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Core Ideas

e Anovel topographic correction method reduced the effect of surface orientation on lab-
based soil reflectance.

e Alinear empirical approach outperformed two versions of a geometric topographic
correction.

e Bias and error in SOC predictions were decreased when topographically-corrected
reflectance spectra were used.

e Topographic correction advances the use of HSI on intact soil samples displaying natural
roughness.

ABSTRACT

Understanding soil organic carbon (SOC) response to global change has been hindered by an
inability to map SOC at horizon scales relevant to coupled hydrologic and biogeochemical
processes. Standard SOC measurements rely on homogenized samples taken from distinct depth
intervals. Such sampling prevents an examination of fine-scale SOC distribution within a soil
horizon. Visible near-infrared hyperspectral imaging (HSI) has been applied to intact monoliths
and split cores surfaces to overcome this limitation. However, the roughness of these surfaces
can influence HSI spectra by scattering reflected light in different directions posing challenges
to fine-scale SOC mapping. Here we examine the influence of prescribed surface orientation on
reflected spectra, develop a method for correcting topographic effects, and calibrate a partial
least squares regression (PLSR) model for SOC prediction. Two empirical models that account
for surface slope, aspect, and wavelength and two theoretical models that account for the
geometry of the spectrometer were compared using 681 homogenized soil samples from across
the US that were packed into sample wells and presented to the spectrometer at 91
orientations. The empirical approach outperformed the more complex geometric models in
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correcting spectra taken at non-flat configurations. Topographically-corrected spectra reduced
bias and error in SOC predicted by PLSR, particularly at slope angles greater than 30°. Our
approach clears the way for investigating the spatial distributions of multiple soil properties on
rough intact soil samples.

1 INTRODUCTION

The spatial arrangement of soil material and concomitant void space is a key determinant of
water, energy, and gas fluxes within the critical zone (Sullivan et al.,, 2022). Despite its
importance, few studies characterize the spatial arrangements of soil solid constituents at the
scales necessary to understand many of the hydrologic and biogeochemical processes
controlling these fluxes. In particular, the type, location, and abundance of soil organic carbon
(SOC) controls water and nutrient cycling and biological activity within soils (Lal, 2004;
Banwart, 2014; Wiesmeier et al., 2019) and development of soil structure (Bronick et al., 2005;
Or et al,, 2021)—a physical property of soils which describes the size, shape, and spatial
arrangement of soil aggregates and pore networks (Letey, 1991). Despite decades of research
on SOC storage (Six et al., 2004; Basile-Doelsch et al., 2020), advancements in our understanding
of how and where SOC is stored within soils are needed (Davidson & Janssens, 2006; McBratney
etal,, 2014; Lehmann & Kleber, 2015) and it is expected that a better understanding of the
mechanistic relationships between SOC storage and soil structure would support these
advancements (Stockmann, 2013).

Studies of the relationships between SOC storage and soil structure are, however, limited by
a lack of sufficient observations that quantify the fine-scale spatial distribution of SOC (Rabot et
al,, 2018). One reason for this limitation is that standard methods for SOC quantification rely on
homogenized bulk soil material sampled from particular depth intervals (e.g., within a
described morphological horizon) and, thus, fail to characterize fine-scale spatial variability that
would be retained in intact samples. Advancing our ability to study soil properties on intact
samples that retain the natural soil architecture is key to understanding and modeling soil
behavior and predicting future changes in soil function (Lucas et al., 2020; Vogel et al., 2021).

Driven by the need for methods capable of non-destructively studying intact soil samples,
proximal sensing approaches have been developed that open the door to high-resolution,
spatially-explicit characterization of soil constituents and soil structure at scales relevant to soil
hydrologic processes like preferential flow (e.g., horizon to pedon scales) (Hirmas, 2016). One of
these methods, visible near-infrared (VNIR) hyperspectral imaging (HSI) spectroscopy, offers a
promising way forward in quantifying the horizon-scale spatial distribution of soil chemical
properties (Buddenbaum & Steffens, 2012a, 2012b; Steffens & Buddenbaum, 2013; Steffens et
al,, 2014; Hobley et al., 2018; Steffens et al. 2021). Hyperspectral imaging collects reflectance
spectra from a soil surface at high spatial resolution (e.g., sub-millimeter) without disrupting
the arrangement of constituents. These spectral signatures are used to calibrate empirical
regression models to predict soil properties for each pixel on the soil surface of an intact
sample, thereby mapping the spatial distribution of soil properties.
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However, VNIR reflectance spectra are sensitive to surface topography (Baumgardner,
1985; Civco, 1989) resulting in inconsistencies in soil spectral data and decreases in the
reliability of predictions made from spectra collected at different surface orientations (Ben Dor
et.al, 2015). Previous studies utilizing HSI have reduced the impact of surface roughness on the
spectral signatures by slicing the surface of intact soil monoliths or splitting cores flat before
imaging (Hobley et al., 2018; Steffens et al., 2014; Steffens & Buddenbaum, 2013).
Unfortunately, surface flattening restricts the application of other proximal sensing methods on
these samples such as multistripe laser triangulation (MLT) used to characterize macropore
networks and soil structure (Eck et al., 2013; Hirmas et al., 2016; Bagnall et al., 2020).
Therefore, simultaneous investigation of the spatial distribution of solid constituents like SOC
and structure using a combination of HSI and MLT scanning is not yet possible. While methods
exist to prepare intact soil surfaces to preserve the natural structure for MLT analysis (Hirmas,
2013), the development of a post-imaging topographic-correction method for laboratory-based
proximal sensing techniques like HSI is lacking. Therefore, a topographic correction would have
the advantage of allowing HSI to be applied to intact samples that have been prepared for
characterization of soil structure and macroporosity.

