
PHYSICAL REVIEW B 107, 045412 (2023)

Playing nonlocal games with phases of quantum matter
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The parity game is an example of a nonlocal game: By sharing a Greenberger-Horne-Zeilinger (GHZ) state
before playing this game, the players can win with a higher probability than is allowed by classical physics.
The GHZ state of N qubits is also the ground state of the ferromagnetic quantum Ising model on N qubits in
the limit of vanishingly weak quantum fluctuations. Motivated by this observation, we examine the probability
that N players who share the ground state of a generic quantum Ising model, which exhibits nonvanishing
quantum fluctuations, still win the parity game using the protocol optimized for the GHZ state. Our main result
is a modified parity game for which this protocol asymptotically exhibits quantum advantage in precisely the
ferromagnetic phase of the quantum Ising model. We further prove that the ground state of the exactly soluble
d = 1 + 1 transverse-field Ising model can provide a quantum advantage for the parity game over an even wider
region, which includes the entire ferromagnetic phase, the critical point and part of the paramagnetic phase. By
contrast, we find examples of topological phases and symmetry-protected topological (SPT) phases of matter,
namely the deconfined phase of the toric code Hamiltonian and the Z2×Z2 SPT phase in one dimension, that do
not exhibit an analogous quantum advantage away from their fixed points.
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I. INTRODUCTION

Bell’s proof [1] of his eponymous inequalities in 1964
was the first clear demonstration that the principles of quan-
tum mechanics are incompatible with a description of reality
that refers solely to local classical variables, an idea that
is captured by the modern notion of contextuality [2,3]. In
subsequent decades, the essence of Bell’s theorem has been
distilled into ever simpler examples of quantum phenomena
that are impossible to model classically. One particularly
striking class of examples are nonlocal games, also known
as “quantum pseudotelepathy games” [4]. These games are
typically cooperative games, played by at least two players
who are not allowed to communicate classically with one
another. Nonlocal games have the property that by shar-
ing an entangled quantum state before playing the game,
the players can win the game with a higher probability
than the principles of spatial locality and classical physics
allow.

The parity game, which was introduced by Brassard-
Broadbent-Tapp [5] building on earlier work by Mermin [6],
is a relatively unusual example of a nonlocal game that is
“scalable” [4]; for any N � 2, it is possible to define an N-
player nonlocal parity game that can be won with certainty
if the players are allowed to share an N-qubit Greenberger-
Horne-Zeilinger (GHZ) state

|GHZ±〉 = 1√
2
(|00 . . . 0〉 ± |11 . . . 1〉) (1)

before playing the game. This scalability property of the parity
game resembles the scaling behavior of extensive many-body
quantum systems, and in fact the GHZ states in Eq. (1) have a
rather natural and well-known realization in condensed matter
physics as the ground-state doublet of a spin-1/2 quantum
Ising (or Z2-symmetric) ferromagnet on N qubits in the limit
of vanishingly weak quantum fluctuations.

However, condensed matter physics is usually concerned
with phases of matter that exhibit qualitatively similar prop-
erties over some nonzero range of model parameters. From
this point of view, the GHZ states are nongeneric, as they
merely define a renormalization-group fixed point within the
entire ferromagnetic phase of the quantum Ising model, which
can exhibit strong quantum fluctuations away from this fixed
point. We note that two other scalable nonlocal games, namely
the multiplayer triangle game [7,8] studied recently [9], and
the toric code game proposed by the authors in a companion
paper [10], also admit perfect quantum strategies that make
use of the fixed points of quantum phases of matter, although
these strategies do not make use of conventional symmetry-
breaking phases as arise in the quantum Ising model. Instead,
these strategies involve the Z2×Z2 symmetry-protected topo-
logical (SPT) phase and the topological phase of the toric code
respectively.

This raises the question of how far nonlocal games can be
won with ground-state phases of matter away from their fixed
points. As discussed above, these phases might be either con-
ventional symmetry-breaking phases or more exotic phases of
matter. We note that this question was previously studied for

2469-9950/2023/107(4)/045412(21) 045412-1 ©2023 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.045412&domain=pdf&date_stamp=2023-01-12
https://doi.org/10.1103/PhysRevB.107.045412


BULCHANDANI, BURNELL, AND SONDHI PHYSICAL REVIEW B 107, 045412 (2023)

the Z2×Z2-symmetric SPT phase [9]. One fundamental dif-
ference between phases of matter and their fixed points is the
presence of a nonzero, finite correlation length 0 < ξ < ∞
away from fixed points. The significance of this length scale
for nonlocal games is that players who share entanglement
with one another on length scales � � ξ have greater access
to multipartite entanglement within a given state than play-
ers who can only probe entanglement at larger length scales
� � ξ , and might therefore be expected to perform better at
nonlocal games. On the other hand, at length scales � � ξ , the
underlying entanglement structure may depend sensitively on
the microscopic properties of the model, and is not in general
characteristic of the phase.

We believe that such ideas are potentially of broader in-
terest, insofar as the advantage gained over classical physics
in playing a specific multiplayer game yields a measure of
the “quantumness” of the many-body state in question, which
probes its contextuality properties directly [11] and to that
extent is distinct [12,13] from popular measures of entangle-
ment such as entanglement entropies. It is worth emphasizing
that the problem of diagnosing and classifying the possible
phases of many-body quantum matter through entanglement
continues to inspire new theoretical developments [14,15],
despite the deep understanding of topological phases that has
been achieved in recent decades [16–23].

In order to formulate such questions mathematically, we
define a quantum strategy S = (|ψ〉,P ) for an N-player non-
local game G to consist of

(1) an O(N )-qubit pure state |ψ〉, which is shared by all
players before the game begins, with each player assigned to
a specific qubit or set of qubits; and

(2) a protocol P , which is a set of operations that each
player, or team of players [10], applies to their qubits, and may
consist of any sequence of quantum gates and measurements
on those qubits.

(The restriction to qubits is not binding [4]; see e.g.,
Appendix B.) We can then address the question of whether
a given phase of matter yields quantum advantage for G away
from fixed points as follows. Let |ψ∗〉 be the ground state of
anO(N )-body Hamiltonian representing the renormalization-
group fixed point of some quantum phase of matter, and
suppose that the protocol P∗ applied to the state |ψ∗〉 wins
the nonlocal game G with certainty. Thus the “fixed-point
quantum strategy” S∗ = (|ψ∗〉,P∗) is a perfect quantum strat-
egy [5] for G. Now consider a state |ψ〉 �= |ψ∗〉 that is the
ground state of another Hamiltonian, but in the same phase
of matter as |ψ∗〉 and with the same number of qubits.
A natural way to explore whether |ψ〉 provides a quantum
advantage for winning G away from the fixed point is by
applying the protocol P∗ to the state |ψ〉, rather than the
state |ψ∗〉. Thus one studies the success rate of the quantum
strategy S = (|ψ〉,P∗). Generically, this strategy will be im-
perfect, but may nevertheless provide a quantum advantage
over the best possible classical strategy. This is the approach
that we shall pursue below (and was implicit in previous
work [9]).

Our goal in studying such imperfect quantum strategies
will be twofold. One strand of motivation comes from the
theory of nonlocal games: For all such games studied in
this paper, the best quantum strategy wins with probability

p∗
qu = 1, while the best classical strategy wins with some

probability p∗
cl < 1. One might wonder whether it is possi-

ble to construct quantum strategies S whose probability of
winning pqu interpolates continuously between the optimal
quantum value and the optimal classical value. Our analysis
below yields an explicit solution to this problem, in the form
of quantum strategies S = (|ψ〉,P∗) where |ψ〉 is allowed
to vary smoothly within the appropriate phase of matter. We
find more generally that for the protocols studied in this work
and for finite numbers of qudits, the quantum probability of
winning pqu(|ψ〉) is a continuous function of the state |ψ〉
(see e.g., Theorems 1 and 2), so that it is possible to construct
quantum strategies that exhibit an arbitrarily small quantum
advantage compared to p∗

cl. An important question for future
work is to understand how far the numerical value of pqu(|ψ〉)
can be related to existing measures of the quantumness of the
state |ψ〉, such as the “contextual fraction” [11], but we will
not pursue this line of inquiry below.

Our second goal, which is more natural from a condensed
matter perspective, will be to understand how far a quan-
tum advantage for S = (|ψ〉,P∗) constrains the state |ψ〉 to
be in a given phase of matter. (Note that this is related to
the question of whether nonlocality properties yield a use-
ful probe for diagnosing quantum phase transitions [24].) In
exploring this question, we will primarily be concerned with
the “large-system limit”, in which the value of N � 1 can
be taken to be arbitrarily large but finite. This should be
contrasted with the infinite-system limit N = ∞, for which
the mathematical assumption of “cluster decomposition” [25]
of local observables is usually imposed in order to specify
the representation of the infinite-dimensional algebra of local
operators [26]. The cluster decomposition assumption forbids
ground states that comprise macroscopically entangled super-
positions of quantum states, and thus implies spontaneous
symmetry breaking in the infinite-system limit. By working
in the large-system limit instead, we can evade spontaneous
symmetry breaking and define ground states that explicitly
violate the cluster decomposition property for some (although
not all) local observables.

Although this choice is in tension with the usual theoretical
treatment of phases of matter, which are only strictly well
defined in the infinite-system limit, it is desirable for our
purposes because it is specifically the ground states of finite
condensed matter systems that can exhibit macroscopic entan-
glement and therefore provide a useful resource for quantum
games. Our choice is also consistent with the experimental
realization of artificial condensed matter systems in the lab-
oratory using cold atoms or arrays of qubits; the effective
Hamiltonians for these systems are far from the infinite-
system limit in which the assumption of cluster decomposition
becomes mathematically useful, so that achieving macro-
scopic quantum superpositions becomes a difficult technical
challenge rather than a theoretical impossibility [27,28].

The paper is structured as follows. We first consider play-
ing nonlocal games with conventional symmetry-breaking
phases of matter, using the ferromagnetic phase of the
one-dimensional quantum Ising model as our example. We
describe the parity game and its perfect quantum strategy
SBBT due to Brassard-Broadbent-Tapp (BBT) [4]. We then
prove that the BBT protocol applied to the ground state of the
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one-dimensional transverse-field Ising model (TFIM) yields
a quantum advantage for the parity game over a nonzero
range of transverse fields, which, for any number of play-
ers, includes and exceeds the entire ferromagnetic phase.
One might wonder whether a nonlocal game can delineate
the ferromagnetic phase of the quantum Ising model more
clearly. We demonstrate that this can indeed be achieved by
modifying the distribution of inputs to the parity game, and
present a family of such modified parity games for which the
BBT protocol exhibits quantum advantage (in an asymptotic
sense) in precisely the ferromagnetic phase of the quantum
Ising model. Extensions to states with ZM symmetry, for
example the ground states of clock models, are discussed in
Appendix B.

We next turn to topological phases of matter. We discuss
the toric code game introduced in a companion paper [10],
and argue that in the deconfined phase arising when the ideal
toric code Hamiltonian is perturbed by weak magnetic fields
[29,30], the fixed-point protocol fails to yield a quantum ad-
vantage away from the ideal toric code fixed point. We show
that this failure is a consequence of the perimeter-law scaling
of the expectation values of the Wilson loop operators with
which the toric code game is played [10], suggesting a basic
distinction between the robustness to perturbations of quan-
tum strategies for nonlocal games that involve local operators,
versus strategies that involve only nonlocal operators.

Finally, we revisit the Z2×Z2 SPT phase in one dimension
and its relation to the triangle game, which was studied in
previous work [9]. We introduce a family of scalable nonlocal
games associated with matchings of polygons that extend both
the triangle game and the multiplayer triangle game and can
be won with certainty using the fixed point of the phase.
Nevertheless, we argue that these “polygon games”, including
the triangle game, are insufficient to uniquely determine the
Z2×Z2 SPT phase or even its fixed point.

