+1)
k ; {�̃(t+1)

1 }− 1
2 , . . . , {�̃(t+1)

m−1 }− 1
2 , Ipm ,

{�̃(t+1)
m+1 }− 1

2 , . . . , {�̃(t+1)
M }− 1

2 �. (13)

Lemma 1 implies that an iterative algorithm is needed to
find �̃

(t+1)
m . Since �̃

(t+1)
m depends on all the other covariance

estimates �̃
(t+1)
m′ ,m′ �= m, we need to update one covariance

estimate while keeping all the others fixed until convergence
to find �̃

(t+1)
m . By letting K = 1, the results in Lemma 1

also reproduce the maximum likelihood estimation in the TN
distribution (see, e.g., Dutilleul 1999; Manceur and Dutilleul
2013).

The standard EM algorithm has several noticeable issues in
our problem of interest. In the E-step, we use all the elements
in Xi to calculate ξ̃

(t)
ik . Even for a tensor of dimension pm = 10,

m = 1, 2, 3, we have one thousand variables and are thus dealing
with a high-dimensional estimation problem. Even when Yi’s
are all observed, we can do no better than random guessing if
we estimate an excessive number of parameters without variable
selection (Bickel and Levina 2004; Fan and Fan 2008), because
the accumulated estimation errors would dominate the signal
in the data. Now that Yi’s are unobservable, variable selection
should bemore critical in order to reduce the number of param-
eters. Since the standard EM algorithm unfortunately does not
enforce variable selection, it is prone to inaccurate clustering
on tensor data, which are often high-dimensional (i.e., p =∏M

m=1 pm > n).
In the M-step, an iterative subalgorithm is needed to maxi-

mizeQn(θ |̃θ (t)
) over�1, . . . ,�M . This subalgorithmdrastically

adds to the computation cost. Moreover, the consistency for

�̃
(t+1)
m cannot be easily established in high dimensions. To the

best of our knowledge, themost related result is Lyu et al. (2019).
They considered the estimation of (�∗

m)−1 under the tensor
graphical model where all observations come from the same TN
distribution. They had to assume that (�∗

m)−1 are all sparse and
constructed penalized estimates to achieve consistency in high
dimensions. The sparsity assumption on the precision matrix is
central to their proof. However, in the context of clustering, our
goal is to recover Yi’s. The covariances are nuisance parameters
for this purpose, as the optimal clustering rule in Equation (6)
does not depend on �∗

m when we know B∗. Therefore, it is gen-
erally more desirable to not impose additional assumptions on
�∗

m so that we can handle arbitrary correlation structure while
achieving the optimal clustering error. However, the consistency
is very difficult to show for the unpenalized estimate �̃

(t+1)
m .

We need innovative modifications to the M-step to lower the
computation cost and achieve theoretical guarantee.

Motivated by the above issues, we propose the DEEM that
greatly improves both the E-step and the M-step in the stan-
dard EM algorithm. DEEM consists of iterations between an
enhanced E-step and an enhanced M-step. In the enhanced E-
step, we impose variable selection to evaluate the Q-function
more accurately, while in the enhanced M-step we find better
estimates for the covariances. We discuss these two steps in Sec-
tions 3.2 and 3.3, respectively. The complete DEEM algorithm
is summarized in Section 3.4. Later in our simulation studies
in Section 5.1, we confirm that the standard EM algorithm has
inferior performance to DEEM.

3.2. The Enhanced E-step

To distinguish from the standard EM estimates θ̃ , we denote θ̂
(t)

as the DEEM estimate of θ at the tth iteration. Given θ̂
(t), we

consider the (t + 1)th iteration.
In the enhanced E-step, we obtain amore accurate evaluation

of the Q-function in Equation (10). Obviously, it suffices to
estimate ξ

(t+1)
ik = Pr(Yi = k|Xi, θ̂

(t)
). As discussed in Sec-

tion 3.1, estimates of ξ (t+1)
ik could contain large estimation error

without variable selection. To resolve this issue, we assume that
our target ξik = Pr(Yi = k|Xi, θ∗) is determined by a subset
of elements in X and hence can be evaluated with a reduced
number of parameters. Let

B∗
k = �μ∗

k − μ∗
1; (�

∗
1)

−1, . . . , (�∗
M)−1�

∈ R
p1×···×pM , k = 2, . . . ,K. (14)

The following lemmahelps clarify the implication of the sparsity
assumption.

Lemma 2. Suppose thatXi follows the TNMM (2).We have that

ξi1 = π∗
1

π∗
1 +∑K

k=2 π∗
k · exp[〈Xi − 1

2 (μ
∗
k + μ∗

1),B∗
k〉]

, (15)

ξik = π∗
k exp[〈Xi − 1

2 (μ
∗
k + μ∗

1),B∗
k〉]

π∗
1 +∑K

k=2 π∗
k · exp[〈Xi − 1

2 (μ
∗
k + μ∗

1),B∗
k〉]

, k > 1.

(16)
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Lemma 2 shows that each ξik is determined by the inner
products 〈Xi − 1

2 (μ
∗
j + μ∗

1),B∗
j 〉, j = 2, . . . ,K. Hence, XJ is

not important for the E-step if and only if
b∗
2,J = · · · = b∗

K,J = 0. (17)
Then the sparsity assumption implies that Equation (17) holds
for most J . In other words, let D denote the index set of the
important variables, that is, Dc = {J : b∗

2,J = · · · = b∗
K,J =

0}. The sparsity assumption states that |D| � ∏M
m=1 pm. It is

worth noting that this assumption is equivalent to assuming that
the optimal clustering rule is sparse. By (5), the optimal rule
under TNMM is

Ŷopt = argmax
k

{logπ∗
k + 〈X − (μ∗

1 + μ∗
k)/2,B

∗
k〉}, (18)

where B∗
1 = 0. Hence, the sparsity in the optimal rule concurs

with our assumption on D, where variable selection assists in
achieving the lowest clustering error possible.