In remote sensing applications, two geometric topographic correction methods—the
cosine correction and C-correction (Teillet et al., 1982)—have been developed to correct
reflectance spectra for the influence of surface orientation (Hantson & Chuvieco, 2011).
However, it is unclear how well these corrections perform in lab-based proximal sensing
applications or how to translate these methods into a laboratory setting since several of their
parameters, such as aspect and azimuth angles, must be defined differently in the laboratory
than for remote sensing applications. In this study, we aimed to evaluate the effect of surface
slope and aspect on VNIR reflectance spectra measured by HSI using homogenized soil samples
presented at prescribed surface orientations, compare several empirical regression and
geometric approaches to correct this effect, and calibrate a model to predict SOC from corrected
spectra. Although the parameters of the empirical correction model developed here are likely
specific to the HSI spectrometer used in this work (e.g., due to differences in setup geometries),
our overall goal was to develop a procedural framework by which VNIR spectra measured by
HSI can be topographically corrected for other similar instruments to enable the tandem spatial
analysis of SOC and soil structure from the surfaces of intact soil samples.

2 MATERIALS AND METHODS

2.1 Sample Locations and Characterization

A total of 681 ground soil samples taken from three soil sample archives were included from
a variety of locations across the conterminous USA to ensure that a wide range of soil properties
such as soil color, texture, and SOC were represented (Table 1; Figure 1). This was done to allow
future application of calibration equations to soil samples from a variety of locations and
environments.
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The first group consisted of 574 samples and was provided by the NEON Initial
Characterization Soils Archive at the University of Michigan Biological Station-Sample Archive
Facility in Ehlers (UMBS-SAFE). The accompanying soil properties data were obtained from the
NEON Data Archive. These samples were collected from 150 distributed pits across 6 core and 4
gradient terrestrial field sites spanning 7 ecoclimatic domains within NEON (Figure 1; Table S1).
The NEON soil samples were dried, ground, and sieved; particle-size distribution was
determined using the pipette method and weight percent carbon was determined by elemental
analysis using a CN analyzer (Browning & Stanish, 2017; Schoeneberger et al., 2012; Soil Survey
Staff, 2022).

A second group of 50 soil samples was collected from Duke Farms in Hillsborough
Township, New Jersey (Figure 1). The Duke Farms soil samples were dried, ground, and sieved,
and weight percent carbon was determined by elemental analysis using a CN analyzer (Vario
MAX Cub, Elementar Americas, Inc., Ronkonkoma, NY).

A third group of 57 soil samples was collected in 2018 and 2019 from locations in the Santa
Ana Mountains of California that were affected by the 2018 Holy Fire to include soils with
pyrogenic carbon (Figure 1). The Holy Fire soil samples were dried, ground, and sieved, and
weight percent carbon was determined by elemental analysis using a CN analyzer (Flash EA,
Thermo Fisher Scientific, Waltham, MA).
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FIGURE 1: Circles show locations of sampling sites for soil samples used this study. Circle color
indicates the number of soil samples obtained from each site (also see Table S2).

2.2 Sample Preparation for HSI Scanning

Soil samples were packed into custom-designed rectangular sample wells (Figure 2)
with an inner volume of 0.4 cm3 for HSI scanning. The mass of these wells was recorded before
and after packing and used to calculate the packed bulk density. We packed soil samples into
sample wells to achieve bulk density values that are representative of in situ soils. Gravimetric
air-dried soil moisture was determined on a separate aliquot of each sample to correct the
packed bulk density to a dry-soil basis. We converted SOC from a mass basis to a volumetric
basis using the packed bulk density because reflectance spectra represent an area rather than a
mass.

Care was taken to uniformly pack and flatten the surfaces of soil samples using a
stainless-steel micro spatula to eliminate depressions, cracks, or peaks. This procedure ensured
that any differences in reflectance spectra obtained at different surface orientations was
attributable to the prescribed surface geometry of the sampling array and not to differences in
sample preparation (e.g., shadowing due to micro-topography within sample wells).

2.3 Sample Well Array

A web-based three-dimensional (3-D) modeling application (SketchUp Free Ver. 1.3,
Trimble, Westminster, CO) was used to design all components of the sample well array (Figure
2). Sample wells were designed to hold approximately 0.5 g of soil and rectangular prism-
shaped tampers were designed to evenly pack soil samples into the sample wells. Sample trays
were designed to hold 20 sample wells in place at prescribed slope and aspect positions. We
designed 6 triangular prisms to hold a tray on each sloped face at 10°, 20°, 30°, 40°, 50°, or 60°
slope angle. A separate base tray was designed to fit two triangular prisms so that 40 soil
samples could be scanned at the same time (i.e., one sample tray per triangular prism with both
sample trays placed on the same side of each prism) (Figures 2 and 3).
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FIGURE 2: Custom-designed and 3-D printed sample well array used in this study to present
soil samples at 7 slope orientations under the hyperspectral camera. Aspects were imposed by
rotating the base tray while keeping it centered under the hyperspectral camera (Figure 3).

All components of the sample well array were fabricated using a 3-D printer (Form 3,
Formlabs Inc., Somerville, MA). We used a heat resistant resin (High Temp Resin V2, Formlabs
Inc., Somerville, MA) with a heat deflection temperature of 238°C to ensure the integrity of the
sample array under the focused heat emitted by the halogen lamp light sources during HSI
scanning. Following initial fabrication, each part was washed (Form Wash, Formlabs, Inc.,
Somerville, MA) in an agitated solution of isopropyl alcohol for 6 min and cured (Form Cure,
Formlabs, Inc., Somerville, MA) using a 405 nm wavelength light source at 80°C for 120 min.