II. THE FERROMAGNETIC PHASE OF THE QUANTUM
ISING MODEL

A. Playing the parity game with the Ising ground state

1. The parity game

The parity game is played as follows [5]. There are N � 3
players and player j is given a classical bit a j ∈ {0, 1}, with
the promise that

∑N
j=1 a j is even. In order to win the game,

the players must output bits bj ∈ {0, 1} such that
N∑
j=1

b j ≡
∑N

j=1 a j

2
mod 2. (2)

The players may not communicate classically with one an-
other, but they are allowed to share an N-qubit quantum state
|ψ〉 before playing the game. During the course of the game,
the jth player is free to apply quantum gates and projective
measurements to the jth qubit.

If the players do not take advantage of quantum physics,
the optimal strategy available to them wins with a probability
p∗
cl < 1 given by [5]

p∗
cl = 1

2
+ 1

2�N/2� (3)

for inputs {a j}Nj=1 chosen randomly and uniformly from the
set of 2N−1 bit strings fulfilling the promise. If the players
instead share the quantum state |ψ〉 = |GHZ+〉 before playing
the game, then they can win the game with probability pqu = 1
by performing the following three operations, which we refer
to collectively as the BBT protocol, PBBT:

(1) Each player acts on their spin with the phase gate
Ẑ
a j/2
j = (1 0

0 ia j
)
.

(2) Each player rotates to the X̂ or Hadamard basis by
applying the gate

Û = 1√
2

(
1 1
1 −1

)
. (4)

(3) Each player measures their qubit in the Ẑ or compu-
tational basis and returns the outcome of their measurement
bj ∈ {0, 1}.

Let us briefly derive the above result. After Step 1, the state
|ψ〉 is mapped to

|ψ ′〉 =
⎧⎨⎩

1√
2
(|00 . . . 0〉 + |11 . . . 1〉)

∑N
j=1 a j

2 even

1√
2
(|00 . . . 0〉 − |11 . . . 1〉)

∑N
j=1 a j

2 odd
(5)

After Step 2, this becomes

|ψ ′′〉 ∝

⎧⎪⎨⎪⎩
∑{

�b:∑N
j=1 b j even

} |b1b2 . . . bN 〉
∑N

j=1 a j

2 even∑{
�b:∑N

j=1 b j odd
} |b1b2 . . . bN 〉

∑N
j=1 a j

2 odd
(6)

which is an equal weight superposition of states with the re-
quired parity. It follows that upon performing Step 3, a shared

state |b1 . . . bN 〉 is obtained with∑N
j=1 b j ≡

∑N
j=1 a j

2 mod 2 as
desired. Thus N players who share the state |GHZ+〉 can win
the parity game for any allowed input {a j}Nj=1.

2. Playing with Ising ground states

As noted in the introduction, the GHZ state is the ground
state of the quantum Ising model in the limit of vanishingly
weak quantum fluctuations. We would now like to consider
what happens to the efficacy of the BBT protocol when quan-
tum fluctuations are no longer weak. Specifically, we consider
the probability of winning the parity game with the ground
state of the TFIM with an additional longitudinal field—
sometimes called the tilted field Ising model—on N qubits,
namely,

Ĥ = −J
N∑
j=1

Ẑ j Ẑ j+1 − �

N∑
j=1

X̂ j − h
N∑
j=1

Ẑ j . (7)

We set J, � > 0, assume periodic boundary conditions with
ẐN+1 ≡ Ẑ1, and treat the cases h �= 0 and h = 0 separately. As
is well known, the ground state of this model |ψ0〉 coincides
with the |GHZ+〉 state in the limit h = 0, � → 0+. The ques-
tion to be addressed is whether the ground state |ψ0〉 can be
used to win the parity game away from this limit using the
BBT protocol. (We will comment later on possible alternative
quantum strategies based on different protocols P �= PBBT.)

In seeking to answer this question, we have recourse to the
following general result (which is proved in Appendix A):
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Theorem 1. The quantum strategy S = (|ψ〉,PBBT) wins
the parity game with probability

pqu(|ψ〉) = 1
2 (1 + |〈ψ |GHZ+〉|2 − |〈ψ |GHZ−〉|2), (8)

that depends solely on the fidelity of |ψ〉 to the N-qubit GHZ
states.

Whenever this probability exceeds the optimal classical
probability of winning, Eq. (3), we shall say that |ψ〉 provides
a “quantum advantage” over the optimal classical strategy.

The remainder of this subsection is structured as follows.
We first use mean-field reasoning to argue that quantum ad-
vantage of the Ising ground state |ψ0〉 is lost for any nonzero
Z2-symmetry-breaking longitudinal field h �= 0. This leads us
to consider the pure transverse-field Ising model with h = 0,

ĤTFIM = −J
N∑
j=1

Ẑ j Ẑ j+1 − �

N∑
j=1

X̂ j, (9)

for which a mean-field analysis of the ferromagnetic phase
� � J suggests persistence of quantum advantage up to a
nonzero value 0 < �∗ < J as N → ∞ in the large-system
limit. Finally, we use exact solvability of the TFIM Eq. (9) to
both confirm the persistence of quantum advantage through-
out the ferromagnetic phase � � J , and determine the precise
threshold at which the TFIM ground state ceases to provide a
quantum advantage for winning the parity game in the large-
system limit, which turns out to lie outside the ferromagnetic
phase and is found to occur at a transverse field strength �∗ ≈
1.506J . (We note that outside the ferromagnetic phase � > J ,
there is a unique ground state as N → ∞, and therefore no
need to distinguish carefully between the large-system and
infinite-system limits.)

3. Mean-field predictions

The GHZ states are only exact ground states of the generic
Ising Hamiltonian (7) at the point h = � = 0. At this point the
model is ferromagnetic, so to analyze the ground states in its
vicinity, we perform a mean-field analysis in a ferromagnetic
background 〈Ẑi〉 = m. In Eq. (7), this yields the mean-field
Hamiltonian

ĤMF =
N∑
j=1

−(mJ + h)Ẑ j − �X̂ j =
N∑
j=1

ĥMF
j , (10)

where the on-site mean-field Hamiltonian is given by

ĥMF
j =

(−(mJ + h) −�

−� mJ + h

)
. (11)

For h �= 0, the on-site Hamiltonian has a nondegenerate
ground state with energy ε = −

√
(mJ + h)2 + �2 and eigen-

vector

|v〉 =
(
cos θ

2

sin θ
2

)
, θ = tan−1 �

mJ + h
. (12)

The magnetization m is determined self-consistently by the
relation 〈v|Ẑ|v〉 = cos θ = m. The mean-field ground state is
given by

|ψMF〉 = ⊗N
i=1|v〉, (13)

whence it follows by Eq. (8) that the probability of winning
the parity game with the BBT protocol applied to this state is

pqu = 1

2
+ cosN

θ

2
sinN

θ

2
. (14)

Since

cosN
θ

2
sinN

θ

2
= 1

2N
sinN θ <

1

2�N/2� , (15)

we have shown that for the mean-field ground state with h �= 0,
quantum advantage is always lost, i.e.,

pqu < p∗
cl. (16)

Let us therefore set h = 0 and turn to a mean-field anal-
ysis of the TFIM Hamiltonian, Eq. (9). In this case, the
on-site mean-field Hamiltonian Eq. (11) exhibits a degeneracy
between magnetizations ±|m|. This yields two degenerate
ground states

|v+〉 =
(
cos θ

2

sin θ
2

)
, |v−〉 =

(
sin θ

2

cos θ
2

)
, tan θ = �

|m|J (17)

corresponding to a given value of |m|. For both cases, the self-
consistent magnetization is determined by cos θ = |m|, i.e.,

|m| =
√
1 − (�/J )2. (18)

Thus a translation-invariant, even-parity mean-field ground
state for the TFIM is given by

|ψMF〉 = N
(⊗N

i=1 |v+〉 + ⊗N
i=1|v−〉), (19)

where the normalization constant satisfies 2(1 + sinN θ )N 2 =
1. This implies a probability of winning the parity game

pqu = 1

2
+ 1

2(1 + sinN θ )

(
cosN

θ

2
+ sinN

θ

2

)2

. (20)

Letting g = �/J and using the self-consistent value of θ , this
can be written as

pqu = 1

2
+ 1

1 + gN

[(
g

2

)N

+ (1 +
√
1 − g2)N + (1 −

√
1 − g2)N

2N+1

]
. (21)

4. A battle of exponentials

Notice that as N → ∞, the probability of winning the
parity game with the BBT protocol applied to the mean-field
ground state of the TFIM exhibits a jump discontinuity at
g = 0, with

pqu →
{
1 g = 0
1
2 g > 0

, N → ∞. (22)

It thus appears that in the large-system limit, any advantage
over the optimal classical strategy is lost as N → ∞, for any
g > 0. However, this order of limits is too crude for the prob-
lem at hand, since as N → ∞, it is possible for the quantum
strategy to outperform the best classical strategy for any finite
N , even at nonzero g.

In particular, quantum advantage can persist for g > 0
as N → ∞ if the exponentially small correction to random
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guessing for the quantum strategy, pqu − 1/2, decays more
slowly in N than the correction p∗

cl − 1/2 = 1/2�N/2� for the
best classical strategy, i.e., if the quantum strategy beats the
optimal classical strategy in this “battle of exponentials”. We
now show that the BBT protocol applied to the mean-field
TFIM ground state wins the battle of exponentials in most of
the ferromagnetic phase.

Focusing on the leading correction to random guessing in
Eq. (20), we find that

pqu − 1

2
∼ 1

2

(
1 +

√
1 − g2

2

)N

, N → ∞, (23)

with errors that are exponentially smaller in N than this lead-
ing term. Comparison with the classical result as N → ∞
implies a loss of quantum advantage when g reaches the
threshold

g� gMF
∗ =

√
2

√√
2 − 1 ≈ 0.910, (24)

which by Eq. (18) is equivalent to a threshold for the local
magnetization

m � mMF
∗ =

√
2 − 1. (25)

This prediction of the mean-field analysis raises the intriguing
possibility that the ground state of the TFIM provides a quan-
tum advantage for winning the parity game over the entire
ferromagnetic phase. In fact, this prediction is confirmed by
the exact solution to the model, as we demonstrate below. Sur-
prisingly, quantum advantage persists even beyond the critical
point, and extends some distance into the paramagnetic phase.

5. Exact results for the TFIM

We now report an analytical result for the probability of
winning the parity game with the BBT protocol applied to the
ground state of the transverse field Ising model Eq. (9). Our
starting point is the exact ground-state wavefunction of the
model, written in terms of pairs of Jordan-Wigner fermions
(we refer to Ref. [31] for details). For all N and � > 0, this is
given by the even-parity ground state

|ψ0〉 =
∏
k>0

(
cos

θk

2
− sin

θk

2
c†kc

†
−k

)
|0〉, (26)

where ck|0〉 = 0 is a vacuum of Jordan-Wigner fermions, the
wavenumbers that are occupied in this state are given by

k =
{

± π
N ,± 3π

N , . . . ± (N−1)π
N , Neven

± π
N ,± 3π

N , . . . ± (N−2)π
N , N odd

, (27)

and the single-particle energies εk = √
�2 + J2 − 2�J cos k

determine the Bogoliubov angles via

sin θk = J sin k

εk
, cos θk = � − J cos k

εk
. (28)

The key observation for analytically calculating the probabil-
ity of winning the parity game with this state is that the fidelity
appearing in Eq. (8) can be expressed as an overlap of pairing
wavefunctions. In more detail, degenerate perturbation theory
implies that lim�→0+ |ψ0〉 = |GHZ+〉, while |GHZ±〉 states

have parity P̂ = ±1, so that Eq. (8) reduces to

pqu = 1
2 (1 + |〈ψ0(�)|ψ0(� = 0+)〉|2). (29)

This fidelity can be written down explicitly in terms of the
Bogoliubov angles as

|〈ψ0(�)|ψ0(� = 0+)〉|2 =
∏
k>0

cos2
(

θk (�) − θk (� = 0+)
2

)
.