Note that B∗
k = �μ∗

k − μ∗
1; (�∗

1)
−1, . . . , (�∗

M)−1� by defini-
tion. It follows that

(B∗
2, . . . ,B∗

K) = argmin
B2,...,BK∈Rp1×···pM

[ K∑
k=2

(〈Bk, �Bk,�∗
1, . . . ,�

∗
M�〉

−2〈Bk,μ∗
k − μ∗

1〉)
]
. (19)

To obtain sparse estimates for B∗
k , we plug in our current

estimates for�∗
m andμ∗

k , and add the group lasso penalty (Yuan
andLin 2006) to encourage the sparsity pattern inEquation (17).
More specifically, we let (B̂(t+1)

2 , . . . , B̂(t+1)
K ) be the solution to

the following minimization problem,

min
B2,...,BK

[ K∑
k=2

(〈Bk, �Bk, �̂
(t)
1 , . . . , �̂(t)

M �〉 − 2〈Bk, μ̂(t)
k − μ̂

(t)
1 〉)

+λ(t+1)
∑
J

√√√√ K∑
k=2

b2k,J

]
, (20)

where λ(t+1) > 0 is a tuning parameter. The optimization
problem in Equation (20) is convex and can be easily solved
by a blockwise coordinate descent algorithm similar to that in
Pan, Mai, and Zhang (2019). See Algorithm S.2 in Section B in
supplementary materials for details.

After obtaining {B̂(t+1)
2 , . . . , B̂(t+1)

K }, we calculate

ξ̂
(t+1)
i1 = π̂

(t)
1

π̂
(t)
1 +∑K

k=2 π̂
(t)
k · exp[〈Xi − 1

2 (μ̂
(t)
k + μ̂

(t)
1 ), B̂(t+1)

k 〉]
,

(21)

ξ̂
(t+1)
ik = π̂

(t)
k exp[〈Xi − 1

2 (μ̂
(t)
k + μ̂

(t)
1 ), B̂(t+1)

k 〉]
π̂

(t)
1 +∑K

k=2 π̂
(t)
k · exp[〈Xi − 1

2 (μ̂
(t)
k + μ̂

(t)
1 ), B̂(t+1)

k 〉]
,

k > 1. (22)

Combining ξ̂
(t+1)
ik with Equations (9) and (10), we have the

Q-function in the (t + 1)th iteration as

QDEEM(θ |̂θ (t)
) =

n∑
i=1

K∑
k=1

ξ̂
(t+1)
ik {logπk − (

M∑
m=1

qm log|�m|)

−1
2
〈�Xi − μk;�−1

1 , . . . ,�−1
M �,Xi − μk〉}. (23)

The Q-function in Equation (23) will guide us to find θ̂
(t+1) in

the enhanced M-step, which will be discussed in Section 3.3.
Since the probabilities ξ̂

(t+1)
ik in Equation (23) are calculated

based on a small subset of variables, they are expected to be close
to the truth under the sparsity model assumption, and lay the
foundation for accurate parameter estimation in the enhanced
M-step.

3.3. The EnhancedM-step

In the enhanced M-step, we update estimates for π∗
k ,μ

∗
k

and �∗
m. By maximizing the Q-function in Equation (23), it

is straightforward to obtain the estimates for π∗
k ,μ

∗
k at the

(t + 1)th iteration as π̂
(t+1)
k = ∑n

i=1 ξ̂
(t+1)
ik /n and μ̂

(t+1)
k =∑n

i=1 ξ̂
(t+1)
ik Xi/

∑n
i=1 ξ̂

(t+1)
ik , k = 1, . . . ,K. It is also easy to

verify that
∑K

k=1 π̂
(t+1)
k = ∑K

k=1 ξ̂
(t+1)
ik = 1.

As discussed in Section 3.1, directly maximizing the Q-
function over �m is not ideal. We consider an alternative
update for �m based on the following result. Recall that
qm = p−1

m
∏M

h=1 ph and ξik = Pr(Yi = k|Xi, θ∗).

Lemma 3. Under the TNMM in Equation (2), we have

�∗
m ∝ 1

qm
E

{ K∑
k=1

ξik(Xi − μ∗
k)(m)(Xi − μ∗

k)
T
(m)

}
. (24)

Lemma 3 implies that we can construct a method of moment
estimate for �∗

m. Recall that we require σ ∗
m,11 = 1 for m > 1 to

ensure identifiable covariance matrices and hence have σ ∗
1,11 =

var(Xi,1···1|Yi = k), where Xi,1···1 is the (1, . . . , 1)-th element
ofXi. Since we have shown that�∗

m is proportional to the right-
hand side of Equation (24), we can incorporate the identification
constraints into scaling. Note that Lemma 3 is widely applicable
and can be combined with any other identification constraints
on �∗

m, for example, requiring ‖�∗
2‖F = · · · = ‖�∗

M‖F = 1.
As a consequence of Lemma 3, we propose the following

noniterative estimator for the covariance parameters in the
enhanced M-step. Given ξ̂

(t+1)
ik , we first compute intermediate

estimates,

(

� (t+1)
m = 1

nqm

n∑
i=1

K∑
k=1

ξ̂
(t+1)
ik (Xi − μ̂

(t+1)
k )(m)(Xi − μ̂

(t+1)
k )T(m),

m = 1, . . . ,M. (25)

Then, for m > 1, our DEEM estimator is �̂
(t+1)
m =

(

�
(t+1)
m /

(

σ
(t+1)
m,11 ; and for m = 1, our DEEM estimator is

�̂
(t+1)
m = {̂σ (t+1)

1,11 /

(

σ
(t+1)
1,11 } (

�
(t+1)
1 , where the conditional

variance of the element Xi,1···1 is estimated as

σ̂
(t+1)
1,11 = Ê{v̂ar(Xi,1···1|Yi)} = 1

n

n∑
i=1

K∑
k=1

ξ̂
(t+1)
ik

(Xi,1···1 − μ̂
(t+1)
k,1···1)

2. (26)

The covariance estimates �̂
(t+1)
m will be used in the subse-

quent enhancedE-step. In comparison to the estimator �̃(t+1)
m in
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Figure 1. Clustering performance under M1 with varying �∗ = a × �∗
1 based on 100 replications. In all panels, the results for SKM are drawn in dotted line, those for

DEEM are in dashed line, and those for the optimal rule is in solid line. The left panel shows the clustering error rates R of SKM, DEEM and the optimal rule. Themiddle panel
shows the relative clustering error rates R− R(Opt) of SKM, DEEM and the optimal rule, where R(Opt) is the optimal error rate. The right panel shows number of iterations
needed for convergence in DEEM with error bars represent 1.96 times standard error.

the standard EM algorithm, �̂(t+1)
m has apparent computational

advantages. No iterative subalgorithm is needed for computing
�̂

(t+1)
m . Instead, all the computation in the enhancedM-step can

be carried out explicitly.Moreover, wewill later show that �̂(t+1)
m

leads to consistent clustering even when the dimension of each
mode of the tensor grows at an exponential rate of n without
any sparsity assumption on �∗

m. It is unclear whether such
consistency can be achieved by the standard estimator �̃

(t+1)
m .

