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ABSTRACT
This paper presents a blind source separation algorithm to
identify binary and sparse sources from convolutive mixtures
with linear and time-invariant finite impulse responses. Our
approach combines Bayesian algorithms for detecting source
activity with a linear minimum mean-square error estimator
to identify all the time samples when each source is active.
The algorithm was implemented on simulated electromyo-
grams to identify neural commands. Our algorithm identified
more than 96% of the sources on average with 16 or more
measurement channels and SNR ≥ 14 dB. For the detected
sources, this algorithm correctly identified more than 94% of
the samples on average. This performance was significantly
better than that of a competing algorithm available in the
literature.

Index Terms— Blind source separation, Bayesian clas-
sification, Linear minimum mean-square error estimator,
Sparsity-aware processing

I. INTRODUCTION
Electromyograms (EMGs) quantify the electrical activity

of a muscle or a group of muscles. EMG signals can be
recorded using surface electrodes placed on the skin (sEMG)
or from the muscles directly using intramuscular electrodes
(iEMG), and are employed in various applications including
movement intent decoding to control prostheses [1], [2],
stroke rehabilitation systems [3], and other human machine
interface systems [4].

Although neural excitation during planning and execution
of movements result in the generation of electromyograms,
the recorded EMG signals obtained using multiple electrodes
are diffused and mixed versions of the neural source signals
because these bioelectric signals arrive at the sensors after
traveling through nerves and tissues in the body. This paper
presents a blind source separation (BSS) algorithm that
identifies the neural activities that resulted in the recorded
EMG signals. Accurate source separation will lead to bet-
ter algorithms for predicting movement intent using EMG
signals. The algorithm is derived assuming that the recorded
signals are convolutive mixtures of the neural source signals,
and that the neural source signals are sparse and binary.

A number of BSS methods have been employed to identify
the source signals in electromyograms for different appli-
cations. Farina et al. [5] used an approach based on spa-
tial time-frequency distributions to separate sEMG signals
using a linear instantaneous mixture model. Holobar and
Zazula [6], [7] modeled EMG measurements as convolutive
mixtures of sparse and binary sources with time invariant
and finite length impulse responses and presented two BSS
algorithms that did not require any prior information of the
sources. In a later study, Holobar [8] showed that the EMG
decomposition algorithm presented in [7] can theoretically
separate synchronized sources in tremor affected patients.
Stachaczyk et al. [9] employed the BSS technique of [6]
to track transient phases of muscle activation during volun-
tary contractions. Negro et al. [10] combined convolutive
sphering [11] and fast-ICA [12] to derive a BSS algorithm
based on a convolutive mixture model. Monsifrot et al.
[13] introduced a BSS algorithm based on Markov Decision
Process models and Bayesian filtering. Zhu et al. [14]
developed a BSS algorithm for high density sEMG signals
by employing a contrast function maximization approach.

Most of the algorithms in the literature require a high num-
ber of measurement channels, high SNR values and short
impulse responses. Performance evaluation has indicated that
the algorithm of this paper could identify sources with small
number of measurements and longer impulse responses with
relatively low detection error. Although our approach builds
upon the BSS algorithm presented by Holobar and Zazula
[6], our approach performs significantly better because we
employ provably more powerful algorithms to detect activity
of the sources. Furthermore, our approach is computationally
more efficient that the method in [6].

II. A CONVOLUTIVE MIXTURE MODEL

The sources of the EMG signals are neural commands
that are modeled as sparse binary sequences that can take the
values 1 or 0, and the probability p that the value is 1 is very
small. The neural commands innervate muscle fibers and
pass through volume conductors (fat, skin, etc.), and maybe
recorded from the surface of the skin as sEMG signals. The
combination of muscle responses and volume conductors is



often modeled as a linear and time-invariant system with
finite impulse response. That is, we can model the recorded
EMG signals as convolutive mixtures of the sources given
by [6]