(30)
Some elementary trigonometric manipulations and Eq. (28)
then imply that

pqu = 1

2
+ 1

2�N/2�
∏
k>0

(
1 + 1 − gcos k√

1 + g2 − 2gcos k

)
, (31)

which should be compared to the optimal classical probabil-
ity of winning Eq. (3). As for the mean-field ground state
discussed above, the possibility of quantum advantage is de-
termined by a competition between corrections to random
guessing that are both exponentially small in N . The threshold
value g∗ at which the Ising ground state loses this battle of
exponentials satisfies the transcendental equation∏

k>0

(
1 + 1 − g∗ cos k√

1 + g2∗ − 2g∗ cos k

)
=
{
1 N even
1
2 N odd

. (32)

This result is exact for any finite N . In the large-system limit
as N → ∞, the left-hand side tends to an infinite product;
taking logarithms before the large-N limit yields the following
equation for g∗:∫ π

0
dk log

(
1 + 1 − g∗ cos k√

1 + g2∗ − 2g∗ cos k

)
= 0. (33)

We note that for g∗ � 1, the integrand is strictly positive
almost everywhere so this equation has no solution in the
ferromagnetic phase; this proves that the TFIM ground state
yields an advantage over the best classical strategy as N → ∞
in the entire ferromagnetic phase. In fact, a degree of quantum
advantage persists beyond the ferromagnetic phase; by solving
Eq. (33) numerically, we find that the limiting value of g∗ is
given by

g∗ → 1.506..., N → ∞. (34)

We deduce that ground states of the TFIM can be used to
accomplish tasks that are classically impossible, even in the
paramagnetic phase of this model.

At first sight, this result is surprising, but it can be mo-
tivated in a more elementary fashion by perturbation theory
about the strongly paramagnetic limit, J = 0, � > 0, where
the ground state is the fully X̂ -polarized state

|X〉 = 1

2N/2
⊗N

i=1 (|0〉 + |1〉). (35)

In this limit, the probability of winning the parity game with
the quantum strategy S = (|X〉,PBBT) has the following in-
tuitive interpretation: the BBT protocol applied to |X〉 wins
the parity game just as often as random guessing for input bit
strings �a �= (0, 0, . . . , 0) with at least one nonzero element,
but wins with certainty if the input bits are identically zero,
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�a = (0, 0, . . . , 0). Averaging uniformly over input bit strings
consistent with the promise then yields

pqu(|X〉) = 1

2N−1

(
1 + (2N−1 − 1) · 1

2

)
= 1

2
+ 1

2N
, (36)

which matches a direct calculation of Eq. (8) for this state.
Let us now consider the effect of introducing a weak fer-

romagnetic coupling J > 0 and applying the BBT protocol
to the resulting ground state |ψ0〉. By the exact calculation
above, we know that this quantum strategy provides a quan-
tum advantage for sufficiently large J; we will now show
this perturbatively in J . At leading order in J/� = 1/g, the
perturbed ground state is given by

|ψ0〉 = |X〉 + J

4�

N∑
i=1

ẐiẐi+1|X〉 + O(J2/�2). (37)

In Eq. (8), this implies a probability of winning

pqu = 1

2
+ 1

2N

(
1 + N

2g

)
+ O(g−2) ≈ 1

2
+ eN/2g

2N
. (38)

Comparison with Eq. (3) reveals that this perturbative esti-
mate wins the battle of exponentials against the best classical
strategy when

eN/2g ∼ 2N/2 (39)

which yields an estimate for the loss of quantum advantage
when

g� gPT∗ = 1/ log 2 ≈ 1.443 (40)

in the large-system limit. This estimate for the threshold g∗
lies firmly within the paramagnetic phase and (perhaps fortu-
itously) is accurate to within 5% of the exact result, Eq. (34).
This raises the possibility that in higher dimensions, where the
TFIM is no longer exactly solvable, perturbation theory might
be a useful tool for estimating g∗.

We conclude our theoretical analysis with a numerical
simulation that corroborates it. In order for the battle of ex-
ponentials to be visible on a plot, it is preferable to model a
small number of players. We therefore consider N = 6 players
who play the parity game with the BBT protocol applied to
the ground state of a generic Ising model Eq. (7) on 6 qubits,
that is obtained by exact diagonalization. For a vanishing
longitudinal field h = 0 we find quantum advantage up to a
threshold g ≈ 1.5 that already approximates the large-system
limit of g∗. For a small but nonzero longitudinal field h = 0.1,
quantum advantage is lost for all � > 0, as expected from the
mean-field analysis of Sec. II A 3. See Fig. 1.

B. Nonlocal games for the ferromagnetic phase

The above results lead to the a priori unexpected conclu-
sion that for any finite N , the TFIM ground state can provide
a quantum advantage for the parity game firmly outside the
ferromagnetic phase of the model. At the same time, this
property is somewhat undesirable from the viewpoint of using
quantum games to identify phases of matter. Meanwhile, a
practical shortcoming of the above approach is that away
from the point � = 0, the quantum advantage we obtain for
the parity game strictly vanishes in the large-system limit,

FIG. 1. Exact diagonalization of the Ising model Eq. (7) onN = 6
qubits with J = 1 fixed and � and h varied. The probability of
winning the parity game is obtained numerically from Eq. (8). The
exact result Eq. (31) matches the numerics for h = 0 as expected,
and quantum advantage is sustained up to a transverse field strength
g∗ ≈ 1.5. For a small longitudinal field h = 0.1, quantum advantage
is lost, which is consistent with the mean-field analysis of Sec. II A 3.

even in the ferromagnetic phase. This raises the question of
whether one can use nonlocal games to more clearly discern
the ferromagnetic phase.

In this subsection, we present a family of nonlocal games
for which the BBT protocol applied to the Ising ground state
yields a quantum advantage that is nonzero in the large-system
limit in most of the ferromagnetic phase of the quantum Ising
model. We further show that a family of such games can be
constructed, which lose quantum advantage at precisely the
Ising quantum critical point, in an asymptotic sense to be
explained below.

1. The N-player P-bit parity game

Consider a parity game with N players, but now with a
constraint on the input bit-strings, so that only 3 � P < N
players can receive nonzero input bits, i.e., P “marked” play-
ers i1, i2, . . . , iP receive a bit ai j ∈ {0, 1} uniformly at random,
subject to the promise that

∑P
j=1 ai j is even, and the remain-

ing N − P players receive bits ai = 0. This modification of
the parity game is depicted in Fig. 2. We will assume that
before the game begins, each player knows whether they are
allowed to receive a nonzero bit [32]. For P = 3, this game
bears a similar relation to the original parity game [5] as the
multiplayer triangle game bears to the triangle game [7–9].

The Brassard-Broadbent-Tapp protocol for this constrained
parity game, applied to an arbitrary state

|ψ〉 =
∑

�σ∈{0,1}N
c�σ |�σ 〉, (41)

wins with probability

pqu(|ψ〉) = 1

2

⎛⎜⎝1 +
∑

{�σ∈{0,1}N :σi j =0}
c�σ c

∗
�1−�σ + c�1−�σ c

∗
�σ

⎞⎟⎠, (42)
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FIG. 2. Schematic comparison between the usual parity game
(left) and the P-bit parity game (right). Each player is depicted as
a vertex on a polygon. In the usual parity game, every player can
receive a bit ai ∈ {0, 1}. In the P-bit parity game, only marked play-
ers (depicted as red vertices) separated by a characteristic distance
lP can receive nonzero input bits ai ∈ {0, 1}. All other players (blue
vertices) receive an input bit ai = 0. In the figure we have set N = 9
and P = 3.

by arguments analogous to the proof of Theorem 1. (Here
{i j}Pj=1 label the qubits of the P marked players.) This can be
written in terms of a GHZ stabilizer operator B̂,

pqu(|ψ〉) = 1
2 (1 + 〈ψ |B̂|ψ〉) (43)

with

B̂ =
⎛⎝ P∏

j=1

(
1 + Ẑi j

2

)
+

P∏
j=1

(
1 − Ẑi j

2

)⎞⎠ N∏
i=1

X̂i. (44)

We note that this result can be derived directly by observing
that the BBT protocol amounts to measuring Mermin’s sta-
bilizers for the GHZ state [6], then using the fact that these
stabilizers define “dichotomic observables” [9].

2. 3-bit parity games with TFIM ground states

For the 3-bit parity game played with an N-qubit TFIM
ground state |ψ0〉, the above result reduces to
pqu(|ψ0〉) = 1

8

(
5 + 〈Ẑi1 Ẑi2〉0 + 〈Ẑi1 Ẑi3〉0 + 〈Ẑi2 Ẑi3〉0

)
, (45)

where we introduced the notation 〈Ô〉0 = 〈ψ0|Ô|ψ0〉 for
ground-state expectation values of operators Ô. At large
length scales, the values of the ground-state correlation func-
tions for the TFIM are well known [33]. To be precise, if the
marked players i1, i2, i3 are equally spaced on a ring of length
N , then

pqu(|ψ0〉) →
{

5
8 g > 1
5
8 + 3

8 (1 − g2)1/4 g� 1
(46)

in the large-system limitN → ∞. Since we assumed that each
player knows whether they are allowed to receive a nonzero
bit before the game begins, the optimal classical strategy
reduces to the optimal classical strategy on three sites, with
all other players returning zero, which has classical winning
probability

p∗
cl = 3/4. (47)

This reveals that in the large-system limit, quantum advantage
is lost when

g� g∗ =
√
80

81
≈ 0.994. (48)

Thus the BBT protocol applied to TFIM ground state provides
a quantum advantage for the 3-bit parity game in 99.4% of the
ferromagnetic phase.

Before developing this observation further, let us briefly
consider playing the 3-bit parity game with the ground state of
the TFIM in a longitudinal symmetry-breaking field, Eq. (7).
In this case, the formula Eq. (45) must be modified to explic-
itly include the parity operator P̂ =∏N

j=1 X̂ j , to yield

pqu(|ψ0〉) = 1

8

⎛⎝4 + 〈P̂〉0 +
∑
j<k

〈Ẑi j Ẑik P̂〉0
⎞⎠. (49)

As in the previous subsection, we can estimate this quantity
using mean-field theory. For the mean-field symmetry-broken
ground state Eq. (13), we have

〈ψMF|Ẑi j Ẑik P̂|ψMF〉 = 0, j �= k, (50)

and

〈ψMF|P̂|ψMF〉 = sinN θ. (51)

It follows by Eq. (49) that

pqu(|ψMF〉) = 1
2 + 1

8 sin
N θ → 1

2 , N → ∞. (52)

Thus a mean-field analysis predicts no quantum advantage in
the large-system limit. We expect the same conclusion to hold
for all other P-bit parity games with 3 < P < N .

3. P-bit parity games with TFIM ground states

One merit of the 3-bit parity game for our purposes, com-
pared to the standard N-bit parity game, is that the level of
quantum advantage provided by the BBT protocol, as mea-
sured by the quantity 
p = pqu(|ψ0〉) − p∗

cl, remains finite
and nonzero in the large-system limit within most (although
not all) of the ferromagnetic phase. Here, we discuss how 
p
behaves for P > 3.

We thus consider P equally spaced marked players on a
ring of N > P qubits, and fix P < ∞ but set the spacing lP =
N/P → ∞ in the large-system limit. In this limit, the cluster
decomposition property of local magnetization operators in
the Ising ground state [33] 〈Ẑi j Ẑik 〉0 → 〈Ẑi j 〉0〈Ẑik 〉0, combined
with translation invariance of this state yields

pqu(|ψ0〉) = 1

2

(
1 +

(
1 + m

2

)P

+
(
1 − m

2

)P
)

, (53)

where m = |〈ψ0|Ẑi|ψ0〉| denotes the local magnetization in
the usual thermodynamic limit.

Thus, by playing a “dilute” version of the parity game, in
which the marked players are separated by a distance lP → ∞
in the large-system limit, we have obtained a probability
of success for the BBT protocol that depends only on the
conventional order parameter for the ferromagnetic phase. In
this sense, taking the limit of large lP for a nonlocal game
is analogous to “coarse-graining” the underlying state [34],
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because in this limit the players can only exploit long-range
entanglement within their shared quantum state.