Hence, �̂
(t+1)
m should be preferred over �̃

(t+1)
m for theoretical

considerations as well.
The enhanced M-step in DEEM is delicately designed, but

our covariance estimator has a potentially much wider range of
applications beyond DEEM. For example, Cao et al. (2013) and
Sun and Li (2018) considered combining low-rank decomposi-
tion of the tensors and the K-means clustering. Gao et al. (2021)
proposed to regularize the mean differences of matrix obser-
vations. To fill the gap between these works and the optimal
clustering rule, which requires covariance modeling, one can
potentially adopt our fast and theoretically guaranteed covari-
ance estimators.

3.4. The DEEMAlgorithm and Implementation Details

With the enhanced E-step and the enhanced M-step, we iterate
between them until convergence similar to the standard EM
algorithm. TheDEEMalgorithm is summarized inAlgorithm 1.
Given the output of ξ̂ik, we assign Xi to cluster ŶDEEM

i , where
ŶDEEM
i = argmaxk ξ̂ik. We further discuss some implementa-

tion details in what follows.

3.4.1. Initialization
In order to implement DEEM, we need to determine the initial
value. In our numerical studies, we first perform the K-means
clustering on vec(Xi) to find Ŷ(0)

i . Then we set the initial values
as,

π̂
(0)
k =

∑n
i=1 1(Ŷ

(0)
i = k)

n
, μ̂

(0)
k = 1

nπ̂ (0)
k

∑
Ŷ(0)
i =k

Xi, (27)

�̂
(0)
m ∝ 1

nqm

n∑
i=1

∑
Ŷ(0)
i =k

(Xi − μ̂
(0)
k )(m)(Xi − μ̂

(0)
k )T(m). (28)

The scales of �̂
(0)
m are chosen such that σ̂

(0)
m,11 = 1 for m > 1

and σ̂
(0)
1,11 = 1

n
∑K

k=1
∑

Ŷ(0)
i =k(Xi,1···1 − μ̂

(0)
k )2. We choose to use

the K-means clustering in initialization because it is very fast.
Although the K-means clustering is performed on vectorized
data and thus ignores the tensor structure, DEEM can recover
from this loss of efficiency by incorporating the tensor structure
in the later iterations. In our numerical studies, we observe that
this initialization leads to good solutions of DEEM at conver-
gence even when the K-means clustering has poor performance.

3.4.2. Convergence
In our implementation, the convergence criterion is based on
the sum of squares of mean differences between two consecu-
tive iterations. We stop the DEEM iterations if

∑
k ‖μ̂(t+1)

k −
μ̂

(t)
k ‖2F ≤ 0.1 or the maximum number of iterations tmax = 50

is reached. In our experience, the algorithm usually converges
within 50 iterations. See Section 4.4, Figure 1, for the number of
iterations required to converge as we change the signal strength
in simulations.

3.4.3. Tuning
The tuning parameter λ(t) in the enhanced E-step could either
be fixed or varying across iterations. For computation con-
siderations, it is apparently easier to fix λ(t) = λ for all t,
while for theoretical considerations, one may favor varying λ(t).
For example, similar to Cai, Ma, and Zhang (2019), we could
consider

λ(t+1) = κλ(t) + (
1 − κ t+1

1 − κ
)Cλ

√
log p
n

, (29)

where 0 < κ < 1/2 and Cλ > 0 are constants. In our numerical
studies, we note that both choices of λ(t) give reasonable results
as long as they are properly tuned.Moreover, when t is large, the
varying λ(t) in (29) is roughly constant at the value Cλ

√
log p
n .

Therefore, we fix λ(t) = λ in all the numerical studies, but only
consider the varying λ(t) in theoretical studies.
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Algorithm 1 DEEM algorithm for tensor clustering

1. Initialize π̂
(0)
k , μ̂(0)

k , �̂(0)
m .

2. For t = 0, 1, . . ., repeat the following steps until convergence:

(a) The enhanced E-step:

i. Minimize the following convex objective function over B2, . . . ,BK ∈ R
p1×···×pM with Algorithm S.2:

K∑
k=2

(〈Bk, �Bk, �̂
(t)
1 , . . . , �̂(t)

M �〉 − 2〈Bk, μ̂(t)
k − μ̂

(t)
1 〉) + λ(t+1)

∑
J

√√√√ K∑
k=2

b2k,J .

Let (B̂(t+1)
2 , · · · , B̂(t+1)

K ) denote the solution.
ii. For i = 1, . . . , n, and k = 1, . . . ,K, calculate the probabilities

ξ̂
(t+1)
ik =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
π̂

(t+1)
1

π̂
(t+1)
1 +∑K

j=2 π̂
(t+1)
j · exp[〈Xi − 1

2 (μ̂
(t+1)
j + μ̂

(t+1)
1 ), B̂(t+1)

j 〉]
, k = 1;

π̂
(t+1)
k exp[〈Xi − 1

2 (μ̂
(t+1)
k + μ̂

(t+1)
1 ), B̂(t+1)

k 〉]
π̂

(t+1)
1 +∑K

k=2 π̂
(t+1)
j · exp[〈Xi − 1

2 (μ̂
(t+1)
j + μ̂

(t+1)
1 ), B̂(t+1)

j 〉]
, k > 1.

(b) The enhanced M-step:

i. Update π̂
(t+1)
k = ∑n

i=1 ξ̂
(t+1)
ik /n and μ̂

(t+1)
k = ∑n

i=1 ξ̂
(t+1)
ik Xi/

∑n
i=1 ξ̂

(t+1)
ik .

ii. Compute intermediate covariance estimators

(

� (t+1)
m = 1

nqm

n∑
i=1

K∑
k=1

ξ̂
(t+1)
ik (Xi − μ̂

(t+1)
k )(m)(Xi − μ̂

(t+1)
k )T(m).

iii. Scale

(

�
(t+1)
m to be

�̂
(t+1)
m =

{
{n−1∑n

i=1
∑K

k=1 ξ̂
(t+1)
ik (Xi,1···1 − μ̂

(t+1)
k,1···1)

2} (

�
(t+1)
m /

(

σ
(t+1)
1,11 , m = 1;

(

�
(t+1)
m /

(

σ
(t+1)
m,11 , m > 1.