2.4 HSI Scanning Setup

Hyperspectral imaging was performed with a high-sensitivity sCMOS VNIR
hyperspectral camera (MSV 500, Middleton Spectral Vision, Middleton, WI) which collects
reflectance intensities (RI) at 471 wavebands between 400-1000 nm at a spectral and spatial
resolution of 1.2 nm and 250 um, respectively (Figure 3A). A motorized scanning stage (ViaSpec
Geo 11, Middleton Spectral Vision, Middleton, WI) was used in conjunction with data acquisition
software (FastFrame, Middleton Spectral Vision, Middleton, WI) to control the lateral
positioning of the camera relative to the samples as well as the push-broom motion of the scan
stage (Figure 3A). Samples were scanned at a frame rate of 29.967 Hz with an integration time
of 7.641 ms and scan speed of 0.706 cm s-1. Scans were collected in the dark in a windowless
laboratory space such that the only sources of light were two light banks each consisting of 8
halogen light bulbs with front glass covers (Reflekto MR-11 12V 35W 36° Flood, Ushio America,
Inc., Cypress, CA,).

Aspect was taken as the angle that the surface of the soil sample was facing in relation to
the forward motion of the scan stage. Thus, aspects were assigned 0°N when they faced the
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direction of movement of the scan stage under the hyperspectral camera (i.e., from light bank 2
toward light bank 1) (Figure 4). Aspect angles (¢,) were prescribed in degrees clockwise from
the 0° N reference by rotating the center of the base tray prior to scanning (Figure 3B). Initially,
RI at 14 aspects (0°, 15°, 30°, 45°, 60°, 75°,90°, 180°, 195°, 210°, 225°, 240°, 255°, and 270°)
were collected. However, spectra collected at aspects of 195°, 210°, 225°, 240°, 255°, and 270°
were converted to 165°, 150°, 135°, 120°, 105°, and 90°, respectively, during post-processing so
that the ¢, values varied only between 0° and 180°. The intensities of each wavelength for the
initial 90° aspect and the 90° aspect converted from 270° were averaged to yield a single 90°
spectra. Thus, we analyzed sample spectra collected at 13 different aspects for each slope
orientation.

Slope angle (1) is defined as the angle between the surface of the soil sample being
scanned and the scan stage such that a soil surface within a sample well at a 0° slope is parallel
to the scan stage but perpendicular to the orientation of the hyperspectral camera (Figure 4).
Spectra were obtained at 7 slope angles (i.e., 0°, 10°, 20°, 30°, 40°, 50°, and 60°) at each aspect.
Zero slope angles were achieved by arranging the sample trays directly on the base tray, while
non-zero slopes were imposed using identical pairs of each of the 6 fabricated triangular prisms
(Figure 2-4). These slope and aspect configurations resulted in 91 scans per soil sample.

\/ o/ A

N

\' -

FIGURE 3: A) Photo of the hyperspectral imaging (HSI) setup showing the hyperspectral
camera, both light banks, and the scan stage with the sample well array at the 50° slope and 0°
aspect position. B) An example of a hyperspectral image (displaying only the red (674 nm),
green (540 nm), and blue (437 nm) bands) of the sample well array containing prepared soil
samples at a slope and aspect of 0°.
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White calibration intensities for each waveband were obtained by collecting 100 spectra
from each of the 862 pixels in the lateral spatial dimension (i.e., the number of linear pixels in
the field of view of the camera) using a 30.5 x 30.5 cm Spectralon white reflectance panel
(Labsphere, North Sutton, NH) prior to running each batch of samples. Dark calibration
intensities were obtained in a similar manner as the white calibration intensities, except the
lens cap was left on the hyperspectral camera and all the lights turned off.

2.5 HSI Data Processing

Each HSI scan generates a 3-D array with RI measured within two spatial dimensions
(862 x ~862 pixels) and one spectral dimension of 471 VNIR wavebands. The resulting VNIR
reflectance spectra were scaled between values of 0 (minimum RI) and 1 (maximum RI) using
the measured dark and white calibration intensities, respectively (Equation 1):

Rl,ps — RI
Rlcor = obs _dark (1)
lehite - Rldark

where Rl is the RI of the dark and white corrected (or rescaled) sample spectra and Rl is
the RI of the observed (or measured) sample spectra. The value of RI ;4. Was obtained by
averaging the dark calibration intensities across the 100 spectra, 862 pixels in the lateral spatial
dimension, and 471 wavebands. Thus, a single average Rl 44,+ Was subtracted from the RI of
each waveband of the white calibration and sample spectra. White calibration intensities were
averaged across the 100 spectra and 471 wavebands for each of the 862 lateral pixels
separately to obtain RI,,p;¢. to account for slight variation in illumination from the different
bulbs in the light banks.

White and dark adjusted intensities for red (674 nm), green (540 nm), and blue (437
nm) wavebands were plotted for each pixel resulting in an RGB image (Figure 3b). This image
was used to identify the row and column indices for automated extraction of each soil pixel
within each sample well. Spectral signatures were isolated and spatially averaged across all
extracted pixels within each sample well (i.e., typically ~680 pixels or 0.4 cm? for 0° aspect and
0° slope). This averaging resulted in a single reflectance spectrum for each of the 681 soil
samples at each of the 91 unique slope and aspect configurations totaling to 61,971 reflectance
spectra.