xi(n) =
N

∑
j=1

L−1

∑
l=0

hi j(l)u j(n− l)+ζi(n) i = 1, . . . ,M (1)

where xi(n), u j(n), and ζi(n) represent the sEMG measured
from the i-th measurement channel, the j-th source signal
(neural command), and the additive noise in the i-th channel,
respectively at time n, and are assumed stationary. In (1),
hi j(l) denotes the l-th coefficient of the impulse response
corresponding to the i-th measurement channel and the j-
th source signal, M, N and L correspond to the number
of sEMG channels, the number of neural sources, and the
maximum number of coefficients of the impulse responses
in the model, respectively.

During times of low or moderate activation, successive
spikes of a source signal may be modeled as uncorrelated
[15]. However, physiological analyses have suggested that
there exists synchronization of distinct pulse trains generated
by different sources involved in a specific task [16]. Con-
sequently, the sources are weakly correlated at each time
instant. The additive noise sequence in (1) are assumed
to be independent of the sources and the coefficients of
the impulse response, and are modeled as i.i.d Gaussian
processes with zero mean and variance σ2

ζ
.

Let X(n) = [x1(n), . . . ,xM(n)]T , S(n) = [u1(n), . . . ,u1(n−
L+ 1), . . .uN(n− L+ 1)]T , and Z(n) = [ζ1(n), . . . ,ζM(n)]T .
Further, let H i = [hi1(0), . . . ,hi1(L−1), . . .hiN(L−1)]T , and
define a coefficient matrix H = [H1,H2, · · · ,HM]T . Then, (1)
can be written compactly as

X(n) = H S(n)+Z(n) = X̃(n)+Z(n) (2)

where X(n), S(n) and Z(n) are the vectors of measured EMG
signals, source signals that appear in (1), and additive noise
samples at time n, respectively, and X̃(n) is the vector of
noise-free EMG signals. For later use, let us also define
the k-th source vector Sk = [sk(1),sk(2), · · · ,sk(Q)], where Q
represents the number of samples that are analyzed in each
channel at any time and sk(.) represents the k-th element
of S(.). Note that sk(n) ̸= uk(n) since Sk(n) contains all the
source signals at time n,n−1, . . . ,n−L+1. Similarly, let us
also define an M×Q-element data matrix X whose (k,q)-th
element is xk(q).

III. BAYESIAN BLIND SOURCE SEPARATION
Because of page length restrictions, we provide only a

brief description of the derivations here. Figure 1 displays
a high-level flow chart of the blind source separation algo-
rithm. As shown in this figure, the algorithm first identifies
all values of time n for which at least one entry of S(n)
is one i. e., at least one source is active at time n. Let V1
denote the set of all such values of n. The system then picks

one of the entries of V1 (say n0) and identifies all pairs
of time samples of the form (n0,n) such that at least one
source is active at both times n0 and n. Let V2(n0) represent
set of values of n so identified. The system then picks an
n1 ∈ V2(n0), determines the set V2(n1) similar to V2(n0),
selects a time instant n2 ∈ V2(n0)∩V2(n1), determines the
set V2(n2), and finally ∀m ∈ V3 = V2(n0)∩V2(n1)∩V2(n2)
determines the set V2(m). We can then show, following the
derivations in [6], that for any m ∈ V3, if the number of
elements in V4(m) =V3∩V2(m) is sufficiently large (assume
this condition is true for r+1 number of time samples e.g.,
m0, . . . ,mr), with high probability the same source is active at
all time samples of {n0,n1,n2,m0, . . . ,mr}. This result allows
us to identify the times at which a single source is active. The
derivation makes use of the sparsity of the source signals,
and assumes that the probability of more than three common
spikes in two sources is negligibly small. Once the spike
times are identified, a linear minimum mean-square error
(LMMSE) estimator is used to estimate the source signals.
The process is iterated till all the sources are identified. More
details of the single-time and pair-wise activity detection and
LMMSE estimation are provided in the rest of this section.
A pseudocode for the the complete BSS algorithm is given
in Algorithm 1.