3. Output ξ̂ik, π̂k, μ̂k, �̂m at convergence.

When we fix λ(t) = λ, we need to determine λ. Permutation
(e.g., Witten and Tibshirani 2010) and Bayesian information
criterion (BIC; e.g., Sun and Li 2018; Guo et al. 2010) are two
popular ways for tuning in clustering. We adopt a BIC-type
criterion. For any λ, we let θ̂

λ be the output of DEEM with the
tuning parameter fixed at λ. We look for the value of λ that
minimizes

BIC(λ) = −2
n∑

i=1
log(

K∑
k=1

π̂λ
k fk(Xi; θ̂

λ

k)) + log(n) · |D̂λ|, (30)

where D̂λ = {(k,J ) : b̂λ
k,J �= 0} is the set of nonzero elements

in B̂λ
2 , . . . , B̂λ

K .

3.4.4. Number of Clusters
Asmost clusteringmethods, DEEM requires users to specify the
number of clusters K, the knowledge of which is often unavail-
able due to the unsupervised nature of clustering problems. In
this paper, we focus on the scenario thatK is known. In practice,
we may use a BIC-type criterion similar to Equation (30) to

choose λ and K simultaneously. Implementation details and
simulation examples of this approach are provided in Section C
of Supplementary Materials. Under simulation models M1–M5
in Section 5, the number of clusters can be identified correctly
for roughly 60% to 80% of the time. There exist many proposals
for the estimation of K in various clustering contexts, such
as Tibshirani, Walther, and Hastie (2001), Fraley and Raftery
(2002), Sugar and James (2003), Chiang and Mirkin (2010),
Wang (2010), Fang and Wang (2012), Fujita, Takahashi, and
Patriota (2014), and Fu and Perry (2020), but consistent selec-
tion of K for high-dimensional tensor clustering is still an open
question and is left as future research.

As pointed out by a referee, it has been shown in more
classical settings that if K is over-specified, the convergence rate
could be lower (see, e.g., Chen 1995; Heinrich and Kahn 2018;
Dwivedi et al. 2020). These papers focus on vector models and
consider dimensions much lower than what will be presented
for our method. It will be an interesting but challenging future
topic to know whether similar results hold for tensor clustering
in high dimensions.
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3.5. Benefits of Keeping the Tensor Form

In this section, we discuss the advantages of keeping the tensor
form in developing our method. We consider the enhanced E-
step and the enhanced M-step separately.

Our enhanced E-step is conceptually similar to the E-step
in Cai, Ma, and Zhang (2019), where they proposed a method
called CHIME for model-based clustering of high-dimensional
vector data. Under the high-dimensional GMM, the authors
showed that it suffices to find some linear projections of the
features to conduct the E-step. To tackle the high dimensionality,
they assume that the linear projections are sparse. Their sparsity
assumption is similar to ours on B∗

k .
However, CHIME is only designed for vector data, and is not

tailored for tensor data. Our enhanced E-step takes advantage
of the tensor structure to reduce the storage cost and improve
clustering efficiency for higher-order tensor data. In particular,
if we vectorize our tensor observations Xi and apply CHIME,
in each iteration we need to compute the covariance matrix
v̂ar(vec(Xi)|Yi) with

∏M
m=1 p2m elements. But in our enhanced

E-step, the covariance matrices only have
∑M

m=1 p2m elements,
and are much lighter on the storage.

On the other hand, even though the vectorized form of
TNMM in Equation (4) has a reduced number of parameters,
it is still advantageous to consider the original tensor form for
the sake of computation. To see this subtle point, note that, if
we vectorize Xi and the associated parameters β∗

k ≡ vec(B∗) ={⊗m=1
m=M(�∗

m)−1
}
vec(μ∗

k − μ∗
1). Then the optimization prob-

lem (20) becomes

argmin
β2,...,βK∈Rp

[ K∑
k=2

{
βT
k

(m=1⊗
m=M

�̂
(t)
m

)
βk − 2βT

kvec
(̂
μ

(t)
k − μ̂

(t)
1

)}

+ λ(t+1)
∑
j

√√√√ K∑
k=2

β2
k,j

⎤⎦ , (31)

which can be solved by a blockwise coordinate descent algo-
rithm, such as the one in Mai, Yang, and Zou (2019). However,
the storage and the computation costs of

⊗m=1
m=M �̂

(t)
m are both at

the intimidating order of O(
∏M

m=1 p2m). In comparison, to solve
Equation (20), our efficient implementation does not require
calculating the Kronecker product. Consequently, it may be
practically infeasible to solve Equation (31) when we can still
easily solve Equation (20). For example, on a simulated dataset
from M7 in Section 5.1, we tried to use Equation (31) in the
enhancedE-stepwhen the tensor dimension is 30×30×30.On a
computer within 16GB ofmemory, the algorithmwould fail due
to an out-of-memory error. However, DEEM can be carried out
on the same computer.

More importantly, the enhanced M-step is most naturally
derived when we keep the tensor form of Xi rather than con-
sidering the vectorized TNMM in Equation (4). With the ten-
sor form, the covariance matrices �∗

m are more “separated”
from each other. This fact enables us to find �̂

(t)
m individu-

ally. If we consider the vectorized version, we need to estimate⊗m=1
m=M �∗

m, which is not easy without reshaping vec(Xi) into
tensors.

4. Theoretical Studies

4.1. Parameter Space and Technical Definitions

Before presenting the consistency of DEEM, we define our
parameter space of interest and formally introduce some tech-
nical terms.We assume that the number of cluster is known and
focus on the two-cluster case, that is, K = 2.

We define our parameter space for the TNMM parameter as
θ = {π1,π2,μ1,μ2,�1, . . . ,�M}, where 0 < π1 = 1 − π2 <

1, μ1,μ2 ∈ R
p1×···×pM and �1, . . . ,�M ∈ R

pm×pm are all
symmetric positive definite. Two important estimable functions
of θ are B = B(θ) = �μ2 − μ1;�−1

1 , . . . ,�−1
M � ∈ R

p1×···×pM

and � = �(θ) = 〈μ2 − μ1, �μ2 − μ1;�−1
1 , . . . ,�−1

M �〉 ∈
R. The tensor parameter B is used for calculating ξ̂ik in the
enhanced E-step of DEEM. The parameter � is the separation
between the two clusters. The true population parameters are
θ∗,B∗ = B(θ∗) and�∗ = �(θ∗). The set of important variables
D = {J : bJ �= 0} is clearly also an estimable function of θ , as
D = D(B) = D(B(θ)).