Equation (53) demonstrates that at a fixed finite P, the BBT
protocol yields a noninfinitesimal quantum advantage over the
optimal classical strategy


p = pqu(|ψ0〉) − p∗
cl > 0 (54)

within most of the ferromagnetic phase, even in the large-
system limit. However, Eq. (53) also implies that 
p
decreases rapidly as m → 0 near the critical point. In other
words, the level of quantum advantage is sensitive not only
to whether the system is in the ferromagnetic phase, but also
to the magnitude of the ferromagnetic order parameter. For
example, choosing P = 8 we find that 
p ≈ 0.27 for g =
0.75 and 
p ≈ 0.03 for g = 0.99, regardless of the value of
N � P.

Let us now consider increasing P. We note that for fixed
1 > m >

√
2 − 1, 
p > 0 decays exponentially with P as

P → ∞, while the threshold value of the transverse field
strength g∗ at which quantum advantage is lost increases with
P. In particular, in the large-system limit as P → ∞, there
is a battle of exponentials just as in Sec. II A 4, and quantum
advantage is lost at precisely the mean-field threshold Eq. (25)
for the local magnetization.

4. Demarcating the ferromagnetic phase

The previous discussion raises the question of how near the
critical point one can obtain a quantum advantage as P → ∞
in the P-bit parity game. To study this, we consider a double
large-system limit with N � P � 1. As discussed above, in
this limit quantum advantage is lost at the mean-field thresh-
old Eq. (25) for the magnetization. Using the known exact
result [33] for the ground-state magnetizationm = (1 − g2)1/8

of the TFIM as a function of the coupling strength, we deduce
that quantum advantage is lost for

g� g∗ =
√
408

√
2 − 576 ≈ 0.9996. (55)

Thus we have successfully demarcated 99.96% of the ferro-
magnetic phase of the Ising model by using the P-bit parity
game and the BBT protocol. This leaves the question of
whether we can obtain a quantum advantage for some game in
the remaining 0.04% of the phase, and thereby use a nonlocal
game and an appropriate protocol to characterize the ferro-
magnetic phase exactly.

We can achieve this in an asymptotic sense by reweighting
the probability distribution of input bits for the P-bit parity
game. Specifically, we now suppose that the P input bits for
the marked players are drawn from a Bernoulli distribution
subject to the promise that

∑P
j=1 ai j is even, i.e., bit strings

(ai1 , ai2 , . . . , aiP ) consistent with the promise are drawn with
probability

p(�a) = 2
α
∑P

j=1 ai j (1 − α)P−∑P
j=1 ai j

1 + (1 − 2α)P
(56)

where the parameter α ∈ (0, 1), while all other input bits are
set to ai = 0. For α < 0.5 (α > 0.5), this biases the choices
of �a towards bit strings with 1

P

∑P
j=1 ai j close to 0 (1).

This reweighting modifies the expected probability of win-
ning for the optimal classical strategy. We can calculate the
latter by adapting previous results for the standard parity game
[5], and find that the advantage over random guessing for the
optimal classical strategy is given by

p∗
cl −

1

2
=
⎧⎨⎩

(α2+(1−α)2 )P/2

1+(1−2α)P , P even
(α2+(1−α)2 )(P−1)/2(1−α)

1+(1−2α)P , P odd
, (57)

which recovers Eq. (3) when α = 1/2. Subject to this dis-
tribution of inputs, the BBT protocol applied to the TFIM
ground state, after the limits N → ∞ and lP → ∞ are taken
successively, yields a quantum probability of winning

pqu(|ψ0〉) = 1

2
+ (1 − α + αm)P + (1 − α − αm)P

2(1 + (1 − 2α)P )
. (58)

This quantum strategy loses the battle of exponentials to the
optimal classical strategy when

m � m∗ =
√

α2 + (1 − α)2 − (1 − α)

α
. (59)

As α → 0+, we have

m∗ = α

2
+ O(α2). (60)

It follows that quantum advantage is lost for coupling
strengths

g� g∗ = 1 − 1

512
α8 + O(α9). (61)

This threshold can be made arbitrarily close to the quantum
critical point as α → 0+. However, while this game is a
nonlocal game for α ∈ (0, 1), the limiting game with α = 0
is not a true nonlocal game, as it is won with certainty by
the deterministic classical strategy where all players always
output bi = 0. In this sense, the property of being a nonlocal
game is not continuous at α = 0. An analogous statement
holds at the point α = 1. Thus we have constructed a family
of nonlocal games parameterized by α ∈ (0, 1), for which the
BBT protocol applied to the Ising ground state asymptoti-
cally yields quantum advantage in precisely the ferromagnetic
phase |g| < 1 in the one-sided limit α → 0+.

Notice that analogous results hold for spin-1/2 quan-
tum Ising models in any spatial dimension d � 1, since the
threshold for losing quantum advantage in this construction,
Eq. (60), depends solely on the on-site magnetization in the
large-system limit.

III. THE TORIC CODE TOPOLOGICAL PHASE

In a companion paper [10], we introduced the toric code
game and its perfect quantum strategy, which wins the game
with certainty when the players share the ground state of the
ideal, fixed-point toric code Hamiltonian introduced by Kitaev
[29].

We now turn to the question of whether the fixed-point
protocol for the toric code game yields a quantum advantage
in the toric code topological phase. We thus consider a more
general Hamiltonian on 2N bonds b of a square lattice L with

045412-8



PLAYING NONLOCAL GAMES WITH PHASES OF QUANTUM … PHYSICAL REVIEW B 107, 045412 (2023)

periodic boundary conditions in both directions,

Ĥ = −K
∑
p

Âp − K ′∑
s

B̂s − hX
∑
b

X̂b − hZ
∑
b

Ẑb, (62)

where plaquette and star operators are defined as usual [29,35]
by Âp =∏b∈∂ p Ẑb and B̂s =∏b∈s X̂b. The ideal toric code
Hamiltonian is obtained from Eq. (62) by taking hX = hZ = 0.

A. The toric code game

We begin by briefly recalling the the simplest version of the
toric code game [10]. The toric code game has 2N players,
with each player residing on a distinct bond of the lattice
L, and a referee or “verifier”, who runs the game. At the
beginning of the game, the verifier assigns T � 3 teams of
players to vertical loops {�i}Ti=1 of the lattice. These players
may communicate classically with other players within their
vertical loop, but not with any other bonds of the lattice.
Another set of players is assigned to a horizontal dual loop
�̃ of the lattice, which intersects each of the �i in exactly
one bond. Players on the bonds of �̃ may not communicate
classically with one another.

The toric code game then proceeds as follows. The verifier
first provides each team i with an input bit ai ∈ {0, 1}. Each
player on a bond b ∈ �̃ must then output a bit yb ∈ {0, 1}. The
players collectively win the game if their outputs satisfy the
condition ∑

b∈�̃

yb ≡
∑T

i=1 ai
2

mod 2. (63)

One can argue [10] that subject to the constraints above, the
probability of winning for the optimal classical strategy is
given by

p∗
cl = 1

2
+ 1

2�T/2� . (64)

We now turn to the perfect quantum strategy for the toric
code game. For the version of this game described above, this
strategy uses the macroscopically entangled ground state

|ψTC〉 = 1√
2
(|00〉 + |01〉) (65)

of the ideal toric code, where

|00〉 = N
∏
s

(1 + B̂s)
⊗
b

|Ẑb = 1〉, (66)

N is a normalization constant, and the four degenerate ground
states | jk〉, j, k = 0, 1 on the torus are labeled by their eigen-
values

Ŵx| jk〉 = (−1) j | jk〉, Ŵy| jk〉 = (−1)k| jk〉 (67)

with respect to Wilson loop operators Ŵx/y =∏b∈�x/y
Ẑb,

and can be obtained from the state |00〉 by acting with
dual Wilson loop operators V̂x/y =∏b∈�̃x/y

X̂b, so that | jk〉 =
(V̂y) j (V̂x )k|00〉.

The perfect quantum strategy then proceeds as follows. All
players first share the entangled state |ψTC〉. They then apply
the following “fixed-point protocol”, which we denote PTC:

(1) Team j acts with a nonlocal square root of their Wilson
loop operator,

Ŵ
aj/2
j =

(
1 + Ŵj

2

)
+ ia j/2

(
1 − Ŵj

2

)
(68)

where Ŵj =∏b∈� j
Ẑb.

(2) Each player on a bond b ∈ �̃ of the dual loop measures
X̂b to obtain the outcome (−1)yb with yb ∈ {0, 1}, and returns
the bit yb.

We refer to the companion paper [10] for an explanation
of why this defines a perfect quantum strategy, together with
a discussion of the many possible generalizations of the toric
code game as described above.

B. Effect of non-zero magnetic fields

Let us now consider moving away from the ideal toric
code ground state by introducing nonzero perturbing fields
hX , hZ �= 0. As for the Ising model discussed above, we seek
to both (i) determine how far the fixed-point protocol for the
toric code game yields a quantum advantage in the toric code
phase and (ii) investigate whether this fixed-point protocol can
be used to diagnose the toric code phase. In contrast to our
results for the Ising model, we will argue that the fixed-point
protocol cannot yield a quantum advantage for the toric code
game at generic values of hX and hZ within the toric code
phase, and therefore cannot diagnose the toric code phase
in any suitably defined thermodynamic limit, even when the
teams are sufficiently well-separated in space that they are
sensitive only to long-range entanglement within the ground
state.

This failure is a consequence of the fact that the expectation
values of the Wilson loop operators involved in playing the
toric code game satisfy a “perimeter law” at generic points of
the toric code phase. This means that the expectation value of
a given Wilson loop decreases exponentially with the length
of the loop in question. It follows that in the large-system
limit, the expectation values of noncontractible Wilson loop
operators, whose lengths are bounded below by the linear
dimensions of the system, are generically vanishingly small,
which ultimately destroys quantum advantage of the fixed-
point protocol even far away from the critical region. One can
evade this scenario to some extent if one of the perturbing
fields hX , hZ is set to zero; we will discuss this possibility in
more detail below.

To justify the claims above, we first let |ψ0〉 denote the
ground state of the Hamiltonian Eq. (62) at some nonzero
values of hX , hZ . As in the previous section, we consider the
success rate of the quantum strategy S = (|ψ0〉,PTC), which
consists of applying the fixed-point protocol PTC to states
away from the fixed point of the phase. For concreteness,
suppose that there are T teams of players on vertical loops
�1, �2, . . . , �T . Using the identity

Ŵ−1/2
j V̂�̃Ŵ

1/2
j = iŴjV̂�̃ (69)
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and averaging uniformly over input bit strings, one finds that
the quantum probability of winning in this setting is given by

pqu(|ψ0〉)

= 1

2
+ 1

2T
∑

{�a∈{0,1}T :∑T
i=1 ai even}

〈
ψ0|

T∏
i=1

Ŵ ai
i V̂�̃|ψ0

〉
. (70)

To calculate the probability of winning away from the fixed
point of the phase at second order in hX and hZ , it suffices to
consider the terms

|ψ0〉 ≈
(
1 − N

(
hX
4K

)2

− N

(
hZ
4K ′

)2
)

×
(

|ψTC〉 + hX
4K

∑
b

X̂b|ψTC〉 + hZ
4K ′

∑
b

Ẑb|ψTC〉
)

(71)

in the perturbative expansion of |ψ0〉 about hX = hZ = 0 (one
finds that the remaining second-order terms do not contribute
to the calculation).

Computing expectation values in this perturbative approx-
imation yields the simplification

pqu(|ψ0〉) ≈ 1

2
+ 1

2T
〈V̂�̃〉0

∑
{�a∈{0,1}T :∑T

i=1 ai even}

T∏
i=1

〈Ŵi〉ai0 (72)

with [36]

〈V̂�̃〉0 ≈ e−2Lx
(

hZ
4K ′
)2

, 〈Ŵi〉0 ≈ e−2Ly
(

hX
4K

)2
, (73)

where Lx and Ly denote the horizontal and vertical extent of
the lattice L respectively, so that the number of sites N =
LxLy. Equation (73) reflects the fact that the two types of
Wilson lines exhibit perimeter-law scaling in the toric code
phase; although the calculation above is perturbative, such
perimeter-law scaling is well known to persist throughout the
entirety of the topological phase [37].

