
Future-Focused Control Barrier Functions for Autonomous Vehicle
Control

Mitchell Black1 Mrdjan Jankovic2 Abhishek Sharma2 Dimitra Panagou3

Abstract— In this paper, we introduce a class of future-
focused control barrier functions (ff-CBF) aimed at improving
traditionally myopic CBF based control design and study their
efficacy in the context of an unsignaled four-way intersection
crossing problem for collections of both communicating and
non-communicating autonomous vehicles. Our novel ff-CBF
encodes that vehicles take control actions that avoid collisions
predicted under a zero-acceleration policy over an arbitrarily
long future time interval. In this sense the ff-CBF defines a
virtual barrier, a loosening of which we propose in the form of
a relaxed future-focused CBF (rff-CBF) that allows a relaxation
of the virtual ff-CBF barrier far from the physical barrier
between vehicles. We study the performance of ff-CBF and rff-
CBF based controllers on communicating vehicles via a series
of simulated trials of the intersection scenario, and in particular
highlight how the rff-CBF based controller empirically outper-
forms a benchmark controller from the literature by improving
intersection throughput while preserving safety and feasibility.
Finally, we demonstrate our proposed ff-CBF control law on
an intersection scenario in the laboratory environment with a
collection of 5 non-communicating AION ground rovers.

I. INTRODUCTION

Vehicles with autonomous capabilities have grown in-
creasingly prevalent on public roadways in recent years,
and growth is forecasted to continue [1]. Intersection sce-
narios are of keen interest due to the systemic dangers
they pose; in fact, according to the U.S. Federal Highway
Administration more than 50% of all fatal and injury crashes
occur at intersections [2]. Some have proposed alleviating
this problem by using a centralized intersection manager
(IM) to communicate safe entry/exit times to incoming
connected autonomous vehicles (CAVs) [3]–[5]. In contrast
to schedulers, controllers offer better real-time reactivity to
a dynamic, evolving environment. In the intersection setting,
it is critical that control solutions are designed such that the
overall system possesses both safety and liveness properties,
i.e. that vehicles are able to traverse the intersection safely.

In both centralized and decentralized approaches, a com-
mon element in safe controller design is the use of control
barrier functions (CBFs) [6], [7]. CBFs have been shown to
be effective in compensating for some potentially unsafe con-
trol action in a variety of applications, including autonomous
driving [8], robotic manipulators [9], and quadrotor control
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[10]. Studies have further demonstrated that CBFs are useful
in maintaining safety in the presence of bounded disturbances
[11] and model uncertainties [12]. To date, however, a
difficulty encountered when using CBF-based approaches
is their tendency to myopically focus on present safety,
potentially to the detriment of future performance. This
drawback can be mitigated in part by using model predictive
control (MPC), which solves an optimal control problem over
a time horizon and implements the present control solution.
While some recent work has demonstrated the efficacy of
synthesizing CBFs with MPC frameworks for safe control
[13], such controllers often require the solution to a sequence
of optimization problems at a given time, where the size of
each optimization grows with the look-ahead horizon.

Motivated by these drawbacks, we introduce a new future-
focused control barrier function (ff-CBF) for collision avoid-
ance. Its fundamental underlying assumption is that vehicles
seek to minimize unnecessary acceleration (or deceleration),
inspired by the widespread use of energy-efficient minimum-
norm controllers [14]–[16]. This assumption is manifested as
a constant velocity prediction of the positions of surrounding
vehicles. We then use this to define the predicted minimum
inter-agent distance over a future time interval and enforce
that this distance remains above a safe threshold. In other
words, the ff-CBF defines a zero super-level set containing
vehicle states that are guaranteed to remain safe under
a zero-acceleration (i.e. constant velocity) control policy
over a period of time. It is worth noting that ff-CBFs are
related to predictive CBFs, which were developed in parallel,
introduced in [17], and take on an increased computational
load in exchange for applicability to more general predicted
trajectories. In this sense, ff-CBFs (like predictive CBFs)
are related to recent work on the development of backup
CBF policies [18]–[20]. Unlike backup and predictive CBF
policies, however, our ff-CBF does not require numerical
integration of the system trajectories forward in time, the
computational demands of which also grow with the look-
ahead horizon. This allows us to take predicted future safety
into account for the design of present actions while using
a computationally-efficient quadratic program-based control
law often used for CBF-based safe control [6], [8], [9], [12].