For any two numbers a and b, we write a ∨ b = max{a, b}
and a∧b = min{a, b}. We use λmax(·) and λmin(·) to denote the
largest and the smallest eigenvalues of a matrix, respectively.We
define the parameter space � = �(cπ ,Cb, s, {Cm}M=1

m=1 ,�0) as

{θ : πk ∈ (cπ , 1 − cπ ), ‖vec(B)‖1 ≤ Cb,
λ−1
min(�m) ∨ λmax(�m) ≤ Cm, |D| ≤ s,� ≥ �0}, (32)

where C1, . . . ,CM ,Cb,�0 > 0 and 0 < cπ < 1 are constants
that do not change as pm increases, but s > 0 can vary with pm.
This parameter space is sufficiently flexible to include a wide
range of models. The assumptions in � are intuitive and very
mild. First, we require the eigenvalues of �m to be bounded
from below and above: C−1

m ≤ λmin(�m) ≤ λmax(�m) ≤ Cm.
This eigenvalue assumption on the covariances is also common
in high dimensions (Cai and Liu 2011; Pan, Mai, and Zhang
2019). We also require that πk is bounded away from 0 to 1,
so that each cluster has a decent sample size. The coefficient
B is assumed to be sparse so that we can perform variable
selection. Finally, the assumption that � > �0 implies that the
two clusters are well separated from each other. If two clusters
are indistinguishable even on the population level, of course it
will be impossible to separate them with any clustering rule.
In our theory, we need �0 to be sufficiently large so that we
only consider models with a reasonably large separation. See
more detailed discussion of the cluster separation � following
Theorem 1.

We need some more technical definitions before we present
the conditions needed for theoretical results. We set

�(s) = {u ∈ R
p : 2‖uSC‖1 ≤ 4‖uS‖1

+3
√
s‖u‖2, for some S ⊂ {1, . . . , p}, |S| = s}, (33)

where uS ∈ R
s and uSC ∈ R

p−s are sub-vectors extracted from
u based on the index set S and its complement set. The set �(s)
contains approximately sparse vectors with at most s elements
well separated from 0. For a vector a ∈ R

p and a matrix A ∈
R
p×p, we denote

‖a‖2,s = sup
‖x‖2=1,x∈�(s)

|aTx|, ‖A‖2,s = sup
‖x‖2=1,x∈�(s)

‖Ax‖2.
(34)
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For two parameters θ and θ̃ , we define their distance as
follows:

d2,s(θ , θ̃) = (∨k|πk − π̃k|) ∨ (∨k‖vec(μk − μ̃k)‖2,s)
∨‖(⊗m=1

m=M�m − ⊗m=1
m=M�̃m)vec(B̃)‖2,s, (35)

where ∨kak = max{ak : k = 1, 2, . . . }.
We further define the contraction basin for θ∗ as
Bcon(θ

∗; aπ , a�, ab, s) = {θ : πk ∈ (aπ , 1 − aπ ),
(1 − a�)(�∗)2 < |δk(B)|, σ 2(B) < (1 + a�)(�∗)2,

vec(B − B∗) ∈ �(s), ‖vec(B − B∗)‖1
≤ ab�∗, ‖vec(μk)‖2,s ≤ ab�∗}, (36)

where aπ , a�, ab > 0, aπ ≤ cπ < 1 are constants, δk(B) =
〈B,μ∗

k − (μ1 + μ2)/2〉 and σ 2(B) = 〈B, �B,�∗
1, . . . ,�∗

M�〉.

4.2. Initialization Condition

We introduce a condition on the initial value that is important
for our study. Define d0 = d2,s(̂θ

(0), θ∗) as the distance between
the initial value θ̂

(0) and the true parameter θ∗, where the func-
tion d2,s(·, ·) is defined in Equation (35). For an M-way tensor
A ∈ R

p1×···×pM , we let ‖A‖ =
√∑

J A2
J . The consistency

of DEEM relies on the following condition, where aπ and a�

are defined in Equation (36), cπ and C0 ≡ ∏M
m=1 Cm are from

Equation (32).

(C1) The initial estimator B̂(0) satisfies that d0 ∨ ‖B̂(0) −
B∗‖ ≤ r�∗, vec(B̂(0) − B∗) ∈ �(s), where r <

min{ |aπ−cπ |
�

,
√
9C0+16a�−√

9C0
4 , a�

C0
, ab
5
√
s } and r−1 =

o
(√

n/s
∑M

m=1 log pm
)
.

Condition (C1) indicates that the initial value is reasonable
in the sense that d0 is relatively small, and B̂(0) is close to B∗
and approximately sparse. This condition is important for our
theoretical study because it guarantees that each iteration keeps
improving our estimate. Due to the non-convex nature of clus-
tering analysis, conditions on the initial value are popular in its
theoretical studies; see, for example, Wang et al. (2015), Yi and
Caramanis (2015), Balakrishnan, Wainwright, and Yu (2017),
and Cai, Ma, and Zhang (2019). Finding good initial values for
cluster analysis is an important research area on its own, with
many interesting works for the Gaussian mixture model (Kalai,
Moitra, and Valiant 2010; Moitra and Valiant 2010; Hsu and
Kakade 2013; Hardt and Price 2015).

For theoretical interests, we show that there exists an algo-
rithm to generate initial values satisfying Condition (C1). One
such initialization algorithm is presented as Algorithm S.4 in
Section G of supplementary materials. Algorithm S.4 is related
to the vector-based algorithm in Hardt and Price (2015), but is
specially designed for tensor data. Under TNMM, it produces
initial values that satisfy Condition (C1) under appropriate
conditions, as shown in the following lemma.

Lemma 4. Under the TNMM in (2), suppose θ∗ ∈ �(cπ ,Cb, s,
{Cm}Mm=1,Cb,�0). If s12

∑M
m=1 log pm = o(n), with a probabil-

ity greater than 1−O(
∏

m p−1
m ), Algorithm S.4 produces initial

values that satisfy Condition (C1).

Lemma 4 indicates that, under TNMM,when the sample size
n is larger than s12

∑M
m=1 log pm, Condition (C1) is satisfied by

Algorithm S.4 with a probability tending to 1 as n → ∞. Hence,
we can meet Condition (C1) even when the dimension of each
mode grows at an exponential rate of the sample size. The term
s12 results from the theoretical properties of the initialization
algorithm proposed by Hardt and Price (2015). Their algorithm
solves an equation system that involves the first six moments of
Gaussian mixtures. We need s to grow at our specified rate such
that all these moments are estimated accurately. Also note that
this sample size requirement matches the best one in literature
whenM = 1 and tensors reduce to vectors.