III-A. Activity Detection for Each Time Sample
Let c(1)0 denote the hypothesis that no source is active

at time n0 . Under this hypothesis, S(n0) = 0, where 0
is a vector of all zeros or equivalently,

⋂Ne
j=1{s j(n0) = 0}.

Similarly, let c(1)1 denote the hypothesis that at least one
source is active at time n0. Under this hypothesis, S(n0) ̸= 0.
We design a Bayesian classifier for determining the correct
hypothesis at each time. For this, we start with

P{S(n0) ∈ c(1)q |X(n0)}=
P{X(n0)|c(1)q }P(c(1)q )

P{X(n0)}
(3)

where q = 0 or 1 and P(c(1)0 ) and P(c(1)1 ) are a priori proba-
bilities of the two classes c(1)0 and c(1)1 , respectively. Without
loss of generality, we assume a binomial distribution for
each source j with the parameter Ps i.e., P{s j(n) = 1}= Ps
and a weak correlation between sources j and k ̸= j with
conditional probability of Pc = P{s j(n) = 1|sk(n) = 1}. We
can show that P(c(1)0 ) is approximately given by

P(c(1)0 )≈
Ne−1

∏
j=1

P(s j(n) = 0|sNe(n) = 0)P(sNe(n) = 0)

≈ (1−2Ps +PcPs)
Ne−1

(1−Ps)Ne−2

(4)

where Ne is the number of elements in the vector S(n) and
equals N×L. Since c(1)0 and c(1)1 are complementary classes

P(c(1)1 ) = 1−P(c(1)0 )≈ 1− (1−2Ps +PcPs)
Ne−1

(1−Ps)Ne−2 (5)



Fig. 1. Flowchart of the BSS algorithm. Details of each block is provided in Section III.

Under our assumptions, we can show that the distribu-
tion of X(n) conditioned on X(n) ∈ c(1)0 is approximately
N(0,σ2

ζ
I) and that the distribution of X(n) conditioned

on c(1)1 being true is approximately N(0,σ2
ζ

I+CX̃ X̃
1

P(c(1)1 )
)

where CX̃ X̃ is the covariance matrix of noise-free EMG
signals. In this work, we estimated the noise variance σ2

ζ

by averaging over the smallest half of the eigenvalues
of covariance matrix of measured EMG signals [17] and
approximated CX̃ X̃ using principal component analysis.

Using Bayes theorem, we can compute the log-likelihood
ratio of the posterior probabilities and obtain the following
classification rule:

1
2 XT (n0){[C(0)

X X ]
−1 − [C(1)

X X ]
−1}X(n0)

c(1)1
≷
c(1)0

1
2 log(

|C(1)
X X |

|C(0)
X X |

)+ log(Pr(c(1)0 )

Pr(c(1)1 )
)

(6)

where C(0)
X X = σ2

ζ
I and C(1)

X X = σ2
ζ

I+CX̃ X̃
1

Pr(c(1)1 )
.

III-B. Activity Detection at a Pair of Time Samples
Let us use c(2)0 to denote the hypothesis that no

source is active at both times n0 and n1 or equivalently,
∑

Ne
j=1 s j(n0)s j(n1) = 0, and c(2)1 to denote the hypothesis that

at least one source is active at both times n0 and n1, or
equivalently, ∑

Ne
j=1 s j(n0)s j(n1) > 0, and design a Bayesian

classifier for determining the correct hypothesis for each
pair of time samples. Using an approach similar to that
in Section III-A but lengthier, we can show that the log-
likelihood classifier has the form

XT
2 (n0,n1)Cr2r2X2(n0,n1)

c(2)1
≷
c(2)0

th2 (7)

where X2(n0,n1) = [XT (n0),XT (n1)]
T , Cr2r2 = [C(0)

X2 X2
]−1 −

[C(1)
X2 X2

]−1, th2 = log(
|C(1)