Our future-focused CBF, however, defines a virtual barrier
which, in practice, may be violated without defying the phys-
ical barrier between agents. As such, we introduce the notion
of a relaxed future-focused control barrier function (rff-CBF)
and show that enforcing forward invariance of its zero super-
level set allows permeability of the virtual barrier while
satisfying the physical one. The rff-CBF, therefore, permits
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the execution of safe control actions deemed inadmissible by
the ff-CBF, resulting in reduced conservatism. In a numerical
study, we examine the intersection crossing problem over a
wide variety of initial conditions and highlight how an rff-
CBF based controller provides the safety and performance
benefits of ff-CBF based control while improving feasibility
properties of a quadratic program (QP) based control law.
We then implement the rff-CBF controller on a collection
of ground rovers in a lab environment, and demonstrate
its success in safely driving non-communicating vehicles
through an unsignaled intersection.

The paper is organized as follows. Section II introduces
some preliminaries, including set invariance and QP-based
control. We formalize the problem under consideration in
Section III and introduce our future-focused CBF in Section
IV. Section V contains the results of our simulated and
experimental trials, and in Section VI we conclude with final
remarks and directions for future work.

II. MATHEMATICAL PRELIMINARIES

We use the following notation throughout the paper. R
denotes the set of real numbers. ‖ · ‖ represents the Eu-
clidean norm (2-norm). We use lowercase variables for scalar
quantities (e.g., a ∈ R), lowercase bold variables for vector
quantities (e.g., x ∈ Rn), and uppercase bold variables
for matrices (e.g., M ∈ Rm×n). Cr is the set of r-times
continuously differentiable functions in all arguments. We
write ∂S for the boundary of a closed set S , and Int(S)
for its interior. A function α is said to belong to class K∞
if α(0) = 0 and α : R → R is increasing on the interval
(−∞,∞). The Lie derivative of a function V : Rn → R
along a vector field f : Rn → Rn at a point x ∈ Rn is
denoted LfV (x) , ∂V

∂x f(x).
In this paper, we consider a collection of agents, A, each

of whose dynamics is governed by the following class of
nonlinear, control-affine systems

ẋi = fi(xi(t)) + gi(xi(t))ui(t), xi(0) = xi0, (1)

where xi ∈ Rn and ui ∈ Ui ⊂ Rm denote the state and
control vectors respectively for agent i ∈ A, and where
fi : Rn → Rn and gi : Rn → Rn×m are locally Lipschitz
in their arguments and not necessarily homogeneous across
agents. The set Ui denotes the set of admissible control
inputs, and it is assumed that A has cardinality p. A subset
of agents Ac ⊆ A is assumed to be communicating in that
they share information (e.g., control inputs) and thus may
use centralized control laws, whereas the remaining agents
An = A \ Ac are non-communicating and must resort to
decentralized control laws.

Given a continuously differentiable function hi : Rn → R,
we define a safe set Si as

Si = {xi ∈ Rn | hi(xi) ≥ 0}, (2)

where the boundary and interior of Si are ∂Si = {xi ∈
Rn | hi(xi) = 0} and Int(Si) = {xi ∈ Rn | hi(xi) > 0}
respectively. The trajectories of (1) remain safe, i.e. xi(t) ∈
Si for all t ≥ 0, if Si is forward-invariant. The following

constitutes a necessary and sufficient condition for forward
invariance of a set Si.

Lemma 1 (Nagumo’s Theorem [21]). Suppose that there
exists ui ∈ Ui such that (1) admits a globally unique solution
for each xi(0) ∈ Si. Then, the set Si is forward-invariant
for the controlled system (1) if and only if

Lfihi(xi) + Lgihi(xi)ui ≥ 0, ∀xi ∈ ∂Si. (3)

One way to render a set forward-invariant is to use CBFs
in the control design.

Definition 1. [6, Definition 5] Given a set Si ⊂ Rn defined
by (2) for a continuously differentiable function hi : Rn →
R, the function hi is a control barrier function (CBF)
defined on a set Di, where Si ⊆ Di ⊂ Rn, if there exists a
Lipschitz continuous function α ∈ K∞ such that, ∀xi ∈ Di,

sup
ui∈Ui

[Lfihi(xi) + Lgihi(xi)ui] ≥ −α(hi(xi)). (4)

It is evident that (4) reduces to (3) when xi ∈ ∂Si, thus
if hi(x(0)) ≥ 0 and hi is a CBF on Di then Si can be
rendered forward-invariant. As such, it has become popular
to include CBF conditions (4) as linear constraints in a
quadratic program (QP) based control law [6], [8], etc. When
agents in the system are cooperative and communicating, a
centralized controller may be deployed as follows

u∗ = arg min
u∈U

1

2
‖u− u0‖2 (5a)

s.t. ∀i, j = 1, . . . , p, i 6= j

φi + γiui ≥ 0, (5b)
φij + γiju ≥ 0, (5c)

where u = [u1, . . . ,up]
> and u0 = [u0

1, . . . ,u
0
p]
> denote

concatenations of the input and nominal input vectors re-
spectively, and

φi = Lfihi(xi) + αi(hi(xi)), (6a)
φij = Lfihij(xi,xj) + Lfjhij(xi,xj) + αij(hij(xi,xj)),

