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TITLE 
Topographic Correction of Visible Near-Infrared Reflectance Spectra for Horizon-Scale Soil 

Organic Carbon Mapping 

Abbreviations 

HSI, laboratory-based hyperspectral imaging; KGE, Kling-Gupta Efficiency; MLR, multiple linear 

regression; MLT, multistripe laser triangulation; NSE, Nash-Sutcliffe Efficiency; PLSR, partial 

least squares regression; RI, reflectance intensity; RRI, reference reflectance intensity; URI, 

uncorrected reflectance intensity; SOC, soil organic carbon; SOCo, observed SOC; SOCp, predicted 

SOC; VNIR, visible near-infrared;   , aspect angle;  , slope angle;   , azimuth angle;  , 

waveband. 

Core Ideas 

 A novel topographic correction method reduced the effect of surface orientation on lab-

based soil reflectance. 

 A linear empirical approach outperformed two versions of a geometric topographic 

correction. 

 Bias and error in SOC predictions were decreased when topographically-corrected 

reflectance spectra were used. 

 Topographic correction advances the use of HSI on intact soil samples displaying natural 

roughness. 

ABSTRACT 
Understanding soil organic carbon (SOC) response to global change has been hindered by an 

inability to map SOC at horizon scales relevant to coupled hydrologic and biogeochemical 

processes. Standard SOC measurements rely on homogenized samples taken from distinct depth 

intervals. Such sampling prevents an examination of fine-scale SOC distribution within a soil 

horizon. Visible near-infrared hyperspectral imaging (HSI) has been applied to intact monoliths 

and split cores surfaces to overcome this limitation. However, the roughness of these surfaces 

can influence HSI spectra by scattering reflected light in different directions posing challenges 

to fine-scale SOC mapping. Here we examine the influence of prescribed surface orientation on 

reflected spectra, develop a method for correcting topographic effects, and calibrate a partial 

least squares regression (PLSR) model for SOC prediction. Two empirical models that account 

for surface slope, aspect, and wavelength and two theoretical models that account for the 

geometry of the spectrometer were compared using 681 homogenized soil samples from across 

the US that were packed into sample wells and presented to the spectrometer at 91 

orientations. The empirical approach outperformed the more complex geometric models in 
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correcting spectra taken at non-flat configurations. Topographically-corrected spectra reduced 

bias and error in SOC predicted by PLSR, particularly at slope angles greater than 30°. Our 

approach clears the way for investigating the spatial distributions of multiple soil properties on 

rough intact soil samples. 

1 INTRODUCTION 
The spatial arrangement of soil material and concomitant void space is a key determinant of 

water, energy, and gas fluxes within the critical zone (Sullivan et al., 2022). Despite its 

importance, few studies characterize the spatial arrangements of soil solid constituents at the 

scales necessary to understand many of the hydrologic and biogeochemical processes 

controlling these fluxes. In particular, the type, location, and abundance of soil organic carbon 

(SOC) controls water and nutrient cycling and biological activity within soils (Lal, 2004; 

Banwart, 2014; Wiesmeier et al., 2019) and development of soil structure (Bronick et al., 2005; 

Or et al., 2021)—a physical property of soils which describes the size, shape, and spatial 

arrangement of soil aggregates and pore networks (Letey, 1991). Despite decades of research 

on SOC storage (Six et al., 2004; Basile-Doelsch et al., 2020), advancements in our understanding 

of how and where SOC is stored within soils are needed (Davidson & Janssens, 2006; McBratney 

et al., 2014; Lehmann & Kleber, 2015) and it is expected that a better understanding of the 

mechanistic relationships between SOC storage and soil structure would support these 

advancements (Stockmann, 2013). 

Studies of the relationships between SOC storage and soil structure are, however, limited by 

a lack of sufficient observations that quantify the fine-scale spatial distribution of SOC (Rabot et 

al., 2018). One reason for this limitation is that standard methods for SOC quantification rely on 

homogenized bulk soil material sampled from particular depth intervals (e.g., within a 

described morphological horizon) and, thus, fail to characterize fine-scale spatial variability that 

would be retained in intact samples. Advancing our ability to study soil properties on intact 

samples that retain the natural soil architecture is key to understanding and modeling soil 

behavior and predicting future changes in soil function (Lucas et al., 2020; Vogel et al., 2021).  

Driven by the need for methods capable of non-destructively studying intact soil samples, 

proximal sensing approaches have been developed that open the door to high-resolution, 

spatially-explicit characterization of soil constituents and soil structure at scales relevant to soil 

hydrologic processes like preferential flow (e.g., horizon to pedon scales) (Hirmas, 2016). One of 

these methods, visible near-infrared (VNIR) hyperspectral imaging (HSI) spectroscopy, offers a 

promising way forward in quantifying the horizon-scale spatial distribution of soil chemical 

properties (Buddenbaum & Steffens, 2012a, 2012b; Steffens & Buddenbaum, 2013; Steffens et 

al., 2014; Hobley et al., 2018; Steffens et al. 2021). Hyperspectral imaging collects reflectance 

spectra from a soil surface at high spatial resolution (e.g., sub-millimeter) without disrupting 

the arrangement of constituents. These spectral signatures are used to calibrate empirical 

regression models to predict soil properties for each pixel on the soil surface of an intact 

sample, thereby mapping the spatial distribution of soil properties. 
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However, VNIR reflectance spectra are sensitive to surface topography (Baumgardner, 

1985; Civco, 1989) resulting in inconsistencies in soil spectral data and decreases in the 

reliability of predictions made from spectra collected at different surface orientations (Ben Dor 

et.al, 2015). Previous studies utilizing HSI have reduced the impact of surface roughness on the 

spectral signatures by slicing the surface of intact soil monoliths or splitting cores flat before 

imaging (Hobley et al., 2018; Steffens et al., 2014; Steffens & Buddenbaum, 2013). 