In the literature, there are also interests in removing con-
ditions for initial values completely (Daskalakis, Tzamos, and
Zampetakis 2017; Wu and Zhou 2019). All these works require
extensive efforts, and there is a considerable gap between these
works and the topic in this article. The existing works focus on
low-dimensional vectors with known covariance matrices that
are often assumed to be identity matrices, while we have high-
dimensional tensors with unknown covariance matrices.

4.3. Main Theorems

For our theory, we assume that the tuning parameters in DEEM
are generated according to Equation (29), with λ(0) defined as

λ(0) = Cd · (|π̂2| ∨ ‖vec(μ̂(0)
1 − μ̂

(0)
2 )‖2,s ∨ ‖

m=1⊗
m=M

�̂
(0)
m ‖2,s)/

√
s + Cλ

√√√√ M∑
m=1

log pm/n, (37)

where Cd,Cλ > 0 are constants.
Our ultimate goal is to show that the DEEM is asymptotically

equivalent to the optimal rule in terms of clustering error.
However, because B∗ is the key parameter in clustering, we
first present the theoretical properties of B̂(t) as an intermediate
result.

Theorem 1. Consider θ∗ ∈ �(s, cπ , {Cm}Mm=1,Cb,�0) with
s = o(

√
n/
∑

m log pm) and a sufficiently large �0. Assume
that Condition (C1) holds with

√∑
m log pm/n = o(r), λ(0) is

specified as in (37) and λ(t) is specified as in (29). Then there
exist constants Cd,Cλ > 0 and 0 < κ < 1/2 such that, with a
probability greater than 1 − O(

∏
p−1
m ), we have

‖B̂(t) − B∗‖ � κ td0 +
√
s
∑M

m=1 log pm
n

. (38)

Moreover, if t � (− log(κ))−1 log(n · d0), then

‖B̂(t) − B∗‖ �

√
s
∑M

m=1 log pm
n

. (39)

Theorem 1 implies that, under suitable conditions, DEEM
produces an accurate estimate for B∗ even in ultra-high dimen-
sions after a sufficiently large number of iterations. The condi-
tion that s = o(

√
n/
∑

m log pm) implies that the model should
be reasonably sparse. Also note that, this rate is derived under
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Condition (C1). But so far we are only able to guarantee Con-
dition (C1) when s = o[{n/(∑m log pm)}1/12] (see Lemma 4),
which necessarily implies that s = o(

√
n/
∑

m log pm).
We further require�0 to be sufficiently large such that all the

models of interest have large �∗. To avoid excessively lengthy
expressions and calculations, we do not calculate the explicit
dependence of our upper bound on �∗ here. But we give an
intuitive explanation on the impact of �∗. Note that Equation

(38) contains two terms, κ td0 and
√

s
∑M

m=1 log pm
n , where d0 is the

distance between the initial value and the true parameters. Since
0 < κ < 1/2, κ td0 vanishes as long as t → ∞, but�∗ is related
to how fast this convergence is. Loosely speaking, the value of�∗
inversely affects κ . For a larger �∗, we can find a smaller κ such
that Equation (38) holds with a high probability, and thus B̂(t)

converges to B∗ in fewer iterations. When �∗ is small, we can
only find a larger κ , and the algorithmic convergence is slower.
In our theory,�0 can be viewed as the lower bound for�∗ such
we can find a κ < 1/2 to guarantee (38) with a high probability.
See Section 4.4 for a numerical demonstration of the effect of
�∗.

Now we present our main results concerning the clustering
error. Denote the clustering error of DEEM as

R(DEEM) = min
�:{1,2}
→{1,2}Pr

(
�(ŶDEEM

i ) �= Yi
)
. (40)

Note that the clustering error is defined as the minimum over
all permutations � : {1, 2} 
→ {1, 2}, since there could be label
switching in clustering. In the meantime, recall that the lowest
clustering error possible is achieved by assigning Xi to Cluster
2 if and only if (6) is true. Define the error rate of the optimal
clustering rule as

R(Opt) = Pr(Ŷopt
i �= Yi), (41)

where Ŷopt
i is determined by the optimal rule in Equation (6).

We study R(DEEM) − R(Opt).

Theorem 2. Under the conditions in Theorem 1, we have that

1. For the κ that satisfies (38), if t � (− log(κ))−1 log(n · d0),
then with a probability greater than 1 − O(

∏
p−1
m ), we have

R(DEEM) − R(Opt) � s
∑M

m=1 log pm
n

. (42)

2. The convergence rate in Equation (42) is minimax optimal
over θ ∈ �(cπ ,Cb, s, {Cm}Mm=1,�0).

Theorem 2 shows that the error rate of DEEM converges to
the optimal error rate even when the dimension of each mode
of the tensor, pm, grows at an exponential rate of n. Moreover,
the convergence rate is minimax optimal. These results provide
strong theoretical support for DEEM. The proofs of the upper
bounds in Theorems 1 and 2 are related to those in Cai, Ma,
andZhang (2019), but require a significant amount of additional
efforts. We consider the TN distribution, but non-asymptotic
bounds for our estimators of�∗

1, . . . ,�∗
M are not available in the

literature. Also, for us to claim the minimax optimality in The-
orem 2, we have to find the lower bound for the excessive clus-
tering error. This is achieved by constructing a family of models
that characterize the intrinsic difficulty of estimating TNMMs.

We consider models with sparse means and covariancematrices
�m proportional to identity matrices. The excessive clustering
error of these models is no smaller than O(n−1s

∑M
m=1 log pm).

Because this lower boundmatches our upper bound in Equation
(42), we obtain the minimax optimality.

4.4. Cluster Separation

Recall that we define the cluster separation as �∗ = 〈μ∗
2 −

μ∗
1, �μ∗

2 −μ∗
1; (�∗)−1

1 , . . . , (�∗
M)−1�〉. It quantifies the difficulty

of clustering, and affects how fast the algorithmic error vanishes
throughout the iterations (seeTheorem1).Herewedemonstrate
this impact with a numerical example.