(6b)
γi = Lgihi(xi), (6c)
γij = [Lg1hij(xi,xj) . . . Lgphij(xi,xj)], (6d)

where each αi, αij ∈ K∞ such that (5b) represents an agent-
specific constraint (e.g., speed limit) and (5c) represents an
inter-agent constraint (e.g., collision avoidance). Note that
γij is a row vector of all zeros except indices i and j,
denoted γij,[i] and γij,[j] respectively. If the agents are non-
communicating, however, then a decentralized control law of
the following form may be used:

u∗i = arg min
ui∈Ui

1

2
‖ui − u0

i ‖2 (7a)

s.t. ∀j = 1, . . . , p, i 6= j

φi + γiui ≥ 0, (7b)
φij + γij,[i]ui ≥ 0, (7c)

3325

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 31,2025 at 18:46:29 UTC from IEEE Xplore.  Restrictions apply. 



where (7b) and (7c) represent agent-specific and inter-agent
constraints similar to (5b) and (5c). As noted by [22], col-
lision avoidance is guaranteed under the centralized control
scheme (5) whenever it is feasible, unlike the decentralized
controller (7) under which (for a generic CBF hij) no such
guarantee exists even when used uniformly by all agents. In
Section V, we use forms of (5) and (7) to solve versions of
the intersection crossing problem outlined in Section III.

III. PROBLEM FORMULATION

Let F be an inertial frame with a point s0 denoting its
origin. Consider a collection of vehicles A approaching an
unsignaled four-way intersection, where the dynamics of the
ith vehicle are modeled as

ẋi = vi (cosψi − sinψi tanβi) , (8a)
ẏi = vi (sinψi + cosψi tanβi) , (8b)

ψ̇i =
vi
lr

tanβi, (8c)

β̇i = ωi, (8d)
v̇i = ai, (8e)

where xi and yi denote the position of the center of gravity
(c.g.) of the vehicle with respect to s0, ψi is the orientation
of the body-fixed frame, Bi, with respect to F , βi is the slip
angle1 of the vehicle c.g. relative to Bi (we assume |βi| < π

2 ),
and vi is the velocity of the rear wheel with respect to F .
The state of vehicle i is denoted by zi = [xi yi ψi βi vi]

>,
and the full state is z = [z1 . . . zp]

>. The control input is
ui = [ωi ai]

>, where ai is the linear acceleration of the rear
wheel and ωi the angular velocity of the slip angle, βi, which
is related to the steering angle, δi, via tanβi = lr

lr+lf
tan δi,

where lf + lr is the wheelbase with lf (resp. lr) the distance
from the c.g. to the center of the front (resp. rear) wheel.
The model, depicted in Figure 1, is a dynamic extension of
the kinematic bicycle model described in [23, Chapter 2],
and is often used for autonomous vehicles [24].

For safety, we consider that each vehicle must 1) obey the
road speed limit and drive only in the forward direction, 2)
remain inside the road boundaries, and 3) avoid collisions
with all vehicles. The satisfaction of requirement 2) can be
handled via nominal design of ωi, whereas we encode 1) and
3) with the following candidate CBFs:

hs,i(zi) = (vmax − vr,i)(vr,i), (9)

h0,ij(zi, zj) = (xi − xj)2 + (yi − yj)2 − (2R)2, (10)

where vmax denotes the speed limit in m/s and R is a
safe radius in m. We note that (10) is widely used in the
literature to encode collision avoidance [22], [25]. Thus, hs,i
and h0,ij define the following safe sets at time t: Ss,i(t) =
{zi(t) : hs,i(zi(t)) ≥ 0} and S0,ij(t) = {(zi(t), zj(t)) :
h0,ij(zi(t), zj(t)) ≥ 0}, the intersection of which constitutes
the safe set for a given vehicle, i.e.

Si(t) = {Ss,i(t) ∩ S0,i(t)}, (11)

1The slip angle is the angle between the velocity vector associated with
a point in a frame and the orientation of the frame.

X

Y

(x,y)

v

vr

lf

lr

Fig. 1: Diagram of bicycle model described in (8).

where S0,i(t) =
N⋂

j=1,j 6=i
S0,ij(t).

Before introducing the problem under consideration, we
note that the dynamics (8) under some predicted control
policy ûi may be expressed as

˙̂zi = fi(ẑi(t)) + gi(ẑi(t))ûi, ẑi(t0) = zi(t0), (12)

where ẑi ∈ Rn denotes the state predicted under the policy
ûi. At any time instance, the predicted dynamics (12) may be
propagated forward in time to determine a state prediction at
some future time τ > t0. In this paper, we take ûi to be the
zero-acceleration policy, defined as ûi , [ω̂i âi]

> = [0 0]>.