The automated procedure for isolating spectra from within sample wells resulted in
extracting some spectra that were influenced by the sample well array. These spectra were
identified with a combination of outlier detection and visual inspection and excluded as imaging
errors. Briefly, spectra were removed from the analysis if they contained any RI values outside
1.5 times the interquartile range of all observed RI values or if they could be visually identified
as errors using RBG images. Similarly, additional imaging errors were identified if differences
between the non-zero slope spectra and zero-slope spectra were outside 1.5 times the
interquartile range of all observed differences at each slope position.
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The spectra for all 13 aspects measured at a slope of 0° were averaged into a single
reference spectrum for each sample since we did not expect to see an aspect effect at 0° slope.
This filtering and averaging approach reduced the total number of spectra analyzed in this study
to 48,149 and the total number of unique non-reference slope and aspect configurations to 78.
No further data reduction or transformation methods were implemented and all 471 data points
for each reflectance spectrum were retained for analysis. All post-scan data processing and
analysis were performed in R (R Core Team, 2022).

2.6 Topographic Corrections

We calculated a reference spectrum for each sample as the average RI of each waveband
for all aspects scanned at a 0° slope to evaluate and correct for the change in RI caused by non-
flat surface orientations. We compared four methods for correcting topographic influences on
reflectance spectra at non-reference surface orientations: two empirical methods and two
geometric-based approaches. These methods are referred to as the Al (empirical), Al+
(empirical), cosine (geometric), and C-corrections (geometric).

2.6.1 Empirical Al and Al+ Corrections

We calculated the difference between the reference spectrum for each sample and the
uncorrected spectrum measured at each of the 78 non-reference slope and aspect
configurations as follows:

ALy, = URI;, — RRI, (2)

where Aly, is the difference between the uncorrected RI (URI) from a sample scanned in a non-

reference orientation and the reference RI (RRI) for the ith waveband (4;). We refer to the
resulting set of Al, values from Equation (2) for a single sample scanned at a particular slope

and aspect configuration as a Al spectrum. These spectra indicate how much the Rl increased
(positive Al) or decreased (negative Al) relative to the RRI at each waveband.

We developed two multiple linear regression (MLR) models to predict the Al spectrum
given the waveband (1) and surface orientation (i.e., ¢, and 1) of each sample. The first was of
the form:

Ay =By + Bin + B2do + B3A

where S, B1, B2, and 5 are regression coefficients in the model. The results of Equation (3)
were used to correct each non-flat spectrum back to its corresponding reference spectrum using
Equation (4):

RIAAI = URI)L - AI)L (4)

where RI; , is the RI that was corrected using the predicted Al in Equation (3) and the URI).
We refer to this combination of Equation (3) and (4) as the Al correction approach.
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The second MLR model developed included the interaction terms between slope, aspect,
and waveband and was of the form:

Al = By + i + Bado + B3 + Bandy + Psnd + Bedod + BrndoA (5)

where f3,, 5, B¢, and B, are the regression coefficients associated with the additional interaction
terms. We refer to the combination of Equations (4) and (5) as the Al+ correction method where
RI;,,, is the corrected RI using the predicted Al in Equation (5) and URI,. Equations (3) and
(5) were fit using Al spectra from each sample scanned at each non-reference orientation (i.e.,, N
= 48,149). We also applied standardized MLR regression in this case to calculate § weights to
examine the relative explanatory power of each variable.

2.6.2 Geometric Corrections

The first geometric correction—that is, the cosine correction— was implemented to
remove the influence of surface topography on the VNIR spectra observed at non-reference
orientations and results were compared to Al and Al+ corrections. This approach relies solely
on the geometry of the lighting and hyperspectral camera setup as shown in Figures 3A and 4.
The cosine-corrected spectrum (RI; ) for each non-reference orientation was obtained

following Equation (6) (Teillet et al., 1982):

cosf
RI; =URIL 6
Acos A cos Y (6)
where cos 6 is the average of the cosine of the zenith angles (8) between the hyperspectral
camera and light bank 1 (6;) and 2 (6;). The cos 6 term is calculated as:
cosf@; + cos@
cosf = ! 2 (7)

2

Similarly, the cosy in Equation (6) is the average of the cosine of the incident angles (y) with
respect to light bank 1 (y;) and 2 (y,) calculated as:

cosy; + cosy,

. (8)

cosy =

where cosy is the illumination angle calculated from the slope, aspect, zenith, and azimuth (¢,)
angles for each light bank as (Civco, 1989):

cosy = cosf cosn + sinf sinncos(¢p, — ¢,) 9

Zenith angles were calculated directly from the HSI setup using:

9=tan‘1( 4 ) (10)

where A is horizontal distance between each light bank and the hyperspectral camera, E is the
height of the light bank above the scan stage, and H is the height of the sample surface above the
scan stage (Figure 4 and Table S2). The azimuth angle for light bank 1 and 2 was 0° and 180°,
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respectively (Figure 4). The slope and aspect angles were prescribed by the position of the soil
sample within the sample array and under the hyperspectral camera (Figures 2-4).

The second geometric approach implemented was a wavelength-dependent variant of
the cosine correction method termed the C-correction. The C-correction modifies the ratio
between cos 6 and cosy in Equation (6) with an empirically determined constant (C;) to
calculate C-corrected spectrum (RI;) following Equation (11):

cosf + C
Rl = UR],———— 11
e A cosy + C; (11)
The C; parameter was determined as:
b,
C)=— 12
e, (12)

where b; and m, are the linear coefficients for the regression between cosy and URI; at each
waveband (Teillet et al., 1982):

URI;, = by + mycosy (13)

These empirical and geometric corrections were applied to all samples and orientations,
and their performances were evaluated by comparing URI, Rl,;, Rlz;4, Rl.os, and Rl to RRI to
assess how well the uncorrected versus the corrected spectra at each orientation matched the
reference spectrum for each soil sample.
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¢,= 180°

»
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Directj&n of scan stage movement

FIGURE 4: Diagram of the HSI setup including physical parameters used in geometric
topographic corrections (also see Table S2).