X2 X2
|

|C(0)
X2 X2

|
)+2log(Pr(c(2)0 )

Pr(c(2)1 )
),

C(0)
X2 X2

≈


(P(c(1)1 )−NePcP)

(P(c(1)1 ))2−P(c(2)1 )
CX̃ X̃ 0

0 (P(c(1)1 )−NePcP)

(P(c(1)1 ))2−P(c(2)1 )
CX̃ X̃

+σ
2
η I

(8)

and

C(1)
X2 X2

≈

P(1+NePc)

P(c(2)1 )
CX̃ X̃

P
P(c(2)1 )

CX̃ X̃

P
P(c(2)1 )

CX̃ X̃
P(1+NePc)

P(c(2)1 )
CX̃ X̃

+σ
2
η I (9)

Here, Pr(c(2)1 ) ≈ NeP2 − N2
e

2 P2P2
c and P(c(2)0 ) ≈ 1−NeP2 +

N2
e

2 P2P2
c are a priori distributions of class c(2)0 and c(2)1 .

Detailed derivations are omitted due to space limitations.

III-C. LMMSE Estimator
The LMMSE estimate of the kth source signal Sk is

given by Ŝk =CT
X Sk

C−1
X XX where (·)T denotes the transpose

operation, CX X is the covariance matrix of X(n) and CX Sk is
the cross covariance vector of X(n) and sk(n). Let us denote
the set of time samples when the kth source is active as ψk,
i. e.,

ψk = {nk,1,nk,2, . . .nk,mk} (10)

Given an estimate ψ̂k of this set CX Sk may be estimated as

ĈX Sk =
1

Q−1 ∑
n∈ψ̂k

X(n) (11)

CX X may be estimated as a time average over the whole
interval under analysis.

IV. PERFORMANCE EVALUATIONS
The BSS algorithm was implemented and evaluated on

simulated sEMG signals in MATLAB-R2020b.

IV-A. Simulation Environment
The motor unit action potentials (MUAPs), defined by the

impulse response signals in the convolutive mixture model of
EMG, are the responses of muscles to the neural commands
that are recorded by electrodes. In ideal situations where
the electrodes are perfectly aligned with muscle fibers, the
MUAPs can be modeled by the first-derivative of a Gaussian
function [18]. To incorporate some non-idealities into the
simulation, we modelled the MUAPs with a summation of
the derivative of a Gaussian function and an i.i.d Gaussian
noise sequence.

The source signals were modelled as sparse and binary
sequences with a binomial distribution with probability
Ps( j) = FR( j)/ fs where FR( j) and fs represent the firing



Algorithm 1 A pseudocode for the BSS algorithm.
1: Define Ps, Pc, Ne and thc:
2: Classify S(n) at all time samples using (6)
3: V1 = {n|S(n) ∈ c(1)1 }
4: Pick n0 ∈V1
5: Determine set V2(n0) = {n1|S2(n0,n1) ∈ c(2)1 }
6: Pick n1 and n2 from V2(n0) condition on S2(n1,n2)∈ c(2)1
7: Determine V2(n1) and V2(n2) similar to V2(n0)
8: V3 =V2(n0)∩V2(n1)∩V2(n2)
9: ψk = {n0,n1,n2}

10: for all m ∈V3 do
11: V4 =V3 ∩V2(m)
12: if card(V4)> thc then
13: ψk = ψk ∪{m}
14: end if
15: end for
16: Reconstruct a source using LMMSE estimator
17: Go to 6 for all pairs of V2(n0)
18: V1 =V1 −{n0}
19: if card(V1)> 1 then
20: go to 3
21: end if

rate of the j-th source signal and the sampling frequency,
respectively. Note that the firing rates for different sources
are in general different from each other. The inter-spike-
intervals (ISI) should be greater than the refractory period
since muscle fibers cannot respond to a new spike in this
period. The refractory period was defined as the polarization
phase of the MUAP (beginning of the MUAP up until its
maximum).