These expressions immediately suggest that if the num-
ber of teams T is kept fixed, the strategy S loses quantum
advantage in the large-system limit Lx,Ly → ∞. Note that
this holds true regardless of the spatial separation between the
teams. One might ask whether there is some way to improve
the quantum probability of winning for finite T , for example,
by keeping one of the linear dimensions bounded or setting
one of the perturbing magnetic fields to zero. We now explore
these possibilities in more detail.

1. The case hZ = 0, Ly < ∞
First suppose that we set hZ = 0 in Eq. (62) and fix Ly at

some finite value. In this case, the expectation value 〈V̂�̃〉0 = 1
at all orders in perturbation theory, so we can make Lx arbitrar-
ily large without losing quantum advantage, and the quantum
probability of winning is given by

pqu(|ψ0〉) = 1

2
+ 1

2T
∑

{�a∈{0,1}T :∑T
i=1 ai even}

〈
ψ0|

T∏
i=1

Ŵ ai
i |ψ0

〉
.

(74)

In particular, we can construct a game analogous to the P-
bit parity game by fixing the number of teams T and taking
the spacing between the teams lT → ∞. Then, assuming that
products of even numbers of vertical Wilson loops separated
by a distance lT satisfy cluster decomposition,

〈ψ0|
T∏
i=1

Ŵ ai
i |ψ0〉 →

T∏
i=1

〈
ψ0|Ŵ ai

i |ψ0
〉
, lT → ∞, (75)

(this is expected because the vertical Wilson loops are local
operators for Ly < ∞), and using translation invariance, the
quantum probability of winning can be written as

pqu(|ψ0〉) = 1

2

(
1 +

(
1 +W

2

)T

+
(
1 −W

2

)T
)

, (76)

where W = |〈ψ0|Ŵi|ψ0〉| in the Lx = ∞ ground state. Note
that this formula is entirely analogous to Eq. (53).

We see that the fixed-point protocol always yields a quan-
tum advantage for the toric code game for sufficiently largeW .
As T → ∞, the fixed-point protocol loses quantum advantage
whenever the expectation values of individual Wilson loops

W �
√
2 − 1. (77)

Substituting in the perturbative parameter dependence of this
expectation value according to Eq. (73), we estimate that
quantum advantage can survive within a range of perturbing
fields

|hX | � 4K

√
| log(√2 − 1)|

2Ly
(78)

that vanishes as Ly → ∞.

2. The case hX = 0, Lx < ∞
Let us next consider the case hX = 0. Now the expectation

values of vertical Wilson loops 〈Ŵi〉0 = 1, so we may set Ly to
be arbitrarily large without losing quantum advantage. In this
case, the quantum probability of winning simplifies to

pqu(|ψ0〉) = 1
2 (1 + 〈ψ0|V̂�̃|ψ0〉). (79)

Thus the threshold for losing quantum advantage in this case
is given simply by

〈ψ0|V̂�̃|ψ0〉 � 1

2�T/2�−1
. (80)

One can obtain an intuition for this result by considering
a large number of teams T � 1 spaced equally along the
horizontal extent Lx of the torus. Then the perturbative result
Eq. (73) implies that quantum advantage is lost whenever the
distance between neighboring teams becomes too large, i.e.,
when

lT = Lx
T

� 4 log 2

(
K ′

hZ

)2

. (81)

3. The generic case revisited with Lx, Ly < ∞
Finally, let us allow for nonzero perturbing fields hX , hZ

but keep the system dimensions finite, Lx, Ly < ∞. Combin-
ing the above results implies that quantum advantage can only
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survive for nonzero field strengths provided that

|hZ | � 1

L1/2
x

, |hX | � 1

L1/2
y

, (82)

which is a direct consequence of the perimeter-law scaling in
Eq. (73). We note that changing the configurations of teams
and dual loops from our present convention [10] for the toric
code game (vertical teams, horizontal dual loop) will modify
these results accordingly.

To summarize, we have argued that for fixed Lx and Ly,
quantum advantage can survive over a small but nonzero range
of perturbing fields hX and hZ , while in the large-system limit
Lx,Ly → ∞, the fixed-point protocol fails to yield a quantum
advantage for any hX , hZ �= 0 regardless of the number of
teams T , their orientation, and their relative spacing.

One way to understand the difference between the toric
code and Ising models from the viewpoint of playing nonlocal
games is that for the Ising model at any finite N , the ground
states explicitly preserve the global Z2 symmetry; the macro-
scopic entanglement that provides a resource for winning the
parity game is a result of the true ground state being an equal
amplitude superposition of two states in distinct symmetry-
broken sectors. The topological order of the toric code can
similarly be viewed as arising from a spontaneously broken
1-form symmetry [38]. However, for nonzero hX and hZ , this
1-form symmetry is not exact, which leads to the perimeter-
law behavior of Wilson loops.

IV. THE Z2×Z2 SPT PHASE

The multiplayer triangle game [7–9] is a nonlocal game
that can be won with certainty using the ground state |ψCS〉 of
the 2N-qubit stabilizer Hamiltonian

Ĥ = −
2N∑
i=1

Ẑi−1X̂iẐi+1 (83)

on a ring, with Ẑi−1X̂iẐi+1|ψCS〉 = |ψCS〉. This cluster state
can be viewed as a renormalization-group fixed point of the
Z2×Z2 SPT phase in one dimension [9,39].

However, the triangle game and its multiplayer generaliza-
tions [8,9] have an optimal classical probability of winning
p∗
cl = 7/8 that does not vary with the total number of players

N � 3, essentially because the number of marked players P
who can receive nonzero input bits is fixed to P = 3.

In Sec. II B, it was necessary to take the limit P → ∞ to
relate the parity game to a phase of matter. We thus introduce
a P-bit generalization of the triangle game, which we call
the “polygon game”. This is a nonlocal game that admits a
perfect quantum strategy using the cluster state |ψCS〉 on 2P
qubits. We then extend this game to a “multiplayer polygon
game” with N � 3 players and 3 � P < N marked players,
that admits a perfect quantum strategy SCS = (|ψCS〉,PCS)
using a 2N-qubit cluster state. This game bears the precisely
the same relation to the polygon game as the multiplayer
triangle game does to the triangle game.

In contrast to the parity game [5], we find that the polygon
games become easier to win classically as the number of play-
ers P increases. We use this result to argue that as P → ∞, the
quantum strategy S = (|ψ〉,PCS) that uses a state |ψ〉 in the

Z2×Z2 SPT phase only outperforms the classical result at the
fixed point |ψ〉 = |ψCS〉.

A. The polygon games

1. Rules of the polygon game

The “polygon game” is a scalable family of P-player non-
local games with P � 3, and is defined as follows. The P
players may not communicate classically, and each player
receives an input bit xi ∈ {0, 1}. Player i must output a bit
string (ai, bi, ci ) if they receive an input xi = 0 and a bit
string (di, bi, ei ) if they receive an input xi = 1. In order for
the players to win the game, they must satisfy the following
conditions (which directly generalize those for the triangle
game):

(1) If xi = 0, then ai + bi + ci must be even. If xi = 1,
then di + bi + ei must be even.

(2) For each input,
∑P

i=1 bi must be even.
(3) If �x = (0, 0, . . . , 0), then

∑P
i=1 ai must be even.

(4) The “triangle condition”: If �x = (1, 1, 0, . . . , 0), or
any of its cyclic permutations with xi = xi+1 = 1, then di +
ei+1 +∑ j �=i,i+1 a j must be odd.

For P = 3 this recovers the triangle game [8,9]. Additional
possible conditions arise for P > 3, each of which corre-
sponds to a “matching” of the P-gon, in the sense of graph
theory [40]. For example, the triangle condition corresponds
to the set of 1-edge matchings of the P-gon, and there are P
such conditions in total. The next simplest condition is the
“pentagon condition” that arises for P � 5, namely

(5) The “pentagon condition”: If �x = (1, 1, 1, 1,
0, . . . , 0), or any of its permutations with xi = xi+1 = 1
and x j = x j+1 = 1 for some j /∈ {i − 1, i, i + 1}, then
di + ei+1 + d j + e j+1 +∑k �=i,i+1, j, j+1 ak must be even.

There is one pentagon condition for every 2-matching of
the P-gon, for a total of P(P−3)

2 pentagon conditions. See Fig. 3
for an illustration of the triangle and pentagon conditions.

More generally, we can associate a polygon condition to
any r-matching as follows:

(6) The “(2r + 1)-gon condition”: For any r-matchingMr

of the P-gon with 2 < r � �P/2�, for the input �x such that
xi = xi+1 = 1 whenever the edge (i, i + 1) ∈ Mr and xi = 0
otherwise, we must have∑

(i,i+1)∈Mr

di + ei+1 +
∑

( j−1, j),( j, j+1)/∈Mr

a j ≡ r mod 2. (84)

This extends conditions 4 and 5 above. The number of such
conditions for each r is the number of r matchings of the P-
gon. These numbers define the triangle of coefficients of the
Lucas polynomials [41], and are equal to |Mr | = P

P−r

(P − r
r

)
.

2. Perfect quantum strategy for the polygon game

To describe a perfect quantum strategy for the polygon
game, it will be useful to write Ŝi = Ẑi−1X̂iẐi+1 for the
stabilizers of the cluster state, and define global symmetry
operators

Ûa =
P∏
i=1

Ŝ2i−1 =
P∏
i=1

X̂2i−1 (85)
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FIG. 3. (Top row) Illustration of a single triangle condition in
the polygon game with P = 3 players (left) and with P = 5 players
(right). (Bottom row) Illustration of a single pentagon condition in
the polygon game with P = 5 players (left) and P = 7 players (right).
In each picture, the vertices that make up each edge (i, i + 1) of
the appropriate matching are labeled with di and ei+1 respectively,
according to the specified (clockwise) orientation. All other vertices
i are labeled with ai.

and

Ûb =
P∏
i=1

Ŝ2i =
P∏
i=1

X̂2i, (86)

and the stabilizers

ÛM =
⎛⎝ ∏

(i,i+1)∈M
Ŝ2i

⎞⎠Ûa (87)

for each matchingM of the P-gon. By construction, each such
stabilizer leaves the cluster state |ψCS〉 invariant. The perfect
quantum strategy is then identical to that for the triangle game
[8,9] (although the conditions for winning the polygon game
are more stringent than for the triangle game), and proceeds as
follows. First, all players share the 2P-qubit cluster state |ψCS〉
before playing the game, such that player i has access to the
(2i − 1)th and the (2i)th qubit. They then apply the following
protocol PCS to their qubits:

(1) If player i receives the input xi = 0, they measure the
tuple of commuting operators (X̂2i−1, X̂2i, X̂2i−1X̂2i ) on their
two qubits, and return the bit string (ai, bi, ci ) defined by the
measurement outcome [(−1)ai , (−1)bi , (−1)ci ].

(2) If player i receives the input xi = 1, they measure the
tuple of commuting operators (Ŷ2i−1X̂2i, X̂2i, Ŷ2i−1) on their
two qubits, and return the bit string (di, bi, ei ) defined by the
measurement outcome [(−1)di , (−1)bi , (−1)ei ].

The outcomes of the full set of commuting measurements
on |ψCS〉 are constrained by the unit eigenvalues of the stabi-

lizer operators Eqs. (85)–(87) on this state to always satisfy
the conditions of the polygon game. Thus the polygon game
admits the perfect quantum strategy SCS = (|ψCS〉,PCS).