2.7 SOC Prediction from Uncorrected and Corrected VNIR Reflectance Spectra
Two partial least squares regression (PLSR) models were trained and evaluated to

predict SOC from VNIR soil reflectance spectra. The first model used the reference spectrum

from each soil sample to train the model (N = 681), and thus ignored the role of surface

topography in calibrating the PLSR model. We refer to this model as the reference PLSR model
(PLSRref). The uncorrected spectra from each soil sample at each non-reference slope and aspect
configurations were used to evaluate this PLSR model (N = 48,149 spectra). The observed SOC
values were positively skewed and were log,, transformed before training both PLSR models
(Minasny et al., 2011). The predicted log,,SOC (SOC;) was then compared against observed

This article is protected by copyright. All rights reserved.

12

QSUAOIT suowwo)) Aanear) dqesrjdde ay) Aq pauIdA0S d1e SI[OIE Y ash JO SI[NI 10} A1eIqIT dUIUQ AJ[IAL UO (SUONIPUOI-PUB-SULID) /W00 AJ[IM" AIRIqI[ul[u0//:sdNY) suonipuo)) pue swd [, oY) 39S [€70z/21/61] uo Areiq autuQ A3[ip ‘Ansioatun aes uodaiQ Aq 71907 zes/z001°01/10p/wod K[ im Areiqrjautjuossasor//:sdny woiy papeojumo( ‘el ‘1990s ¢ |



Accepted Article

log,,SOC (SOC,) to see how accurately the model predicted log,,SOC when the influence of
surface topography on soil reflectance was ignored during model calibration and evaluation.

The second PLSR model was designed to reduce the impact of surface topography on
SOC predictions by correcting the spectra prior to model calibration and evaluation. In this
approach, the PLSR model training dataset contained one corrected spectrum per sample from a
randomly chosen orientation (N = 681) and was referred to as the corrected PLSR model
(PLSRcor). These corrected spectra were calculated using the best performing topographic
correction as described in section 2.8 below. This model was evaluated using corrected spectra
from each soil sample at each non-reference surface orientation (N = 48,149 spectra). As with
PLSRer, SOC, and SOC, were then compared to evaluate the performance of PLSRc, for
predicting SOC from VNIR soil spectra and to assess whether our approach to accounting for
surface topography improved SOC predictions.

2.8 Evaluating Topographic Corrections and SOC Model Performance

To evaluate the performance of the four topographic correction approaches, the root
mean squared error (RMSE) was calculated between each corrected spectrum and the reference
spectrum and compared to RMSE calculated between each uncorrected spectrum and reference
spectrum (Equation 14). Similarly, to evaluate the accuracy of SOC predictions, RMSE was
calculated between SOC, and SOC;, obtained from calibration and evaluation of PLSRef and
PLSRcr. The RMSE is used to assess how close URI, Ry, Rlp;y, Rl o5, OT R, is to RRI or how
close SOC, is to SOC,. The RMSE was calculated as follows:

N . — )2
RMSE = \/ =1 (x]‘v %) (14)

where x; is the ith observation of either RRI or SOC,, X; is the ith observation of either URI, Ry,
Rlpry, Rlcos, R, or SOCp, and N is the number of observations. The RMSE was used to
determine which topographic correction performed best by comparing RMSE for each soil
sample at each non-reference orientation across all wavelengths. The RMSE was calculated for
each wavelength across all soil samples at each slope or aspect position to assess the
performance of the topographic correction at each wavelength. An ideal RMSE of 0 indicates
that the corrected or uncorrected Rl perfectly matched the reference Rl in the context of
topographic correction performance evaluation or that SOC, matches SOC, in the context of
PLSR model performance evaluation.

The Nash-Sutcliffe Efficiency (NSE) was also calculated to compare the performance of
topographic correction approaches and SOC prediction models. The NSE is used to assess how
much closer URI, Rl,;, Rlp;4, Rl s, OF Rl, is to RRI than the mean of RRI or how much closer
SOC; is to SOC, than the mean of SOC,. The NSE was calculated as follows:

N A
1 (g — %)?

NSE=1 — —
?]:1 (x; — %)?

(15)
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where x; is the ith observation of either RRI or SOC,, X; is the ith observation of either URI, Ry,
Rlp;y, Rlcos, Rlc, or SOCy, X is the mean of all RRI or SOC,, and N is the number of observations.
The NSE was calculated for each soil sample at each orientation across all wavelengths in the
context of topographic correction evaluation. An ideal NSE of 1 indicates that the uncorrected or
corrected RI perfectly matches RRI, while an NSE of less than 0 indicates that the mean of RRI
more closely matches RRI compared to the corrected RI. Similarly, in our evaluation of the PLSR
models, an ideal NSE of 1 indicates that SOC, perfectly matches SOC,, while an NSE of less than 0
indicates that the mean of SOC, was a better predictor than the PLSR model.

The a and  components of the Kling-Gupta efficiency (KGE) (Gupta et al., 2009) were
compared to determine which method performed best in cases where the RMSE and NSE were
similar for different topographic correction methods. The @ component was computed as the
ratio of the standard deviations () of URI, Rl,;, RIz;4, Rl.os, and Rl to the standard deviation
of RRI for each soil sample at orientation across all wavelengths using Equation (16) as follows:

_ 9z
a= (16)
where % is either URI, Rly;, RIp;, Rl.os, and Rl and x is RRI. The f component was computed
as the ratio of the mean URI, Rl,;, Rlp;4, Rl»s, and Rl to the mean of RRI for each soil sample
at each orientation across all wavelengths using Equation (17) as follows:

_ K

P =

(17)
where % is either URI, Rl,;, RIpr, Rlcos, and Rl and x is RRI. An ideal a of 1 indicates that the
variability of uncorrected or corrected RI perfectly matches the variability of RRI, while an ideal
[ of 1 indicates that the mean RRI matches the mean corrected RI.