Unfortunately, surface flattening restricts the application of other proximal sensing methods on 

these samples such as multistripe laser triangulation (MLT) used to characterize macropore 

networks and soil structure (Eck et al., 2013; Hirmas et al., 2016; Bagnall et al., 2020). 

Therefore, simultaneous investigation of the spatial distribution of solid constituents like SOC 

and structure using a combination of HSI and MLT scanning is not yet possible. While methods 

exist to prepare intact soil surfaces to preserve the natural structure for MLT analysis (Hirmas, 

2013), the development of a post-imaging topographic-correction method for laboratory-based 

proximal sensing techniques like HSI is lacking. Therefore, a topographic correction would have 

the advantage of allowing HSI to be applied to intact samples that have been prepared for 

characterization of soil structure and macroporosity. 

In remote sensing applications, two geometric topographic correction methods—the 

cosine correction and C-correction (Teillet et al., 1982)—have been developed to correct 

reflectance spectra for the influence of surface orientation (Hantson & Chuvieco, 2011). 

However, it is unclear how well these corrections perform in lab-based proximal sensing 

applications or how to translate these methods into a laboratory setting since several of their 

parameters, such as aspect and azimuth angles, must be defined differently in the laboratory 

than for remote sensing applications. In this study, we aimed to evaluate the effect of surface 

slope and aspect on VNIR reflectance spectra measured by HSI using homogenized soil samples 

presented at prescribed surface orientations, compare several empirical regression and 

geometric approaches to correct this effect, and calibrate a model to predict SOC from corrected 

spectra. Although the parameters of the empirical correction model developed here are likely 

specific to the HSI spectrometer used in this work (e.g., due to differences in setup geometries), 

our overall goal was to develop a procedural framework by which VNIR spectra measured by 

HSI can be topographically corrected for other similar instruments to enable the tandem spatial 

analysis of SOC and soil structure from the surfaces of intact soil samples. 

2 MATERIALS AND METHODS 

2.1 Sample Locations and Characterization 

A total of 681 ground soil samples taken from three soil sample archives were included from 

a variety of locations across the conterminous USA to ensure that a wide range of soil properties 

such as soil color, texture, and SOC were represented (Table 1; Figure 1). This was done to allow 

future application of calibration equations to soil samples from a variety of locations and 

environments. 
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The first group consisted of 574 samples and was provided by the NEON Initial 

Characterization Soils Archive at the University of Michigan Biological Station-Sample Archive 

Facility in Ehlers (UMBS-SAFE). The accompanying soil properties data were obtained from the 

NEON Data Archive. These samples were collected from 150 distributed pits across 6 core and 4 

gradient terrestrial field sites spanning 7 ecoclimatic domains within NEON (Figure 1; Table S1). 

The NEON soil samples were dried, ground, and sieved; particle-size distribution was 

determined using the pipette method and weight percent carbon was determined by elemental 

analysis using a CN analyzer (Browning & Stanish, 2017; Schoeneberger et al., 2012; Soil Survey 

Staff, 2022). 

A second group of 50 soil samples was collected from Duke Farms in Hillsborough 

Township, New Jersey (Figure 1). The Duke Farms soil samples were dried, ground, and sieved, 

and weight percent carbon was determined by elemental analysis using a CN analyzer (Vario 

MAX Cub, Elementar Americas, Inc., Ronkonkoma, NY).  

A third group of 57 soil samples was collected in 2018 and 2019 from locations in the Santa 

Ana Mountains of California that were affected by the 2018 Holy Fire to include soils with 

pyrogenic carbon (Figure 1). The Holy Fire soil samples were dried, ground, and sieved, and 

weight percent carbon was determined by elemental analysis using a CN analyzer (Flash EA, 

Thermo Fisher Scientific, Waltham, MA). 
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FIGURE 1: Circles show locations of sampling sites for soil samples used this study. Circle color 
indicates the number of soil samples obtained from each site (also see Table S2). 

 

2.2 Sample Preparation for HSI Scanning 

Soil samples were packed into custom-designed rectangular sample wells (Figure 2) 

with an inner volume of 0.4 cm3 for HSI scanning. The mass of these wells was recorded before 

and after packing and used to calculate the packed bulk density. We packed soil samples into 

sample wells to achieve bulk density values that are representative of in situ soils. Gravimetric 

air-dried soil moisture was determined on a separate aliquot of each sample to correct the 

packed bulk density to a dry-soil basis. We converted SOC from a mass basis to a volumetric 

basis using the packed bulk density because reflectance spectra represent an area rather than a 

mass. 

Care was taken to uniformly pack and flatten the surfaces of soil samples using a 

stainless-steel micro spatula to eliminate depressions, cracks, or peaks. This procedure ensured 

that any differences in reflectance spectra obtained at different surface orientations was 

attributable to the prescribed surface geometry of the sampling array and not to differences in 

sample preparation (e.g., shadowing due to micro-topography within sample wells). 

2.3 Sample Well Array 

A web-based three-dimensional (3-D) modeling application (SketchUp Free Ver. 1.3, 

Trimble, Westminster, CO) was used to design all components of the sample well array (Figure 

2). Sample wells were designed to hold approximately 0.5 g of soil and rectangular prism-

shaped tampers were designed to evenly pack soil samples into the sample wells. Sample trays 

were designed to hold 20 sample wells in place at prescribed slope and aspect positions. We 

designed 6 triangular prisms to hold a tray on each sloped face at 10°, 20°, 30°, 40°, 50°, or 60° 

slope angle. A separate base tray was designed to fit two triangular prisms so that 40 soil 

samples could be scanned at the same time (i.e., one sample tray per triangular prism with both 

sample trays placed on the same side of each prism) (Figures 2 and 3).  
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FIGURE 2: Custom-designed and 3-D printed sample well array used in this study to present 
soil samples at 7 slope orientations under the hyperspectral camera. Aspects were imposed by 
rotating the base tray while keeping it centered under the hyperspectral camera (Figure 3). 