Assumption 1. Let 0 < τ̄ <∞. For all vehicles i ∈ A with
dynamics governed by (8), assume that the predicted closed-
loop trajectories of (12) under the zero-acceleration policy
ûi beginning at t0 = 0 are safe over the interval τ ∈ [0, τ̄ ],
i.e. ẑi(τ) ∈ Si(τ) for all τ ∈ [0, τ̄ ], ∀i ∈ A.

Assumption 1 states that no collisions shall occur between
vehicles traveling with constant velocity within a time τ̄ of
the initial time instant, i.e. no vehicles are on a collision
course at the outset.

Problem 1. Consider a set of vehicles (i ∈ A) whose
dynamics are described by (8). Given Assumption 1, design
a control law, u∗i (t) = [ω∗i (t) a∗i (t)]

>, such that, ∀i ∈ A,

i) the closed-loop trajectories of (8) remain safe for all
time (zi(t) ∈ Si(t), ∀t ≥ 0), and

ii) at every time t ≥ 0 the predicted closed-loop trajec-
tories of (12) over the interval τ ∈ [t, t + τ̄ ] remain
safe under the zero-acceleration policy ûi, i.e. ẑi(τ) ∈
Si(τ), ∀τ ∈ [t, t+ τ̄ ], ∀t ≥ 0 under ûi(τ).

The look-ahead time τ̄ directly influences the set of
allowable initial conditions, and vice versa: given τ̄ , the
set of allowable initial conditions is restricted to Z0(τ̄) =
{z ∈ Rpn : F (z, τ̄) ≥ 0}, where F : Rpn×R≥0 → R is
negative if vehicles are predicted to collide under ûi and non-
negative otherwise. On the other hand, given the set of initial
states Z0, the allowable values of τ̄ are those for which no
collisions occur under ûi over the initial time interval [0, τ̄ ].
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In the following section, we introduce a function that
serves as a facet of our proposed solution to Problem 1: a
future-focused control barrier function (ff-CBF) suitable for
QP-based controllers.

IV. FUTURE-FOCUSED CONTROL BARRIER FUNCTIONS

We first recall the nominal CBF for inter-agent safety (10),
and note that for two agents i and j it may be rewritten as

h0,ij(zi, zj) = D2
ij(zi, zj)− (2R)2, (13)

where Dij(zi, zj) =
√

(xi − xj)2 + (yi − yj)2. Let the
differential inter-agent position, ξij , velocity, νij , and ac-
celeration, αij , vectors be

ξij = [ξx,ij , ξy,ij ]
> = [xi − xj , yi − yj ]>,

νij = [νx,ij , νy,ij ]
> = [ẋi − ẋj , ẏi − ẏj ]>,

αij = [αx,ij , αy,ij ]
> = [ẍi − ẍj , ÿi − ÿj ]>,

where we have omitted the argument t for conciseness. In
what follows, we also drop the subscript ij from D, ξ,
ν, and α. The critical observation is that the inter-agent
distance at any arbitrary time, T , is D(zi, zj , T ) = ‖ξ(T )‖.
By assuming zero acceleration, we can use a linear model
to predict that at time T = t + τ , we will have that
ξ(t + τ) = ξ(t) + ν(t)τ , which implies that the predicted
distance at a time of t+ τ is

D(zi, zj , t+ τ) =
√
ξ2
x + ξ2

y + 2τ(ξxνx + ξyνy) + τ2(ν2
x + ν2

y).

Then, we may define the minimum predicted future distance
between agents under the zero-acceleration policy as

D(zi, zj , t+ τ∗) = ‖ξ(t) + ν(t)τ∗‖, (14)

where

τ∗ = arg min
τ∈R

D2(zi, zj , t+ τ) = −ξxνx + ξyνy
ν2
x + ν2

y

. (15)

We elect to consider the zero-acceleration policy, however,
due to the resulting mathematical simplicity (no forward
integration required) and the popularity of minimum-norm
controllers (e.g., [15], [16]) seeking the smallest admissible
acceleration.

We now introduce our future-focused CBF for collision
avoidance, the effect of which is depicted in Figure 2:

hτ̂,ij(zi, zj) = D2
ij(zi, zj , t+ τ̂)− (2R)2, (16)

where
τ̂ = τ̂∗K0(τ̂∗) + (τ̄ − τ̂∗)Kτ̄ (τ̂∗), (17)

with τ̄ > 0 representing the length of the look-ahead horizon,
Kδ(s) = 1

2 + 1
2 tanh (k(s− δ)), k > 0, and

τ̂∗ = −ξxνx + ξyνy
ν2
x + ν2

y + ε
, (18)

where 0 < ε � 1. Using (17) alleviates undesirable char-
acteristics of (15), namely that τ∗ may become unbounded.
The inclusion of ε makes (18) well-defined, and Kδ(t) allows
(17) to smoothly approximate τ̂∗ between 0 and τ̄ .