3. Classical winning probabilities

For an even number of players P, the polygon game can be
won classically with probability one, and therefore does not
define a nonlocal game. A perfect classical strategy is given
by

(ai, bi, ci ) = (di, bi, ei ) = (1, 1, 0) (88)

for all i. Thus the optimal classical winning probability

p∗
cl(P) = 1, P even. (89)

For an odd number of players P, there is no longer a perfect
classical strategy, because the triangle condition, Condition 4,
contradicts Conditions 1, 2, and 3, as for the three-player
game. Thus

p∗
cl(P) � 1 − 1

2P
, P odd, (90)

which implies that for odd P � 3, the polygon game is a
true nonlocal game. For the triangle game, the upper bound
is saturated and we have [8] p∗

cl(3) = 7/8. For the pen-
tagon game, we have proved by numerical exhaustion of all
220 = 1 048 576 possible classical deterministic strategies that

p∗
cl(5) = 29/32. (91)

For larger odd P we can achieve a useful lower bound on the
classical probability of winning by considering the classical
strategy

(ai, bi, ci ) = (di, bi, ei ) = (1, 1, 0), 1 � i < P,

(aP, bP, cP ) = (0, 0, 0), (dP, bP, eP ) = (1, 0, 1). (92)

This strategy loses for all inputs with x1 = xP = 1. This in-
cludes one triangle condition, P − 3 pentagon conditions, and
generally (P − 1 − r

r − 1 ) (2r + 1)-gon conditions, for a total of

Nlosses(P) =
(P−3)/2∑
r=0

(
P − 2 − r

r

)
= FP−1 (93)

losses, where FP denotes the Pth Fibonacci number, indexed
so that F1 = F2 = 1. This implies a lower bound

p∗
cl(P) �

2P − FP−1

2P
= 1 − FP−1

2P
, P odd. (94)

We conjecture that this bound is tight. Note that it implies

p∗
cl(P) → 1, P → ∞, (95)

since

p∗
cl(P) � 1 − FP−1

2P
∼ 1 − 1

φ
√
5
(φ/2)P → 1, P → ∞,

(96)
where φ = (1 + √

5)/2 denotes the golden ratio. Thus unlike
the parity game and the toric code game, the polygon games
cease to define nonlocal games in the limit of infinitely many
players P = ∞.
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FIG. 4. Illustration of the N-player P-gon game for N = 10 and
P = 5, i.e., a pentagon inscribed within a decagon. We depict a single
triangle condition (left) and a single pentagon condition (right). In
each such picture, the two vertices that make up an edge (i j, i j+1)
of the matching of the inscribed polygon are labeled by di j and
ei j+1 respectively, according to the specified (clockwise) orientation.
Vertices on the outer polygon that make up the set Ej = i j < i < i j+1

are labeled by ci. All vertices of the outer polygon that are not
involved in the matching of the inner polygon are labeled by ai.

4. The multiplayer polygon game

Finally we introduce a polygonal generalization of the mul-
tiplayer triangle game [8]. Thus consider a P-gon inscribed
within an N-gon with N � P and P odd, at vertices i1 < i2 <

. . . < iP of the N-gon. For each edge (i j, i j+1) of the inscribed
P-gon, we let Ej = {i j < i < i j+1} denote the corresponding
sites of the outerN-gon. Then the rules of the “N-player P-gon
game” are as follows (see Fig. 4 for a visualization):

(0) Players at the vertices of the inscribed P-gon can re-
ceive input bits xi ∈ {0, 1}. All other players receive an input
bit xi = 0.

(1) If xi = 0, then ai + bi + ci must be even. If xi = 1,
then di + bi + ei must be even.

(2) For all inputs,
∑N

i=1 bi must be even.
(3) If �x = (0, 0, . . . , 0), then

∑N
i=1 ai must be even.

(4) The “(2r + 1)-gon condition”: For any r-matchingMr

of the inscribed P-gon with 1 � r � �P/2�, for the input �x
such that xi j = xi j+1 = 1 whenever the edge (i j, i j+1) ∈ Mr

and xi = 0 otherwise, we must have∑
(i j ,i j+1 )∈Mr

di j + ei j+1

+
∑

(ik−1,ik ),(ik ,ik+1 )/∈Mr

aik ≡ r +
∑

(i j ,i j+1 )∈Mr

∑
l∈Ej

cl

+
∑

(ik−1,ik ),(ik ,ik+1 )/∈Mr

∑
l∈Ek

al mod 2. (97)

This defines a nonlocal game for essentially the reasons
discussed above for the polygon game, and its perfect quan-
tum strategy is again given by SCS = (|ψCS〉,PCS), where
|ψCS〉 is now the cluster state on 2N qubits.

Notice that the optimal classical probability of winning for
the N-player P-gon game is equal to p∗

cl(P) for the P-player
P-gon game, since the players off the inscribed P-gon can all
return (ai, bi, ci ) = (0, 0, 0) without diminishing the success
of the optimal classical strategy on the P-gon. As for the N-
player, P-bit parity game, this is true mathematically speaking

whether or not the N players are told which of them will be
marked before the game is played (though there is a separate
question of how well the players can coordinate in advance
to reliably attain such an optimal strategy). To avoid this
difficulty, we shall henceforth assume that the players know
whether they are marked in advance.

B. Playing polygon games in the SPT phase

Let us now consider playing the N-player P-gon game
with a 2N qubit state |ψ0〉 that is in the Z2×Z2 SPT phase.
This problem was previously studied in the case P = 3, for
which it was found that the quantum strategy S = (|ψ0〉,PCS)
could yield a quantum advantage for the multiplayer triangle
game away from the cluster state fixed point as N → ∞ [9].
Intuitively, this is possible because the three marked players
are spatially well separated; as we found for the Ising ground
state, such spatial separation allows the marked players to
achieve quantum advantage over a substantial portion of the
phase. As for the 3-bit parity game, however, the fixed-point
protocol for the multiplayer triangle game loses quantum
advantage at a nonzero value of the string order parameter
diagnosing the SPT phase, and is therefore insufficient for
clearly identifying the phase.

To determine whether this situation improves for P > 3
marked players, we first note that the total number of (2r +
1)-gon conditions for 1 � r � �P/2� is given by the Pth
Lucas number LP minus one, where L1 = 1, L2 = 3, and
LP = LP−1 + LP−2. Thus the quantum probability of winning
can be written (using the global Z2 symmetries in the SPT
phase and the properties of dichotomic observables [9]) as

pqu(|ψ0〉) = 1 − (LP − 1)

2P+1

+ 1

2P+1

�P/2�∑
r=1

∑
r−matchingsMr

〈ψ0|ÛMr |ψ0〉 (98)

where the stabilizers arising in the multiplayer polygon game

ÛMr =
∏

{ j:(i j ,i j+1 )∈Mr}
Ŝ j (99)

can be interpreted as products of string order parameters [9]

Ŝ j = Ẑ2i j−1X̂2i j

⎛⎝∏
l∈Ej

X̂2l

⎞⎠Ẑ2i j+1+1, (100)

with one string order parameter for each edge of the inscribed
P-gon.

To proceed further, let us fix P < ∞, assume that the
vertices of the inscribed P-gon are evenly spaced, pass to the
large-system limit N � P and make the estimate [42]

〈ψ0|ÛMr |ψ0〉 ≈ 〈ψ0|Ŝ|ψ0〉r, (101)

where Ŝ is the string order parameter corresponding to a single
edge and is a product of ∼N/P single-qubit operators for any
finite N . Then, writing 〈Ŝ〉0 = 〈ψ0|Ŝ|ψ0〉, we can estimate the
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quantum probability of winning as

pqu(|ψ0〉) ≈ 1 − (LP − 1)

2P+1
+ 1

2P+1

�P/2�∑
r=1

|Mr |〈Ŝ〉r0. (102)

Note that the function of the order parameter appearing in this
equation is (one definition of) the matching polynomial of the
inscribed P-gon, and can be expressed in terms of the Lucas
polynomials [41]

LP(x) = 1

2P
[(x +

√
x2 + 4)P + (x −

√
x2 + 4)P] (103)

as

pqu(|ψ0〉) ≈ 1 − LP − 〈Ŝ〉P/2
0 LP

(〈Ŝ〉−1/2
0

)
2P+1

. (104)

We expect that this strategy loses quantum advantage when
our estimate for the quantum probability of winning Eq. (104)
falls below the classical lower bound Eq. (94). This happens
at a threshold value of the string order parameter

〈Ŝ〉P/2
0 LP

(〈Ŝ〉−1/2
0

)
� (LP − 2FP−1). (105)

The corresponding threshold value of 〈Ŝ〉0 is an increasing
function of P, which means that in contrast to our findings for
the Ising model, there is no improvement gained in identifying
the ordered phase by increasing P. In the large P limit, this
threshold becomes

〈Ŝ〉P/2
0 LP

(〈Ŝ〉−1/2
0

)
�
(
1 − 2

φ
√
5

)
φP, (106)

where we have used the fact that LP ∼ φP as P → ∞. The
leading asymptotic behavior of the left-hand side follows from
the definition of the Lucas polynomials Eq. (103) and is given
by

〈Ŝ〉P/2
0 LP

(〈Ŝ〉−1/2
0

) ∼
(
1 +

√
1 + 4〈Ŝ〉0
2

)P

. (107)

Thus we expect that this quantum strategy loses the battle of
exponentials for sufficiently large P whenever

1 +
√
1 + 4〈Ŝ〉0
2

< φ, (108)

which is true whenever

〈Ŝ〉0 < 1. (109)

The above argument suggests that as P → ∞, a state in the
Z2×Z2 SPT phase only provides quantum advantage for the
multiplayer P-gon game at the fixed point with 〈Ŝ〉0 = 1.

Finally, we note that unlike for the parity game (see The-
orem 1) and the toric code game [10], the condition that
the quantum strategy S = (|ψ〉,PCS) is a perfect quantum
strategy for the polygon game does not uniquely determine
the state |ψ〉 to be the fixed-point cluster state |ψCS〉, as it fixes
only half the stabilizers of the state |ψCS〉 in the large-system

limit. This is a further indication that the polygon games
(including the triangle game) are insufficient to capture the
Z2×Z2 SPT phase.

V. CONCLUSION

We have systematically investigated the question of how
far nonlocal games can be won using phases of quantum
matter. Our results, in combination with other recent studies of
playing nonlocal games with condensed matter ground states
[9,10], bring the foundational (but so far largely theoretical)
notion of quantum pseudotelepathy [4] closer to the kinds
of entangled many-body wavefunctions that are realized in
low-temperature condensed matter systems in the laboratory.
From a practical perspective, our results for the quantum Ising
model are closest to present-day experimental capabilities
[43]. However, if the protocols discussed in this paper for the
Ising model are to be realized experimentally, it is important
that the system lies close to its true ground state, i.e., is
maintained at a temperature that is small compared to the gap
separating the two lowest-lying eigenstates. If this is not the
case, then mixing between these two opposite-parity states
will eliminate any quantum advantage for the parity game
gained by the BBT protocol.

Even at zero temperature, our findings reveal a new
and possibly unexpected distinction between conventional
symmetry-breaking phases and topological and SPT phases
from the viewpoint of winning nonlocal games, with conven-
tional symmetry-breaking phases apparently yielding a better
resource for winning such games. One way to understand this
distinction is that the games considered above admit quantum
strategies whose quantum advantage depends continuously on
the order parameters of an underlying phase of matter.

For example, we have proved that the ground state of
the transverse-field Ising model in one dimension provides
a quantum advantage for winning the parity game over the
entirety of its ferromagnetic phase. We expect that similar
conclusions hold for the ground states of ZM clock models
with M > 2, which can be used to win the modulo M gen-
eralizations of the parity game due to Boyer [44]. (We prove
some new results on these games in Appendix B, including an
improved upper bound on the classical probability of winning
and an analog of Theorem 1.)

In contrast, it appears that topological and SPT phases do
not tend to confer a quantum advantage for nonlocal games,
beyond a region of the phase diagram that becomes van-
ishingly small in the large-system limit. For the deconfined
ground states of the perturbed toric code Hamiltonian, this
is because the expectation values of Wilson loop operators
decay exponentially with the linear system size away from the
ideal toric code limit, reflecting their perimeter-law scaling.
For the Z2×Z2 SPT phase, the difficulty instead seems to be
that the triangle game studied in previous work [9] and its
generalization to the “polygon games” introduced above are
simply too easy to win classically, and therefore do not probe
sufficient entanglement to determine the SPT phase. Both
these observations are perhaps surprising compared to our
results for the Ising model, given the widespread expectation
that topological and SPT phases of matter encode quantum
information more robustly than more conventional phases of
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quantum matter [45,46]. This might be a consequence of our
choice of protocols P , as we now discuss.