 

All components of the sample well array were fabricated using a 3-D printer (Form 3, 

Formlabs Inc., Somerville, MA). We used a heat resistant resin (High Temp Resin V2, Formlabs 

Inc., Somerville, MA) with a heat deflection temperature of 238°C to ensure the integrity of the 

sample array under the focused heat emitted by the halogen lamp light sources during HSI 

scanning. Following initial fabrication, each part was washed (Form Wash, Formlabs, Inc., 

Somerville, MA) in an agitated solution of isopropyl alcohol for 6 min and cured (Form Cure, 

Formlabs, Inc., Somerville, MA) using a 405 nm wavelength light source at 80°C for 120 min.  

2.4 HSI Scanning Setup 

Hyperspectral imaging was performed with a high-sensitivity sCMOS VNIR 

hyperspectral camera (MSV 500, Middleton Spectral Vision, Middleton, WI) which collects 

reflectance intensities (RI) at 471 wavebands between 400-1000 nm at a spectral and spatial 

resolution of 1.2 nm and 250 µm, respectively (Figure 3A). A motorized scanning stage (ViaSpec 

Geo II, Middleton Spectral Vision, Middleton, WI) was used in conjunction with data acquisition 

software (FastFrame, Middleton Spectral Vision, Middleton, WI) to control the lateral 

positioning of the camera relative to the samples as well as the push-broom motion of the scan 

stage (Figure 3A). Samples were scanned at a frame rate of 29.967 Hz with an integration time 

of 7.641 ms and scan speed of 0.706 cm s−1. Scans were collected in the dark in a windowless 

laboratory space such that the only sources of light were two light banks each consisting of 8 

halogen light bulbs with front glass covers (Reflekto MR-11 12V 35W 36° Flood, Ushio America, 

Inc., Cypress, CA,). 

Aspect was taken as the angle that the surface of the soil sample was facing in relation to 

the forward motion of the scan stage. Thus, aspects were assigned 0°N when they faced the 
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direction of movement of the scan stage under the hyperspectral camera (i.e., from light bank 2 

toward light bank 1) (Figure 4). Aspect angles (  ) were prescribed in degrees clockwise from 

the 0° N reference by rotating the center of the base tray prior to scanning (Figure 3B). Initially, 

RI at 14 aspects (0°, 15°, 30°, 45°, 60°, 75°, 90°, 180°, 195°, 210°, 225°, 240°, 255°, and 270°) 

were collected. However, spectra collected at aspects of 195°, 210°, 225°, 240°, 255°, and 270° 

were converted to 165°, 150°, 135°, 120°, 105°, and 90°, respectively, during post-processing so 

that the    values varied only between 0° and 180°. The intensities of each wavelength for the 

initial 90° aspect and the 90° aspect converted from 270° were averaged to yield a single 90° 

spectra. Thus, we analyzed sample spectra collected at 13 different aspects for each slope 

orientation. 

Slope angle ( ) is defined as the angle between the surface of the soil sample being 

scanned and the scan stage such that a soil surface within a sample well at a 0° slope is parallel 

to the scan stage but perpendicular to the orientation of the hyperspectral camera (Figure 4). 

Spectra were obtained at 7 slope angles (i.e., 0°, 10°, 20°, 30°, 40°, 50°, and 60°) at each aspect. 

Zero slope angles were achieved by arranging the sample trays directly on the base tray, while 

non-zero slopes were imposed using identical pairs of each of the 6 fabricated triangular prisms 

(Figure 2-4). These slope and aspect configurations resulted in 91 scans per soil sample. 

 

 

FIGURE 3: A) Photo of the hyperspectral imaging (HSI) setup showing the hyperspectral 
camera, both light banks, and the scan stage with the sample well array at the 50° slope and 0° 
aspect position. B) An example of a hyperspectral image (displaying only the red (674 nm), 
green (540 nm), and blue (437 nm) bands) of the sample well array containing prepared soil 
samples at a slope and aspect of 0°. 
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White calibration intensities for each waveband were obtained by collecting 100 spectra 

from each of the 862 pixels in the lateral spatial dimension (i.e., the number of linear pixels in 

the field of view of the camera) using a 30.5 x 30.5 cm Spectralon white reflectance panel 

(Labsphere, North Sutton, NH) prior to running each batch of samples. Dark calibration 

intensities were obtained in a similar manner as the white calibration intensities, except the 

lens cap was left on the hyperspectral camera and all the lights turned off. 

2.5 HSI Data Processing 

Each HSI scan generates a 3-D array with RI measured within two spatial dimensions 

(862 x ~862 pixels) and one spectral dimension of 471 VNIR wavebands. The resulting VNIR 

reflectance spectra were scaled between values of 0 (minimum RI) and 1 (maximum RI) using 

the measured dark and white calibration intensities, respectively (Equation 1):  

      
            

              
 (1) 

where RIcor is the RI of the dark and white corrected (or rescaled) sample spectra and       is 

the RI of the observed (or measured) sample spectra. The value of        was obtained by 

averaging the dark calibration intensities across the 100 spectra, 862 pixels in the lateral spatial 

dimension, and 471 wavebands. Thus, a single average        was subtracted from the RI of 

each waveband of the white calibration and sample spectra. White calibration intensities were 

averaged across the 100 spectra and 471 wavebands for each of the 862 lateral pixels 

separately to obtain         to account for slight variation in illumination from the different 

bulbs in the light banks. 