It is worth mentioning that the ff-CBF is related to the
backup CBFs used for safe control design in [18], [19] in

Fig. 2: Visualization of the effect of the ff-CBF. Whereas h0,12

is evaluated based on the locations of vehicles 1 and 2 at time t,
i.e. (a) and (b), hτ,12 judges safety based on the predicted future
locations of the vehicles at time t + τ , i.e. (c) and (d), allowing
the present control to take action to avoid predicted future danger.

the following sense: whereas past works have required a
backup policy to actively intervene to preserve safety (e.g.,
by applying proportional braking, see [22]), our formulation
encodes that present control actions prevent future unsafe
scenarios that would occur if all vehicles employed a zero-
acceleration policy. Thus, the ff-CBF seeks to preserve the
viability of the zero-acceleration policy as a safe backup
policy.

Theorem 1. Consider two agents governed by the dynamics
(8) whose states are zi and zj . Suppose that hτ̂,ij is defined
by (16), with τ̂ given by (17). Then, the following hold for
all bounded zi, zj:

i) hτ̂,ij ∈ C1

ii) hτ̂,ij ≤ h0,ij whenever τ̂ ≤ 2τ̂∗

Proof. For the first part, we must show that the derivative
of (16) is well-defined and continuous. Consider that from
(14), (16), and (17) we have

ḣτ̂,ij(z) = 2ξxνx + 2ξyνy + 2 ˙̂τ(ξxνx + ξyνy)

+ 2τ̂(ν2
x + ν2

y + ξxαx + ξyαy)

+ 2τ̂ ˙̂τ(ν2
x + ν2

y) + 2τ̂2(νxαx + νyαy).

(19)

Since τ̂ is bounded by definition, it follows that hτ̂,ij ∈ C1

when τ̂ ∈ C1. From (17), we have

˙̂τ = ˙̂τ∗ (K0(τ̂∗) −Kτ̄ (τ̂∗)) + τ̂∗(K̇0(τ̂∗) − K̇τ̄ (τ̂∗)) + τ̄ K̇τ̄ (τ̂∗),

where

K̇δ(τ̂
∗) = ˙̂τ∗

k

2
sech2 (k(τ̂∗ − δ))

and from (18)

˙̂τ∗ = −
αx(2νxτ

∗ + ξx) + αy(2νyτ
∗ + ξy) + ν2

x + ν2
y

ν2
x + ν2

y + ε
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since ˙̂τ∗ and K̇δ(t) are bounded and continuous for bounded
arguments, we have that τ̂ ∈ C1 for bounded zi, zj . Thus,
hτ̂,ij ∈ C1.

For the second part, we observe that hτ̂,ij(z) = h0,ij(z)+
2τ̂(ξxνx + ξyνy) + τ̂2(ν2

x + ν2
y), thus hτ̂,ij(zi, zj) ≤

h0,ij(zi, zj) whenever

τ̂ ≤ −2
ξxνx + ξyνy
ν2
x + ν2

y

= 2τ∗. (20)

With ε in the denominator of (18), it follows that τ̂∗ < τ∗

whenever τ∗ > 0 (and τ̂∗ = 0 when τ∗ = 0), thus the
inequality in (20) holds whenever τ̂ ≤ 2τ̂∗. It follows, then,
that hτ̂,ij(z) ≤ h0,ij(z) whenever τ̂ ≤ 2τ̂∗.

Remark 1. The condition τ̂ ≤ 2τ̂∗ may be satisfied ∀τ̂∗ ≥ 0
for choices of k ≥ 1 in Kδ(t). Since k is a shape parameter
for the function K, higher values of k lead to smaller
approximation error eτ = |τ̂ − τ∗| for τ∗ ∈ [0, T ]. In
practice, we use k = 1000.

Since hτ̂,ij ∈ C1, we have by Definition 1 that if there
exists a function α ∈ K∞ such that (4) holds then hτ̂,ij
is a valid CBF. Under such conditions, our ff-CBF may
be synthesized with any nominal control law using (5)
for communicating agents or (7) for non-communicating
agents. In contrast to when used with a generic CBF, the
decentralized control law (7) guarantees collision avoidance
under our ff-CBF hτ̂,ij and dynamics (8) (as long as it is
feasible) provided that all vehicles deploy (7) with hτ̂,ij
and are not turning, i.e. ψi = βi = 0. This is because
Lfhτ̂,ij → 0 as2 τ̂ → τ∗, in which case (7c) becomes

Lgihτ̂,ijui + αij(hτ̂,ij) ≥ 0, ∀i ∈ A, (21)

which, for any given two agent pair i, j yields

ḣτ̂,ij = Lgihτ̂,ijui +Lgjhτ̂,jiuj ≥ −αij(hτ̂,ij)−αji(hτ̂,ji)

where hτ̂,ij = hτ̂,ji, which satisfies (3) and thus prevents
collisions. Intuitively, a zero CBF drift term i.e. Lfhτ̂,ij = 0
is explained by the fact that the ff-CBF hτ̂,ij is already
predicting the future minimum distance between vehicles i
and j under zero-acceleration policies, thus in the absence
of an acceleration input the prediction is correct and the
minimum distance between vehicles is reached at time t+ τ̂ .