We consider M1 from the simulation (Section 5) as a base-
line. Define the cluster separation in M1 as �∗

1. We examine
the performance of DEEM and its competitors with varying
�∗ = a�∗

1, where a ∈ {0.5, 0.75, 1, 2, 3, 4}. To achieve the
specified�∗, we proportionally rescaleμ∗

2 by
√
awhile keeping

π∗
k ,�

∗
m unchanged. Since the sparse K-means (SKM; Witten

and Tibshirani (2010)) and DEEM are the top two methods
under model M1, we plot the clustering error of SKM, DEEM
and the optimal rule in Figure 1. Clearly, both DEEM and SKM
have smaller clustering error as�∗ increases (left panel), and the
relative clustering error shrinks at the same time (middle panel).
Therefore,�∗ is indeed a very accurate measure of the difficulty
of a clustering problem. Moreover, the right panel shows that
DEEM needs fewer iterations to achieve convergence when �∗
is larger, which confirms our discussion following Theorem 1.

5. Numerical Studies

5.1. Simulations

In this section, our observations in all models are three-way
tensors X ∈ R

p1×p2×p3 . The prior probabilities are set to be
π∗
k = 1/K, where K is the number of clusters. For simplicity,

we let nk be equal for k = 1, . . . ,K in each model. We fix
μ∗
1 = 0, and specify covariance matrices �∗

m, m = 1, 2, 3 and
B∗
k , k = 2, . . . ,K for each model. For B∗

k , all the elements not
mentioned in the following model specification are set to be
0. For a matrix � = [ωij] and a scalar ρ > 0, we say that
� = AR(ρ) if ωij = ρ|i−j|; and we say that � = CS(ρ) if
ωij = ρ + (1 − ρ)1(i = j).

For each of the following seven simulation settings, we gen-
erate 100 independent datasets under the TNMM in (2). Each
cluster has sample size nk = 50 for Models M5 and M6, and
nk = 75 for all other models. Specifically, the simulation model
parameters are as follows.
M1: K = 2, p = 10 × 10 × 4. �∗

1 = CS(0.3), �∗
2 = AR(0.8),

�∗
3 = CS(0.3), B∗

2,[1:6,1,1] = 0.5.
M2: Same as M1 except for �∗

2, which is specified as follows.
Let �0 = (ωij) where ωij = uijδij, δij ∼ Bernoulli(1, 0.05)
and uij ∼ Unif[0.5, 1] ∪ [−1,−0.5]. The we symmetrize �0 by
setting� = (�0 +�T

0)/2. Set�∗ = �+{max(−λmin(�), 0)+
0.05}Ip2 . Finally rescale �∗ such that diagonal elements are 1,
and (�∗

2)
−1 = �∗.

M3: Same as M1 except for K = 3, �∗
3 = CS(0.5) and

B∗[2,1:6,1,1] = −B∗[3,1:6,1,1] = 0.5.
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M4:K = 4, p = 10×10×4,�∗
1 = Ip1 ,�∗

2 = AR(0.8),�∗
3 = Ip3 ,

B∗[2,1:6,1,1] = −B∗[3,1:6,1,1] = 0.8.
M5: K = 6, p = 10 × 10 × 4. �∗

1 = AR(0.9), �∗
2 = CS(0.6),

�∗
3 = AR(0.9). B∗[2,1:6,1,1] = 0.6, B∗[3,1:6,1,1] = 1.2, B∗[4,1:6,1,1] =

1.8, B∗[5,1:6,1,1] = 2.4, B∗[6,1:6,1,1] = 3.
M6: K = 6, p = 10 × 10 × 4. We specify μ∗

k instead of
B∗
k . The corner u1 × u2 × u3 = 8 × 1 × 1 sub-tensor of μk

is filled with independently Unif[0, 1] numbers, while we fill
in zeros elsewhere. Then we center it as μ∗

k = μk − μ1 for
k = 1, . . . ,K. The covariance matrices �∗

m’s are all two-block-
diagonal, where the block sizes corresponding to the zero versus
nonzero in means. Each block is generated as ODOT , where O
is a randomly generated orthogonal matrix and D is a diagonal
matrix that contains the eigenvalues. The first block’sD is set as
5u,u = 1, . . . , um and the second block’sD is set as 2×log(v+1),
v = 1, . . . , pm − um. Finally we standardize �∗

m to have unit
Frobenius norm.
M7: K = 2, p = 30 × 30 × 30. �∗

1 = CS(0.5), �∗
2 = AR(0.8),

�∗
3 = CS(0.5). B∗[2,1:6,1,1] = 0.6.
ModelsM1–M7 cover awide range ofmodels. InM1 andM2,

we consider two mixtures, where we include various covariance
structure such as auto-correlationAR(ρ), compound symmetric
CS(ρ), and sparse inverse covariance (in M2). Then in M3 and
M4, we increase the number of clusters to K = 3 and slightly
modify other parameters to keep the optimal clustering error
around 0.2. In M5 and M6, we further increase the number of
clusters to K = 6 and decrease the cluster size nk from 75 to
50. In M6, we consider a type of mean-covariance joint param-
eterization that corresponds to the envelope mixture models
(Wang, Zhang, and Mai 2020). This mimics strong correlation
but separable signals. Finally, M7 is constructed so that p =
303 = 27, 000 is significantly higher than the other models.

We consider several popular methods as competitors of
DEEM, includingK-means, and standard EM (EM; Section 3.1),
sparse K-means (SKM;Witten and Tibshirani (2010)), adaptive
pairwise fusion penalized clustering (APFP; Guo et al. 2010),
high-dimensional Gaussian mixtures with EM algorithm
(CHIME; Cai, Ma, and Zhang 2019), dynamic tensor clustering
(DTC; Sun and Li 2018), tensor block model (TBM; Wang and
Zeng 2019). We want to remark that the most direct competitor
is the standard EM for TNMM. The DTC and TBM methods
are designed for tensor data but from a different perspective.
As discussed in the Section 1, DTC’s advantage is from tensor
decomposition and TBM is a co-clustering method (clustering
variables and observations simultaneously). Other methods
are designed for vector data. We vectorize the tensors before
applying the vector-basedmethods.We use the built-in function
in R for K-means, the R package sparcl for SKM, the R
package PARSE for APFP, and the R package tensorsparse
for TBM. The code of DTC is downloaded from the authors’
websites. In addition, we include the error rates of the optimal
rule as a baseline.

The implementation of TBMworks on three-way data tensor.
Our data is a four way tensor of dimension n × p1 × p2 × p3,
with the observations being an additional mode. Hence, when
we apply TBM, we first apply mode-1 matricization to each
observation and then combine the observations as a three-way
tensor of dimension n × p1 × (p2p3). Also, TBM requires
specifying the number of clusters along each mode. We use

true K as number of clusters along the first mode (i.e., the
mode of the observations) and apply the BIC inWang and Zeng
(2019) to tune the numbers of clusters on the second and the
third mode. In Section D of Supplementary Materials, we also
conduct additional simulations under the TBM data generating
process.