White and dark adjusted intensities for red (674 nm), green (540 nm), and blue (437 

nm) wavebands were plotted for each pixel resulting in an RGB image (Figure 3b). This image 

was used to identify the row and column indices for automated extraction of each soil pixel 

within each sample well. Spectral signatures were isolated and spatially averaged across all 

extracted pixels within each sample well (i.e., typically ~680 pixels or 0.4 cm2 for 0° aspect and 

0° slope). This averaging resulted in a single reflectance spectrum for each of the 681 soil 

samples at each of the 91 unique slope and aspect configurations totaling to 61,971 reflectance 

spectra.  

The automated procedure for isolating spectra from within sample wells resulted in 

extracting some spectra that were influenced by the sample well array. These spectra were 

identified with a combination of outlier detection and visual inspection and excluded as imaging 

errors. Briefly, spectra were removed from the analysis if they contained any RI values outside 

1.5 times the interquartile range of all observed RI values or if they could be visually identified 

as errors using RBG images. Similarly, additional imaging errors were identified if differences 

between the non-zero slope spectra and zero-slope spectra were outside 1.5 times the 

interquartile range of all observed differences at each slope position.  
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The spectra for all 13 aspects measured at a slope of 0° were averaged into a single 

reference spectrum for each sample since we did not expect to see an aspect effect at 0° slope. 

This filtering and averaging approach reduced the total number of spectra analyzed in this study 

to 48,149 and the total number of unique non-reference slope and aspect configurations to 78. 

No further data reduction or transformation methods were implemented and all 471 data points 

for each reflectance spectrum were retained for analysis. All post-scan data processing and 

analysis were performed in R (R Core Team, 2022). 

2.6 Topographic Corrections 

We calculated a reference spectrum for each sample as the average RI of each waveband 

for all aspects scanned at a 0° slope to evaluate and correct for the change in RI caused by non-

flat surface orientations. We compared four methods for correcting topographic influences on 

reflectance spectra at non-reference surface orientations: two empirical methods and two 

geometric-based approaches. These methods are referred to as the ΔI (empirical), ΔI+ 

(empirical), cosine (geometric), and C-corrections (geometric). 

2.6.1 Empirical ΔI and ΔI+ Corrections 

We calculated the difference between the reference spectrum for each sample and the 

uncorrected spectrum measured at each of the 78 non-reference slope and aspect 

configurations as follows:  

                   (2) 

where      is the difference between the uncorrected RI (   ) from a sample scanned in a non-

reference orientation and the reference RI (   ) for the  th waveband (  ). We refer to the 

resulting set of      values from Equation (2) for a single sample scanned at a particular slope 

and aspect configuration as a ΔI spectrum. These spectra indicate how much the RI increased 

(positive ΔI) or decreased (negative ΔI) relative to the     at each waveband. 

We developed two multiple linear regression (MLR) models to predict the ΔI spectrum 

given the waveband ( ) and surface orientation (i.e.,    and  ) of each sample. The first was of 

the form: 

                          
(
3
) 

where   ,   ,   , and    are regression coefficients in the model. The results of Equation (3) 

were used to correct each non-flat spectrum back to its corresponding reference spectrum using 

Equation (4): 

                 (4) 

where       is the RI that was corrected using the predicted     in Equation (3) and the     . 

We refer to this combination of Equation (3) and (4) as the ΔI correction approach. 
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The second MLR model developed included the interaction terms between slope, aspect, 

and waveband and was of the form: 

                                                          (5) 

where   ,   ,   , and    are the regression coefficients associated with the additional interaction 

terms. We refer to the combination of Equations (4) and (5) as the ΔI+ correction method where 

       is the corrected RI using the predicted     in Equation (5) and     . Equations (3) and 

(5) were fit using ΔI spectra from each sample scanned at each non-reference orientation (i.e., N 

= 48,149). We also applied standardized MLR regression in this case to calculate   weights to 

examine the relative explanatory power of each variable. 

2.6.2 Geometric Corrections 

The first geometric correction—that is, the cosine correction— was implemented to 

remove the influence of surface topography on the VNIR spectra observed at non-reference 

orientations and results were compared to ΔI and ΔI+ corrections. This approach relies solely 

on the geometry of the lighting and hyperspectral camera setup as shown in Figures 3A and 4. 

The cosine-corrected spectrum (      ) for each non-reference orientation was obtained 

following Equation (6) (Teillet et al., 1982): 

           
    ̅̅ ̅̅ ̅̅ ̅ 

    ̅̅ ̅̅ ̅̅  
 (6) 

where     ̅̅ ̅̅ ̅̅ ̅ is the average of the cosine of the zenith angles ( ) between the hyperspectral 

camera and light bank 1 (  ) and 2 (  ). The     ̅̅ ̅̅ ̅̅ ̅ term is calculated as: 

    ̅̅ ̅̅ ̅̅ ̅   
             

 
 (7) 

Similarly, the     ̅̅ ̅̅ ̅̅  in Equation (6) is the average of the cosine of the incident angles ( ) with 

respect to light bank 1 (  ) and 2 (  ) calculated as: 

    ̅̅ ̅̅ ̅̅   
             

 
 (8) 

where      is the illumination angle calculated from the slope, aspect, zenith, and azimuth (  ) 

angles for each light bank as (Civco, 1989): 

                           (       ) (9) 

Zenith angles were calculated directly from the HSI setup using: 

       (
 

     
) (10) 

where   is horizontal distance between each light bank and the hyperspectral camera,   is the 

height of the light bank above the scan stage, and   is the height of the sample surface above the 

scan stage (Figure 4 and Table S2). The azimuth angle for light bank 1 and 2 was 0° and 180°, 
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respectively (Figure 4). The slope and aspect angles were prescribed by the position of the soil 

sample within the sample array and under the hyperspectral camera (Figures 2-4). 