Note that the zero level set defined by candidate CBF hτ̂,ij
represents a virtual barrier. Specifically, hτ̂,ij(zi, zj) < 0
does not imply that a collision has occurred (h0,ij(zi, zj) <
0), nor does it suggest that one is unavoidable; rather,
hτ̂,ij(zi, zj) < 0 implies that a future collision will occur if
the zero-acceleration control policy, ûk, is applied uniformly
by each vehicle k ∈ {i, j}. This motivates the notion of the
relaxed future-focused control barrier function (rff-CBF):

Hij(zi, zj) = hτ̂,ij(zi, zj) + α0 (h0,ij(zi, zj)) , (22)

2In our simulations, we have found that Lfhτ̂,ij is on the order of the
approximation error eτ = |τ̂ − τ∗| ≈ 10−9 for τ∗ ∈ [0, τ̄ ], which may
be accounted for by subtracting ε ≈ 10−9 from the left-hand side of (21).

where α0 ∈ K∞. The zero super-level set of Hij is then

SH,ij = {(zi, zj) ∈ R2n | Hij(zi, zj) ≥ 0}, (23)

which defines a relaxed virtual barrier that allows virtual
constraint violations away from the physical barrier, and
in that sense enlarges the admissible control space while
preserving the collision avoidance guarantee. This is proved
in the following result.

Theorem 2. Consider two agents, each of whose dynamics
are described by (1). Suppose that Hij is given by (22), and
that Hij ≥ 0 at t = 0. If there exist control inputs, ui and
uj , such that the following condition holds, for all t ≥ 0,

sup
ui∈Ui
uj∈Uj

[
LfiHij + LfjHij + LgiHijui + LgjHijuj

]
≥ 0,

(24)
for all z ∈ ∂SH,ij , then, the physical safe set defined by
S0,ij(t) = {(zi, zj) ∈ R2n | h0,ij(zi, zj) ≥ 0} is forward-
invariant under ui, uj , i.e. there is no collision between
agents i and j.

Proof. In order to show that S0,ij is rendered forward-
invariant by (24), we must show that (24) implies that ḣ0,ij ≥
0 whenever h0,ij = 0. We will prove this by contradiction.

Suppose that Hij , h0,ij = 0, and that (24) holds but
ḣ0,ij < 0. Note also that by Theorem 1 hτ̂,ij ≤ h0,ij . Then,
it follows that ḣ0,ij = 2(ξxνx + ξyνy) < 0, which by (17)
implies that τ̂ > 0. With τ̂ > 0, it follows that hτ̂,ij <
h0,ij = 0. However, we have assumed that Hij , h0,ij = 0,
which means by definition that hτ̂,ij = 0. Thus, we have
reached a contradiction. It follows, then, that (24) implies
that ḣ0,ij ≥ 0 whenever h0,ij = 0. As such, S0,ij is rendered
forward-invariant.

As a result of Theorem 2, we can use (22) to encode
safety in the context of a CBF-QP control scheme (5) or
(7). In the ensuing section, we conduct a comparative study
on the efficacy of the nominal (13), future-focused (16), and
relaxed future-focused (22) CBFs across randomized trials
of an automotive intersection crossing problem.

V. INTERSECTION CASE STUDIES

In this section, we illustrate the use of our future-focused
CBFs for collections of both communicating and non-
communicating vehicles in the context of simulated and
experimental trials of an unsignaled intersection scenario. We
provide code and a selection of videos for both on Github3.