In this paper, we considered quantum strategies S =
(|ψ〉,P ) such that the state |ψ〉 could vary within a given
phase of matter, but constrained the protocol P to be the
“fixed-point protocol” for that phase. In several cases, this
choice led to a substantial diminution of the quantum prob-
ability of winning away from the fixed point of the phase, in
the limit of a large number of players N → ∞. One might
ask whether it is possible to perform substantially better by
modifying the protocol P , i.e., to find a quantum strategy
that (i) uses ground states |ψ0〉 in a given phase of matter,
away from the ξ = 0 fixed point and (ii) wins a nonlocal
game G with probability near one, pqu ≈ 1 as N → ∞. Some
indication that such protocols do exist comes from renormal-
ization group ideas [34,39]; away from critical points and in
the large-system limit, ground states have a finite correlation
length ξ < ∞, and on length scales larger than this corre-
lation length, quantum fluctuations should be suppressed so
that the coarse-grained ground state resembles a state with
ξ = 0. This suggests that a noncritical ground state, whose
total number of qubits N is much larger than the correlation
length ξ , could be used to win an N ′ = N/ξ -player version of
G with probability pqu ≈ 1, using a modification of the fixed-
point protocol whereby each player acts on order ξ qubits at
a time.

Indeed, for the ferromagnetic phase of the quantum Ising
model, this idea is approximately realized by the “P-bit parity
games” that we construct in Sec. II B, and for P = 3 bits,
we do find a quantum probability of winning that is approxi-
mately equal to one within a finite region of the ferromagnetic
phase. However, if such a protocol could be constructed di-
rectly from local operators in the manner sketched above, it
would require a more general formulation of nonlocal games
than has been considered in the past [4], because it must allow
for classical communication between multiple qubits within a
single correlation length. A fundamental problem with allow-
ing for classical communication between neighboring qubits
is that it allows for classical communication between any two
qubits in the system, through successively passing messages
between neighbors, and therefore eliminates any quantum ad-
vantage for these games. Previous work has circumvented this
problem by only allowing a limited “communication distance”
between qubits [7], which is reasonable as a matter of princi-
ple but not especially physical. We expect that introducing a

nonzero communication distance for the games discussed in
this paper would both improve the effectiveness of the best
classical strategies and allow for better quantum strategies
away from the fixed points of phases, but leave a detailed
consideration of such improvements to future studies.

This brings us to the closely related question of whether
quantum games can be used to uniquely characterize the
ground states of condensed matter systems. To be precise,
given a game G and a quantum protocol P , one can ask
whether the condition that S = (|ψ〉,P ) is a perfect quantum
strategy for G imposes nontrivial constraints on the state |ψ〉.
Our Theorem 1 proves that when the game G is the parity
game and the protocol P is the Brassard-Broadbent-Tapp
protocol, S is a perfect quantum strategy for G if and only
if the state |ψ〉 equals |GHZ+〉 up to a global phase. Thus the
ξ = 0 fixed point of the ferromagnetic phase of the quantum
Ising model is uniquely determined by the BBT protocol for
the parity game. We have proved analogous results relating
Boyer’s modulo M game to the quantum clock model (see
Theorem 2), and relating the toric code game to the toric code
ground state [10].

The latter results might seem to rely on the fact that the
underlying fixed-point protocols are equivalent to contextual
families of measurements of stabilizers, which naturally give
rise to nonlocal games [11]. However, our results for the
quantum Ising model in Sec. II demonstrate clearly that ves-
tiges of contextuality can persist through entire phases of
quantum matter, and in conjunction with specific protocols
and specific nonlocal games, demarcate these phases sharply.
Extending these observations to a full “device-independent
self-testing” of phases of matter, without reference to any spe-
cific protocol [47–51], poses a fascinating challenge for future
work.
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APPENDIX A: PROOF OF THEOREM 1

In this Appendix, we prove Theorem 1 on the probability of winning the parity game with the quantum strategy S =
(|ψ〉,PBBT), with allowed input bit strings �a selected uniformly at random. First suppose that the components of the (normalized)
state |ψ〉 in the computational basis are given by

|ψ〉 =
∑

�σ∈{0,1}N
c�σ |σ1σ2 . . . σN 〉. (A1)

After Step 1, this becomes

|ψ ′〉 =
∑

�σ∈{0,1}N
i
∑N

j=1 σ j a j c�σ |�σ 〉. (A2)
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After Step 2, we have

|ψ ′′〉 = 1

2N/2

∑
�σ∈{0,1}N

i
∑N

j=1 σ j a j c�σ
⊗

{ j:σ j=0}
(|0〉 + |1〉)

⊗
{ j:σ j=1}

(|0〉 − |1〉).

We can use the same notational trick as in Eq. (A2) to write the tensor product as⊗
{ j:σ j=0}

(|0〉 + |1〉)
⊗

{ j:σ j=1}
(|0〉 − |1〉) =

∑
�b∈{0,1}N

(−1)
∑N

j=1 σ j b j |b1b2 . . . b2〉, (A3)

which yields the double sum

|ψ ′′〉 = 1

2N/2

∑
�σ∈{0,1}N

∑
�b∈{0,1}N

eiπ
∑N

j=1 σ j (a j/2+b j )c�σ |b1b2 . . . b2〉. (A4)

Interchanging the order of summation we can write this as

|ψ ′′〉 =
∑

�b∈{0,1}N

⎛⎝ 1

2N/2

∑
�σ∈{0,1}N

eiπ
∑N

j=1 σ j (a j/2+b j )c�σ

⎞⎠|b1b2 . . . b2〉, (A5)

from which the probability of winning the parity game with input bit string �a after Step 3 can be read off to be

p(|ψ〉, �a) = 1

2N
∑

{�b:∑N
j=1 b j≡rmod 2}

∣∣∣∣∣∣
∑

�σ∈{0,1}N
eiπ

∑N
j=1 σ j (a j/2+b j )c�σ

∣∣∣∣∣∣
2

(A6)

by the Born rule, where r =∑N
j=1 a j/2 denotes the sought-after parity. Perhaps surprisingly, this sum admits drastic simplifica-

tion. To see this, we first write

p(|ψ〉, �a) = 1

2N
∑

�σ ,�σ ′∈{0,1}N
c�σ c

∗
�σ ′eiπ

∑N
j=1(σ j−σ ′

j )a j/2
∑

{�b:∑N
j=1 b j≡rmod 2}

eiπ
∑N

j=1(σ j−σ ′
j )b j . (A7)

The second sum can be performed using the identity

∑
{�b:∑N

j=1 b j≡rmod 2}

N∏
j=1

z
bj

j = 1

2

⎛⎝ N∏
j=1

(1 + z j ) + (−1)r
N∏
j=1

(1 − z j )

⎞⎠, (A8)

which yields

∑
{�b:∑N

j=1 b j≡rmod 2}
eiπ

∑N
j=1(σ j−σ ′

j )b j = 2N−1

⎡⎣ N∏
j=1

δσ j ,σ
′
j
+ (−1)r

N∏
j=1

δσ j ,1−σ ′
j

⎤⎦, (A9)

implying that

p(|ψ〉, �a) = 1

2

⎛⎝1 +
∑

�σ∈{0,1}N
eiπ

∑N
j=1 σ j a j c�σ c

∗
�1−�σ

⎞⎠, (A10)

where it is useful to define fully polarized bit strings �0 = (0, 0, . . . , 0) and �1 = (1, 1, . . . , 1). To obtain the probability of winning
the parity game for a uniformly random input bit string, we must average over all allowed input bit strings, �a ∈ {0, 1}N with∑N

j=1 a j even. This yields the quantum winning probability

pqu(|ψ〉) = 1

2N−1

∑
{�a:∑N

j=1 a j even}
p(|ψ〉, �a) = 1

2
+ 1

2N
∑

{�a:∑N
j=1 a j even}

∑
�σ∈{0,1}N

eiπ
∑N

j=1 σ j a j c�σ c
∗
�1−�σ . (A11)

Interchanging the order of summation and applying the identity Eq. (A8) again yields∑
{�a:∑N

j=1 a j even}

∑
�σ∈{0,1}N

eiπ
∑N

j=1 σ j a j c�σ c
∗
�1−�σ =

∑
�σ∈{0,1}N

c�σ c
∗
1−�σ2

N−1(δ�σ �0 + δ�σ �1) = 2N−1(c�0c
∗
�1 + c�1c

∗
�0 ) (A12)

and we thus arrive at the compact expression

pqu(|ψ〉) = 1
2

(
1 + c�0c

∗
�1 + c�1c

∗
�0
)
. (A13)
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It remains to establish the connection with the even and odd parity GHZ states |GHZ±〉 = 1√
2
(|�0〉 ± |�1〉). To this end, note that

|〈ψ |GHZ±〉|2 = 1
2 |c�0 ± c�1|2, (A14)

which implies that

|〈ψ |GHZ+〉|2 − |〈ψ |GHZ−〉|2 = 1
2 (|c�0 + c�1|2 − |c�0 − c�1|2) = c�0c

∗
�1 + c�1c

∗
�0. (A15)

We deduce finally that Eq. (A13) can be written as

pqu(|ψ〉) = 1
2 (1 + |〈ψ |GHZ+〉|2 − |〈ψ |GHZ−〉|2), (A16)

which was to be shown.

APPENDIX B: BOYER’S MODULOM GENERALIZATION OF THE PARITY GAME

In this Appendix, we extend various ideas from the main text to Boyer’s “modulo M” generalization of the parity game [44].
This is an N-player nonlocal game, which can be won with certainty using the qudit GHZ state

|GHZM〉 = 1√
M

(|0〉⊗N + |1〉⊗N + · · · + |M − 1〉⊗N ). (B1)

The rules of Boyer’s modulo M game are modelled on the Brassard-Broadbent-Tapp rules for the parity game [5]. The game
is determined by two positive integers, the divisor D and the modulus M. There are N players and player j receives a number
a j ∈ {0, 1, . . . ,D − 1}. The promise is that D divides

∑N
j=1 a j and to win the game, player j must return bj ∈ {0, 1, . . . ,M − 1}

such that

N∑
j=1

b j ≡
∑N

j=1 a j

D
modM. (B2)

For all D and M, the modulo M game admits a perfect quantum strategy SBoyer = (|GHZM〉,PBoyer ). In what follows, it will
be useful to define single qudit gates

Ĉ|k〉 = ωk
M |k〉, Ŝ|k〉 = |k + 1〉, Ŵ |k〉 = 1√

M

(|0〉 + ωk
M |1〉 + · · · ωk(M−1)

M |M − 1〉) (B3)

where ωM = ei2π/M . These correspond to a “clock” operator, a “shift” operator, and a change of basis from clock to shift
eigenstates respectively.