The second geometric approach implemented was a wavelength-dependent variant of 

the cosine correction method termed the C-correction. The C-correction modifies the ratio 

between     ̅̅ ̅̅ ̅̅ ̅ and     ̅̅ ̅̅ ̅̅  in Equation (6) with an empirically determined constant (  ) to 

calculate C-corrected spectrum (   ) following Equation (11): 

         
    ̅̅ ̅̅ ̅̅ ̅      
    ̅̅ ̅̅ ̅̅      

 (11) 

The    parameter was determined as: 

   
  
  

 (12) 

where    and    are the linear coefficients for the regression between     ̅̅ ̅̅ ̅̅  and      at each 

waveband (Teillet et al., 1982): 

                ̅̅ ̅̅ ̅̅  (13) 

These empirical and geometric corrections were applied to all samples and orientations, 

and their performances were evaluated by comparing    ,     ,      ,      , and     to     to 

assess how well the uncorrected versus the corrected spectra at each orientation matched the 

reference spectrum for each soil sample. 
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FIGURE 4: Diagram of the HSI setup including physical parameters used in geometric 
topographic corrections (also see Table S2). 

 

2.7 SOC Prediction from Uncorrected and Corrected VNIR Reflectance Spectra 

Two partial least squares regression (PLSR) models were trained and evaluated to 

predict SOC from VNIR soil reflectance spectra. The first model used the reference spectrum 

from each soil sample to train the model (N = 681), and thus ignored the role of surface 

topography in calibrating the PLSR model. We refer to this model as the reference PLSR model 

(PLSRref). The uncorrected spectra from each soil sample at each non-reference slope and aspect 

configurations were used to evaluate this PLSR model (N = 48,149 spectra). The observed SOC 

values were positively skewed and were       transformed before training both PLSR models 

(Minasny et al., 2011). The predicted      SOC (SOCp) was then compared against observed 
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     SOC (SOCo) to see how accurately the model predicted      SOC when the influence of 

surface topography on soil reflectance was ignored during model calibration and evaluation.  

The second PLSR model was designed to reduce the impact of surface topography on 

SOC predictions by correcting the spectra prior to model calibration and evaluation. In this 

approach, the PLSR model training dataset contained one corrected spectrum per sample from a 

randomly chosen orientation (N = 681) and was referred to as the corrected PLSR model 

(PLSRcor). These corrected spectra were calculated using the best performing topographic 

correction as described in section 2.8 below. This model was evaluated using corrected spectra 

from each soil sample at each non-reference surface orientation (N = 48,149 spectra). As with 

PLSRref, SOCo and SOCp were then compared to evaluate the performance of PLSRcor for 

predicting SOC from VNIR soil spectra and to assess whether our approach to accounting for 

surface topography improved SOC predictions. 

2.8 Evaluating Topographic Corrections and SOC Model Performance 

To evaluate the performance of the four topographic correction approaches, the root 

mean squared error (RMSE) was calculated between each corrected spectrum and the reference 

spectrum and compared to RMSE calculated between each uncorrected spectrum and reference 

spectrum (Equation 14). Similarly, to evaluate the accuracy of SOC predictions, RMSE was 

calculated between SOCo and SOCp obtained from calibration and evaluation of PLSRref and 

PLSRcor. The RMSE is used to assess how close    ,     ,      ,      , or    , is to     or how 

close SOCp is to SOCo. The RMSE was calculated as follows:  

     √
∑  (      ̂ )

  
   

 
 (14) 

where    is the  th observation of either     or SOCo,  ̂  is the  th observation of either    ,     , 

     ,      ,    , or SOCp, and   is the number of observations. The RMSE was used to 

determine which topographic correction performed best by comparing RMSE for each soil 

sample at each non-reference orientation across all wavelengths. The RMSE was calculated for 

each wavelength across all soil samples at each slope or aspect position to assess the 

performance of the topographic correction at each wavelength. An ideal RMSE of 0 indicates 

that the corrected or uncorrected RI perfectly matched the reference RI in the context of 

topographic correction performance evaluation or that SOCp matches SOCo in the context of 

PLSR model performance evaluation. 

The Nash-Sutcliffe Efficiency (NSE) was also calculated to compare the performance of 

topographic correction approaches and SOC prediction models. The NSE is used to assess how 

much closer    ,     ,      ,      , or    , is to     than the mean of     or how much closer 

SOCp is to SOCo than the mean of SOCo. The NSE was calculated as follows:  

        
∑  (      ̂ )

  
   

∑  (      ̅)
  

   

 (15) 
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where    is the  th observation of either     or SOCo,  ̂  is the  th observation of either    ,     , 

     ,      ,    , or SOCp,  ̅ is the mean of all     or SOCo, and   is the number of observations. 

The NSE was calculated for each soil sample at each orientation across all wavelengths in the 

context of topographic correction evaluation. An ideal NSE of 1 indicates that the uncorrected or 

corrected RI perfectly matches    , while an NSE of less than 0 indicates that the mean of     

more closely matches     compared to the corrected RI. Similarly, in our evaluation of the PLSR 

models, an ideal NSE of 1 indicates that SOCp perfectly matches SOCo, while an NSE of less than 0 

indicates that the mean of SOCo was a better predictor than the PLSR model. 

The   and   components of the Kling-Gupta efficiency (KGE) (Gupta et al., 2009) were 

compared to determine which method performed best in cases where the RMSE and NSE were 

similar for different topographic correction methods. The   component was computed as the 

ratio of the standard deviations ( ) of    ,     ,      ,      , and     to the standard deviation 

of     for each soil sample at orientation across all wavelengths using Equation (16) as follows:  

   
  ̂
  

 (16) 

where  ̂ is either    ,     ,      ,      , and     and   is    . The   component was computed 

as the ratio of the mean    ,     ,      ,      , and     to the mean of     for each soil sample 

at each orientation across all wavelengths using Equation (17) as follows:  

   
  ̂
  

 (17) 

where  ̂ is either    ,     ,      ,      , and     and   is    . An ideal   of 1 indicates that the 

variability of uncorrected or corrected RI perfectly matches the variability of    , while an ideal 

  of 1 indicates that the mean     matches the mean corrected RI. 