Simulated EMG signals were generated with N = 5,
fs = 2000 Hz, different SNRs from 0dB to 26 dB and
four different number of EMG channels i.e., 8, 16, 32, and
64. The firing rate for each source was sampled from a
uniform distribution in the range (15±3) and L is sampled
from a uniformly distributed random variable in the range
(19.76 ± 5.5) samples and then quantized to the smallest
integer larger than or equal to the sampled value. The
hyper-parameters of the algorithm, i.e. P̂s,P̂c and N̂e were
chosen based on statistics of measurements reported in the
literature, and were different from their true values. The
performance metrics were the number of detected sources,
the source signal detection error and the number of falsely
detected sources. The identified sources with more than 30%
differences between actual and estimated source signals were
considered as falsely detected. If Nd sources were identified,
the detection error was defined as

e =
1

Nd

Nd

∑
k=1

DR

∑
n=1

|ûk(n)−uk(n)| (12)

Fig. 2. Detection error as a function of SNR for different
number of measurement channels.

IV-B. Results
For each simulation setup, 100 independent runs were

performed and the average and standard deviation of de-
tection errors are displayed in Fig. 2 for different number
of channels and SNR values. The detection error decreased
with increasing number of channels and SNR values. For
SNR ≥ 14 dB, the average error was less than 6%, i. e.,
the algorithm correctly identified more than 94% of the
signal samples generated by the identified sources. The
average of the detection error was less than 10% for all
simulation setups with SNR ≥ 6 dB. However, the error
was high for SNR = 0 dB. In all simulation setups with
M = 8 and SNR ≥ 20 dB and for M ≥ 16 and SNR ≥ 14
dB, on average at least 4.5 sources out of 5 (90% of total
sources) were detected. For SNR = 6 dB, on average 2
sources were detected for M = 8 and at least 3 sources
were detected for M ≥ 16. The number of falsely detected
sources were reduced considerably by increasing the number
of measurement channels and SNR in the signal generation
model. For M ≥ 16 and SNR ≥ 20, and for all other SNR
values for M ≥ 32 on average less than 1 false source was
detected. However, this number increased to as much as 3
for the worst cases i.e., M = 8 and SNR = 0 dB.

We compared our algorithm with the BSS algorithm pre-
sented by Holobar and Zazula [6] by separating the sources
of the same data sets. In Fig. 3, the number of detected
sources as a function of SNR are displayed for M = 32. It is
clear that our algorithm outperformed the algorithm of [6] by
accurately detecting more sources. The detection error metric
for the algorithm of [6] was comparable to those of our
algorithm. However, it is important to note that this metric
is calculated only for the detected sources. As is shown in
Figure 3, the algorithm of [6] detects far fewer sources than
the algorithm of this paper.

V. CONCLUDING REMARKS
This paper presented a new blind source separation algo-

rithm that decomposes sparse and binary sources of con-
volutive mixtures. The decomposition algorithm is based



Fig. 3. Comparison of our algorithm and the algorithm of
[6] for M = 32 as a function of SNR.

on combining an LMMSE estimator with Bayesian activity
detectors. Simulations involving realistic EMG models in-
dicated that the method of this paper accurately detects the
EMG source signals low level of false detection of sources.
In addition, the approach of this paper was able to predict
source signals with relatively low errors. Comparison with
the algorithm in [6] indicated that our algorithm correctly de-
tected more sources under the same simulation setups. When
compared with the methods of [6], our algorithm does not
need to generate augmented source channels. Consequently
our approach is also computationally more efficient. We are
currently exploring using this algorithm in neuroprosthesis
systems. Accurate separation of neuronal command signals
from their mixtures in EMG measurements should enable
more accurate estimation of movement intent from EMG
signals than currently possible. This, in turn, should enable
prosthesis systems to perform more naturally, with greater
accuracy and reduced cognitive load, helping people with
limb loss improve the quality of their lives.
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