3 RESULTS AND DISCUSSION

3.1 Sample Characterization

Soil samples used for calibration of the empirical topographic corrections as well as the
PLSR models used to predict SOC (N = 681) represent a wide range of soil properties (Table 1).
The values of SOC captured by these samples ranged between 6.4E-4 and 0.17 g cm-3 with a
mean of 0.028 (Table 1). Particle-size distributions fell within 11 of the 12 USDA textural classes
excluding silt. Packed bulk density of soils within sample wells ranged between 0.57 to 2.0 g
cm-3 with a mean of 1.6 and standard deviation of 0.2 (Table 1). The US Soil Taxonomy soil
orders represented by these samples are Alfisols, Andisols, Aridisols, Inceptisols, Mollisols,
Ultisols.

TABLE 1: Soil samples used in this study (N = 681) represent a wide range of soil organic
carbon (SOC) and soil textures. Bulk density values represent the packed density in the sample
well after samples were prepared for HSI scanning.
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Property Mean Minimum Maximum  Standard Deviation

SOC, g cm-3 0.028 6.4E-4 0.17 0.028
SOC, wt. % 2.1 0.04 23 2.7
Sand, % 45 1.7 99 27.5
Silt, % 33 1.3 67 15.4
Clay, % 22 0 76 16.2

Packed bulk density, g cm-3 1.6 0.57 2.0 0.20

Accepted Article

3.2 Influence of Slope and Aspect on the VNIR Soil Reflectance Spectrum

The URI decreased compared to RRI with increases in slope, especially at NIR
wavebands (Figure 5A). Barnes et al. (1989) observed a similar shift in near-infrared reflectance
with changes in the slope of the sample presentation. The URI tended to decrease with
increases in aspect within each slope position (Figure 5B), although the influence of aspect on
the URI was not as clear as the influence of slope (Figures 6A and 6C). This can be seen from the
RMSE and NSE results obtained by comparing URI to RRI which show that the distance
between URI and RRI increases (i.e.,, RMSE increases and NSE decreases) more with increases
in slope than with increases in aspect (Figure 6).

The mean and standard deviation of reflectance intensities observed across all soil
samples and aspects at 0° slope for the 500 nm, 700 nm, and 900 nm wavelengths were
calculated to assess whether an aspect effect was observed among spectra collected at 0° slope
(i.e.,, among the spectra used to calculate RRI). These means were 0.16, 0.32, and 0.38, and their
standard deviations were 0.0003, 0.0003, and 0.0004, respectively. These standard deviations
indicate that reflectance spectra observed at the 0° slope position are unaffected by aspect.

The ratio of standardized regression squared f-weights obtained from calibration of the
MLR model in the Al+ correction (see Comparison of Topographic Correction Methods section
below) also shows that slope imparts a stronger influence than aspect on the difference
between URI and RRI (Table 2). Therefore, slope imparts a stronger influence than aspect on
the URI of soil samples.
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FIGURE 5: Uncorrected visible near-infrared (VNIR) soil spectra for a single representative soil
sample at 78 slope (A) and aspect (B) configurations relative to the reference spectrum for this
soil sample (black dashed). Slope exerts a stronger control on uncorrected reflectance intensity
(URI) of soil samples compared to aspect.

3.3 Comparison of Topographic Correction Methods

Performance of four topographic correction methods were compared based on how well
the topographically corrected spectra matched the reference spectrum. We compared RMSE and
NSE of corrected versus reference spectra to that of uncorrected versus reference spectra to
examine whether the influence of surface orientation on soil reflectance was reduced by
implementing a topographic correction (Figure 6).

Overall, the RMSE of URI increased with increasing slope and aspect, and the
magnitudes of errors were more pronounced with slope increases compared to aspect
supporting our conclusion that slope imparts a stronger influence on soil reflectance than
aspect (Figure 6). At the smallest slope angle (10°), the mean of RMSE values for the geometric
and Al+ corrected spectra were similar to RMSE values for the uncorrected spectra, while the Al
correction method resulted in the largest errors. At the 20° slope, the Al+ correction and the C-
correction methods had the lowest errors, while the Al correction, and the cosine correction had
similar errors to the uncorrected spectra. Hantson and Chuvieco (2011) also found that the
cosine correction was the least successful of the topographic correction methods that they
compared, which included the C-correction, particularly when cosy is small. At 30°-60° slope
angles, the cosine correction method had the largest errors which, as explained by Teillet et al.
(1982), can be attributed to the overestimation of RI.,s due to small, even negative, cosy at
orientations where y is large. This situation occurs, for example, from the perspective of light
bank 2 when the soil sample surface is facing 0°N at high slope angles. Overall, the Al+ and C-
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correction methods produced the smallest RMSE and NSE closest to 1 across all slope angles
(Figure 6A and 6B).
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FIGURE 6: Root mean square error (RMSE) (4, C) and Nash-Sutcliffe Efficiency (NSE) (B, D) as
functions of slope (A, B) and aspect (C, D) calculated across 471 wavebands for each soil
spectrum (N = 48,149). The most successful correction method in terms of minimizing RMSE
and maximizing NSE was the Al+ correction.
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The RMSE and NSE of RI,; and Rl were similar at aspect angles less than 150°, while
the RI.,s had the highest RMSE and lowest NSE, especially at aspect angles smaller than 135°. At
aspects smaller than 135°, both empirical correction methods and the C-correction performed
better than the cosine correction. The poorer performance of the cosine correction at 0°N aspect
positions compared to 180°S aspect positions is because light bank 2 is farther away from the
hyperspectral camera than the light bank 1 (Table S2). As a result, y, from the perspective of
light bank 2 when the sample is facing 0°N, is greater than y; from the perspective of light bank
1 when the sample is facing 180°S causing a greater overestimation of R, when ¢,, is small
and 7 is large compared to when ¢, is large (Teillet et al., 1982; Hantson and Chuvieco, 2011).