3 RESULTS AND DISCUSSION 

3.1 Sample Characterization 

Soil samples used for calibration of the empirical topographic corrections as well as the 

PLSR models used to predict SOC (N = 681) represent a wide range of soil properties (Table 1). 

The values of SOC captured by these samples ranged between 6.4E-4 and 0.17 g cm−3 with a 

mean of 0.028 (Table 1). Particle-size distributions fell within 11 of the 12 USDA textural classes 

excluding silt. Packed bulk density of soils within sample wells ranged between 0.57 to 2.0 g 

cm−3 with a mean of 1.6 and standard deviation of 0.2 (Table 1). The US Soil Taxonomy soil 

orders represented by these samples are Alfisols, Andisols, Aridisols, Inceptisols, Mollisols, 

Ultisols. 

TABLE 1: Soil samples used in this study (N = 681) represent a wide range of soil organic 
carbon (SOC) and soil textures. Bulk density values represent the packed density in the sample 
well after samples were prepared for HSI scanning.  
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Property Mean Minimum Maximum Standard Deviation 

SOC, g cm−3 0.028 6.4E-4 0.17 0.028 

SOC, wt. % 2.1 0.04 23 2.7 

Sand, % 45 1.7 99 27.5 

Silt, % 33 1.3 67 15.4 

Clay, % 22 0 76 16.2 

Packed bulk density, g cm−3 1.6 0.57 2.0 0.20 

3.2 Influence of Slope and Aspect on the VNIR Soil Reflectance Spectrum 

The     decreased compared to     with increases in slope, especially at NIR 

wavebands (Figure 5A). Barnes et al. (1989) observed a similar shift in near-infrared reflectance 

with changes in the slope of the sample presentation. The     tended to decrease with 

increases in aspect within each slope position (Figure 5B), although the influence of aspect on 

the     was not as clear as the influence of slope (Figures 6A and 6C). This can be seen from the 

RMSE and NSE results obtained by comparing     to     which show that the distance 

between     and     increases (i.e., RMSE increases and NSE decreases) more with increases 

in slope than with increases in aspect (Figure 6).  

The mean and standard deviation of reflectance intensities observed across all soil 

samples and aspects at 0° slope for the 500 nm, 700 nm, and 900 nm wavelengths were 

calculated to assess whether an aspect effect was observed among spectra collected at 0° slope 

(i.e., among the spectra used to calculate    ). These means were 0.16, 0.32, and 0.38, and their 

standard deviations were 0.0003, 0.0003, and 0.0004, respectively. These standard deviations 

indicate that reflectance spectra observed at the 0° slope position are unaffected by aspect.  

The ratio of standardized regression squared  -weights obtained from calibration of the 

MLR model in the ΔI+ correction (see Comparison of Topographic Correction Methods section 

below) also shows that slope imparts a stronger influence than aspect on the difference 

between     and     (Table 2). Therefore, slope imparts a stronger influence than aspect on 

the     of soil samples.  
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FIGURE 5: Uncorrected visible near-infrared (VNIR) soil spectra for a single representative soil 
sample at 78 slope (A) and aspect (B) configurations relative to the reference spectrum for this 
soil sample (black dashed). Slope exerts a stronger control on uncorrected reflectance intensity 
(   ) of soil samples compared to aspect. 

 

3.3 Comparison of Topographic Correction Methods 

Performance of four topographic correction methods were compared based on how well 

the topographically corrected spectra matched the reference spectrum. We compared RMSE and 

NSE of corrected versus reference spectra to that of uncorrected versus reference spectra to 

examine whether the influence of surface orientation on soil reflectance was reduced by 

implementing a topographic correction (Figure 6). 

Overall, the RMSE of     increased with increasing slope and aspect, and the 

magnitudes of errors were more pronounced with slope increases compared to aspect 

supporting our conclusion that slope imparts a stronger influence on soil reflectance than 

aspect (Figure 6). At the smallest slope angle (10°), the mean of RMSE values for the geometric 

and ΔI+ corrected spectra were similar to RMSE values for the uncorrected spectra, while the ΔI 

correction method resulted in the largest errors. At the 20° slope, the ΔI+ correction and the C-

correction methods had the lowest errors, while the ΔI correction, and the cosine correction had 

similar errors to the uncorrected spectra. Hantson and Chuvieco (2011) also found that the 

cosine correction was the least successful of the topographic correction methods that they 

compared, which included the C-correction, particularly when      is small. At 30°-60° slope 

angles, the cosine correction method had the largest errors which, as explained by Teillet et al. 

(1982), can be attributed to the overestimation of       due to small, even negative,      at 

orientations where   is large. This situation occurs, for example, from the perspective of light 

bank 2 when the soil sample surface is facing 0°N at high slope angles. Overall, the ΔI+ and C-
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correction methods produced the smallest RMSE and NSE closest to 1 across all slope angles 

(Figure 6A and 6B).  

 

 

FIGURE 6: Root mean square error (RMSE) (A, C) and Nash-Sutcliffe Efficiency (NSE) (B, D) as 
functions of slope (A, B) and aspect (C, D) calculated across 471 wavebands for each soil 
spectrum (  = 48,149). The most successful correction method in terms of minimizing RMSE 
and maximizing NSE was the ΔI+ correction. 
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The RMSE and NSE of      and     were similar at aspect angles less than 150°, while 

the       had the highest RMSE and lowest NSE, especially at aspect angles smaller than 135°. At 

aspects smaller than 135°, both empirical correction methods and the C-correction performed 

better than the cosine correction. The poorer performance of the cosine correction at 0°N aspect 

positions compared to 180°S aspect positions is because light bank 2 is farther away from the 

hyperspectral camera than the light bank 1 (Table S2). As a result,    from the perspective of 

light bank 2 when the sample is facing 0°N, is greater than    from the perspective of light bank 

1 when the sample is facing 180°S causing a greater overestimation of       when    is small 

and   is large compared to when    is large (Teillet et al., 1982; Hantson and Chuvieco, 2011). 