The Boyer protocol PBoyer, which always wins the modulo M game if the players share the state |GHZM〉 before playing,
consists of the following steps:

(1) Each player acts with Ĉ−a j/D on their qudit.
(2) Each player acts with Ŵ on their qudit.
(3) Each player measures their qudit in the clock basis and returns the qudit value b j .
Let us briefly summarize why this works. After the first step, the shared GHZ state is given by

|ψ ′〉 = 1√
M

(
|0〉⊗N + ω

−∑N
j=1 a j/D

M |1〉⊗N + · · · + ω
−(M−1)

∑N
j=1 a j/D

M |1〉⊗N

)
. (B4)

After the second step, this becomes

|ψ ′′〉 =
M−1∑
k=0

1√
M

ω
−k
∑N

j=1 a j/D
M

N⊗
j=1

⎛⎝ 1√
M

M−1∑
y=0

ω
ky
M |y〉

⎞⎠
= 1

M (N−1)/2

∑
�y∈{0,1,...,M−1}N

(
1

M

M−1∑
k=0

ω
k
∑N

j=1(y j−a j/D)
M

)
|y1y2 . . . yN 〉

= 1

M (N−1)/2

∑
�y∈{0,1,...,M−1}N∑N

j=1 y j≡
∑N

j=1 a j/DmodM

|y1y2 . . . yM〉. (B5)

From here it is clear that a measurement in the clock basis wins the game.
In relating the parity game to condensed matter systems in the main text, we used the fact that the qubit GHZ state can be

interpreted as the ground state of a quantum Ising model. The qudit GHZ state can similarly be interpreted as a ground state of
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a quantum clock model. A generic quantum clock model has the form

Ĥ = −J
N∑
j=1

1

2
(Ĉ†

j Ĉ j+1 + Ĉ†
j+1Ĉj ) − �

N∑
j=1

1

2
(Ŝ j + Ŝ†j ) − h

N∑
j=1

1

2
(Ĉj + Ĉ†

j ) (B6)

where the physical meaning of the various coefficients is much the same as for the corresponding coefficients in the quantum
Ising model Eq. (7) and we again set J, � > 0 and assume periodic boundary conditions. In the limit h = 0, � → 0+, degenerate
perturbation theory implies that the ground state of this model is given by |GHZM〉. A generalization of the problem we
considered in the main text to qudits is to consider the probability of success for the quantum strategy S = (|ψ0〉,PBoyer ) for
the modulo M game with divisor M, where |ψ0〉 denotes the ground state of the clock model Eq. (B6). By our results for the
quantum Ising model, we expect that a ZM-symmetry-breaking field h �= 0 will eliminate the quantum advantage of S, while if
h = 0, quantum advantage of S will persist over some nonzero range of � > 0 as N → ∞.

We now report an analogue of our Theorem 1 for Boyer’s modulo M game. Specifically, we have the following result:
Theorem 2. The quantum strategy S = (|ψ〉,PBoyer ) wins the modulo M game with probability

pqu(|ψ〉) = 1

M

⎛⎝1 +
M−1∑
l=1

∑
�y∈{0,1,...,M−1−l}N

|〈ψ |ϕ+
�y,�y+�l〉|

2 − |〈ψ |ϕ−
�y,�y+�l〉|

2

⎞⎠, (B7)

where we defined the family of N-qudit cat states

|ϕ±
�y,�z〉 = 1√

2
(|y1y2 . . . yN 〉 ± |z1z2 . . . zN 〉). (B8)

This result is more complicated than the corresponding expression Eq. (A16) for the parity game; this more complicated
structure reflects the multiple distinct ways of realizing GHZ-state-like multipartite entanglement within a system of many
qudits.

We next prove that the qudit GHZ state |GHZM〉 is the unique pure state |ψ〉 such that the quantum strategy S = (|ψ〉,PBoyer )
wins the moduloM game with certainty. To achieve this, it is helpful to write the (normalized) state |ψ〉 in question explicitly as

|ψ〉 =
∑

�y∈{0,1,...,M−1}N
c�y|y1y2 . . . yN 〉 (B9)

in the qudit computational basis. In components, the fidelity formula Eq. (B8) reads

pqu(|ψ〉) = 1

M

⎛⎝1 +
M−1∑
l=1

∑
�y∈{0,1,...,M−1−l}N

c�yc
∗
�y+�l + c�y+�l c

∗
�y

⎞⎠. (B10)

To proceed further, we must rewrite this as a sum over mutually orthogonal subspaces of theN-qudit Hilbert space. The subspaces
in question can be labelled by multi-indices �y with min j y j = 0, and are each spanned by sets of computational basis vectors
related to one another by actions of the global shift operator Ŝ =∏L

i=1 Ŝi and its inverse. Reordering the summation to reflect
this structure, we obtain

pqu(|ψ〉) = 1

M

⎛⎜⎜⎜⎝1 +
∑

�y∈{0,1,...,M−2}N
min j y j=0

M−1−max j y j∑
l=1

c�yc
∗
�y+�l + c�y+�l c

∗
�y

⎞⎟⎟⎟⎠

= 1

M

⎛⎜⎜⎜⎝1 +
∑

�y∈{0,1,...,M−2}N
min j y j=0

∣∣∣∣∣∣
M−1−max j y j∑

l=0

c�y+�l

∣∣∣∣∣∣
2

−
M−1−max j y j∑

l=0

|c�y+�l |2

⎞⎟⎟⎟⎠. (B11)

By normalization
∑

�y∈{0,1,...,M−1}N |c�y|2 = 1, this can be written as

pqu(|ψ〉) = 1

M

⎛⎜⎜⎜⎝ ∑
�y∈{0,1,...,M−1}N

min j y j=0,max j y j=M−1

|c�y|2 +
∑

�y∈{0,1,...,M−1}N
min j y j=0,max j y j<M−1

∣∣∣∣∣∣
M−1−max j y j∑

l=0

c�y+�l

∣∣∣∣∣∣
2

⎞⎟⎟⎟⎠, (B12)

which is the desired sum over mutually orthogonal subspaces and defines a block-diagonal Hermitian form Â via the relation
pqu(|ψ〉) = 〈ψ |Â|ψ〉. Maximizing this Hermitian form subject to the normalization constraint 〈ψ |ψ〉 = 1, it follows that
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pqu(|ψ〉) attains its maximum λ∗ when |ψ〉 = |v∗〉 is an eigenvector of Â with the largest eigenvalue λ∗ among all such
eigenvectors. In particular, the quantum strategy S = (|ψ〉,PBoyer ) is a perfect quantum strategy for the modulo M game if
and only if |ψ〉 is Â-invariant, with Â|ψ〉 = |ψ〉.

It remains to obtain the spectrum of Â. First we label each block of Â by a multi-index �y ∈ ZN
M with min j y j = 0, and note

that each block in this subspace has matrix elements

Bll ′ = A�y+�l,�y+�l ′ = 1

M
, l = 0, 1, . . .M − 1 − max

j
y j . (B13)

By the Cauchy-Schwartz inequality, any unit norm vector in this subspace satisfies

〈v|B̂|v〉 =
M−1−max j y j∑

l,l ′=0

v∗
l Bll ′vl ′ = 1

M

∣∣∣∣∣∣
M−1−max j y j∑

l=0

vl

∣∣∣∣∣∣
2

� M − max j y j
M

, (B14)

which is saturated if and only if vl = eiϕ/
√
M − max j y j , where ϕ is an arbitrary global phase. Thus the largest eigenvalue in

this block is λ∗
�y = (M − max j y j )/M, and its eigenspace is spanned by vl = 1/

√
M − max j y j .

It follows that the largest eigenvalue of Â is equal to λ∗
�0 = 1 and resides in the unique block indexed by the multi-index

�y = (0, 0, . . . , 0) and consisting of the states {|0〉⊗N , |1〉⊗N , . . . |M − 1〉⊗N}. Furthermore, the eigenspace corresponding to this
eigenvalue is spanned by

c�y =
{
0 min j y j �= max j y j
1√
M

min j y j = max j y j
, (B15)

which precisely the qudit GHZ state |GHZM〉. We deduce that pqu(|ψ〉) attains its maximum value of 1 if and only if |ψ〉 is equal
to the state |GHZM〉, up to a global phase.

An interesting corollary of our result is that applying Boyer’s protocol to an M ′ qudit GHZ state embedded suitably in the M
qudit Hilbert space, where 2 � M ′ < M is smaller than M, still confers some quantum advantage over random guessing for the
modulo M game, with

pqu(|GHZM ′ 〉) = M ′

M
>

1

M
. (B16)

Finally, we note that the optimal classical strategy for this game is not known in general. The initial work [44] proved that
provided M and D are not coprime, the game cannot always be won classically, but did not estimate the optimal classical
probability of winning for general values ofM. By adapting the arguments of Brassard-Broadbent-Tapp [5] and Mermin [6], we
have found that the optimal classical probability of winning is bounded above by 1/M plus a correction that is exponential in N .
To prove this, let b j (a j ) be a classical deterministic strategy, whereby player j always returns the output bj (a j ) ∈ {0, 1, . . . ,M −
1} given the input a j ∈ {0, 1, . . . ,D − 1}. Let us write

S j (a j ) = ω
b j (a j )
M (B17)

and also introduce the Dth root of unity ωD = ei2π/D. We then consider the quantities

λn = 1

D

D−1∑
k=0

N∏
j=1

[
S j (0)

n + ω
k−n/M
D Sj (1)

n + . . . + ω
(k−n/M )(D−1)
D Sj (D − 1)n

]

= 1

D

D−1∑
k=0

∑
�a∈{0,1,...,D−1}N

ω

∑N
j=1(k−n/M )a j

D

N∏
j=1

S j (a j )
n

=
∑

�a∈{0,1,...,D−1}N
ω

−n/M
∑N

j=1 a j

D

(
1

D

D−1∑
k=0

ω
k
∑N

j=1 a j

D

)
N∏
j=1

S j (a j )
n

=
∑

�a∈{0,1,...,D−1}N
D|∑N

j=1 a j

ω
−n/D

∑N
j=1 a j

M

N∏
j=1

S j (a j )
n

=
∑

�a∈{0,1,...,D−1}N
D|∑N

j=1 a j

ω
n
(∑N

j=1 b j−
∑N

j=1 a j/D
)

M

= Nwins + N1ω
n
M + . . . + NM−1ω

n(M−1)
M (B18)
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where n = 0, 1, . . . ,M − 1, Nwins denotes the number of winning inputs to this strategy and Nr the number of inputs that this
strategy loses by a margin r ≡∑N

j=1 b j −∑N
j=1 a j/DmodM. We also let

Nlosses =
M−1∑
r=1

Nr (B19)

denote the total number of losing inputs to this strategy. It is clear that

λ0 = Nwins + Nlosses = DN−1 (B20)

while for 1 � n � M − 1,

λn � |λn| �
(
max
k,b j

∣∣∣ωnb j (0)
M + ω

k−n/M
D ω

nb j (1)
M + · · · + ω

(k−n/M )(D−1)
D ω

nb j (D−1)
M

∣∣∣)N . (B21)

In general these inequalities are not saturated, so the bound is not tight. It is convenient to write

sD,M = max
n,k,b

∣∣ωnb(0)
M + ω

k−n/M
D ω

nb(1)
M + · · · + ω

(k−n/M )(D−1)
D ω

nb(D−1)
M

∣∣, (B22)

where the maximization is over all n = 1, 2, . . . ,M − 1, k = 0, 1, . . . ,D − 1 and functions b : ZD → ZM . Then, since

1

M

M−1∑
n=0

λn = 1

M

M−1∑
n=0

(
Nwins + N1ω

n
M + · · · + NM−1ω

n(M−1)
M

) = Nwins, (B23)

it follows that

Nwins �
1

M
(DN−1 + (M − 1) max

1�n�M−1
|λn|) � 1

M

(
DN−1 + (M − 1)sND,M

)
(B24)

and in particular that the classical winning probability

pcl(D,M ) = Nwins

DN−1
� 1

M
+ M − 1

M
sD,M

(
sD,M

D

)N−1

(B25)

for any given strategy. Thus the optimal classical winning probability

p∗
cl(D,M ) � 1

M
+ M − 1

M
sD,M

(
sD,M

D

)N−1

. (B26)

By enumerating all (M − 1)DMD cases in Eq. (B22) numerically, we find that

s3,3 ≈ 2.53 < 3, s4,4 ≈ 3.62 < 4, s5,5 ≈ 4.69 < 5, . . . (B27)

In general, we expect that sM,M < M, since Eq. (B22) involves the root of unity ωM2 and thus cannot attain its maximum value
for the allowed values of n. This implies that when D = M, the probability of winning for the optimal classical strategy is
constrained to equal 1/M as N → ∞, i.e., performs no better than random guessing in the large-system limit. To our knowledge,
this upper bound is a substantial improvement on existing results [44] for p∗

cl(D,M ) for generic values ofM. However, this type
of reasoning only seems to yield a tight upper bound for the original parity game with D = M = 2; finding a tight bound (and
thereby determining the optimal classical strategy) for general values of D and M remains an open question.
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