Since the C-correction method performance was close to that of the empirical
corrections (i.e., no difference in mean RMSE and NSE), the @ and # components of the KGE
were compared across all slope and aspect angles (Figures S1 and S2). In addition to confirming
that URI an R, were farthest from the reference, these results showed that biases in the
standard deviation of Rl,; deviated from unity at small and large aspect angles, while this
pattern was not present in Rl,;, and Rl (Figure S1). Also, biases in the mean and standard
deviation of Rl deviated from unity at small and large aspect angles, while this pattern was not
presentin Rl;, (Figure S2). Therefore, comparison of these four topographic corrections
showed that the empirical Al+ method provided the most consistent correction for the influence
of surface topography on Rl measured at non-flat surface orientations while being less complex
than the non-linear geometric corrections.

We further illustrate the success of the Al+ correction by showing RMSE as a function of
wavelength for uncorrected and Al+ corrected reflectance spectra across all soil samples
grouped by either slope or aspect (Figure 7). These results confirm that the Al+ corrected
spectra more closely match the reference spectrum than the uncorrected spectra across all
wavebands, aspects, and all slopes except those at 10° (i.e., RMSE of Al+ corrected reflectance
spectra are smaller than RMSE of uncorrected reflectance spectra).
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FIGURE 7: The RMSE as a function of wavelength calculated across all soil samples and across
all aspect angles (A) or all slope angles (B) for uncorrected and the Al+ corrected spectra. The
RMSE of uncorrected spectra are colored in grey while RMSE of Al+ corrected spectra are
colored by slope (A) or aspect (B). The black arrow indicates how RMSE of the uncorrected
spectra at the 60° slope corresponds to the RMSE of Al+ corrected spectra at the same slope.
The Al+ corrected spectra more closely match the reference spectrum than the uncorrected
spectra across all wavebands, aspects, and all slopes except those at 10°.

The empirically fitted coefficients of the MLR model used in the Al+ correction method
and their 8 weights are provided to allow implementation of this method for similar HSI setups
(Table 2). The ratio of standardized regression squared -weights for slope and aspect is 15
indicating that slope explains about 15 times more variability in the difference between URI and
RRI (i.e., Al) than aspect.

pted Article

TABLE 2: Empirically fitted coefficients for the Al+ method as well as the standardized 3
weights for each predictor.

Parameter Bo B1 B B3 Ba Bs Be B

Acce

Regression  goe 3 64E-4  42E-6 38E5 14E-7 -2.8E6 42E8  -6.7E-9
coefficient
Bweight  -0.0016 -0.65 -0.17 -0.32 -0.098  -0.23 -0.045  -0.025

The URI and Rly;, for all 78 non-reference slope and aspect configurations of one
representative soil sample and the corresponding RRI show that the corrected spectra resulting
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from the Al+ method are closer to and more centered around the reference spectrum than the
uncorrected spectra (Figure 8).
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FIGURE 8: Uncorrected VNIR soil spectra from one representative soil sample at 78 non-
reference surface orientations (grey) and the same 78 spectra after applying the Al+
topographic correction. Corrected spectra are colored by slope (A) or aspect (B) to show
performance of the Al+ correction approach. Uncorrected spectra shown here in grey are the
same as the uncorrected spectra colored by slope or aspect in Figure 5.