Since the C-correction method performance was close to that of the empirical 

corrections (i.e., no difference in mean RMSE and NSE), the   and   components of the KGE 

were compared across all slope and aspect angles (Figures S1 and S2). In addition to confirming 

that     an       were farthest from the reference, these results showed that biases in the 

standard deviation of      deviated from unity at small and large aspect angles, while this 

pattern was not present in       and     (Figure S1). Also, biases in the mean and standard 

deviation of     deviated from unity at small and large aspect angles, while this pattern was not 

present in       (Figure S2). Therefore, comparison of these four topographic corrections 

showed that the empirical ΔI+ method provided the most consistent correction for the influence 

of surface topography on RI measured at non-flat surface orientations while being less complex 

than the non-linear geometric corrections. 

We further illustrate the success of the ΔI+ correction by showing RMSE as a function of 

wavelength for uncorrected and ΔI+ corrected reflectance spectra across all soil samples 

grouped by either slope or aspect (Figure 7). These results confirm that the ΔI+ corrected 

spectra more closely match the reference spectrum than the uncorrected spectra across all 

wavebands, aspects, and all slopes except those at 10° (i.e., RMSE of ΔI+ corrected reflectance 

spectra are smaller than RMSE of uncorrected reflectance spectra). 
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FIGURE 7: The RMSE as a function of wavelength calculated across all soil samples and across 
all aspect angles (A) or all slope angles (B) for uncorrected and the ΔI+ corrected spectra. The 
RMSE of uncorrected spectra are colored in grey while RMSE of ΔI+ corrected spectra are 
colored by slope (A) or aspect (B). The black arrow indicates how RMSE of the uncorrected 
spectra at the 60° slope corresponds to the RMSE of ΔI+ corrected spectra at the same slope. 
The ΔI+ corrected spectra more closely match the reference spectrum than the uncorrected 
spectra across all wavebands, aspects, and all slopes except those at 10°. 

 

The empirically fitted coefficients of the MLR model used in the ΔI+ correction method 

and their   weights are provided to allow implementation of this method for similar HSI setups 

(Table 2). The ratio of standardized regression squared  -weights for slope and aspect is 15 

indicating that slope explains about 15 times more variability in the difference between     and 

    (i.e., ΔI) than aspect. 

 

TABLE 2: Empirically fitted coefficients for the ΔI+ method as well as the standardized β 
weights for each predictor. 

Parameter                         

Regression 
coefficient 

-8.0E-3 6.4E-4 4.2E-6 3.8E-5 1.4E-7 -2.8E-6 4.2E-8 -6.7E-9 

β weight -0.0016 -0.65 -0.17 -0.32 -0.098 -0.23 -0.045 -0.025 

The     and       for all 78 non-reference slope and aspect configurations of one 

representative soil sample and the corresponding     show that the corrected spectra resulting 
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from the ΔI+ method are closer to and more centered around the reference spectrum than the 

uncorrected spectra (Figure 8). 

 

 

FIGURE 8: Uncorrected VNIR soil spectra from one representative soil sample at 78 non-
reference surface orientations (grey) and the same 78 spectra after applying the ΔI+ 
topographic correction. Corrected spectra are colored by slope (A) or aspect (B) to show 
performance of the ΔI+ correction approach. Uncorrected spectra shown here in grey are the 
same as the uncorrected spectra colored by slope or aspect in Figure 5. 

  

3.4 SOC Prediction from Uncorrected and Corrected VNIR Soil Reflectance Spectra 

As described above, two approaches for SOC prediction using PLSR were implemented 

to assess whether reducing the impact of surface topography could improve SOC predictions 

made using VNIR soil reflectance spectra observed from non-flat surfaces. These results show 

that the PLSRref model, which was trained on the reference spectra for each soil sample, 

performs better than the PLSRcor model, which was trained using ΔI+ corrected spectra from a 

single randomly chosen orientation for each soil sample (Figures 9A and 9C). This result is 

expected since the influence of surface topography is minimized when the soil sample is placed 

flat (i.e., 0° slope) under the hyperspectral camera, such as in the case of the reference spectra. 

When the PLSRref model was evaluated using the uncorrected spectra, higher overall RMSE and 

bias in SOCp was observed with increasing slope (i.e., the slopes of least squares regression lines 

fit at each slope position deviate from 1 with increasing slope position) (Figure 9B). This 

decrease in model performance was expected since non-flat surface orientation impacts RI 

(Baumgardner, 1985; Civco, 1989; Colby, 1991; Ben Dor et.al, 2015), and therefore the     used 

for model evaluation are much different than the     used for model training. 
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As previously mentioned, when the PLSRcor model was trained and evaluated using ΔI+ 

corrected spectra from one randomly chosen orientation per sample, the RMSE is larger and R2 

is smaller than the reference model (Figure 9A and 9C). Poorer model performance is expected 

here as the influence of surface orientation has not been entirely removed from the ΔI+ 

corrected spectra whereas the influence of surface orientation on reference spectra is minimal. 