A. Centralized Control: Simulated Trials

In an empirical study on a simulated 4-vehicle unsignaled
intersection scenario, we illustrate how using a rff-CBF
to control communicating vehicles in a centralized manner
improves intersection throughput with promising empirical
results on safety and QP feasibility. We study the varying

3Link to Github repository: github.com/6lackmitchell/ffcbf-control
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degrees of success of three different centralized controllers
of the form (5) to solve Problem 1, namely to find

u∗i = [ω∗i a
∗
i ]
>, ∀i = 1, . . . , A, (25)

where the turning rate is

ω∗i = min
(
max(ω0

i ,−ω̄), ω̄
)
, (26)

and the accelerations a∗1, . . . , a
∗
p are computed via

[a∗1 . . . a
∗
p]
> = arg min

[a1...ap]

1

2

p∑
i=1

(ai − a0
i )

2 (27a)

s.t. ∀i, j = 1, . . . , A, j 6= i

Aai ≤ b, (27b)
φi + γiai ≥ 0, (27c)

φij + γij,[i]ai + γij,[j]aj ≥ 0, (27d)

where ω0
i and a0

i denote the nominal inputs computed using
LQR (see Appendix I for a detailed explanation), (27b)
encodes input constraints of the form −ā ≤ ai ≤ ā, (27c)
enforces both the road speed limit and requires that vehicles
do not reverse, and (27d) is the collision avoidance condition,
where φ and γ are as in (6). Specifically, the controllers under
examination are (25) with

i) 0-CBF: hij = h0,ij according to (13)
ii) ff-CBF: hij = hτ̂,ij from (16)

iii) rff-CBF: hij = Hij via (22)
with α0(h0,ij) = k0h0,ij , where k0 = 0.1 max(τ̂−1, ε), ε =
0.001, the look-ahead horizon τ̄ = 5s, and αij(hij) = 10hij ,
ω̄ = π/2, and ā = 9.81 for all cases. We note that (25) is
centralized in the sense that it is assumed that all states, zi,
and nominal control inputs, u0

i , are known.
For each study, we performed N = 1000 trials of simu-

lated trajectories of 4 vehicles approaching the intersection
from different lanes, all of whose dynamics are described
by (8), using the control scheme described by (25) and a
timestep of ∆t = 0.01s. At the beginning of each trial, the
vehicles were assigned to a lane and their initial conditions
were randomized via

di = d0 + U(−∆d,∆d),

Si = s0 + U(−∆s,∆s),

where di denotes the initial distance of vehicle i from the
intersection, Si its initial speed, and U(a, b) a sample from
the uniform random distribution between a and b. We chose
d0 = 12m, ∆d = 5m, s0 = 6m/s, and ∆s = 3m/s, and
screened out initial conditions in violation of Assumption 1.
For the speed limit, we chose vmax = 10m/s.

For performance evaluation, we introduce some metrics:
i) Success: Number of Successful Trials

Number of Trials ,

ii) Feas.: Number of Trials in which QP is Always Feasible
Number of Trials ,

iii) DLock: Number of Trials in which Vehicles become deadlocked
Number of Trials ,

iv) Unsafe: Number of Trials Vehicles in which h0,ij<0
Number of Trials ,

where a successful trial is characterized as one where all
vehicles exit the intersection at their desired location, a

TABLE I: Controller Performance – All Proceed Straight

CBF Success Feas. DLock Unsafe Avg. Time
hij = h0,ij 0.653 1 0.347 0 5.67
hij = hτ̂,ij 1 1 0 0 3.45
hij = Hij 1 1 0 0 3.21

TABLE II: Controller Performance – One Left Turn

CBF Success Feas. DLock Unsafe Avg. Time
hij = h0,ij 0.689 1 0.311 0 7.75
hij = hτ̂,ij 0.963 0.963 0 0 5.33
hij = Hij 1 1 0 0 4.91

deadlock is characterized as when all vehicles have stopped
and remained stopped for 3 sec, and we define “Avg. Time”
as the average time in which the final vehicle reached the
intersection exit over all successful trials.

We examined the performance of each controller under
two circumstances: 1) each vehicle seeks to proceed straight
through the intersection without turning, and 2) three vehicles
seek to proceed straight without turning and one seeks to
make a left turn. The results for the 3 different controllers
are compiled in Tables I and II respectively. Although the
0-CBF in a centralized QP-based control law is known to
guarantee safety and QP feasibility under certain conditions
[22], such a controller has no predictive power and is
therefore prone to deadlocks. We illustrate such a deadlock
in Figure 3a. The ff-CBF-based controller succeeded as long
as it was feasible, offering a 39% reduction in average
time over the 0-CBF in the straight scenario and an 31%
time improvement in the turning scenario, but suffered from
virtual constraint violations leading to QP infeasibility in the
case of turning vehicles, one example of which is shown in
Figure 3b. The rff-CBF controller enjoyed both the same
empirical feasibility and safety as the 0-CBF design and
improved the average success time to a similar extent as
the ff-CBF, specifically by 43% and 36% for the straight
and turning scenarios respectively. In addition, the rff-CBF
control scheme achieved 100% feasibility even in the turning
scenario, despite the constant velocity prediction model not
taking a change of heading into account. We leave any
theoretical guarantees of feasibility, however, to future work.
The state, control, and rff-CBF trajectories for a turning trial
are illustrated in Figures 4-6. It can be seen from Figure 5
that the control actions smoothly take action in advance of
any dangerous scenario, and from Figure 6 that both Hij and
h0,ij remain non-negative for all i, j.