We compare the clustering error rates of all the methods. We
calculate the clustering error rate to be min�

1
n
∑n

i=1 1(Ŷi �=
�(Yi)) over all possible permutations � : {1, . . . ,K} 
→
{1, . . . ,K} of cluster labels. The clustering error rates are sum-
marized inTable 1.Due to its excessively long computation time,
the results of AFPF are based on 30 replications in M6, and are
not reported for M7. The results for CHIME are only reported
for M1 andM2, because M3–M6 have K > 2 clusters, while the
implementation for CHIME is only available for K = 2. On the
other hand, CHIME exceeds the memory limit of 16GB we set
for all methods for M7.

We make a few remarks on Table 1. First of all, DEEM is
significantly better than all the other methods across a wide
range of TNMM parameter settings. Such results suggest that
DEEMhas very competitive numerical performance in the pres-
ence of different correlation structures, number of clusters and
dimensions. The advantage of DEEM is likely a consequence
of exploiting the tensor structure, modeling the correlation and
imposing variable selection, as no competitor combines all these
three components together. Second, the tensor methods DTC
and TBMassume different statistical models and do not account
for the correlation among variables. Therefore, they are less
efficient than DEEM under the TNMM. Finally, variable selec-
tion generally improves clustering accuracy in high dimensions.
DEEM and EM fit the same model, but a major distinction
between them is that DEEM enforces variable selection while
EM does not. Analogously, the sparse K-means (SKM) is uni-
formly better than K-means. This demonstrates the importance
of variable selection in clustering problems.

5.2. Real Data Illustration

We further compare DEEM with the competitors on the BHL
(brain, heart, and lung) dataset, available at https://www.ncbi.
nlm.nih.gov/sites/GDSbrowser?acc=GDS1083. This dataset con-
tains the expression levels of 1124 genes on 27 brain, heart or
lung tissues. On each tissue, the measurement is repeated four
times. Hence, our observation Xi ∈ R

4×1124, with each row
being the gene expression level of onemeasurement.We attempt
to recover the type of each tissue based on Xi, i = 1, . . . , 27.

We preprocess the data by performing the Kolmogorov–
Smirnov test (KS test) on each column to compare its overall dis-
tribution with the normal distribution. Only the columns with
small p-values are preserved for clustering. We consider reduc-
ing the dimension of Xi to 4 × 20 and 4 × 30. We apply DEEM
along with all the competitors in Section 5.1 on this dataset. For
DEEM, we generate 30 different initial values and use BIC to
tune the initial value along with the tuning parameter. The same
is done for DTC. For APFP, it is suggested by the authors to first
fit GMM for 100 times without penalty with different random
initial values and select the one with the highest likelihood. We
follow this suggestion. The implementations of SKM do not

https://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS1083
https://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS1083
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Table 1. Reported are the averages and standard errors (in parentheses) of clustering error rates based on 100 replicates.

Optimal K-means SKM DEEM DTC TBM EM AFPF CHIME

M1 16.81 32.43 26.31 19.85 34.10 32.91 34.38 32.69 32.45
(0.34) (0.40) (0.68) (0.35) (0.42) (0.38) (0.42) (0.39) (0.41)

M2 9.59 31.26 32.01 12.99 34.91 31.43 28.20 42.44 46.75
(0.25) (0.42) (0.67) (0.53) (0.87) (0.41) (0.54) (0.66) (0.24)

M3 17.27 34.57 22.32 20.16 40.72 34.75 32.84 35.88 NA
(0.25) (0.39) (0.29) (0.33) (0.42) (0.34) (0.35) (0.35) (–)

M4 22.31 44.62 40.21 26.84 45.28 45.78 42.74 42.89 NA
(0.27) (0.42) (0.56) (0.39) (0.65) (0.39) (0.41) (0.42) (–)

M5 8.47 24.53 15.93 10.07 64.24 20.78 19.64 21.88 NA
(0.16) (0.67) (0.28) (0.26) (0.38) (0.33) (0.33) (0.33) (–)

M6 10.40 34.69 23.93 16.00 71.18 34.13 27.36 29.16 NA
(0.16) (0.79) (0.60) (0.47) (0.33) (0.59) (0.46) (1.50) (–)

M7 8.30 34.08 25.85 12.27 44.05 33.61 33.48 NA NA
(0.20) (0.64) (1.17) (0.74) (0.51) (0.63) (0.64) (–) (–)

Table 2. Clustering error rates of the BHL data.

DEEM K-means SKM DTC TBM EM AFPF

4 × 20 7.41 14.81 14.81 22.22 33.33 14.81 14.81
4 × 30 11.11 11.11 11.11 18.52 11.11 11.11 11.11

allowusers to specify initial values, sowe let it pick its own initial
value. The clustering error rates are reported in Table 2. It can be
seen that DEEM has comparable or superior performance to all
the competitors in both dimensions. The lowest clustering error
rate is achieved by DEEM with dimension 4 × 20.

6. Discussion

In this paper, we propose and study the TNMM. It is a natural
extension of the popular GMM to tensor data. The proposed
method simultaneously performs variable selection, covariance
estimation and clustering for tensor mixture models. While
Kronecker tensor covariance structure is used to significantly
reduce the number of parameters, it incorporates the depen-
dence between variables and along each tensor modes. This
distinguishes our method from independence clustering meth-
ods such as K-means. We enforce variable selection in the
enhanced E-step via convex optimization, where sparsity is
directly derived from the optimal clustering rule. We propose
completely explicit updates in the enhanced M-step, where the
newmoment-based estimator for covariance is computationally
fast and does not require sparsity or other structural assump-
tions on the covariance. Encouraging theoretical results are
established for DEEM, and are further supported by numerical
examples.

Our DEEM algorithm is developed for multi-cluster prob-
lem, for example, K ≥ 2, and has been shown to work well
in simulations when K is not too large. Since the number of
parameters in TNMM grows with K, extensions such as low-
rank decomposition on B∗

k may be needed for problems where
the number of clusters are expected to be large. Moreover,
theoretical study is challenging for K > 2 and for unknown
K. Such extensions of our theoretical results from K = 2 to

general K are yet to be studied. Relatedly, consistent selection
of K remains an open question for TNMM.
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