However, when the PLSRcor model is evaluated on ΔI+ corrected spectra from all 78 non-

reference surface orientations, the increase in RMSE and decrease in R2 (Figures 9C and 9D) are 

smaller than those seen when the PLSRref model is evaluated using uncorrected spectra (Figures 

9A and 9B). Also, the slopes of least squares regression lines between SOCp and SOCo at each 

slope position are closer to 1 indicating bias in SOC predictions is reduced when the PLSRcor 

model is evaluated using ΔI+ corrected spectra (Figure 9D) compared to when the PLSRref model 

is evaluated using uncorrected spectra (Figure 9B). Larger R2 and smaller RMSE and prediction 

bias across all slope positions confirm that implementing the ΔI+ topographic correction 

method in conjunction with training the PLSR model on the corrected spectra from a variety of 

sample surface orientations reduces the impact of non-flat surface orientation on SOC 

predictions.  
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FIGURE 9: A) Performance of the PLSR model trained on the reference spectrum (PLSRref) at 0° 
slope for each soil sample (N = 681). B) Evaluation of PLSRref using uncorrected spectra from all 
soil samples at all non-reference orientations (N = 48,149). C) Performance of PLSR model 
trained on corrected spectra from 1 randomly chosen orientation per sample (PLSRcor) (N = 
681). D) Evaluation of PLSRcor using ΔI+ corrected spectra from all soil samples at all non-
reference orientations (N = 48,149). The best fit lines between observed and predicted SOC at 
each slope position are shown colored by slope in (B) and (D). Accounting for the influence of 
surface slope and aspect on VNIR reflectance spectra during training and evaluation of the PLSR 
model improved SOC predictions by decreasing bias and error and increasing R2. 
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A comparison of RMSE and NSE values of SOCo versus SOCp resulting from evaluation of 

PLSRref and PLSRcor models for each soil sample at each slope and aspect position show that 

RMSE is smaller and NSE is closer to 1 at all aspect angles and all except 10° and 20° slope 

angles for SOC predicted by the PLSRcor model compared to PLSRref (Figure 10). These results 

indicate that SOC predictions are improved across all aspects and at slope angles greater than 

30° when the influence of surface topography is considered. At 10° and 20° slopes, RMSE is 

closer to 0 and NSE is closer to 1 for SOC predictions made from uncorrected spectra using the 

PLSRref model indicating that the PLSRref model provided the best SOC predictions at these slope 

angles (Figure 10A and 10B). This observation is consistent with patterns observed in RMSE 

and NSE of uncorrected spectra when they are compared to the reference (Figure 6A and 6B). 

Therefore, a topographic correction might not be needed at small (e.g., 10°-30°) slope angles as 

the influence of surface orientation is minimal, however the importance of topographic 

correction becomes more pronounced as slope increases, particularly above 30°. 
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FIGURE 10: RMSE and NSE of predicted SOC for each soil sample at each slope (A, B) and aspect 
(C, D) angle show that SOC predictions are improved when the influence of surface topography 
is accounted for, particularly at slope angles greater than 30°. 

 

4 CONCLUSION 
This study showed that slope has a stronger influence on RI of soil samples compared to 

the aspect. We found that the ΔI+ empirical model based on slope, aspect, wavelength, and their 

interactions worked best for reducing the impact of surface orientation on soil reflectance and 
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improving SOC predictions made from soil reflectance spectra. Predicted SOC values were closer 

to laboratory measured SOC when the PLSR model was trained and evaluated on corrected 

VNIR soil reflectance spectra using the ΔI+ correction approach across all aspect angles and 

slope angles greater than 30°. This is likely because the influence of surface geometry on soil 

reflectance was least apparent at low slope angles and indicates that a topographic correction 

may not be necessary at slope angles smaller than 30°. 

The calibration soil samples included here cover a wide range of soil properties 

including soil color, texture, and SOC, such that the ΔI+ correction equation could be applied to 

correct VNIR soil reflectance spectra for similar laboratory-based HSI setups. This study also 

provides a framework for topographic correction of spectra that could be applied to systems 

with different setup geometries.  

Soil properties such as particle size that influence soil reflectance spectra (Barnes et al., 

1989; Soriano-Disla et al., 2014) could also impact the difference in     and     (i.e., ΔI). 

Therefore, including soil properties in addition to slope, aspect, and wavelength as      

predictor variables in the MLR model used in the ΔI+ correction approach might improve 

empirical corrections. However, we did not explore the effect of soil properties on      since this 

correction is designed to adjust reflectance spectra of non-flat intact soil samples where these 

properties would not be available for each pixel. Additionally, the quality of SOC predictions 

made using reflectance spectra obtained from ground (pulverized) versus unground samples 

can vary with the area of soil being scanned (i.e., pixel size) (Reeves et al., 2002). Therefore, the 

effect of soil texture on reflectance spectra and thus predictions of      might also vary with 

pixel size. These relationships were beyond the scope of this study but should be investigated in 

the future to apply this method to pixels which are smaller (~250 x 250 µm) than the pixel size 

of sample wells (~0.7 x 0.9 cm) used to calibrate the ΔI+ correction equation and PLSR model 

developed here. 

This novel empirical topographic correction approach has the potential to advance our 

ability to use VNIR HSI spectroscopy for mapping soil chemical structure on horizon-scale intact 

monoliths with rough surfaces, such as those prepared for soil structure characterization. This 

method clears the way for coupling HSI with other proximal sensing methods such as MLT 

scanning to simultaneously quantify soil physical and chemical structure on intact samples 

(Hirmas et al., 2016). In addition to soil structure characterization, MLT scanning provides 

vector normal values for each pixel which can be used to determine the surface geometry 

information needed for the topographic correction approach presented here. However, other 

proximal sensing techniques such as structure-from-motion photogrammetry could also 

provide this information. Simultaneously mapping soil structure along with soil chemical 

properties like SOC at fine (e.g., sub-mm) resolution at the horizon scale will likely provide data 

necessary for studies investigating the location of SOC and its relationship to soil aggregation 

and pore networks and, therefore, advance our understanding of water and carbon fluxes 

within soils. 
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SUPPLEMENTAL MATERIAL 
 The supplemental material contained in Tables S1 and S2 includes additional details 

about the geometry of the HSI spectrometer and soil samples used in this study which support 

future application of this method. Figures S1 and S2 support the conclusions drawn from Figure 

6 and show that the ΔI+ correction method outperforms the ΔI, cosine, and C-correction 

methods.  
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