3.4 SOC Prediction from Uncorrected and Corrected VNIR Soil Reflectance Spectra

As described above, two approaches for SOC prediction using PLSR were implemented
to assess whether reducing the impact of surface topography could improve SOC predictions
made using VNIR soil reflectance spectra observed from non-flat surfaces. These results show
that the PLSR.f model, which was trained on the reference spectra for each soil sample,
performs better than the PLSRcr model, which was trained using Al+ corrected spectra from a
single randomly chosen orientation for each soil sample (Figures 9A and 9C). This result is
expected since the influence of surface topography is minimized when the soil sample is placed
flat (i.e., 0° slope) under the hyperspectral camera, such as in the case of the reference spectra.
When the PLSR,.f model was evaluated using the uncorrected spectra, higher overall RMSE and
bias in SOC, was observed with increasing slope (i.e., the slopes of least squares regression lines
fit at each slope position deviate from 1 with increasing slope position) (Figure 9B). This
decrease in model performance was expected since non-flat surface orientation impacts RI
(Baumgardner, 1985; Civco, 1989; Colby, 1991; Ben Dor et.al, 2015), and therefore the URI used
for model evaluation are much different than the RRI used for model training.
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As previously mentioned, when the PLSR.,- model was trained and evaluated using Al+
corrected spectra from one randomly chosen orientation per sample, the RMSE is larger and R2
is smaller than the reference model (Figure 9A and 9C). Poorer model performance is expected
here as the influence of surface orientation has not been entirely removed from the Al+
corrected spectra whereas the influence of surface orientation on reference spectra is minimal.
However, when the PLSRcr model is evaluated on Al+ corrected spectra from all 78 non-
reference surface orientations, the increase in RMSE and decrease in R2 (Figures 9C and 9D) are
smaller than those seen when the PLSRer model is evaluated using uncorrected spectra (Figures
9A and 9B). Also, the slopes of least squares regression lines between SOC, and SOC, at each
slope position are closer to 1 indicating bias in SOC predictions is reduced when the PLSR,:
model is evaluated using Al+ corrected spectra (Figure 9D) compared to when the PLSR..f model
is evaluated using uncorrected spectra (Figure 9B). Larger R2 and smaller RMSE and prediction
bias across all slope positions confirm that implementing the Al+ topographic correction
method in conjunction with training the PLSR model on the corrected spectra from a variety of
sample surface orientations reduces the impact of non-flat surface orientation on SOC
predictions.
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FIGURE 9: A) Performance of the PLSR model trained on the reference spectrum (PLSR:.f) at 0°
slope for each soil sample (N = 681). B) Evaluation of PLSR..f using uncorrected spectra from all
soil samples at all non-reference orientations (N = 48,149). C) Performance of PLSR model
trained on corrected spectra from 1 randomly chosen orientation per sample (PLSRc:) (N =
681). D) Evaluation of PLSRc. using Al+ corrected spectra from all soil samples at all non-
reference orientations (N = 48,149). The best fit lines between observed and predicted SOC at
each slope position are shown colored by slope in (B) and (D). Accounting for the influence of
surface slope and aspect on VNIR reflectance spectra during training and evaluation of the PLSR
model improved SOC predictions by decreasing bias and error and increasing R2.
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A comparison of RMSE and NSE values of SOC, versus SOC, resulting from evaluation of
PLSRer and PLSR¢r models for each soil sample at each slope and aspect position show that
RMSE is smaller and NSE is closer to 1 at all aspect angles and all except 10° and 20° slope
angles for SOC predicted by the PLSRc.r model compared to PLSRys (Figure 10). These results
indicate that SOC predictions are improved across all aspects and at slope angles greater than
30° when the influence of surface topography is considered. At 10° and 20° slopes, RMSE is
closer to 0 and NSE is closer to 1 for SOC predictions made from uncorrected spectra using the
PLSRf model indicating that the PLSR..s model provided the best SOC predictions at these slope
angles (Figure 10A and 10B). This observation is consistent with patterns observed in RMSE
and NSE of uncorrected spectra when they are compared to the reference (Figure 6A and 6B).
Therefore, a topographic correction might not be needed at small (e.g., 10°-30°) slope angles as
the influence of surface orientation is minimal, however the importance of topographic
correction becomes more pronounced as slope increases, particularly above 30°.
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FIGURE 10: RMSE and NSE of predicted SOC for each soil sample at each slope (A, B) and aspect
(C, D) angle show that SOC predictions are improved when the influence of surface topography
is accounted for, particularly at slope angles greater than 30°.
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4 CONCLUSION

This study showed that slope has a stronger influence on RI of soil samples compared to
the aspect. We found that the Al+ empirical model based on slope, aspect, wavelength, and their
interactions worked best for reducing the impact of surface orientation on soil reflectance and
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improving SOC predictions made from soil reflectance spectra. Predicted SOC values were closer
to laboratory measured SOC when the PLSR model was trained and evaluated on corrected
VNIR soil reflectance spectra using the Al+ correction approach across all aspect angles and
slope angles greater than 30°. This is likely because the influence of surface geometry on soil
reflectance was least apparent at low slope angles and indicates that a topographic correction
may not be necessary at slope angles smaller than 30°.

The calibration soil samples included here cover a wide range of soil properties
including soil color, texture, and SOC, such that the Al+ correction equation could be applied to
correct VNIR soil reflectance spectra for similar laboratory-based HSI setups. This study also
provides a framework for topographic correction of spectra that could be applied to systems
with different setup geometries.

Soil properties such as particle size that influence soil reflectance spectra (Barnes et al.,
1989; Soriano-Disla et al., 2014) could also impact the difference in URI and RRI (i.e., Al).
Therefore, including soil properties in addition to slope, aspect, and wavelength as Al;,
predictor variables in the MLR model used in the Al+ correction approach might improve
empirical corrections. However, we did not explore the effect of soil properties on Al}; since this
correction is designed to adjust reflectance spectra of non-flat intact soil samples where these
properties would not be available for each pixel. Additionally, the quality of SOC predictions
made using reflectance spectra obtained from ground (pulverized) versus unground samples
can vary with the area of soil being scanned (i.e., pixel size) (Reeves et al., 2002). Therefore, the
effect of soil texture on reflectance spectra and thus predictions of Al might also vary with
pixel size. These relationships were beyond the scope of this study but should be investigated in
the future to apply this method to pixels which are smaller (~250 x 250 um) than the pixel size
of sample wells (~0.7 x 0.9 cm) used to calibrate the Al+ correction equation and PLSR model
developed here.

This novel empirical topographic correction approach has the potential to advance our
ability to use VNIR HSI spectroscopy for mapping soil chemical structure on horizon-scale intact
monoliths with rough surfaces, such as those prepared for soil structure characterization. This
method clears the way for coupling HSI with other proximal sensing methods such as MLT
scanning to simultaneously quantify soil physical and chemical structure on intact samples
(Hirmas et al,, 2016). In addition to soil structure characterization, MLT scanning provides
vector normal values for each pixel which can be used to determine the surface geometry
information needed for the topographic correction approach presented here. However, other
proximal sensing techniques such as structure-from-motion photogrammetry could also
provide this information. Simultaneously mapping soil structure along with soil chemical
properties like SOC at fine (e.g., sub-mm) resolution at the horizon scale will likely provide data
necessary for studies investigating the location of SOC and its relationship to soil aggregation
and pore networks and, therefore, advance our understanding of water and carbon fluxes
within soils.
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SUPPLEMENTAL MATERIAL

The supplemental material contained in Tables S1 and S2 includes additional details
about the geometry of the HSI spectrometer and soil samples used in this study which support
future application of this method. Figures S1 and S2 support the conclusions drawn from Figure
6 and show that the Al+ correction method outperforms the Al, cosine, and C-correction
methods.
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