B. Decentralized Control: Rover Experiments

We further demonstrated the success of our decentralized
rff-CBF-QP controller on a collection of AION R1 UGV
rovers in an intersection scenario in the lab. Each of the 5
rovers was asked to proceed straight through the intersection
while obeying a speed limit (encoded via (9)) and avoiding
collisions with each other (using rff-CBF (22)). Modeling the
rovers as bicycles (8), we used a controller of the form (7) to
compute acceleration ai and angular rate ωi inputs in order

3329

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 31,2025 at 18:46:29 UTC from IEEE Xplore.  Restrictions apply. 



-15 -10 -5 0 5 10 15
X (m)

-10

-5

0

5

10
Y 

(m
)

0-CBF

t =6.3 sec

Past Path

(a)

-15 -10 -5 0 5 10 15
X (m)

-10

-5

0

5

10

Y 
(m

)

FF-CBF

t =1.6 sec

Past Path

(b)

Fig. 3: Selected XY trajectories for the intersection crossing prob-
lem using (a) 0-CBF (Straight Trial 582) and (b) ff-CBF (Turning
Trial 137). In (a), the centralized controller has no predictive power
and the vehicles deadlock, whereas in (b) the virtual barrier between
blue and black vehicles is violated despite a wide physical margin
as the blue vehicle begins to turn left.

to send velocity vi(tk+1) = vi(tk)+ai∆t and ωi commands
to the rovers’ customized on-board PID controllers. The full
control loop ran at a frequency of 20Hz, where the nominal
input u0 was computed using the LQR law outlined in
Appendix I, position feedback was obtained using a Vicon
motion capture system, the extended Kalman filter output
from the PX4 firmware running via the on-board Pixhawk
was used for state estimation.

As shown in Figure 7, our rff-CBF controller succeeds
in driving the vehicles safely through the intersection with-
out a deadlock. The video footage available at the above
GitHub link shows that, contrary to behavior expected using
traditionally myopic, present-focused CBFs, some rovers
accelerated into the intersection in order to avoid predicted
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Fig. 4: XY trajectories for Trial 650 of the rff-CBF simulation set.
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Fig. 5: Control solutions for Trial 650 of rff-CBF simulation set.
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Fig. 6: rff-CBF (H) and 0-CBF (h0) trajectories for rff-CBF Trial
650. (ij) denote that CBF is evaluated for vehicles i and j.

future collisions whereas others braked to await their turn.

VI. CONCLUSION

In this paper, we introduced advancements to tradition-
ally myopic CBF-based safe control in the form of novel
future-focused (ff-) and relaxed future-focused (rff-) CBFs.
We then studied their efficacy on a simulated intersection
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Fig. 7: Five rovers safely traverse a four-way intersection in the
laboratory environment using a decentralized rff-CBF-QP control
law. The rovers at their initial positions are marked with arrows
pointing in the direction of motion.

crossing problem for a collection of automobiles modeled as
bicycles and controlled by a centralized CBF-QP controller
under three different CBFs. We discovered that the rff-CBF
performed best in practice. We further validated our proposed
approach on a collection of 5 ground rovers in an intersection
scenario in the lab environment. In the future, we plan to
further investigate 1) how rff-CBFs and control Lyapunov
functions may be combined to make formal guarantees
on stabilization and safety, and 2) under what conditions
the nominal CBF-QP controller remains feasible when the
future-focused CBF-QP may not be.
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APPENDIX I
LQR-BASED NOMINAL CONTROL LAW

For each vehicle, we assume that a desired state trajectory,
q∗i (t) = [x∗i y∗i ẋ∗i ẏ∗i ]>, is available. Then, we define
the modified state vector and tracking error as ζi(t) =
[xi yi ẋi ẏi]

>, and ζ̃i(t) = ζi(t) − q∗i (t) respectively. We
then compute the optimal LQR gain, K, for a planar double
integrator model and compute µ = [ax,i ay,i]

> = −Kζ̃i.
Then, we map ax,i, ay,i to ω0

i , a0
i via[

ω0
i

a0
i

]
= S−1

[
ax,i + ẏiψ̇i
ay,i − ẋiψ̇i

]
,

where

S =

[
−vi sin(ψi) sec2(βi) cos(ψi)− sin(ψi) tan(βi)
vi cos(ψi) sec2(βi) sin(ψi) + cos(ψi) tan(βi)

]
,

the inverse of which exists as long as vi 6= 0. Therefore,
if |vi| < ε, where 0 < ε � 1, we assign ω0

i = 0 and
a0
i =

√
a2
x,i + a2

y,i.
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